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Executive Summary

Team 28’s goal is to leverage modern deep reinforcement learning techniques to
optimize elevator efficiency in tall, population-dense buildings. Such a feat will
ultimately improve the lives of both elevator users and elevator owners. For this
project, the top five Engineering Characteristics are: 1) integrating the reward
functionality and simulations, 2) creating the reward function by optimizing
the transportation of people, 3) creating a good training set, 4) simulating the
physics and other variables (number of floors, distance between floors, etc.), and
5) developing a base model to determine the performance increase due to the
implementation.
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1 Problem Definition

“Why is this elevator taking so long?” This is a common thought that has
popped into everyone’s head at some point in their lives, spurred on by elevators
that leave much to be desired. Some are slow, taking ages to go from floor to
floor. Others are baffling, going up when someone wants to go down or sending
the most distant unit to pick up a user when there is clearly a closer one nearby.
Granted, the speed of the elevator is limited by the physics of a massive metal
box moving vertically through a building. However, the frequency of weird
actions, the ones that are triggered by a programmable algorithm, can surely
be reduced. While no elevator algorithm will ever reach perfection, they can
certainly get closer. That is the objective of the team’s project.

Team 28 project’s success will chiefly benefit two customer groups: eleva-
tor users and elevator owners. For users, the benefit is clear: a better elevator
experience. For owners, the benefit is more indirect, yet no less significant: a
higher profit margin. To explain, regardless of the business sector, happier peo-
ple means better business. These people can either be employees or customers,
and, therefore, this increase can take the form of greater productivity, increased
sales, or more positive reviews. No matter the channel, the end result remains
the same. Improved elevators will make people happier, or, at the very least,
will make people less unhappy. This effect will cascade until it results in more
money for the business the elevator is supporting. Assuming the owner of the
elevator has some stake in the business, if they are not already a part of it, they
will reap the benefits of this increase. In this way, one elevator will have made
a bigger difference than most would have anticipated. Granted, nothing ever
works out as perfectly as the example above describes. However, it remains true
that even small things like elevators can hit far above their weight.

2 Background

Although most elevator manufacturers offer their own proprietary algorithms
which are mostly treated as trade secrets [1], this problem and its hypothetical
optimizations have been tackled in several studies available to the public. In a
1996 study by Robert Crites and Andrew Barto [2], it was found that training an
elevator algorithm using reinforcement learning offered notable improvements
over older dynamic programming approaches to solving large scale optimization
problems in various aspects, including performance and memory requirements.
“These results demonstrate the utility of [Reinforcement Learning] on a very
large scale dynamic optimization problem. [...] RL avoids the need of con-
ventional [Dynamic Programming] algorithms to exhaustively sweep the state
set. By storing information in artificial neural networks, it avoids the need to
maintain large lookup tables” [2]. A later study by the same researchers in
the year 1998 went deeper into this, comparing various reinforcement learning
techniques to existing methods: “We used a team of RL agents, each of which
was responsible for controlling one elevator car. Results obtained in simula-
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tion surpassed the best of the heuristic elevator control algorithms of which we
are aware. Performance was also robust in the face of decreased levels of state
information” [3]. Other more recent studies also exist, however most of these
do not account for all of the factors which the group intends to include in the
study. In particular, the monitoring of foot traffic and consideration of time of
day and past foot traffic patterns will be used to add more context to optimize
the algorithm, and hopefully achieve new improved results.

3 Requirements Specification

3.1 Customer Requirements

Table 1: Customer Requirements

Customer Requirement Description

Accurate training set development The use case is a high density buildings with a large
number of floors

Normal implementation base model A metric to determine the effectiveness of the im-
proved algorithm

Deep reinforcement learning
implementation

Takes into account the number of people waiting per
floor, waiting time per person, and the number of
elevators

Collection of data from UT campus
elevator*

Base model for implementation on UT’s campus

Implementation on UT campus* Implementation on an existing building on UT’s
campus to measure the actual improvement

The customer requirements were developed by the initial request specifications
and from the group’s idea of what the best path forward is. Since the require-
ments are largely sequential, each of the steps need to be completed mostly in
order. The (*) requirements are not necessarily going to be done: the collection
of data on UT campus is an alternative design, and implementation on UT cam-
pus is time allowing as this is not the focus of the project. Thus, the simulation
and reinforcement learning are the primary focuses.
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3.2 Engineering Requirements

Table 2: Engineering Requirements (continued on next page)

Engineering
Characteristic

Target values Units/Directions for improve-
ment

DV/
DC

Reinforcement
learning
implementation

Integrates the reward and simula-
tions

Further research and use of mod-
ern, deep reinforcement learning
techniques

DV

Reward
function

Optimizes transporting people as ef-
fectively as possible

Best combination of variables in-
cluding the number of people wait-
ing per floor, waiting time per per-
son, and number of elevators

DV

Training set
requesting

Variable number of elevator requests Take into account different densi-
ties in sections of floors to better
model skyscraper distribution

DC

Training set
physics
simulation

Models people arriving and travel
time. Accounts for multiple eleva-
tors, number of floors, and distance
between floors

More complex variables such as el-
evator weight

DC

Normal
implementation
base model

Best replication of how elevators
work in practice currently

Replication of “proprietary” algo-
rithms used commercially

DC

Reinforcement
learning floor
priority

Certain companies necessitate/want
priority for floors (ex. Hotel rooms
vs staff), so have a floor range pri-
ority system

Possible development of ranking
system

DV

Installation of
sensors*

Sensors for collecting the number
of people, waiting times, button
presses, etc.

