
A Semantics-Aware Optimization Framework for Data-

Intensive Applications Using Hybrid Program Analysis

Liqiang Wang
Department of Computer Science

University of Central Florida

Apps Development & Challenges
Challenge 1: Multiple

execution plans with

potential different

performance due to

the freedom of

programming model

Challenge 2: Limited

knowledge about

system status (e.g.

container configuration)

Challenge 4:

Performance is sensitive

to many runtime factors

and data placement.

Challenge 3: What

information is useful for

further performance

optimization?

Design

Code Genration

Deployment
Operation

Log Data
Collection

Configuration

Selection

Adaptation

IDE

Data-Intensive
Application

Big Data
Service

Runtime
Analysis

Tools

Data-Intensive
Platform

Static Code

Analysis
Dynamic Info

Profiling

Our approach

◼ A two-stage framework, offline and online stages, to assist programmers to

design and optimize data-intensive applications semi-automatically.

Offline Phase

Code
Analyzer

DOG

Console Warning

src
User

Log
Analyzer

Optimizer

Element
Pruning

Operation
Migration

Online Phase

Config
Generator

Performance
Log

Profiling
Guidance

Input Data

Output

Runtime
Profiler

Application

System
Event Log

Cache
Management

Metrics
System

Revise
Code

The full life cycle of semantics-aware optimization approach for data-intensive applications

Semantics-Aware Data Model for Spark

◼ An abstract data model associated with semantic context regarding code,

data and system to represent skeleton of an application and track evolution

of dataset(s)

 Data Representation: Attribute-Based Data Abstraction

 Data Manipulation: Predefined Primitive Operations

 Application Representation: Data Operational Graph (DOG)

◼ Operation Strategies

 Element Pruning (remove redundant attributes in an element)

 Operation Reordering (Filter pushdown)

 Cache Management (persist a data block in memory)

Primitive Operations

◼ Define six primitive operations to abstract behaviors of a general data-

intensive system, as shown in following Table

Data Operational Graph (DOG)

◼ A directed graph G = (V, E)

 V: Data manipulated operations and the

corresponding generated datasets

 E: Data flows between operations

 Semantics knowledge regarding code,

data and system is attached to vertices

and edges

Element Pruning

◼ It is a static optimization to eliminate unused attributes in an element by

analyzing data dependency in the attribute level among operations.

 Analyzing attribute dependency

between the input and output

dataset of an operation and its UDF

 Building a directed data dependency

graph (DDG) to represent the whole

data flow of the application

 Removing nodes that does not make

contributions to output of the application

Source

attr_0 attr_1 attr_2 attr_3 attr_n

attr_0 attr_2 attr_3

attr_0 [attr_2] [attr_3]

attr_0 [attr_2].sum

reviewRDD

map

groupByKey

map

Sink

Operation Reordering

◼ Improve applications' performance by reordering operations along with data

path, e.g. Filter Pushdown.

 Statically ensuring identical semantics

 Evaluating performance improvement using dynamic/profiling information

◼ Using performance models to predict and evaluate performance behavior after reordering.

Cache Management
◼ Spark RDD cache/release

◼ Cache management determines a policy on the stage level to balance the gain

and overhead of caching each RDD.

 A very complex problem

 We designed an approach based on convex optimization

◼ Dataset size affects memory capacity and perf behaviors.

◼ Executing order affects the performance

Experiment and Conclusion

◼ Our semantic-aware optimization approach including two stages:

 Static stage (Offline): code operation

 Dynamic stage (online): customized profiling

