

#### A Semantics-Aware Optimization Framework for Data-Intensive Applications Using Hybrid Program Analysis



Liqiang Wang Department of Computer Science University of Central Florida

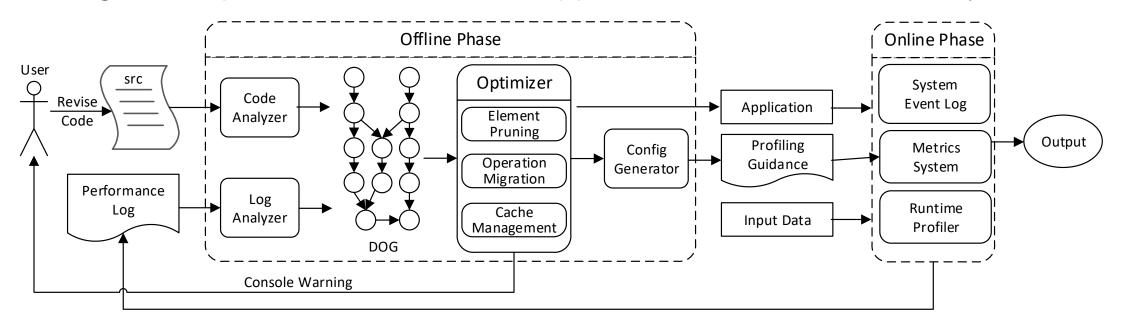


#### **Apps Development & Challenges** Challenge 2: Limited knowledge about Challenge 1: Multiple system status (e.g. Deployment execution plans with container configuration) Code Genration Operation potential different Data-Intensive performance due to Application Configuration the freedom of programming model Design -...... **Static Code** Dynamic Info Data-Intensive IDE Analysis Platform Profiling $\sim$ Adaptatior Log Data Collection Selection Challenge 3: What Runtime **Big Data** information is useful for Analysis Challenge 4: Service further performance Tools No. of the Performance is sensitive optimization? Statistics statistics to many runtime factors A THE REAL PROPERTY OF and data placement.



# Our approach

A two-stage framework, offline and online stages, to assist programmers to design and optimize data-intensive applications semi-automatically.



The full life cycle of semantics-aware optimization approach for data-intensive applications



#### Semantics-Aware Data Model for Spark

- An abstract data model associated with semantic context regarding code, data and system to represent skeleton of an application and track evolution of dataset(s)
  - Data Representation: Attribute-Based Data Abstraction
  - **Data Manipulation**: Predefined Primitive Operations
  - □ Application Representation: Data Operational Graph (DOG)
- Operation Strategies
  - □ Element Pruning (remove redundant attributes in an element)
  - Operation Reordering (Filter pushdown)
  - □ Cache Management (persist a data block in memory)



## **Primitive Operations**

 Define six primitive operations to abstract behaviors of a general dataintensive system, as shown in following Table

| Operation | Notation                                       | Examples in Apache Spark                                      |  |
|-----------|------------------------------------------------|---------------------------------------------------------------|--|
| Map       | $Map: X \times f \mapsto Z$                    | <pre>map, flatmap, mapValues,mapPartions</pre>                |  |
| Filter    | $Filter: X \times f \mapsto Z$                 | filter, sample, collect                                       |  |
| Set       | $Set: X \times Y \times f \mapsto Z$           | ++, intersection, union                                       |  |
| Join      | $Join: X \times Y \times f \times K \mapsto Z$ | join, leftOuterJoin, rightOuterJoin, fullOuterJoin            |  |
| Group     | $Group: X \times f \times K \mapsto Z$         | <pre>reduceByKey, groupByKey, aggregateByKey, foldByKey</pre> |  |
| Agg       | $Agg: X \times f \times init \mapsto reg$      | reduce, aggregate, fold, max, min                             |  |

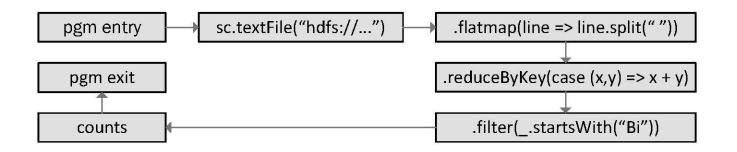
Table 1: The Definition of Primitive Operations, where X, Y, Z represent datasets and reg is a returned value. f are UDFs working on one or a group of elements. The key K is a subset of attributes shared by two or more datasets, and *init* is the initial value for aggregate operations. The last column lists representative operations for each category provided by Apache Spark RDD APIs.



# Data Operational Graph (DOG)

- A directed graph G = (V, E)
  - V: Data manipulated operations and the corresponding generated datasets
  - □ E: Data flows between operations
  - Semantics knowledge regarding code, data and system is attached to vertices and edges

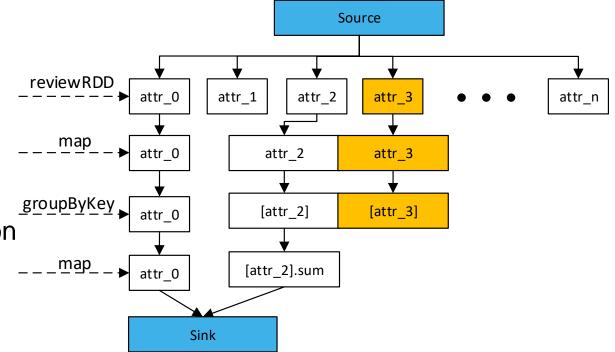
val counts = sc.textFile("hdfs://...")
.flatmap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(case (x,y) => x + y)
.filter(\_.\_1.startsWith("Bi"))





# **Element Pruning**

- It is a static optimization to eliminate unused attributes in an element by analyzing data dependency in the attribute level among operations.
  - Analyzing attribute dependency between the input and output dataset of an operation and its UDF
  - Building a directed data dependency graph (DDG) to represent the whole data flow of the application
  - Removing nodes that does not make contributions to output of the application





## **Operation Reordering**

- Improve applications' performance by reordering operations along with data path, e.g. Filter Pushdown.
  - □ Statically ensuring identical semantics
  - □ Evaluating performance improvement using dynamic/profiling information
    - Using performance models to predict and evaluate performance behavior after reordering.



# Cache Management

- Spark RDD cache/release
- Cache management determines a policy on the stage level to balance the gain and overhead of caching each RDD.
  - □ A very complex problem
  - □ We designed an approach based on convex optimization
    - Dataset size affects memory capacity and perf behaviors.
    - Executing order affects the performance



#### **Experiment and Conclusion**

| Bechmark | Element Pruning (EP) | Operation Reordering (OR) | Cache Management (CM) |
|----------|----------------------|---------------------------|-----------------------|
| SLA      | 1.55%                | 0.77%                     | 2.07%                 |
| CRA      | 6.38%                | 3.09%                     | 59.57%                |
| SNA      | 6.15%                | 9.70%                     | -7.88%                |
| PPJ      | 7.47%                | 0.24%                     | 2.96%                 |

System speed up of individual optimization over the baseline implementation in RDD.

Our semantic-aware optimization approach including two stages:

- □ Static stage (Offline): code operation
- Dynamic stage (online): customized profiling