Expand to other elevators at the
UT campus

DC
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Table 3: Engineering Requirements Continued

Measure actual
elevator use*

Specific UT elevator measurements Expand to other elevators at the
UT campus

DC

Implementation
on physical
elevator*

Integration of deep learning algo-
rithm with elevator equipment, sen-
sors, and model

Make easily expandable to other
systems

DV

DV = design variable, DC = design constraint

Each of these Engineering Characteristics is a subset of the customer’s require-
ments: for example, the deep reinforcement learning implementation is broken
down into a reward function, a possible floor priority implementation, and an
integration with the simulation. Similarly, the training set development is the
requesting (elevator button presses) and the base model implementation encom-
passes the physical simulation and the implementation. As for the characteris-
tics dealing with sensor and physical elevator implementation, this is again not
the primary focus of the project. This is only time allowing and would be the
appropriate followup going forward into a production environment.

For the target values, they were determined from the initial specifications
sheet, the research, and intuition. For the non-starred values, these represent
the base requirement for the deliverables. Further development can be seen in
the directions for improvement.

4 Technical Approach

4.1 Simulation

The approach to the elevator simulation can be broken down into three main
steps: research, programming, and testing (Figure 1).

Figure 1: Engineering design pipeline for simulation creation.

In the research phase the focus will be on understanding how elevators work.
While this will of course necessitate a high level investigation of elevator physics,
the specific goal of this phase will be to discern how the various aspects of
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elevators (weight, speed, maximum load, etc.) interact with each other. For
example, the trade-off between the weight of an elevator and its resulting speed
will be a key area of focus, among many others. This research phase will mostly
consist of online searches and physics calculations. However, it will also be
necessary to verify the findings by observing a real-life elevator (such as one of
the elevators in the Min Kao building). Through this additional analysis it will
be possible to incorporate some elements of practical reality into the simulation,
since theoretical calculations can only go so far.

In the programming phase the objective is simple: create the simulation.
To do this python will be used, because it is easy and there is a lot of library
support behind it. Further, the entire group is familiar with Python. As such,
it is the most straightforward choice. Importantly, this simulation will by no
means need to be perfect or complete by the end of the phase; however, the core
functionality will need to be implemented. Additionally, it is critical that that
simulation be designed with future expansion and modification in my mind. As
the project goes on, it quite likely that new parameters will need to be added
and old ones will need to be adjusted or even discarded. If the code is poorly
structured, this revision process will be much more difficult. Therefore, it will
be imperative that the simulation is coded well.

Once the simulation is fully implemented the testing phase will begin. The
goal here is two-fold: ensure that the simulated elevator obeys the laws of physics
and then improve its applicability to real-world elevators. The first part of the
goal will require physics calculations and other mathematical checks. It is in
some ways the most vital part to get down as an optimized elevator algorithm
is worthless if its not physically possible. Once the physical constraints are
successfully accounted for, the second part, real-world application, can begin
in earnest. This will first necessitate that the parameters and performance of
elevators around campus be recorded. Then these parameters will be inputted
into the simulation and its performance will be compared to that of the campus
elevators. The goal is to make simulation’s performance as similar as possible.
If this not the case after a round of testing, then it will be necessary to go back
to the programming phase or even the research phase. This cyclical process
will continue until the simulation is to the group’s and more importantly the
customer’s satisfaction.

A summary of the major design decisions and the relevant engineering char-
acteristics can be found in Table 3 below.
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Table 4: Simulation Design Decisions

Design
Decision

Engineering Characteristic

Programming a
simulation

Training set requesting, Training set
physics simulation, Normal imple-
mentation base model

Using python* Training set physics simulation

(*) Minor Design Decision

4.2 Control Algorithm

In order to find the best elevator algorithm Team 28 will be trying to find the
optimal greedy policy for the simulation’s Markov model. As discussed above,
previous work has used more traditional Q-learning techniques. The group will
be investigating a recent innovation within reinforcement learning: the deep
Q-network [6]. To turn the simulation into a Markov decision model, the team
is going to use two two actions to transition between states. These actions
are applying a force up and down and Team 28 will create a reward which
incorporates travel time and waiting time for each person.

The objective of deep Q-learning is to train a deep learning model which
approximates the estimated return of each action from some state. Since the
state is not a specific type of data, the group will use a multilayer perceptron
(MLP) with two hidden layers as an initial model. Next the team will use the
deep Q-learning algorithm to train this model using mean-squared error as the
loss function. The following is the loss function, which will be used from [6]:

Li (θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2
]

In this equation, s is the current state, a is the action taken,, r is the reward
for taking these actions, s′ is the next state, and a′ is the action taken from the
next state. γ is the discounting factor. The Adam optimizer will be used to
minimize this loss function. Q is the action-value function that will be learned
(the multilayer perceptron). U(D) is a uniform distrubution of transitions in
the replay buffer D. Θ is the model parameters.

In order to program this algorithm Team 28 will create a environment wrap-
per class for the simulation. This will include a reset function to create a new
episode and a step function to take one timestep and get the reward for that.
Since elevators are a nonepisodic task, it isn’t important for us to reset the
episode however. The group will collect state transitions into a replay buffer
and use these to sample minibatches to train the network.
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To implement this model the team will create this deep Q-learning algorithm
in Python 3 using the deep learning library PyTorch. PyTorch is a good choice
because it is a flexible, efficient library for deep learning calculations while still
being relatively easy to use.

A summary of the major design decisions and the relevant engineering char-
acteristics can be found in Table 4 below.

Table 5: Control Algorithm Design Decisions

Design Decision Engineering Characteristic

Using deep Q-learning
algorithm [6]

Reinforcement learning implementation

Using a Markov model with one
state and up/down actions*

Training set requesting, Reward function, Reinforcement learning
floor priority

Using Adam optimization [4] * Reinforcement learning implementation, Reward function

Using multilayer perceptron* Reinforcement learning implementation

Using PyTorch [7] for
implementation*

Reinforcement learning implementation, Reward function

CPU Training* Reinforcement learning implementation

(*) Minor Design Decision

5 Design Concepts, Evaluation & Selection

5.1 Concept Evaluation

5.1.1 Programming a simulation

Alternative Concepts:
One alternative to a simulation would be to use an existing elevator usage
dataset. Another alternative would be to record the parameters and perfor-
mance of elevators around campus and use these as the dataset.

