Scalable Distributed Machine Learning with Huge Data for IoT and Scientific Discovery: Opportunities and Challenges

Tony Luo Sajal Das Department of Computer Science Missouri University of Science and Technology 14 April 2020

MISSOURI

Motivation and Objective

- "Huge Data" problem: Data generation rates in petabyte, exabyte, and even zettabyte per hour are becoming increasingly common
 - Scientific fields such as astronomy, physics, and biological sciences
 - Internet of Things (IoT) with billions of sensors and devices interconnected

Our goal: solve the "Huge Data" problem in the context of machine learning such that models can be efficiently trained on a huge amount of data and can make fast predictions on new data samples.

Scalable distributed ML framework

- Original data set or stream
 - $S = \{x1, x2, x3, ...\}$
- Huge in two dimensions:
 - Vertically huge: a huge number of data samples (i.e., rows) or the influx streaming rate is extremely high
 - Horizontally huge: a huge number of features (i.e., columns), D

L1. Horizontal compression and slicing

- Horizontal compression: reduce the number of rows
- Key observation: consecutive data samples often have little variation except for a few features, whose variation can be characterized by a well-defined function or probability distribution
- Compression method: only keep a "seed sample" + descriptive functions; all the subsequent samples are drastically condensed into a single number, until another "seed sample" appears, which indicates a change that the descriptive functions cannot describe.
 - Original S → Seed sample set S'={x'1, x'2, x'3,...} + metadata set Q = {{F1, k1}, {F2, k2}, {F3, k3},...}, k_j is the number of data samples described by tuple (x'_i, F_i)
 - Compression ratio: $r = 1 m/\sum k_j$ where m = |S'| is the number of signal samples
 - $r \rightarrow 1$ in many practical cases!

Varying features											
1959	315.62	310 316.71 A ◆	317.72 B ¢	2 318.29 C \$	291 21,161 316.1 D 🕈	54 31 E ¢	4.8 31: F ¢	3.84 31 G ¢	3.26 3 НФ	1	315.98 J ♦
2000-01-03	00:00:00	-20.1863	-30.916	58.9187	99.0353	36.5655	-18.0928	-258.852	114.065	-145.543	83.2085
2000-01-04	00.00.00	50 7861	34 1686	-39.8916	-156.354	68 2068	97 8078	-14.9382	47 9822	-240 239	-95 4873
2000 01 04	00.00.00	100.400	15 5070	40.6001	07 5110	00.2000	27.214	148.000	104.016	20.0000	62.0063
2000-01-05	00:00:00	189.422	-15.5673	40.6291	-27.5119	-209.28	37.311	-148.209	-104.216	-32.0902	-03.2007
2000-01-06	00:00:00	190.422	172.06	-190.506	-123.561	-46.0929	-10.5616	0.047801	0.846932	94.037	50.7201
2000-01-07	00:00:00	142.145	-122.872	132.62	15.8588	-379.276	4.57074	51.0181	42.3276	-61.3839	-156.779
2000-01-10	00:00:00	-35.3665	-121.451	133.642	-28.563	-41.1246	120.592	-1.0356	-39.1903	7.7991	140.851
2000-01-11	00:00:00	13.3999	-18.9973	32.5474	58.6557	22.2628	57.4611	18.2556	102.327	93.5969	125.019
2000-01-12	00.00.00	-146.557	115.329	-236.82	46.07	190.868	-47.7942	80.1292	-138.331	223.69	-49.9104
2000 01 12	00.00.00	59.4929	-157 012	20 8042	-24.0028	13/ 190	-118 555	19 7215	5 72604	20.5104	-47 2257
2000-01-13	00:00:00	0.4020	-107.913	30.6043	-34.0038	134.109	-110.000	10.7315	5.72004	29.0194	-47.3337
2000-01-14	00:00:00	190.293	-188.671	120.43	-96.7293	-36.7141	-47.8564	107.547	-47.1704	-105.001	-68.7717
2000-01-17	00:00:00	112. <mark>167</mark>	7.06374	85.8183	-44.1304	240.018	53.5899	-199.769	49.3378	39.1819	13.8417
2000-01-18	00:00:00	126.355	116.551	-60.125	2 7.4333	-77.5145	-85.0603	158.785	119.515	-49.4693	-10.4454
2000-01-19	00:00:00	-132.838	57.1512	-102.478	-106.242	4.6459	1.26142	242.231	-21.5105	159.697	30.9611
2000-01-20	00:00:00	-177.494	164.65	-25.3784	121.331	56.275	-190.621	20.294	39.5168	-136.713	137,953
2000-01-21	00.00.00	-32.618	-186.976	-146.837	-101.498	-103.488	-73,2039	-16.4683	-16.8418	244.662	219.604
1997	355.08	355.72 357.81	350 15	350.6	6 359 25 357	12	255 25	3.01 35	3 31 35	4 16 355 4	355 37
1552	555.50	330.72 337.01	в е	C =	D =	E 0	F 0	G 0	не	1.0	
2000-01-03	00:00:00	-20.1863	-30.916	58.9167	99.0355	30.5035	-18.0928	-256.652	114.005	-145.543	63.2085
2000-01-04	00:00:00	10.7861	24.1606	-29.8916	-150.354	68.2068	97.0078	-14.0382	47.9822	-240.239	-95.4873
2000-01-05	00:00:00	180.499	-16.6823	40.8291	-27.6119	-289.28	32.311	+148.209	-104.216	-32.8002	-83.2087
2000-01-06	00:00:00	190.422	172.08	-190.505	-128.561	-46.0929	-10.5616	0.047801	0.8469322	94.037	50.7201
2000-01-07 0	00:00:00	1407.1415	-182.872	132.62	15.0500	-379.276	4.57074	81.0181	42.3270	-01.3039	-150.779
2000-01-10	00:00:00	-338-3866N	-15/1.461	133.649	-278.8403	-41.12748	120.802	-1.00066	-2010. 1 10(22)	2.2991	140,0051
2000-01-11	00:00:00	124.209390	-18.9973	32.5474	56.6557	55.5658	57.4611	18.2555	102.397	93,5989	128.019
2000-01-12	00:00:00	-140.557	115.029	-530.05	06.07	15983.294925	-17.7942	80.12892	- 12565-2325.3	2512.659	-19.9104
2000-01-13	00:00:00	an.4828	-187.013	30.8043	-04.0008	134.189	-118.885	18.7318	8.72'604	20.8104	-17.3387
2000-01-14	00:00:00	160.203	-188.671	120.43	-08,7203	-38.7141	-47.8584	107.847	=47.1704	-108.001	-68.7717
2000-01-17	00:00:00	112 167	7.08374	45.8163	-44.1304	240.018	53.5899	-1999.7499	49.3378	39.1819	13.8417
2000-01-18	00:00:00	188.205	116.881	-60.125	87.4333	-77.5145	-85.0803	158.785	119.515	-49,4093	-10.4484
2000-01-19	00:00:00	-132.638	67.1612	-102.478	-106.242	4.8480	1.26142	242.231	-21.5105	180.607	30.9611
2000-01-20	00.00.00	-177.494	164.65	-25.3784	121.001	56.275	-190.621	20.294	39.5168	-136.713	137 963
2000-01-21 0	00:00:00	-32.618	-180.970	-140.837	-101.498	-103.488	-73.2039	-10.4083	-10.8418	244.062	219.004

