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1.0 Introduction 
 

This report serves as documentation for the results of a study-level design and economic 

analysis of a process extracting thorium (Th) and rare earth elements (REEs) from monazite ore. 

In the process being analyzed, thorium is extracted from monazite ore using sulfuric acid 

leaching and a series of neutralization, filtration, and drying steps. In addition to thorium, REEs 

are extracted from monazite ore as byproducts of the process. More specifically, the REEs 

extracted are cerium (Ce), lanthanum (La), and neodymium (Nd). After extraction from monazite 

ore, thorium can be used in the generation of thorium-based nuclear power, in which the nucleus 

of a thorium atom accepts a neutron and beta decays into isotope uranium-233. Then, nuclear 

fission of the isotope uranium-233 may produce fuel.  

This project originated from efforts by the Electric Power Research Institute (EPRI) to 

design a process for the recovery of thorium and REEs from monazite while maintaining 

profitability of the process. This report will begin with an outline of the synthesis information for 

the process, including the chemical reactions, process constraints, block flow diagram, and 

relevant cost information. Then, the project’s method of approach will be outlined, focusing on 

the equipment details of the process. After outlining the method of approach, the results of the 

project are analyzed, including the optimization, final process flow diagram, economic viability, 

capital costs, and manufacturing costs of the process. This report will end with conclusions and 

further recommendations regarding future design and analysis of thorium-recovery processes. 

The scale of the process was determined by setting the monazite ore feed rate to 1000 

kg/hr. The monazite ore was considered to have the empirical formula Ce0.5La0.5Nd0.2Th0.05(PO4) 

and the following weight percent composition: 22.36% lanthanum as LaPO4, 37.08% cerium as 

CePO4, 20.64% thorium as Th(PO4)2, 19.92% neodymium as NdPO4, and trace amounts of 

uranium and silicon. Uranium (in PO4 form) and silicon (as SiO2) were regarded as impurities in 

low concentration. The disposition and consequences of the presence of these impurities in the 

feed material were considered in the process design and were further discussed in this report. The 

product purity is expected to be greater than 90%. All costs associated with the process were 

adjusted using a Chemical Engineering Index of 596.2 for January 2020.  
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2.0 Synthesis Information for Processes 
 
2.1 Block Flow Diagram 

The thorium-recovery process was designed to extract thorium (Th) and rare earth 

elements (REEs) from monazite ore, using a monazite ore feed rate of 1000 kg/hr. The recovery 

of thorium and REEs is accomplished using sulfuric acid leaching and a series of neutralization, 

filtration, and drying steps, as shown in Figure 1. 

 

Figure 1. Block Flow Diagram of the Thorium Recovery Process 

2.2 Process Constraints 

To minimize the safety hazards associated with this process, certain safety constraints 

must be placed on the operation of the process. First, the running temperatures through the 

system must be maintained below the auto-ignition temperature of all materials used. Second, the 

handling and disposing of waste streams must be done within federal regulations. Since the 

process involves acid leaching and neutralization with strong acidic and basic solutions, 

respectively, special preventative steps must be taken to prevent leakage and protect process 

employees, the community, and the environment. Additional constraints include monitoring the 
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radioactivity associated with the thorium extracted from the process to ensure that it does not 

cause unintended harm to the process employees, the community, and the environment. 

2.3 Process Chemistry 

The process begins with sulfuric acid leaching of monazite ore in the rotary kiln, as 

shown in Figure 1. Through sulfuric acid leaching, the thorium and REEs contained within the 

monazite ore are converted to thorium and REE sulfates. The process chemistry associated with 

this step is shown in the following reactions:  

Reaction 1: 2CePO4 + 3H2SO4 → Ce2(SO4)3 + 2H3PO4  

Reaction 2: 2LaPO4 + 3H2SO4 → La2(SO4)3 + 2H3PO4 

Reaction 3: 2NdPO4 + 3H2SO4 → Nd2(SO4)3 + 2H3PO4  

Reaction 4: Th(HPO4)2 + 2H2SO4 →Th(SO4)2 + 2H3PO4 

After sulfuric acid leaching, the products from the rotary kiln are reacted with ammonium 

hydroxide in two separate neutralization tanks: one for the neutralization of thorium sulfate to 

thorium oxide, and another for the neutralization of REE sulfates to REE oxides. The process 

chemistry associated with these steps is shown in the following reactions: 

Reaction 5: Th(SO4)2 + 4NH4OH → Th(OH)4 + 2(NH4)2SO4  

Reaction 6: La2(SO4)3 + 6NH4OH → 2La(OH)3 + 3(NH4)2SO4  

Reaction 7: Ce2(SO4)3 + 6NH4OH → 2Ce(OH)3 + 3(NH4)2SO4 

Reaction 8: Nd2(SO4)3 + 6NH4OH → 2Nd(OH)3 + 3(NH4)2SO4 

After neutralization, the thorium and REE oxides are filtered and dried from aqueous 

waste. The process chemistry associated with these steps is shown in the following reactions: 

Reaction 9: 2Ce(OH)3 → Ce2O3 + 3H2O  

Reaction 10: 2La(OH)3 → La2O3 + 3H2O 
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Reaction 11: 2Nd(OH)3 → Nd2O3 + 3H2O 

Reaction 12: Th(OH)4 → ThO2 + 2H2O 

2.4 Literature Summary 

Monazite is a rare-earth phosphate, being the second most common mineral used as a 

source of rare-earth elements. Monazite exists primarily as an ore containing the rare-earth 

elements of cerium (Ce), lanthanum (La), and neodymium (Nd). In addition to the rare-earth 

elements, thorium (Th) can be extracted from monazite ore. Thorium is a slightly radioactive 

metal, identical to uranium. However, it is more abundant and half as dense as uranium. Because 

of its abundance, the extraction and further use of thorium from monazite ore has proven a 

beneficial area of study.  