Performance Predictions:
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Table 6: Performance Prediction for Design Concept: Programming a Simula-
tion with Custom Data Set via Simulation

Engineering Characteristic Performance
Prediction

Explanation

Training set requesting 5 With this option, the group will be able
to completely customize what elevator re-
quests are going into the simulation.

Training set physics simulation 4 The physics can be researched through
product specifications to be fairly accu-
rate.

Normal implementation base model 4 Custom implementation for accuracy.

Table 7: Performance Prediction for Design Concept: Programming a Simula-
tion with Existing Elevator Data Set

Engineering Characteristic Performance
Prediction

Explanation

Training set requesting 2 With this option, there is no customization in
what requests are going in. To change anything
is cumbersome.

Training set physics simulation 5 The physics are measured so they are com-
pletely accurate.

Normal implementation base model 3 The base model will not be as accurate without
custom data for the research focus.
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Table 8: Performance Prediction for Design Concept: Programming a Simula-
tion By Measuring Real World Data Manually

Engineering Characteristic Performance
Prediction

Explanation

Training set requesting 2 With this option, there is no customiza-
tion in what requests are going in. To
change anything is cumbersome.

Training set physics simulation 5 The physics are measured so they are
completely accurate.

Normal implementation base model 2 Any elevator that can be measured is not
the use case of high floor count.

Weighted Decision Matrix :

Table 9: Weighted Decision Matrix (Programming a simulation). Weight* Rat-
ing = Score

Concepts
Simulation Existing Dataset New Dataset

Criteria Weight Rating Score Rating Score Rating Score
Applicability 0.3 1 0.3 3 0.9 2 0.6
Utility 0.3 3 0.9 0 0.0 0 0.0
Time Spent 0.3 1 0.3 3 0.9 -3 -0.9
Creativity 0.1 3 0.3 -1 -0.1 0 0.0

Total 1.8 1.7 -0.3
Rank 1 2 3

Continue? yes no NO

Using an existing dataset would not be useful for later optimization algo-
rithms if one even exists. The same can be said for creating a new dataset
except doing this would require far too much work. Both of these concepts are
also quite boring. Finally, while they would provide greater real-world appli-
cability than a simulation, it is not worth the decreased usefulness in the later
optimization algorithms. Therefore, programming a simulation is the superior
design concept.

Selection Explanation:
A simulation is better for this project, because it will allow for directly ma-
nipulating the different parameters. This will allow the group to draw causal
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relationships between the parameters and the simulated elevators performance.
This will come in handy when developing the optimization algorithm.

5.1.2 Using python

Alternative Concepts:
One alternative is to use C++ to code up the simulation. Another alternative
is to use Matlab.

Selection Explanation:
Python will be used, because it is easy and has a lot of hlepful library support.
Additionally, the entire group is familiar with it.

5.1.3 Using deep Q-learning algorithm

Alternative Concepts:
Depending on the success of the deep Q-learning approach the group will com-
pare against a more traditional tabular Q-learning approach. Additionally, the
group will also consider a policy gradient model. Policy gradient is guaran-
teed to converge to a local optimum which is good. However, the policies are
probabilistic and not deterministic and you need considerable knowledge of how
exactly the system works to make your policy definitions. Also, policy gradient
is able to handle continuous actions which is an option irrelevant to the current
situation.
Performance Predictions:

Table 10: Performance Prediction for Design Concept: Optimization Algorithm
with Deep Q-learning

Engineering Characteristic Performance
Prediction

Explanation

Reinforcement learning
implementation

5 It leverages the power of deep learning
while integrating it into q-learning.
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Table 11: Performance Prediction for Design Concept: Optimization Algorithm
with Policy Gradient

Engineering Characteristic Performance
Prediction

Explanation

Reinforcement learning
implementation

4 It is probabilistic instead of determinis-
tic and needs considerable knowledge of
the system in order to create good policy
definitions.

Table 12: Performance Prediction for Design Concept: Optimization Algorithm
with Tabular Q-Learning

Engineering Characteristic Performance
Prediction

Explanation

Reinforcement learning
implementation

3 This project uses a continuous state
space.

Weighted Decision Matrix:

Table 13: Weighted Decision Matrix (Using deep Q-learning algorithm). Weight
* Rating = Score

Concepts
Deep Q-Learning Policy Gradient Tabular Q-learning

Criteria Weight Rating Score Rating Score Rating Score
Implementation Efficiency 0.1 0 0 0 0 3 .3
Implementation Cost 0.2 1 0.2 0 0.2 2 0.4
Implementation Difficulty 0.3 -1 -0.1 -2 -.6 2 0.6
Elevator Algorithm Quality 0.4 3 1.2 3 1.2 -2 -0.8

Total 1.3 0.8 0.5
Rank 1 2 3

Continue? Yes Maybe No

A tabular approach would be more efficient. Unfortunately, it will be lim-
ited to a discrete state space and it will struggle to solve very large state spaces.
The team want to use a continuous state space so the deep learning algorithms
(Deep Q-learning and policy gradient) are important. They are less computa-
tionally efficient and trickier to implement. However, the group believes that
the flexibility they provide will make up for the increase in computations and
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model complexity.

Selection Explanation:
Deep Q-learning will allow us to learn the best action to move in. It allows tab-
ular Q-learning to be extended to continuous input domains, which is desirable
for many tasks. It can also produce a deterministic action policy which policy
gradient does not.

5.1.4 Using a Markov with one state and up/down actions

Alternative Concepts:
As another design option the group will also consider a simplified Markov de-
cision model by modelling the simulation based on the current elevator floor.
It will still use the same simulation, but the team will only consider a state
once the elevator has reached each floor (there will be no states in between
floors). This makes the state space discrete. Furthermore, state transitions will
be changing floors or noop (no operation). The simulation will then calculate
the time to the next floor, which the team will use as a reward. In order to bet-
ter model the elevator’s behavior the group will also consider using the last four
states of the elevator as an input for the group’s model as opposed to just one.
This may improve its decision making by giving it temporal information as in [6].

