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Conventional distributed systems manage a cluster of computing nodes through cluster- wide 
coordination with respect to communication, computation and storage, represented by Hadoop 
Clusters and Spark Clusters. Huge data can be partitioned and distributed by partitions to 
different nodes in a cluster. Computation can be done in either local mode or distributed mode. 
In local mode, computation needs to handle both location computing and data movements to 
and from other nodes in the cluster. In distributed mode, the local computation needs to be 
synchronized through inter-node communications across the cluster. For huge data movements 
across a compute cluster, the inter-node communication for distribution synchronization can be 
prohibitively expensive. 

In the age of big data powered Artificial Intelligence (AI) and Machine Learning (ML), Data has 
become the No. 1 in exponential growth, faster than big data hardware and software 
combined. Such huge data growth rate has further increased the demand for HPC and deep 
learning platforms to handle huge data at faster speed and analyze them in real time. 
Unleashing the potential of huge data for advancing science and engineering presents a 
pressing challenge to the computer systems and network systems research community. One 
approach to enabling and advancing huge data sciences and engineering research is to 
investigate architecture and algorithm for software-defined transparent in-network memory 
computing.  

Unlike conventional distributed computing and cluster computing, where the distributed 
synchronization and communication control is tightly coupled with the data partitioning and 
data distribution, we advocate a clean separation of in-network huge data transportation (data 
plane) from in-network huge data computation control (control plan), coined as a software 
defined transparent computing paradigm. By separating computation control from data 
partitioning, data distribution and data movement in network, it allows each compute node in a 
cluster to adapt to unpredictable temporal variations of its working memory consumption, and 
be able to transparently utilize cluster-wide free memory across in-network executors, which 
are either residing on the same host or on remote nodes in the cluster. Such on-demand and 
transparent memory expansion and elastic in-memory computing paradigm provide stable peak 
time performance (w.r.t.  latency and throughput) for huge data analytics and seamless 
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response to the unpredictable temporal variations of memory demands. We below present two 
example developments towards the software defined approach to transparent in-network 
memory computing. 

Host-coordinated Transparent In-Network Memory Ballooning. It is widely recognized that 
huge data systems and applications hosted in a virtualized compute cluster enjoy the peak-time 
performance when their working set fully fit in the working memory of each node in the cluster, 
demonstrated by Memcached, Redis, VoltDB and so forth. As soon as certain percentage of the 
working set no longer fits into the available memory of some executors, be it container, virtual 
machine or JVM, the huge data systems and applications will experience drastic performance 
degradation due to excessive paging or out of memory errors, even when there are sufficient 
free memory available in the other executors of the same cluster. By enabling transparent in-
network memory ballooning, the conventional cluster computing systems and applications can 
enjoy faster huge data access at either local memory (DRAM) speed through cross-executor 
memory sharing or remote memory speed through cluster-wide remote memory sharing 
before resorting to the external slow storage I/O media. Concretely, the transparent in-network 
memory ballooning extends the virtual memory management into a hierarchical memory 
disaggregation architecture with local memory, cluster-wide remote memory, followed by 
external slower storage I/O. Such cluster wide in-network memory pool can be utilized for 
transparent in-network caching, transparent in-network paging, and transparent in-network file 
storage and access. Our preliminary research results with transparent in-network paging have 
shown that with the transparent in-network memory ballooning, we can enable huge data key-
value systems and huge data machine learning workloads to enjoy stable peak time 
performance even when only partial working set (75% or 50% or 25%) can fit into the available 
working memory for some compute nodes in a Hadoop or Spark cluster. A number of technical 
challenges should be addressed for developing a high performance transparent in-network 
memory computing paradigm, such as how to provide efficient and reliable huge data 
placement in cluster wide network memory, how to transparently and seamlessly control the 
remote access with desired security and privacy guarantee, and how to balance the  in-network 
memory workloads across nodes in a cluster.  

Cloud-coordinated and Transparent in-network federated learning. Traditionally, training ML 
models requires all training data to reside in a central location and to be partitioned and 
distributed over a cluster of compute nodes through a centralized master coordinator, with 
Spark and Hadoop MapReduce as the two representative platforms. For huge data, the 
conventional platform suffers from prohibitively expensive communication and synchronization 
cost. At the same time, privacy concerns and legislations, such as General Data Protection 
Regulation (GDPR) and Health Insurance Portability and Accountability Act (HIPAA), have 
further hindered the collection of data collections from sensors on massive mobile devices 
(clients).  

Federated learning has emerged as an attractive framework for transparent in-network 
memory computing, and is fueled by a number of big data companies, represented by Google, 
Facebook, Amazon, Apple. In a typical federated deep learning system, each data owner 



(participant or client) maintains its own data locally and follows a federated communication 
protocol where only updates of the model training parameters are shared with the trusted 
parameter server (federated server for parameter aggregation). Participants are also the 
workers and are responsible for training the same model on different mini-batches of the huge 
data (compute intensive tasks). In each training iteration, each  participant sends its local 
parameter updates to the parameter server, typically hosted in the Cloud, which aggregates 
and maintains a set of shared parameters. In the next iteration round, the parameter server 
shares the aggregated parameters with each of the participants in the federated learning 
system and each participant updates its local parameters in the subsequent iteration. This 
distributed training process repeats in iteration rounds until the federated training reaches the 
pre-defined convergence condition. In a federated learning scenario, participants are 
heterogeneous compute nodes that communicate with the parameter server in either a client-
server style or decentralized peer to peer style. We refer to this in-network collaborative model 
training paradigm a Cloud coordinated and transparent in-network federated learning.  

Although in federated learning systems, the participants have high transparency and high 
autonomy for their local training data and the mobile devices only need to share the parameter 
updates from their local training to the federated server in the Cloud, several open technical 
challenges need to be addressed systematically and methodically, such as when synchronous 
federated learning is more beneficial than asynchronous federated learning? For synchronous 
federated learning, how to manage straggler workers, select drop out workers, and optimize 
communication overheads of sharing large number of high precision parameters, can we 
guarantee the security and privacy of federated learning with full transparency, while 
maintaining the desired training performance in terms of both training accuracy and overall 
training time (cost).  

At Georgia Tech, we have several active projects that address the above challenges from 
different dimensions, aiming to promote a software defined approach to transparent in-
network memory computing for high performance huge data powered machine learning and 
artificial intelligence.  
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