Thorium is widely used as an additive in a variety of applications. Most commonly, 

thorium is used in metal alloys, catalysis, ceramics, glass, and radiocontrast agents, mostly in the 

form of thorium dioxide (ThO2 ) [5]. More recently, however, thorium has been the subject of 

studies evaluating its potential as a source of nuclear power. Although thorium is not fissile and 

thus not able to be directly used in most nuclear reactors, it can be paired with a sufficient 

amount of uranium, allowing the nucleus of the thorium atom to accept a neutron and beta decay 

into isotope uranium-233 [7]. Then, nuclear fission of the isotope uranium-233 may occur, 

generating nuclear power. It is for the reasons mentioned previously that the extraction of 

thorium dioxide from monazite ore and its further uses have been widely considered as a 

potential source of green energy across the world. In addition to the extracted thorium, the 

rare-earth elements of cerium, lanthanum, and neodymium also contained within monazite ore 

can be extracted by the same process. These rare-earth elements also have a variety of 

applications, from electronics to nuclear reactions. However, they are found sparsely in the 

environment, making them costly to acquire. Therefore, the extraction of thorium from monazite 

ore offers an additional opportunity to recover these highly-valuable elements [9]. 

A majority of the current processes studied to extract rare-earth elements from monazite 

ore rely on pyro-hydro or a hybrid technique to recover the elements from the ore. The first step 

in these processes is to isolate monazite ore from other mined ores, and then determine the 
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concentration of thorium and rare-earth elements in the monazite ore. Naturally-occurring 

monazite ore deposits are of varying concentration, leading to recovery processes run using a 

variety of different methods, temperatures, and time steps. Although thorium-recovery processes 

vary greatly due to the varying concentration of monazite ore, most processes begin with 

thermally treating the monazite ore prior to rare earth element separation [4]. Typically, the 

recovery of rare earth elements involves a leaching step in order to produce a salt that can be 

used in a solvent extraction step to remove the rare earth salts accordingly. One promising 

monazite extraction process that has been investigated utilizes a sulphuric acid bake-leach 

process in a rotary kiln for the extraction of thorium and rare earth elements from monazite ore 

[3]. The economic viability as well as the environmental and safety impacts of this process will 

be further studied in this report. 

2.5 Basic Process Economics 

 One of the primary objectives of this project is to determine the economic viability of the 

thorium-recovery process from monazite ore. To do so, the raw materials costs, equipment costs, 

manufacturing costs, and the profitability of selling the REE byproducts of the process were 

considered. The cost per unit information of the raw materials, products, and byproducts are 

given in Table 1.  

Table 1. Prices of Raw Materials, Products, and Byproducts 
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3.0 Method of Approach 
 
The thorium-recovery process was designed to extract thorium (Th) and REE oxides from 

monazite as follows. First, a feed containing monazite ore and water is fed into a rotary kiln. 

Through a process of sulfuric acid leaching, a feed containing sulfuric acid and water is fed into 

the rotary kiln, and the thorium and REEs contained within the monazite ore are converted to 

thorium and REE sulfates. Then, the products from the rotary kiln are fed into a filter, in which 

the thorium sulfate cake is separated and partially dried from the liquid REE sulfates and 

phosphates stream.  

The stream containing thorium sulfate cake, along with a stream containing ammonium 

hydroxide and water, are fed into a neutralizer. The neutralization reaction taking place in the 

neutralizer converts the thorium sulfate cake to thorium oxide, producing ammonia and various 

sulfates as byproducts. Then, the products from the neutralizer are fed into a filter, in which the 

thorium oxide is separated and partially dried from the liquid ammonia and sulfates stream. The 

liquid ammonia and sulfates stream is exited from the process as waste, while the thorium oxide 

stream is exited from the process as a product. 

From the initial filter, the stream containing REE sulfates and phosphates is fed into a 

liquid-liquid extractor. The liquid-liquid extractor separates the organic phosphates from the 

REE sulfates. Then, the organic phosphates stream is fed into a stripper, in which a water stream 

is used to remove the organic components from the organic phosphates stream. As a result of this 

stripping process,  a stream containing phosphates and water exits the stripper. The REE sulfates 

stream from the liquid-liquid extractor is fed into a neutralizer. The neutralization reaction taking 

place in the neutralizer converts the REE sulfate cake to REE hydroxides, producing ammonia 

and various sulfates as byproducts. Then, the products from the neutralizer are fed into a filter, in 

which the REE hydroxides are separated and partially dried from the liquid ammonia and 

sulfates stream. The liquid ammonia and sulfates stream is exited from the process as waste, 

while the REE hydroxide stream is fed into a rotary kiln. The rotary kiln dries the REE 

hydroxide stream from aqueous waste, producing REE oxides. The REE oxides stream is exited 

from the process as a product.  
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The thorium-recovery process outlined above was designed to extract thorium and REE 

oxides from monazite ore using OLI Flowsheet software. After placing all streams and 

equipment into the software, the stream flow rates and equipment properties were optimized to 

result in the process producing the greatest yield of product possible while maintaining a 

reasonable product purity. The steps taken to optimize the process are discussed in further detail 

in Section 4.1 of this report. To analyze the economic viability, capital costs, manufacturing 

costs, and safety of the thorium-recovery process, a number of assumptions were made. The 

assumptions made during completion of this study-level design and economic analysis are 

included in Table 2. Then, the economic and safety hazard methods outlined in Gael D. Ulrich’s 

Chemical Engineering: Process Design and Economics were used. All costs associated with the 

process were adjusted using a Chemical Engineering Index of 596.2 for January 2020. The 

results of the design, economic viability, capital costs, manufacturing costs, and safety of the 

thorium-recovery process are discussed in Section 4.0 of this report.  

Table 2. Project Assumptions Chart 
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4.0 Results 
 
4.1 Optimization 

In order to optimize the thorium-recovery process, a number of measures were taken. 

First, the thorium-recovery process was designed to extract thorium and REE oxides from 

monazite ore using the least number of pieces of equipment to maintain the highest yield of 

thorium and REE oxides products possible. To accomplish this, the process was designed using 

OLI Flowsheet software, as outlined in Section 3.0 of this report. The software allowed for 

simple comparability of product yield as the process equipment was altered. Second, the 

thorium-recovery process was designed to extract thorium and REE oxides from monazite ore 

using the smallest stream flow rates to maintain the highest yield of thorium and REE oxides 

products possible. Identical to the optimization of the process equipment, the stream flow rates 

were adjusted using OLI Flowsheet software until the highest yield of thorium and REE oxides 

was produced. Further recommendations for optimization of the thorium-recovery process that 

were considered after obtaining the results of this study-level design and economic analysis are 

included in Section 7.0 of this report.  