Selection Explanation:
Team 28 choose a more complex Markov model with up/down actions first
because it will give the algorithm more freedom to find a better solution to
the problem. If a good solution is not found, then an alternative concept of a
discrete state space will be used.

5.1.5 Using Adam optimization

Alternative Concepts:
Aside from optimizing with a technique like Adam the group could use RM-
Sprop as an alternative. In addition to these gradient-based techniques, the
team will also consider using a metaheuristic optimization approach, although
this is not expected to be more efficient.

Selection Explanation:
Adam is used because it is commonly used in many reinforcement learning
papers.

5.1.6 Using multilayer perceptron

Alternative Concepts:
After investigating the success of this initial algorithm, Team 28 will tune the
hyperparameters of the model and consider other architecture modifications
such as introducing a recurrent element into the neural network. The group will
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also consider using spiking neural networks instead.

Selection Explanation:
The group will use a multilayer perceptron (MLP) because it is simple yet pow-
erful. It can be used to approximate a lot of functions, and since the group
does not have a great idea about the underlying statistical correlation structure
of the Markov model transition data, then the group wants a potentially gen-
eralizable model with dense fully-connect hidden layers. MLP is also relatively
simplistic and efficient so it is a great starting point.

5.1.7 Using PyTorch for implementation

Alternative Concepts:
As an alternative to PyTorch the group can use Tensorflow to run the computa-
tions for optimizing the parameters of the team’s neural network model. Team
28 will also consider using Keras.

Selection Explanation:
PyTorch is a commonly used deep learning framework which is easy to use but
allows for sufficient implementation detail complexity.

5.1.8 CPU Training

Alternative Concepts:
Since neural networks require processing a lot of data, team 28 will be also con-
sider using a GPU to accelerate the team’s training process.

Selection Explanation:
We don’t anticipate our model to require the amount of computation a GPU
will provide.

5.2 Selection Summary

For the major simulation design decision, the group chose to create a custom
simulation instead of using an existing data set or measuring and collecting
our own data manually. This is because we can customize the output of the
simulation to match our use case of high floor counts. Additionally, we can
customize the number of elevators in use. Overall, it allows the group to be less
constrained.

For the optimization algorithm, between the three proposed strategies the
Q-Learning approach wins out. Table 13, containing the team’s weighted deci-
sion matrix, highlights the different advantages of each concept and how they
compare to each other. Ultimately Q-Learning, which is not necessarily cost
or ease-of-implementation optimal, dominates in terms of optimality and speed.
Thus team 28 have decided to explore it as the team’s final approach.
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6 Embodiment Design

6.1 Algorithm & Control Flow

The algorithm used in this project is split into two core functionalities as men-
tioned before: the simulation and the reinforcement learning algorithm.

Figure 2: Project Class Overview

6.1.1 Simulation

From a high level, the simulation is split into six fundamental classes, a step
function, and the visualization.

The classes are as follows: Simulator, Building, Elevator, Floor, Person,
and the Person Scheduler. The Simulator class runs the step function, serving
as the most abstracted layer of the simulator. The Building class is one step
deeper, handling the storage of elevators, floors, and measurement specifications
of certain aspects of the building. The Elevator class contains variables for
keeping track of passengers and velocity, as well as functions for physics and
loading/unloading passengers. The Floor class stores the people waiting and
queued floor button presses (up/down). The Person class stores the person’s
original floor, destination, waiting state, and waiting time.

The basic step function has several jobs. First, it checks if any elevators
are going to finish their loading/unloading cycle in the time allotted. If so,
it changes the allotted step time to exactly finish this cycle; this allows the
reinforcement algorithm to determine the direction of travel. Next, it changes
the position of each elevator to a new position based off the specified passage
of time. With this it unloads people and loads people going in the previous
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direction. Finally, the step function increments states such as each person’s
waiting times.

The visualization simply gets fed the building as part of its initialization and
updates the building/elevator/passenger states accordingly. This component
uses a wrapper for OpenGL primitives to display the elevator’s position, cur-
rent state (the elevator outline), the elevator passengers, the number of people
waiting on a floor, and the floor up/down button presses. Having a visualiza-
tion is helpful to see that the physics are working properly and it is useful to
compare the states of the reinforcement algorithm’s performance as opposed to
the SCAN algorithm’s performance.

Figure 3: Example Of The Building Visualization
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6.1.2 Reinforcement Learning

Interfacing with the Simulation

At the current stage of our project, we have been focusing on completing
the simulation first since the RL algorithm depends on it. An algorithm for the
RL algorithm, however, has been written and is implemented in Python and
PyTorch. Once the simulation is complete, we will work on adapting this code
directly to the simulation and performing three steps. These steps will combine
the physics step function and reinforcement learning step function in different
ways. Ultimately, the RL algorithm interfaces with the physics simulation as
follows:

Algorithm 1: How the RL Algorithm Will Interface with the Simula-
tion

Get the initial state.
while operating do

Select an action to perform. Call the RL step function.
RL Function:

Calculate the next state by calling the physics step function
some number of times.
Calculate the reward for transition to the new state with the
given action.
Return the new state and reward.

Save the state and reward in the replay buffer.
if Training then

Train the ML algorithm on samples from the replay buffer.
end

end

Implementations

The RL algorithm-elevator interface will be implemented in three different
ways which allow the reinforcement algorithm varying degrees of control. Due
to safety reasons, each of these steps has varying pros and cons; this is because
the elevator needs to ensure a maximum speed for safety (the elevator cannot
directly control the force and slam the elevator full of people into the ground).

