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Motivation and Objective

m “Huge Data” problem: Data generation rates in petabyte, exabyte, and even
zettabyte per hour are becoming increasingly common

- Scientific fields such as astronomy, physics, and biological sciences
— Internet of Things (loT) with billions of sensors and devices interconnected

m Our goal: solve the “Huge Data” problem in the context of machine learning such
that models can be efficiently trained on a huge amount of data and can make fast
predictions on new data samples.




Scalable distributed ML framework

Federation Server  L3. Federated model assembling & pruning ®  Original data set or stream
- S ={x1, x2, x3,...}

iy M> M, m Huge in two dimensions:

— Vertically huge: a huge

DCU, DCU, DCU, _ _ number of data samples

S S, wes S v L2. Vertical compression (i.e., rows) or the influx

streaming rate is
, extremely high

S'={x'} S’ S’ :

— Horizontally huge: a huge
e number of features (i.e.,
(aggregated) L1. Horizontal compression and slicing columns), D
S ={X1,X2,X3,...}, X[=D

I

Data Source(s)
(e.q., loT devices, scientific or industrial equipment)
(Limited pre-processing at edge could happen)



L1. Horizontal compression and slicing

m Horizontal compression: reduce the number of rows

m Key observation: consecutive data samples often have Varying features
little variation except for a few features, whose variation
can be characterized by a well-defined function or : Do
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m Compression method: only keep a “seed sample” +
descriptive functions; all the subsequent samples are
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- Original S > Seed sample set S'={x'1, x'2, x'3,...} + e
metadata set Q = {{F1, k1}, {F2, k2}, {F3, k3},...}, k isthe : I o il
number of data samples described by tuple (x';, F))

- Compression ratio: r = 1 - m/2.k; where m=|S'| is the

number of signal samples
- r—> 1in many practical cases!




m Horizontal slicing: slice the compressed data S’ horizontally, into S'y, S',..., S'n while
keeping intact the width of each data sample D. The subsets S’,, S’,,..., S'n are then
sent to n distributed computing units (DCUSs)

m When S is a data stream rather than a static dataset, the slicing procedure is
substituted by a dispatching mechanism

Does not wait for each subset
S’i to be complete but

immediately sends it to a DCU M, M, +
once the size of S’i reaches a :
certain value (can be as small
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L2. Vertical compression

m At each DCU: reduce the dimension of each sample from D to d (d<<D)

m Classic dimensionality reduction technique: principal component analysis (PCA)
— Deterministic: always result in the same subset of reduced features

- Not desired by some ML tasks such as ensemble learning, which needs model diversity
to boost performance

m We propose random Johnson-Lindenstrauss projection as an alternative

- Introduces randomness while preserving pairwise distances
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m After vertically compressing S’; into S’Y, a sub-model M, is trained over S’ on the same DCU

— Training process needs to be tailored to accommodate the metadata introduced by L1,
for which we anticipate a “virtual expansion” procedure



L3.

Federated model assembling & pruning

Assembling: aggregate the n sub-models M, into one global model M

Challenge: sub-models are heterogeneous

Horizontal slicing (L1) may result in non-i.i.d. datasets

Vertical compression (L2) may result in different features

Conventional distributed machine learning not applicable

Federated averaging can handle non-iid data but not feature heterogeneity
A novel method is needed: Open challenge

Pruning: global model M may still contain a large number of parameters due to the

huge data setting, and thus may need a pruning process before deployment in order
to achieve fast runtime predictions

Starting point: exist pruning and quantization techniques for deep neural
networks (DNN)



Conclusion

m Proposed a framework and preliminary ideas to advance the state-of-the-art in scalable
distributed machine learning for huge data analytics

m Our approach could alleviate the hurdles of storing, transferring, and processing huge
data such that scientific research and loT systems at huge-data scale could

substantially benefit from Al
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