4.2 Process Flow Diagram 

The process design results obtained from OLI Flowsheet are shown in Figure 2. The 

rotary kiln (R-2) used to convert the REE hydroxides contained in Stream 14 to REE oxides 

could not be modeled in OLI Flowsheet, and thus it is not included in Figure 2. Instead, 

Microsoft Excel was used to model the second rotary kiln (R-2).  

 
Figure 2. Process Flow Diagram of the Thorium Recovery Process 
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More information on the composition of each stream in the process is included in Tables 3 and 4, 

based on the mass and molar flow rates of each stream.  

Table 3. Stream Composition Chart with Mass Flow Rates 
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Table 4. Stream Composition Chart with Molar Flow Rates 
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4.3 Safety, Health, and Sustainability Analysis 

The safety, health, and environmental impacts of the thorium-recovery process were 

analyzed by creating a Stream Hazard Chart, as shown in Table 5. 

Table 5. Stream Hazard Chart 
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 From the prepared Stream Hazard Chart, the primary hazards associated with the 

thorium-recovery process are the toxicity, carcinogenicity, mutagenicity, corrosivity, and 

irritating properties of most of the chemical components used in the process. The risk of these 

hazards to the safety, health, and sustainability of the process employees, community, and 

environment may be minimized by employing a variety of methods in the process.  

One method of reducing the safety and health risks of the hazardous properties associated 

with the chemical components used in the process to the process employees is to ensure that all 

employees are informed of the toxicity, carcinogenicity, mutagenicity, corrosivity, and irritating 

properties of the process chemicals. To accomplish this objective, required chemical safety 

training should be provided to process employees on a consistent basis in order to promote 

long-term retention of the stream hazards. Another method of reducing the safety and health 

risks of the hazardous chemical properties to the process employees is to provide them with the 

appropriate personal protective equipment. All process employees should wear closed-toe shoes, 

long sleeves, eye protection, and gloves when working near the process equipment. A final 

method of reducing the safety and health risks of the hazardous chemical properties to the 

process employees is to equip the thorium-recovery process plant with the appropriate amount of 

ventilation, eye wash stations, chemical showers, and first-aid kits to be used in the case of an 

emergency. 

Next, the health and safety of the community surrounding the thorium-recovery process 

was considered in the design. One method of reducing the safety and health risks of the 

hazardous chemical properties to the surrounding community is to prevent catastrophic incidents 

caused by the malfunction of the process equipment before such incidents occur. This may be 

accomplished by implementing hazard and operability studies (HAZOP), Failure Mode Effect 

Analysis, or a similar methodology to ensure the thorium-recovery process and its equipment are 

running as expected. These methods aid in limiting or preventing the exposure of the community 

to the hazards of the chemical components of the process by drawing attention to equipment 

malfunctions before a catastrophic incident occurs. 
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Finally, the sustainability of the thorium-recovery process was considered in the design. 

One method of improving the sustainability of the process is to ensure that any waste generated 

from the process is handled properly and according to federal regulations. The primary waste 

from the thorium-recovery process contains large amounts of ammonia and various sulfates. 

Because these chemical components are toxic and have irritating properties, the process should 

be disposed of accordingly. Emissions may emerge from the equipment of the thorium-recovery 

process, such as the rotary kiln. Therefore, another method of improving the sustainability of the 

thorium-recovery process is to ensure that any emissions generated from the process are reduced. 

Following this report, the process design may be further modified with additional recycle streams 

in order to reduce environmentally-harmful emissions. Additionally, the process design may be 

later considered with the utilization of more sustainable sources of energy in order to further 

reduce emissions.  

4.4 Capital Cost Estimates 

 To analyze the capital costs of the thorium-recovery process, the economic methods 

outlined in Gael D. Ulrich’s Chemical Engineering: Process Design and Economics were used 

for each piece of equipment in the process. A summary of the capital costs associated with our 

thorium-recovery process is shown in Table 6. For the neutralizers of the process, a reaction 

occurs in that step of the process. Because a neutralization reaction occurs, the neutralizers were 

modeled as Continuous Stirred Tank Reactors (CSTRs), using non-jacketed vaporizer vessels to 

represent the CSTRs. The sizing for each neutralizer was found to be based on the product of the 

volumetric flow rates and an assumed residence time. Because the first neutralizer (Neutrl-1) 

contained a single-phase liquid mixture, it was assumed to need an average residence time of 10 

minutes. Because the second neutralizer (Neutrl-2) contained a two-phase liquid mixture, it was 

assumed to need an average residence time of 30 minutes. The material chosen for both 

neutralizers was carbon steel with no pressure requirements, as OLI Flowsheet reported pH 

measurements of 7.0 and pressure measurements of less than 5 atm. According to Ulrich, et al., 

for the agitators of the neutralizers, both neutralizers called for axial turbine impellers. The 

power requirement of each agitator was different due to the differences in mixture phases present 

in each neutralizer, assuming near-vigorous mixing. The capital cost of the axial turbine 
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impellers was estimated as if they were mechanically-sealed agitators in a closed tank. The size 

and total capital cost of the first neutralizer, including its agitator, was estimated as shown in 

Appendix A, and were found to be 146 m3 and $214,632.00, respectively. The size and total 

capital cost of the second neutralizer, including its agitator, was estimated as shown in Appendix 

A, and were found to be 3.54 m3 and $71,171.38, respectively.  

For the component splitter (Csplit-1) found in the process flow diagram from OLI 

Flowsheet, a liquid-liquid extractor and a stripper are used in the real thorium-recovery process 

to separate the phosphates from the inlet stream. The stripper and the extractor run in tandem to 

have a continuous phosphate and organic separation, and the organic stream is recycled back into 

the extractor. The extractor is modeled as a vertical process vessel with six stainless steel trays. 