Implementations:

1. First, a simple problem with one elevator will be tackled as a proof of
concept. Inside the RL step function, the algorithm will call the physics
step function until the elevator reaches a given floor. Then, the algorithm
will calculate a reward and return it and the new state. The RL algorithm
will calculate an action which will be the next floor to go to.
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• Pros: This will be very simple. The algorithm won’t need to plan
more than one RL step ahead. This will show that the elevator can
learn on a simple problem.

• Cons: This algorithm can only be applied to one elevator. This is
because elevators might not all reach their destination at the same
time. Waiting for that to happen would be a huge waste of time.

2. In order to tackle multiple elevators, the physics and RL step functions
will be merged together. Due to the safety constrains mentioned above,
the elevator cannot change floors while traveling. In order to avoid this
issue, a 2-element queue will be used. The elevator will constantly travel
to the first element, and the RL algorithm can change the second element
whenever it wants (even while traveling between floors). When an elevator
arrives, the second element will become the first element.

• Pros: By merging the physics and RL timesteps (only call the physics
timestep once in the RL step function), the program will be able to
have multiple elevators running in parallel. This is because the algo-
rithm won’t have to wait for all elevators to reach their destination
before moving on (Implementation 1’s method would necessitate do-
ing so).

• Cons: Since the RL algorithm can only change the second element
(the next floor to travel to after the destination), the algorithm will
receive a delayed reward for its actions. This delayed reward signal
will make training slower and more difficult.

3. At Dr. Sadovnik’s suggestion, we will also consider having an RL algo-
rithm for each elevator. Each elevator will learn its own neural network
and only take a new action when it reaches its destination like in Imple-
mentation 1.

• Pros: The physics and RL timestep functions can be unmerged.
The physics timestep will be called in a loop, and each elevator’s
unique RL step function will be called when that elevator reaches its
destination. This would allow us to take a more direct approach like
in Implementation 1 while using multiple elevators. This may also
help scale up to many elevators, since each elevator will have its own
specific neural network. (One neural network might take to long to
learn to control several elevators by itself).

• Cons: The program will not be able to control each elevator with
one central neural network, which might cause communication issues
between the elevators and reduce the efficiency improvement of the
algorithm. However, the simplicity for each individual elevator might
make this approach easier for learning a good algorithm.
The implementation of this step is also much harder.
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Reward Calculation

To calculate the rewards, we will first use negative people waiting as a re-
ward, which is easy to implement and will incentivize the elevator to move
people to their desired floors quickly. After this, we will also try changing the
reward function to be the negative of the sum of the time each person has
waited. This should further incentivize the algorithm to treat passengers fairly
and not abandon someone for hours.

6.2 Best Practices

The algorithm has a maximum speed to ensure that the operations stay within
safety parameters. This creates a harder problem for the reinforcement learning
algorithm. However, due to neural networks black-box nature, it is necessary
to exercise this level of caution. Specific implementation steps are discussed in
the section above.

7 Test Plan

7.1 Testing the Simulation

7.1.1 Testing the Building Simulation

It is essential for the later parts of the project to have a robust elevator simu-
lation in the models. Thus precise and complete tests are needed to ensure the
robustness of the elevators.

To test this, a series of simulated buildings will be created to cover all of the
possible elevator configurations and edge cases:

• Single elevator

• Multiple elevators

• Elevators covering different ranges of floors

• Building with floors that are not accessible by elevator

Each of these buildings will be fed a predefined list of passengers arriving at
specific timings in order to test the simulation’s capability to deliver passengers
to all accessible floors in a building, and to deal with high load without failing.

This simulation test will run on a pass or fail basis, with the only condition
being that after new passengers stop arriving, the simulation eventually reaches
a state where there are no more waiting people. This pass should succeed for
all buildings which are not intentionally designed to have inaccessible floors
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7.1.2 Testing the Person Simulation

In order to truly acquire an adequate amount of accurate data and testing
conditions for a machine learning algorithm to improve our results, an adequate
simulation is required for the random coming and going of new passengers,
accounting for differences in popularity of floors in a building and density of
foot traffic depending on time of day. To do this, a simulator was created to
generate passengers based on a probability density function (PDF) describing
the likelihood of a button press for each floor, relative to the passage of time.
In order to ascertain the accuracy of the person scheduling simulator, sufficient
testing must be done.

Given a specific building and the set of PDFs for it, this test will run the
person scheduling simulation, and monitor and analyze the queuing up of new
passenger. After the simulation is run for a long enough duration, the actual
average rates of button presses will be compared to the PDF, and an error value
will be obtained. The test will pass if the error falls is an acceptable margin of
ten percent.

7.2 Testing Reinforcement Algorithm

7.2.1 Testing Implementation

In order to test the capacity of the reinforcement algorithm to learn and make
gradual improvements, the goal is simply to ascertain that the implementation
is capable of reading the inputs generated by the simulation, and creating a
meaningful output which can control the paths of the elevators.

To do this, a series of simulations will be run for different buildings in order
to create a wide variety of input arrays, covering complex states for the building.
The input arrays for these simulations will be fed to the reinforcement algorithm,
and the output observed. The algorithm passes the test if every single input
state results in a meaningful output.

7.2.2 Testing the Reward Function

The most essential element for good progression for the ML algorithm is the
reward function, which processes an output generated by the algorithm and
returns an evaluation score in order to gauge which outputs are better, and
which are worse. Due to the nature of the optimization of waiting time, and
the ambiguity in defining rules on how to prioritize the time of passengers in
different circumstances, testing can only be done on situations where one output
is clearly better than another.

For this test, several predetermined outputs will be passed into a matching
simulation using the reward function being tested. The outputs will be chosen
such that one output is always indisputably better than the other (e.g., one
sends the elevator in the wrong direction, and the other sends the elevator to
the correct floor). The score rewarded for each set of outputs will be compared,
and the test passes if the better option(s) score higher than the worse option(s).
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8 Deliverables

Upon completion of the project it is planned to have a working simulation for
the elevators and reinforcement learning algorithms to find the optimal behavior
of the elevator. Thus, Team 28 will use these as deliverables to work towards
as various sections of the project are completed.