- Horizontal slicing: slice the compressed data S' horizontally, into S'₁, S'₂,..., S'n while keeping intact the width of each data sample D. The subsets S'₁, S'₂,..., S'n are then sent to *n* distributed computing units (DCUs)
- When S is a data stream rather than a static dataset, the slicing procedure is substituted by a dispatching mechanism
 - Does not wait for each subset S'i to be complete but immediately sends it to a DCU once the size of S'i reaches a certain value (can be as small as one), and this repeats.
 - Choice of DCU: round-robin or adaptively based on bandwith and workload.

L2. Vertical compression

- At each DCU: reduce the dimension of each sample from D to d (d<<D)
- Classic dimensionality reduction technique: principal component analysis (PCA)
 - Deterministic: always result in the same subset of reduced features
 - Not desired by some ML tasks such as ensemble learning, which needs model diversity to boost performance
- We propose random Johnson-Lindenstrauss projection as an alternative
 - Introduces randomness while preserving pairwise distances

- After vertically compressing S'_i into S'_i^v, a sub-model M_i is trained over S'_i^v on the same DCU
 - Training process needs to be tailored to accommodate the metadata introduced by L1, for which we anticipate a "virtual expansion" procedure

L3. Federated model assembling & pruning

- Assembling: aggregate the n sub-models M_i into one global model M
- Challenge: sub-models are heterogeneous
 - Horizontal slicing (L1) may result in non-i.i.d. datasets
 - Vertical compression (L2) may result in different features
 - Conventional distributed machine learning not applicable
 - Federated averaging can handle non-iid data but not feature heterogeneity
 - A novel method is needed: Open challenge
- Pruning: global model M may still contain a large number of parameters due to the huge data setting, and thus may need a pruning process before deployment in order to achieve fast runtime predictions
 - Starting point: exist pruning and quantization techniques for deep neural networks (DNN)

Conclusion

- Proposed a framework and preliminary ideas to advance the state-of-the-art in scalable distributed machine learning for huge data analytics
- Our approach could alleviate the hurdles of storing, transferring, and processing huge data such that scientific research and IoT systems at huge-data scale could substantially benefit from AI