The size and total capital cost of the extractor was estimated as shown in Appendix A. The 

extractor was estimated to have a volume of 0.76 m3, a diameter of 1 meter, a height of 10 

meters, and a capital cost of $204,715.50. Due to the process running at steady state, and the 

recycling of the organics, the flow rates for the stripper will be the same as the extractor. Thus, 

the stripper will be sized and priced the same as the extractor. The total capital cost of the 

stripper was estimated as shown in Appendix A, and was found to be $204,715.50.  

For each filter included in the process, the solid phase entering the filter was assumed to 

be either a concentrated ore or a concentrated slime or clay (>5% solids). Using this 

classification, the filter area of each filter was found to be proportional to the solids mass feed 

rate into the filter. The size and total capital cost of each filter were estimated as shown in 

Appendix A. For the first filter (Filter-1), the filter area was estimated to be 1.20 m2, while the 

capital cost was estimated to be $166,339.80. For the second filter (Filter-2), the filter area was 

estimated to be 10.38 m2, while the capital cost was estimated to be $547,311.60. For the third 

filter (Filter-3), the filter area was estimated to be 0.75 m2, while the capital cost was estimated 

to be $139,510.80. Because the filters were used to separate a solid-liquid mixture, the solids 

stream exiting each filter was made mobile and dried using a conveyor. The conveyors were 

modeled as horizontal belt conveyors with a belt width of 1.0 meters and a minimum conveying 

distance of 10 meters. The capital cost of each conveyor was estimated as shown in Appendix A. 
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For all three conveyors (Conveyor-1 through Conveyor-3), the capital cost was estimated to be 

$53,658.00.  

For the first rotary kiln (R-1), a residence time of one hour was assumed, and the rotary 

kiln was designed using brick lining. The size and capital cost of the first rotary kiln were 

estimated as shown in Appendix A, and were found to be 3.79 m3 and  $500,000.00, 

respectively. Similarly, for the second rotary kiln (R-2), a residence time of one hour was 

assumed, and the rotary kiln was designed using brick lining. The size and capital cost of the 

second rotary kiln were estimated as shown in Appendix A, and were found to be 0.16 m3 and 

$60,000.00, respectively.  

Table 6. Capital Cost Summary 

 

4.5 Manufacturing Cost Estimates 

To analyze the manufacturing cost of the thorium-recovery process, the economic 

methods outlined in Gael D. Ulrich’s Chemical Engineering: Process Design and Economics 

were used. The total manufacturing cost for the thorium-recovery process was estimated to be 

$25,819,873.00, as shown in Appendix B. This estimate was determined by calculating the 

manufacturing expenses, depreciation, and the general expenses that come from operating this 

plant year-round. The fixed capital of all the equipment was found to be $3,921,295.00, as shown 

in Appendix B. The largest financial drawback found in the manufacturing cost comes from the 

raw materials. The cost of monazite ore is expensive, and using the ore at a feed rate of 1000 

kg/hr has caused the price for raw materials to be relatively high.  
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The money accumulated from sales of the thorium oxide and REE oxides products was 

found to be $202,454,700.00, as shown in Appendix B. The sales income minus the 

manufacturing cost gave a net annual profit of $176,634,828.03, as shown in Appendix B. After 

taxes, the net annual profit from this process for one year was estimated to be $116,578,986.50, 

as shown in Appendix B. The net annual profit gave an after tax rate of return of 3878%. A 

summary of all of the manufacturing costs and profit can be found in Table 7.  

Table 7. Manufacturing Cost Summary 
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Table 8. Raw Material Costs and Outputs 

 

5.0 Discussion of Results 

The overall process of separating thorium and REE oxides from monazite ore produced a 

relatively pure stream of the products that can be sold for profit. It was found that separating the 

thorium from the other rare earth metals and the phosphates before neutralizing the compounds 

was a viable way to produce the desired products. The first rotary kiln (R-1) served to mix the 

rare earth phosphates from the raw monazite ore with an acidic solution to produce rare earth 

sulfates. After separating thorium from the product of the first rotary kiln, the phosphates were 

removed from the rare earth metals. This extraction of phosphate was performed with an 

extractor and stripper in tandem using methyl isobutyl ketone. Next, neutralizing the thorium 

stream, as well as the rare earth element stream, was completed to produce REE hydroxides and 

thorium oxide. Using a second rotary kiln (R-2), the REE hydroxides stream was converted into 

the REE oxide products. This process was designed and tested in OLI Flowsheet software, and 

the data from OLI was used to calculate the economic viability of the thorium-recovery process. 

The total revenue from products was estimated to be $202,454,700.00, with a raw materials cost 

of $19,756,660.00, excluding manufacturing costs. The large income associated with the process 

is due to the purity of the final products as well as the high flow rate at which this process will 

operate.  

One unexpected outcome of the OLI Flowsheet process calculations was that the thorium 

stream did not need an additional rotary kiln. Based on the literature review performed before the 

process was modeled, both the thorium and the rare earth elements lines were expected to have 

their own rotary kiln after sharing the first rotary kiln. Instead, the thorium stream leaving the 
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first neutralizer (Neutrl-1) was directly converted to thorium oxide. As expected, the rare earth 

element stream required a rotary kiln to complete the reaction converting REE hydroxides into 

REE oxides. The discrepancy between the two process lines was attributed to excess heat 

generated in the first neutralizer (Neutrl-1) due to less material being present that dissipated the 

heat. It is believed that the thorium stream did not require a rotary kiln because of its purity and 

the large amount of acid used to neutralize it.  

The thorium-recovery process was found to have a favorable economic potential, despite 

the high cost of monazite ore. Operating the process at a high inlet ore flow rate of 1000 kg/hr 

caused the price of raw materials to be relatively high, leading to the largest drawback in the 

manufacturing cost. The overall cost of this process was $25,819,872.00, and the raw materials 

needed to operate the process at a flow rate of 1000 kg/hr account for 75% of the total 

manufacturing expense. After taxes, the net annual profit of the process in one year was 

estimated to be above $116,000,000.00, yielding a return on investment of 3878%. The annual 

expenses for this process were estimated to be less than $20,000,000.00.  