Since elevators are expensive, they will be unable to be purchased for this
project. Additionally, the team’s algorithms will be most useful for multi-
elevator systems, which would require more elevators. The simulation will
take several important parameters: number of elevators, speed of elevators,
and weight capacity of elevators. Additionally, the amount of foot traffic will be
parameter-based. This flexibility will allow for the simulation of nearly all real-
world elevator systems will still retaining a reasonable budget. Additionally,
Team 28 can measure elevator use within UTK buildings in order to replicate
the real-world elevator systems here such as the Min Kao building or SERF
elevator systems. Since an important aim of the team’s project is to target very
tall, multi-elevator systems, Team 28 will attempt to model elevator systems
from well known towers elsewhere, such as the Cathedral of Learning in Pitts-
burgh. Finally, the group will test the team’s algorithms on speculative elevator
designs, which may be useful in future megastructures.

The next deliverable is the creation of a reward function, which will allow
us to run the team’s reinforcement learning algorithms. This is critical for the
team’s machine learning algorithms, since it tells the algorithm how it should
respond to the simulation state. For example, the group can choose to prioritize
how many passengers are outside an elevator door or to prioritize certain floors
over others.

The other major deliverable in this project will be the modern deep rein-
forcement algorithms. This deliverable will use the prior deliverables of the
simulation and reward functions in order to determine the optimal actions that
an elevator should take at any given point in time. For example, algorithms
such as deep Q-networks will be applied, which use neural networks for function
approximation.

Since the team’s project is mainly computational, these first deliverables
will be in the form of several source code files written in the Python language.
Finally, Team 28 will write and design a report on the results of the team’s
project. The report will highlight the team’s methods and their effectiveness on
various elevators and associated simulations. This deliverable is a critical step
in communicating the results of the team’s work to a wider audience.

9 Project Management

In order to successfully go about completing the deliverables, the team’s group
will break down the next semester into the following segments organized by the
time and order of completion.
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Table 14: Deadlines

Deadline Description

Month 1: Create a simulation to
handle the physics of elevator
movement

The simulation should model people arriving, ele-
vator travel time, and elevator weight. The state
should be given to a reinforcement learning algo-
rithm. Since this is the backbone of the team’s sys-
tem, the team’s group will dedicate the first month
to its creation.

Month 1.5: Find simulation
parameters to model elevator systems
within UT and other potential
scenarios.

The group will model several test elevator systems
from both real buildings and hypothetical future
structures. It is important to have a solid collection
of elevator systems to experiment on.

Month 2: Create a reward function It is important to create a reward function which
successfully captures the intent of the problem. The
team’s group need to balance rewards so that the
elevator optimizes transporting people as efficiently
as possible. The team’s group will spend two weeks
designing this function in preparation for the rein-
forcement learning algorithms.

Month 3: Implementation of modern
deep reinforcement learning techniques
to interface with the simulation and
reward function

The team’s group will spend 1 month implement-
ing and modifying various algorithms from the liter-
ature. The team’s group will also collect the results
from these algorithms for the different elevator sys-
tems created in above deliverables.

Month 3.5: Generate a project
report based on existing findings.

This will be the final project report for the class.

Since the group consists of five computer science majors, every member is
capable of contributing similarly to the project. Carl Edwards has more ex-
perience in machine learning and is taking a graduate reinforcement learning
class, so he will help steer the direction of the reinforcement learning algorithm
deliverable production.

10 Budget

There is no designated budget for this project. The simulation and reinforce-
ment learning are to be software only with only the use of open-source.
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11 Summary of Progress

There are two major components to the project: the simulation and the rein-
forcement learning aspect. For the simulation, it is completely functioning. The
simulation supports any number of elevators with any number of floors. Realis-
tic physics are used with options to set acceleration/deceleration, max velocity,
floor distance, etc. This is all displayed on an OpenGL visualization. Addi-
tionally on the visualization, one can see the floor button presses (up/down),
the number of people waiting, the number of people on each elevator, and the
current state of each elevator. Finally, the simulation uses a uniform poisson
distribution for spawning people on floors with their desired destination floor.

As for the reinforcement learning component, we have achieved learning on
a single elevator systems of 5 and 10 floors using negative people waiting as
a reward and the desired floor as the action. Additionally, we also learn on
20 floors systems but solutions have a tendency to collapse. This is likely due
to the way the algorithm interacts with the simulation being non-Markovian
(there is a different amount of simulation time when we travel to floors farther
away). We use [5] and [6] help determine hyperparameters. Initially, we tried
to learn without episodes. This resulted in 5 floors working and sometimes 10.
Unfortunately, 20 floors didn’t work because people showed up faster than the
initial random exploration policy could handle; this resulted in the Q-values
essentially running away as the number of people increased to infinity. 20 floors
worked when we reduced the rate people showed up to 20% of the previous value
(from 0.5 to 0.1). The takeaway is that on taller elevator systems (20 floors),
when the Poisson rate is the same as smaller buildings, the elevator has trouble
keeping up at the beginning of learning. At lower Poisson rates it is also possible
to learn better actions (and if Poisson rate is too high it won’t learn at all).
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Figure 4: This shows the return per epoch on a 10 floor system. The return
approaches a value near zero, which indicates that few people are waiting during
the episodes once it is trained.

