

Multi-Cloud Performance and Security-driven Brokering for Bioinformatics Workflows

Saptarshi Debroy, PhD.

Assistant Professor in Computer Science, Hunter College of CUNY Doctoral Faculty, The Graduate Center of CUNY

Project Team Introduction

NSF Program: CC* (Campus Cyberinfrastructure)

Program Area: OAC (Office of Advanced Cyberinfrastructure)

Award Number: 1827177

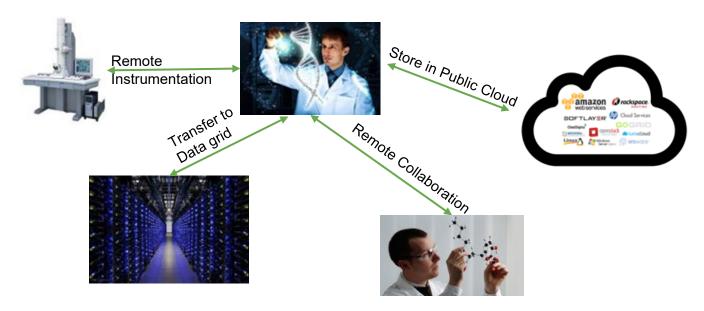
Project Title: End-to-End Performance and Security Driven Federated Data-intensive Workflow Management

Prasad Calyam Associate Professor University of Missouri

Trupti Joshi Assistant Professor University of Missouri

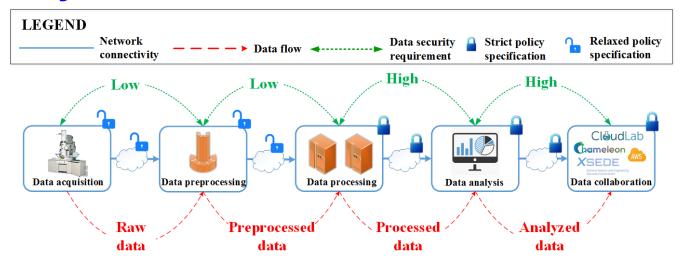
Isa Jahnke Associate Professor University of Missouri

Saptarshi Debroy Assistant Professor CUNY – Hunter College



Timothy Middelkoop Director, Research Computing University of Missouri

Graduate Students:


- Minh Nguyen (CUNY)
- Xiaojie Zhang (CUNY)
- Ashish Pandey (MU)
- Soumya Purohit (MU)
- Ramya Bhamidipati (MU)
- Mauro Lemus (MU)

Data Intensive Applications Today

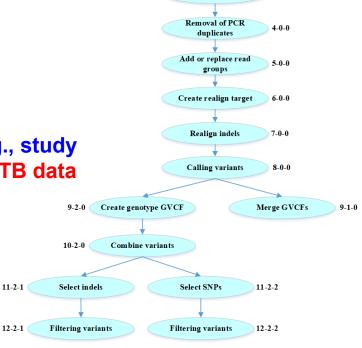
- Science data-intensive applications require on-demand resources
- Motivates adoption of hybrid cloud (private/public/community) architectures
- Programmable technologies (e.g., SDN, OpenFlow, OpenStack) and federated resources (e.g., CyVerse, NSF Cloud, AWS) make such collaboration possible

Security concerns for cross-domain resource use

- Data has different life-cycle stages with varying security requirements
- Serious security concerns for data leaving campus or if resources are used across domains

Example of distrust at local institutions:

"Division of IT strongly advises ... to discourage if not prohibit ... from using public cloud services for University related activities..."


-- Division of IT, University of Missouri

KBCommons Science Gateway and SoyKB

Science gateway portal hosting bioinformatics workflows e.g., study of genetic mutations in plants and organisms (involves TB data sets)

- The multi-step workflows provide biological users with an avenue to analyze their datasets.
- Support needed to accommodate security levels to handle protected genomics data

Indexing of reference

genome

Alignment to reference

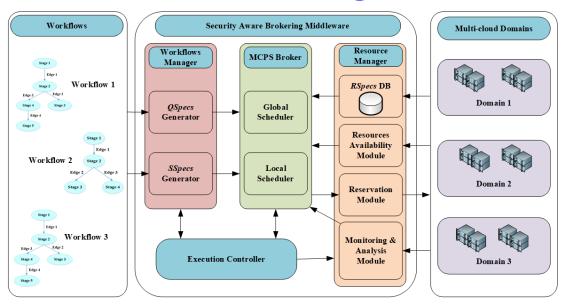
genome

Sorting sam files

1-0-0

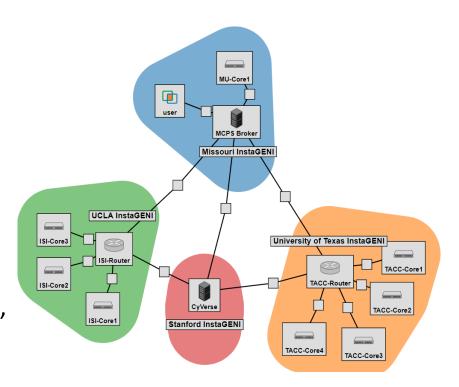
2-0-0

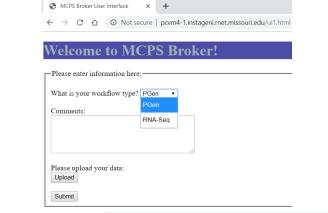
3-0-0

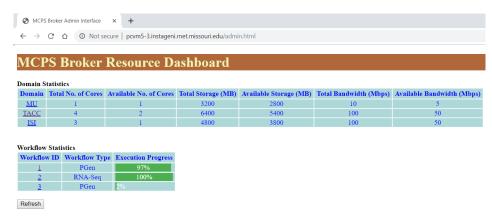

Security & Performance Inter-Conflicts Problem

We characterize the inter-conflicts problem as:

- "Friction" among user requirements and domain/ data source policies
- Strict security requirements of data custodians adherence may restrict performance
- Institutional resource policies may not satisfy security requirements


Performance and Security driven Resource Brokering


- Global scheduling algorithm allocates workflow DAG vertices to domains with security and policy satisfaction.
- Local scheduling algorithm chooses optimal computing core within the chosen domain for *performance* satisfaction.


GENI Implementation

- GENI infrastructure based testbed
 - Multi-cloud resource domains approximately based on the real computing centers used for SoyKB workflows
- Compute capability and network bandwidth mismatches to mimic reallife SoyKB implementation.
- Replicates security policies of TACC, ISI, and MU domains as well as dynamic resource utilization levels.

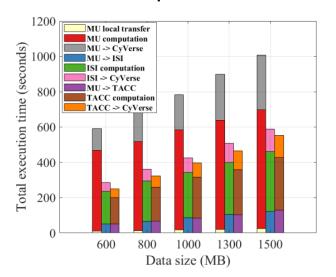
User Interfaces

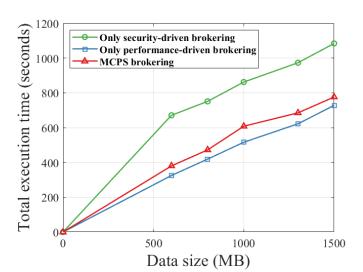
MCPS Broker Resource Dashboard

TACC Domain Statistics

Job Order	Workflow Type	Workflow ID	Compute	Storage	Bandwidth	Execution Progress	SSpec Compliance
1	PGen	1	1	400	NA	100%	Yes
2	PGen	1	1	2100	NA	100%	Yes
3	PGen	1	1	2100	NA	100%	Yes
4	PGen	1	1	2100	NA	100%	Yes
5	PGen	1	1	2100	NA	100%	Yes
6	PGen	1	4	2000	NA	100%	Yes
7	RNA-Seq	2	3	1000	NA	100%	Yes
8	PGen	1	1	300	NA	100%	Yes
9	PGen	1	1	2000	NA	100%	Yes
10	PGen	1	3	1000	NA	100%	Yes
11	PGen	1	3	1000	NA	75%	Pending

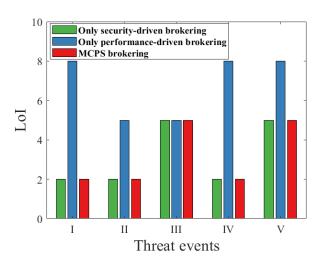
MCPS Broker Resource Dashboard

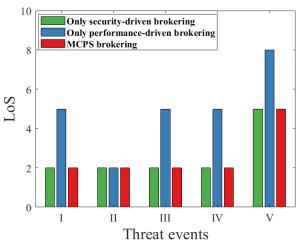

Workflow ID: 1, type: PGen.

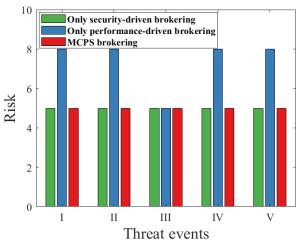

Back

Stages	Compute	Storage	Bandwidth	Domain	Execution Progress	SSpec Compliance
1. Indexing	1	400	NA	ISI	100%	Yes
2. Alignment	1	2100	NA	ISI	100%	Yes
3. Sorting sam files	1	2100	NA	ISI	100%	Yes
4. Removal of PCR	1	2100	NA	ISI	100%	Yes
5. Add/replace groups	1	2100	NA	ISI	100%	Yes
5. Create realign target	4	2000	NA	TACC	100%	Yes
7. Realign indels	1	1000	NA	ISI	100%	Yes
8. Call variants	1	300	NA	ISI	100%	Yes
9. Merge GVCFs	1	2000	NA	ISI	100%	Yes
10. Create GVCF	1	1000	NA	TACC	100%	Yes
11. Combine variants	1	1000	NA	ISI	100%	Yes
12. Select indels	3	1000	NA	ISI	100%	Yes
13. Select SNPs	3	1000	NA	TACC	100%	Yes
14. Filtering variants	3	1000	NA	ISI	75%	Pending
15. Filtering variants	3	1000	NA	TACC	68%	Pending

Performance Evaluation


- Total workflow execution time comparison for PGen workflow
 - MCPS is almost as good as only performance-driven brokering (i.e., optimal)
- Total workflow execution time comparison for simpler RNA-Seq workflow
 - Remote computation is better





Threat Analysis and Security Assessment

- The security compliance comparison for PGen
 - Likelihood of attack success (LoS) and overall Risk are similar to security-driven brokering (i.e., optimal)