 
6.0 Conclusions 

Based on the economic analysis of the thorium-recovery process, an estimated $182 

million per year could be earned. Most of the profit was found to come from the products 

neodymium and thorium oxide, so it is important that these streams remain as efficient as 

possible. It is also important to consider that further separations would significantly increase 

manufacturing costs. Further equipment ventures and other cost considerations that could alter 

the profitability of the process are discussed in Section 7.0 of this report. It is worth noting that 

because lower percentages were used in estimating the manufacturing cost of the process, the 

overall profitability would realistically be not as high as reported. Regardless, this study level 

design and economic analysis used the data collected from OLI Flowsheet. Thus, based on the 

economic evaluations for running this process to produce thorium and REE oxides, this design 

was found to be viable. 
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7.0 Recommendations 

Due to the time constraints of this process design and economic analysis, many aspects of 

the process were not able to be scrutinized as well as intended. This section of the report serves 

to explain some shortcomings of the assumptions made during this project, as well as some 

topics that should be revisited to enhance the reliability of the economic analysis presented in 

this report. First, for the rotary kilns and neutralizers involved in the process, a standard 

residence time was assumed based on the reactions occurring and the flow rates involved. This 

affected the sizing and costing of the equipment. Given more time and resources, a full kinetic 

analysis of the reactions and their respective rates would allow for a more accurate assumption of 

residence time and, therefore, sizing and costing of the equipment. 

Next, no consideration was taken for any of the potentially valuable by-products of the 

process, which were simply disposed of instead. This leaves room for further analysis and 

potential improvement of the process through the addition of auxiliary equipment to separate out 

valuable by-products in order to either sell or recycle them back into the process. Separating out 

valuable by-products would lead to higher sales revenue while potentially reducing the cost of 

utilities and raw materials. More specifically, the phosphates leaving the stripper (CSplit-1) have 

the potential to be of high value, and could possibly be separated from the water and sold as a 

product. The water, on the other hand, could potentially be recycled back into the system to 

further reduce water costs. The other waste streams of the thorium-recovery process contain 

sulfates and water. At this time, it is not believed that the sulfates hold enough potential value to 

be worth the capital and manufacturing costs of separation, but the water could be further 

analyzed for potential process value increases through the addition of recycle streams.  

Next, it should be considered that to receive the full value of the REE oxide products in 

sales revenue, an additional separation subprocess should be considered after the second rotary 

kiln (R-2) to further purify the products. If this new equipment is considered, the capital cost of 

this process would increase significantly, reducing the overall value of it. However, unseparated, 

the REE oxides may not be worth the values they were assumed to be worth in this report. Thus, 

using lower REE oxide values or considering the additional separation subprocess would 

produce a more realistic return on investment. 
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Next, it should be considered that there is the potential to increase the value of the 

thorium-recovery process by either reducing the excess amount of raw material inputs, namely 

water, sulfuric acid, and ammonia hydroxide, or changing the chemicals used altogether. First, 

other acidic and caustic solutions should be investigated for better product yield and purity. 

Secondly, the inlet flow rates used in this project should be reconsidered, as these materials were 

mostly used in excess to ensure proper reactivity and near full conversion. Because of this, there 

is the potential to reduce the capital and manufacturing costs of the process by reducing the 

amount of excess materials used down to only the amount required.  

Finally, the electrical requirements for the thorium-recovery process was an estimated 

annual value for the pumps, motor, and agitators. The value was taken from a similar chemical 

process’ requirements but was not derived explicitly for this project’s process. Reevaluating the 

electrical requirement for this process should be reconsidered, as it may yield either a higher or 

lower utility cost and thus change the overall value of the process. Additionally, further research 

into more sustainable energy sources should be conducted in order to improve the sustainability 

of the process. 
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Appendices 

Appendix A: Capital Cost 

To analyze the capital costs of the thorium-recovery process, the economic methods 
outlined in Gael D. Ulrich’s Chemical Engineering: Process Design and Economics were used 
for each piece of equipment in the process. 

Neutrl-1 

Because a reaction occurs in the neutralizer, Neutrl-1 is modeled as a Continuous Stirred Tank 
Reactor (CSTR), using a non-jacketed vaporizer vessel to represent the CSTR. From OLI 
Flowsheet, the volumetric flow rate into Neutrl-1 is,  

76, 85 L/hr 67.09 m /hr 4.6 m /minF = 8 0 = 8 3 = 1 3  

Because Neutrl-1 contained a single-phase liquid mixture, it was assumed to need a residence 
time ( ) of 10 minutes. From Ulrich, et al., the required volume of Neutrl-1 is related to theτ  
product of the volumetric flow rate and residence time. The required volume of Neutrl-1 is,  

τ 14.6 m /min)(10 min) 46 mV = F = ( 3 = 1 3  

Using Figure 5.23, 30, 00.00  Cp = $ 0  

Because the neutralizer is carbon steel, .0  F BM = 3  

Because the neutralizer is operating at <5 barg, .0  F P = 1  

Using a ChemE Index of 596.2 (Jan. 2020), 3.0)(1.0)( )($30, 00) 134, 45.00  CBM = ( 400
596.2 0 = $ 1  

Agitator-1 

From Table 4.16, Agitator-1 is modeled as an axial turbine agitator with a mechanical seal. 
Using this classification, the power consumption is found to be proportional to the volume of the 
neutralizer through the following relationship:  

.3V .3(146 m ) 6 kWP = 0 0.8 = 0 3 0.8 = 1  

Using Figure 5.42, 27, 00.00  Cp = $ 0  

Because the agitator is carbon steel, .0  F BM = 2  

Using a ChemE Index of 596.2 (Jan. 2020), 2.0)( )($27, 00) 80, 87.00  CBM = ( 400
596.2 0 = $ 4   
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Neutrl-2 

Because a reaction occurs in the neutralizer, Neutrl-2 is modeled as a Continuous Stirred Tank 
Reactor (CSTR), using a non-jacketed vaporizer vessel to represent the CSTR. From OLI 
Flowsheet, the volumetric flow rate into Neutrl-2 is,  