To try to fix this, we switched to using fixed-length episodes. This produced
unexpected results; the 20 floor elevator learned that less people showed up if
it sits still (since only one second passes per when it doesn’t move). Because
of this, we switched to variable length episodes based on a fixed amount of
simulation time. This seemed to help, but 20 still didn’t work. We began to
suspect that the elevator might not be physically fast enough to learn effectively
or the RL step function isn’t Markovian when interacting with the system. We
tried several things: we tried a negative cumulative wait time reward function,
we tried to add cumulative wait per floor as states, we added elevator position
as a state, and we added the number of people on the elevator itself as a state
too. We also tried to make the model a recurrent neural network so it would
remember when people showed up. Unfortunately, this caused problems with
variable batch sizes and the library we used (PyTorch). We also tried to use
the change in people as a reward, but this doesn’t work well because sometimes
people show up and sometimes they don’t (due to the Poisson process arrival
scheme).

Finally, we realized that we could simplify the problem and make the amount
of time that passes between RL steps more consistent by using only two actions
(up and down) rather than ‘the number of floors’ actions. We found this to
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work better with the negative of the number of people waiting as the reward
(we don’t use the cumulative wait time per floor states either). 5 and 10 floors
learn nicely. 20 floors begins to learn but it suffers from some type of solution
collapse. It’s interesting to note that the average action while learning was
about 0.5. This is desirable because 1 is up and 0 is down, so an average of 0.5
indicates the elevator is moving up and down.

Figure 5: This shows the running average of actions taken at each step for an
elevator system with 20 floors. This is the same experiment as Figure 19. Note
the collapse in return happens when the action only goes up or down.
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Figure 6: This shows the return for each epoch for an elevator system with 20
floors.

Whenever the solution collapsed the elevator started either only going up
or only down. Long episodes seem to work better (20000 seconds or infinite)
because people pile up which helps the elevator learn faster (bigger differences
in values). However, for infinite episodes on large buildings people pile up before
it can learn and it gets overwhelmed and doesn’t learn (the Q function keeps
changing to get bigger as more people show up. We balance this with 20000
second episodes so that the length advantage exists but we can apply what we
learned by resetting.

The 20 floor solution collapse is theoretically impossible in a Markovian sys-
tem in traditional reinforcement learning due to the policy improvement theorem
[8], but due to the approximation function for Q and non-Markovian elements
of the simulation it happened here in practice. Merging the RL step and simula-
tion timestep function would probably contribute to fixing this. Also, although
5 and 10 floors worked, they would still abandon people on rare occasions. We
think a hybrid algorithm between RL and classical algorithms might be the
best bet for a consistent, semi-explainable algorithm. It might also be useful
to remove the option to go up on the top floor and down on the bottom floor.
Using a state-of-the-art model models might also help; we don’t believe that
policy gradient methods would help, however, though this is untested. Another
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future path for research is to fill the elevator up with 10-20 people and then
stop letting them show up. After this, train the elevator on this until nobody
is waiting. Repeat until fully trained.

The Covid-19 pandemic substantially delayed our project, but we managed
to still achieve some results.

Figure 7: This is a visualization of the neural network making decisions
for 10 floors. Check out the gif at: https://raw.githubusercontent.com/

EfficientElevator28/ReinforcementLearning/master/up_down_10.gif
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13 Appendix

Business model canvas is attached on the next page. Our Gannt chart is attached
on the page after. The 3rd page is a test plan matrix. The 4th through 7th page
is a preliminary patent application. The 8th page is the poster. The remaining
pages are reinforcement learning results.
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• Partners: elevator 
manufacturers for tall buildings 
(ex. Downtown hotels, offices) 

• Suppliers: microcontroller 
suppliers (if additional hardware 
required) 

• Resources (from partners): 
none* (run in simulations until 
actual implementation) 

• Key activities (that partners 
perform): service/update 
existing elevators in certain 
buildings per our algorithm 

 

• Key activities required by value 
propositions: creation or collecting 
data sets, algorithm and metric 
development, marketing to building 
owners and tenants (specifically 
companies), installation of additional 
hardware for customers 

• Distribution channels: partnership(s) 
with building owners 

• Customer relationships: periodic 
(yearly) check-ins with customers to 
see if that are satisfied, analysis of 
actual data to see if time savings 
have occurred (automated) 

• Revenue streams: one-time 
installation fee and possible 
additional service fee 

 

• For value proposition: existing 
example hardware used by the 
elevators that we will be 
working with 

• For customer relationships: for 
later automated analysis of 
actual elevator data, potentially 
additional hardware and an 
internet connection will be 
required for data upload 

• For distribution channels: 
website demonstrating 
effectiveness of algorithm 

• For revenue streams: 
Subscription fee from clients for 
maintenance and updates 

 

• Value to customer: smaller* 
wait times for elevators leading 
to increased happiness (*exact 
measurement metric to what is 
a smaller wait time is not 
necessarily straightforward) 

• Customer problems we solve: 
frustration from elevator users; 
the lack of elevators that were 
originally installed in buildings 
will be mitigated. These can 
lead to people/business more 
likely to rent 

• Products/services to each 
customer segment: algorithm 
product to building owners 

• Customer needs satisfied: 
better convenience/usability 

 

• Elevator owners (personalized 
assistance) 
o Free remote debugging 
o Paid in-person 

debugging 
• Elevator Users (active community 

that provides feedback if willing) 
o Will maintain online 

portal for submitting 
feedback on elevators 
(both positive and 
negative) 

▪ Link will be posted in 
each elevator 

 

• Website with contact/purchasing information 

o Will include forum/portal for users to 

provide feedback on elevators (both 

positive and negative) 

o Will also include a separate portal for 

owners allowing them to: 

▪ Report issues/provide feedback 

▪ Download new updates (both functional 

and security) 

▪ Request in-person/remote assistance 

• To increase awareness 

o Booths at appropriate conventions 

o Calls/emails to various businesses, 

apartment complexes, etc.  