, 81 L/hr , 81 m /hr .118 m /minF = 7 0 = 7 0 3 = 0 3  

Because Neutrl-2 contained a two-phase liquid mixture, it was assumed to need a residence time 
( ) of 30 minutes. From Ulrich, et al., the required volume of Neutrl-2 is related to the productτ  
of the volumetric flow rate and residence time. The required volume of Neutrl-2 is,  

τ 0.118 m /min)(30 min) .54 m  V = F = ( 3 = 3 3  

Using Figure 5.23, 5, 50.00  Cp = $ 2  

Because the neutralizer is carbon steel, .0  F BM = 3  

Because the neutralizer is operating at <5 barg, .0  F P = 1  

Using a ChemE Index of 596.2 (Jan. 2020), 3.0)(1.0)( )($5, 50) 23, 75.38  CBM = ( 400
596.2 2 = $ 4  

Agitator-2 

From Table 4.16, Agitator-2 is modeled as an axial turbine agitator with a mechanical seal. 
Using this classification, the power consumption is found to be proportional to the volume of the 
neutralizer through the following relationship:  

.2V (0.8) .2(3.54 m )(0.8) .66 kWP = 0 = 0 3 = 5  

Using Figure 5.42, 16, 00.00  Cp = $ 0  

Because the agitator is carbon steel, .0  F BM = 2  

Using a ChemE Index of 596.2 (Jan. 2020), 2.0)( )($16, 00) 47, 96.00  CBM = ( 400
596.2 0 = $ 6   

Extractor 

For the component splitter (Csplit-1) in OLI Flowsheet, a liquid-liquid extractor and a stripper 
are used in the real thorium-recovery process to separate the phosphates from the inlet stream. 
The extractor is modeled as a vertical process vessel with six stainless steel trays. From the OLI 
Flowsheet data, the inlet volumetric flow rate into the extractor is  of aqueous, 69 L/h  F = 3 7  
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materials and phosphates. To separate the phosphates, it is assumed that an equal amount of 
organics is needed, so the total volumetric flow rate into the extractor is ., 00 L/hF = 7 6   

Because the extractor is modeled as a vertical process vessel with six stainless steel trays, the 
resonance time will be 360 seconds. From Ulrich, et al., the required volume of the extractor is 
related to the product of the volumetric flow rate and residence time. The required volume of the 
extractor is,  

τ 7, 00 L/hr)(360 s)( ) .760 mV = F = ( 6 1 hr
3600 s = 0 3  

The diameter of the vertical process vessel is assumed to be 1 meter. Because the extractor will 
need to have six trays, the height of each tray should be 0.25 meters. From Ulrich, et al., the total 
height of the extractor, allowing space for the reboiler and condenser, will be 10 meters.  

For the vertical process vessel, 

Using Ulrich, et al., 30, 00.00  Cp = $ 0  

Because the vessel is carbon steel,  , , and .0  F M = 1 .6  F P = 1 .3  F BM = 4  

Using a ChemE Index of 596.2 (Jan. 2020), 4.3)( )($30, 00) 192, 74.50  CBM = ( 400
596.2 0 = $ 2  

For the six stainless steel trays, 

Using Ulrich, et al., 650.00  Cp = $  

Because the trays are stainless steel, , , and .2  F BM = 2  N act = 6 .45F q = 1  

Using a ChemE Index of 596.2 (Jan. 2020), 12, 41.00  CBM = $ 4  

The total cost of the extractor is 192, 74.50 12, 41.00 204, 15.50  $ 2 + $ 4 = $ 7  

Stripper 

For the component splitter (Csplit-1) in OLI Flowsheet, a liquid-liquid extractor and a stripper is 
used in the real thorium-recovery process to separate the phosphates from the inlet stream. The 
strippeer and the extractor run in tandem to have a continuous phosphate and organic separation, 
and the organic stream is recycled back into the extractor. Due to the process running at steady 
state, and the recycling of the organics, the flow rates for the stripper will be the same as the 
extractor. Thus, the stripper will be sized and priced the same as the extractor. Thus, the total 
cost of the extractor is .192, 74.50 12, 41.00 204, 15.50  $ 2 + $ 4 = $ 7   
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Filter-1 

From Table 4.23b, I assumed that the solid phase entering the filter could be classified as either a 
concentrated ore or a concentrated slime or clay (>5% solids). Using this classification, the dry 
solids feed rate ( ) is found to be proportional to the filter area through the followingms  
relationship: ..02A to 0.1 A  0   
 
Dry solids feed rate ( ), ms 86, 48.3 g/hr)( )( ) .02410 kg/sms = ( 7 1 kg

1000 g
1h

3600 s = 0  

Using the lower end of the relationship ( ), .02A  0 .2048 mA = ms
0.02 = 0.02

0.02410 kg/s = 1 2  
From Figure 5.57b, 31, 00.00  Cp = $ 0   
Because the filter is continuous and stainless steel, .6  F BM = 3  
Using a ChemE Index of 596.2 (January 2020), 3.6)( )($31, 00.00) 166, 39.80  CBM = ( 400

596.2 0 = $ 3  

Conveyor-1 

From Table 4.4, the belt width of a belt conveyor can range from 0.3-2.2 m, and the conveying 
distance of a belt conveyor can range from 10-8,000 m. Because the belt width and conveying 
distance depends on the specific chemical plant, I assumed a reasonable belt width of 1.0 m, and 
a minimum conveying distance of 10 m for the purpose of these calculations.  
 
From Figure 5.14, 15, 00.00  Cp = $ 0  
Because the conveyor is a belt conveyor, .4  F BM = 2  
Using a ChemE Index of 596.2 (January 2020), 2.4)( )($15, 00.00) 53, 58.00  CBM = ( 400

596.2 0 = $ 6  

Filter-2 

From Table 4.23b, I assumed that the solid phase entering the filter could be classified as either a 
concentrated ore or a concentrated slime or clay (>5% solids). Using this classification, the dry 
solids feed rate ( ) is found to be proportional to the filter area through the followingms  
relationship: ..02A to 0.1 A  0   
 
Dry solids feed rate ( ), ms 747, 00.4833 g/hr)( )( ) .2077 kg/sms = ( 6 1 kg

1000 g
1h

3600 s = 0  

Using the lower end of the relationship ( ), .02A  0 0.3833 mA = ms
0.02 = 0.02

0.2077 kg/s = 1 2  
From Figure 5.57b, 102, 00.00  Cp = $ 0   
Because the filter is continuous and stainless steel, .6  F BM = 3  
Using a ChemE Index of 596.2 (January 2020), 

3.6)( )($102, 00.00) 547, 11.60  CBM = ( 400
596.2 0 = $ 3  
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Conveyor-2 

From Table 4.4, the belt width of a belt conveyor can range from 0.3-2.2 m, and the conveying 
distance of a belt conveyor can range from 10-8,000 m. Because the belt width and conveying 
distance depends on the specific chemical plant, I assumed a reasonable belt width of 1.0 m, and 
a minimum conveying distance of 10 m for the purpose of these calculations.  
 
From Figure 5.14, 15, 00.00  Cp = $ 0  
Because the conveyor is a belt conveyor, .4  F BM = 2  

Using a ChemE Index of 596.2 (January 2020), 2.4)( )($15, 00.00) 53, 58.00  CBM = ( 400
596.2 0 = $ 6  

Filter-3 

From Table 4.23b, I assumed that the solid phase entering the filter could be classified as either a 
concentrated ore or a concentrated slime or clay (>5% solids). Using this classification, the dry 
solids feed rate ( ) is found to be proportional to the filter area through the followingms  
relationship: ..02A to 0.1 A  0   
 
Dry solids feed rate ( ), ms 53, 99.6 g/hr)( )( ) .0150 kg/sms = ( 9 1 kg

1000 g
1h

3600 s = 0  

Using the lower end of the relationship ( ), .02A  0 .7500 mA = ms
0.02 = 0.02

0.0150 kg/s = 0 2  
From Figure 5.57b, 26, 00.00  Cp = $ 0   
Because the filter is continuous and stainless steel, .6  F BM = 3  

Using a ChemE Index of 596.2 (January 2020), 3.6)( )($26, 00.00) 139, 10.80  CBM = ( 400
596.2 0 = $ 5  

Conveyor-3 

From Table 4.4, the belt width of a belt conveyor can range from 0.3-2.2 m, and the conveying 
distance of a belt conveyor can range from 10-8,000 m. Because the belt width and conveying 
distance depends on the specific chemical plant, I assumed a reasonable belt width of 1.0 m, and 
a minimum conveying distance of 10 m for the purpose of these calculations.  
 
From Figure 5.14, 15, 00.00  Cp = $ 0  
Because the conveyor is a belt conveyor, .4  F BM = 2  

Using a ChemE Index of 596.2 (January 2020), 2.4)( )($15, 00.00) 53, 58.00  CBM = ( 400
596.2 0 = $ 6  
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R-1 

For Rotary Kiln-1, a residence time of one hour was assumed. From Ulrich, et al., the required 
volume of Rotary Kiln-1 is related to the product of the volumetric flow rate and residence time. 
The required volume of Rotary Kiln-1 is,  

τ 3.7897 m /hr)(1 hour) .79 m  V = F = ( 3 = 3 3  

From Figure 5.33, 100, 00.00  Cp = $ 0  
Because the rotary kiln has brick lining, .0F BM = 5  

Using a ChemE Index of 596.2 (January 2020), 500, 00.00  CBM = $ 0  

R-2 

For Rotary Kiln-2, a residence time of one hour was assumed. From Ulrich, et al., the required 
volume of Rotary Kiln-2 is related to the product of the volumetric flow rate and residence time. 
The required volume of Rotary Kiln-2 is,  

τ 0.1570 m /hr)(1 hour) .1570 mV = F = ( 3 = 0 3  

From Figure 5.33, 12, 00.00  Cp = $ 0  
Because the rotary kiln has brick lining, .0F BM = 5  

Using a ChemE Index of 596.2 (January 2020), 60, 00.00  CBM = $ 0  
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Appendix B: Manufacturing Cost 

To analyze the manufacturing costs of the thorium-recovery process, the economic 

methods outlined in Gael D. Ulrich’s Chemical Engineering: Process Design and Economics 

were used. 

Capital 

Fixed capital (  was found from the sum of the capital cost of each piece of equipment, as)  CF C   
calculated in Appendix A. The fixed capital was estimated to be $3,921,295.47. From Ulrich, et 
al., the working capital (  was assumed to be 10-20% of the fixed capital. Assuming the)  CW C  
working capital of the thorium-recovery process was 15% of the fixed capital,  

.15C .15($3, 21, 95.47) 588, 94.32  CW C = 0 F C = 0 9 2 = $ 1  

Then, the total capital (  was estimated to be the sum of the fixed capital and the working)  CT C  
capital. Thus, the total capital was found to be $4,509,489.79. 

Direct Manufacturing Expenses 

The raw materials expense was estimated as shown in Table 8, giving an expense of 
$19,756,660.54. From Ulrich, et al., the supervisory and clerical labor expenses were assumed to 
be 10-20% of the operating labor expense. Assuming the supervisory and clerical labor expenses 
were 15% of the operating labor costs, 

upervisory & Clerical Labor .15(Operating Labor) .15($552, 40.00) 82, 36.00  S = 0 = 0 2 = $ 8  

The natural gas utility expense was estimated assuming the heat supplied by the natural gas was 
mostly used to heat the solids and vaporize any water entering the rotary kilns. Monazite ore was 
assumed to have a specific heat capacity equal to that of cerium phosphate [10]. Based on this, 
the natural gas energy rate for Rotary Kilns 1 and 2, respectively, were estimated to be, 

nergy Rate solid f low)(Cp)(T out in) water f low)(ΔHvap)  E = ( − T + (  

For R-1, 4, 92.48 mol/hr)(108 J /Kmol)(278 98) 112, 08.20 mol/hr)(43, 90 J /mol)  ( 1 − 2 + ( 5 9  

    13.88/hr  = $  

For R-2, 3, 90.00mol/hr)(108 J /Kmol)(421.89 96.89 0.03/hr  ( 8 − 3 = $  

Assuming the maintenance and repairs expenses were 5% of the fixed capital, 

aintenance & Repairs .05(C ) .05($3, 21, 95.47) 196, 64.77  M = 0 F C = 0 9 2 = $ 0  
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Assuming the operating supplies expenses were 15% of the maintenance and repairs expenses, 

perating Supplies .15(Maintenance & Repairs) .15($196, 64.77) 29, 09.72  O = 0 = 0 0 = $ 4  

Assuming the laboratory charges were 15% of the operating labor expense, 

aboratory Charges .15(Operating Labor) .15($552, 40.00) 82, 36.00  L = 0 = 0 2 = $ 8  

Assuming the patents and royalties expenses were 2% of the sum of all direct manufacturing 
expenses calculated thus far, 

atents & Royalties .02(Direct Manufacturing) .02($20, 25, 43.96) 416, 10.88  P = 0 = 0 8 5 = $ 5  

Indirect Manufacturing Expenses 

Assuming the overhead, packaging, and storage expenses were 50% of the sum of the operating 
labor, supervisory and clerical labor, and maintenance and repairs expenses, 

verhead .50(Operating, Supervisory & Maintenance) .50($831, 40.77) 415, 70.39  O = 0  = 0 1 = $ 5  

Assuming the local taxes were 2% of the fixed capital, 

ocal T axes .02(C ) .02($3, 21, 95.47) 78, 25.91  L = 0 F C = 0 9 2 = $ 4  

Assuming the insurance was 1.5% of the fixed capital, 

nsurance .015(C ) .015($3, 21, 95.47) 58, 19.43  I = 0 F C = 0 9 2 = $ 8  

General Expenses 

Assuming the administrative costs were 25% of the overhead, packaging, and storage expenses, 

dministrative Cost .25(Overhead) .25($415, 70.39) 103, 92.60  A = 0 = 0 5 = $ 8  

Assuming the distribution and selling expenses were 10% of the total manufacturing expenses, 

istribution & Selling .10(T otal Manufacturing) .10($21, 94, 70.56) 2, 79, 87.06  D = 0 = 0 7 8 = $ 1 4  

Assuming the research and development expenses were 5% of the total manufacturing expenses, 

esearch & Development .05(T otal Manufacturing) .05($21, 94, 70.56) 1, 89, 43.53  R = 0 = 0 7 8 = $ 0 7  

Depreciation 

Depreciation was estimated to be approximately 10% of the fixed capital, 

epreciation .10(C ) .10($3, 21, 95.47) 392, 29.55  D = 0 F C = 0 9 2 = $ 1  
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Net Annual Profit 

After subtracting the total expenses from the revenue earned from product sales, the income 
taxes (  were calculated by estimating the product of the net annual profit (  and the tax)AIT )ANP  
rate, assuming the tax rate was 34%, 

.34(A ) .34($176, 94, 77.54) 60, 44, 56.36  AIT = 0 NP = 0 8 5 = $ 1 1  

Subtracting the income taxes from the net annual profit, the final net annual profit (  of the)ANNP  
thorium-recovery process plant after taxes was estimated to be, 

$176, 94, 77.54) $60, 44, 56.36) 116, 50, 21.18  ANNP = ANP − AIT = ( 8 5 − ( 1 1 = $ 7 4  

The after-tax rate of return (i) was calculated as follows, 

.5( ) 00% .5( ) 00% , 83.49%i = 1 CT C

ANNP × 1 = 1 $4,509,489.79
$116,750,421.18 × 1 = 3 8   
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Appendix C: Chancellor’s Honors Program Thesis Reflection (Samantha Karklins) 

For my Chancellor’s Honors Program Thesis Project, I completed a senior design project 

within the Department of Chemical & Biomolecular Engineering of the Tickle College of 

Engineering. Sponsored by the Electric Power Research Institute (EPRI), this project required 

my group and I to conduct a study-level design and economic analysis of a process extracting 

thorium (Th) and rare earth elements (REEs) from monazite ore. More specifically, the REEs 

extracted are cerium (Ce), lanthanum (La), and neodymium (Nd). After extraction from monazite 

ore, thorium can be used in the generation of thorium-based nuclear power, in which the nucleus 

of a thorium atom accepts a neutron and beta decays into isotope uranium-233. Then, nuclear 

fission of the isotope uranium-233 may produce fuel. Using OLI Flowsheet software and the 

economic methods outlined in Gael D. Ulrich’s Chemical Engineering: Process Design and 

Economics, the thorium-recovery process we designed successfully extracted thorium and REE 

oxides from monazite ore with a net annual profit of approximately $116,000,000.00, yielding a 

return on investment of 3878%.  

Because my honors thesis project was completed as a group, the work required to 

complete this project was divided among us so that each member made a significant contribution 

to the outcome of the study-level process design and economic analysis. My role in completing 

this project consisted of four major tasks. First, I actively assisted my group members in 

designing the thorium-recovery process using the OLI Flowsheet software installed on my 

laptop, ensuring the results from OLI Flowsheet were made accessible to all members of the 

group. Second, I assisted my group members in calculating the capital and manufacturing costs 

of the thorium recovery process. To assist with the capital cost, I calculated the size and cost of 

the three filters and conveyor belts involved in the process. To assist with the manufacturing 

cost, I calculated the annual cost of the natural gas used to operate the process. Third, I assisted 

my group members in providing further details of our thorium-recovery process by creating a 

series of charts for this report. I created the project assumptions chart, stream composition charts, 

and stream hazards chart, writing the respective sections of the report discussing those charts. 
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Lastly, I assisted my group members in writing this report of the results of our study-level design 

and economic analysis of the thorium-recovery process.  

Although the Chancellor's Honors Program Thesis Projects may be completed in a 

variety of ways, I would not have wanted to complete my thesis project any other way than 

through a senior design project for the Department of Chemical & Biomolecular Engineering. By 

completing this study-level design and economic analysis of a process extracting thorium and 

rare earth elements from monazite ore, I have seen firsthand how the knowledge of chemical 

engineering principles I have accumulated throughout my undergraduate education may be used 

in a career as a chemical engineer. Additionally, through this honors thesis project, I have been 

able to experience how I can use what I have learned throughout my undergraduate education to 

help solve one of the grand challenges of engineering: providing energy through more clean and 

sustainable sources. 
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