• To aid installation 

o Partnerships with appropriate 

electronics providers if necessary 

 

• Building owners 
o Ranging from 

corporations to 
landlords 

▪ Not very diverse 
• Users 

o Anyone who uses the 
elevator 

▪ Ranging from 
workers to 
residents to 
visitors 

▪ Very diverse 
group 

 

• Key resources:  
o Website showing our product is a one-time implementation cost, plus small maintenance 

costs, plus a recurring hosting cost 
o The automated testing of our algorithm’s effectiveness is a one-time implementation cost plus 

a recurring hosting cost 
o All other resources are hardware-based which is a fixed cost absorbed in the one-time fee that 

the customer pays per elevator 
• Key activities not covered by resources: 

o Marketing campaign to potential customers 
 

• One-time charge per elevator 
o Cost will vary significantly depending on the size/type of the elevator 
o Bulk pricing if multiple elevators are being fitted at once in the same building 
o Includes: 

▪ Fitting the algorithm to the elevator 
▪ Installing any additional hardware 
▪ Additional functional/security updates later on 

• “Housecall” charges 
o Costs money if customers need in-person assistance 
o Potential subscription fee for maintenance and premium faster support 

 



Efficient Elevator Project - Team 28
Task ID TASK TITLE START DATE DUE DATE January February March

1 15 1 15 1 15

1 Simulation 1/10/2020 2/15/2020

1.1 Set Up Environment 1/10/2020 1/28/2020

1.2 Research/Implement Elevator Physics 1/10/2020 2/3/2020

1.3 Record Minkao Elevator Parameters 1/10/2020 2/3/2020

1.4 Implement Elevator Visualization 2/1/2020 2/15/2020

2 Reinforcement Algorithm 2/15/2020 3/15/2020

2.1 Determine Input State 2/15/2020 3/1/2020

2.2 Determine Metrics 3/1/2020 3/15/2020

2.3 Investigate Other Reinforcement 
Learning Algorithms to Use

3/1/2020 3/15/2020

2.4 Implement Simple Heuristic 2/15/2020 3/1/2020
2.5 Iterate on the Design Using Existing Tests 3/1/2020 3/15/2020
2.6 Test on Other Elevator Systems 3/1/2020 3/15/2020



Test Target E.C. Expected Results Results Remarks
Implementation Viability Test Reinforcement Learning Implementation Pass all test cases Never ran COVID-19
Optimal Output Comparison Test Reward Function Pass all test cases Never ran COVID-19
Correct Floor Accessibility Test Building Simulation Implementation Pass for all cases not intentionally designed to have inaccessible floorsNever ran COVID-19
PDF accuracy Test Time-Dependent Foot Traffic Simulation Implementation Consistently pass for cases with PDFs that generate a sufficiently large number of passengersNever ran COVID-19
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FIELD OF THE INVENTION

The invention outlined in this patent pertains to a software improvement to
augment the path choices of preexisting elevator systems. It achieves this by
applying reinforcement machine learning to existing elevator algorithm concepts
on an otherwise unchanged elevator.

BACKGROUND

Most elevators run a proprietary variation of the SCAN algorithm. The SCAN
algorithm is a simple algorithm used in various applications, wherein the object
in question moves in single-directional sweeps across its range of access points
until it has satisfied all requests before it can change directions. For this specific
case, once the elevator has started its motion up or down, it will continue in
that direction until it has stopped at every floor that has had its button pressed
in that direction. Once it has no more requests at any floors further down that
trajectory, it has the freedom to go any direction to satisfy the next request for
a floor.

This algorithm has been used since the introduction of some of the earliest
mechanical elevators, and continues to be used for its effectiveness, with few
changes outside of proprietary heuristic tuning to allow the algorithm to better
suit the needs of more complex elevator setups and systems. The algorithm is
nonetheless prone to certain shortcomings in the face of more complex scenarios,
such as when presented with a choice, choosing a direction where passengers
are nearer, or a direction where there is a higher probability of having many
passengers, where choosing the wrong direction could waste time.

By implementing a well-tuned reinforcement learning element to the decision-
making of an elevator system, the system is able to make more educated deci-
sions based on a greater variety of factors, thus improving overall performance
by decreasing the average time lost by people waiting on elevators.
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BRIEF SUMMARY OF THE INVENTION

The presented invention comprises a novel algorithm for scheduling elevators in
various structures. The algorithm is powered by reinforcement learning, specifi-
cally deep-Q learning, and a software simulation of the building to find optimal
parameters. The invention is designed to work with both simple and complex
structures with varying numbers of elevator shafts and elevators per shaft. While
optimal scheduling is unknown, the simulation gives the reinforcement learning
model access to all of its parameters and, with some training time, it can find
a suitably optimal elevator control.

BRIEF DESCRIPTION OF THE DRAWINGS

In this document brief physical displays are given as an example to describe the
proposed invention and its workflow, however, the invention is not limited to
the likeness of the images.

Figure 1 shows the prescribed organization and workflow pertaining to this
invention. The simulator, complex in nature, models each component of what
might take place in a building. These parameters and state information are
passed to a reinforcement learning algorithm which gives feedback to the simu-
lation in order to control it. This cycle continues, while progress can be moni-
tored through the output visualization program, which functions to evaluate the
schedule from human eyes without finalizing the schedule in an actual building
yet.

DETAILED DESCRIPTION OF THE INVEN-
TION

The invention, and its novelty, lie in both the deep-Q learning algorithm and
its intimate connection with the realistic simulation. The simulation serves
the purpose of finding optimal parameters without having to train a learning
algorithm, initialized with random weights, on an actual building.

The simulation is designed to model the building realistically, but give full
control and modularity in its design. Most physically based parameters are
accessible, such as elevator acceleration, number of floors, elevators, and shafts.
Additionally, other abstract parameters, such as the rate at people pressing
buttons, are modeled by customizable probability distributions, giving control
to anything running the simulation. Paired intimately with the reinforcement
learning algorithm the simulator provides a cheap and efficient way to learn
optimal schedules for a building.

Powered by a reward function the deep-Q learning trains a deep learning
model, which approximates the estimated return of each action from some state.
The states are retrieved from the paired simulation (or the actual building in a
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deployed model). The proposed invention uses a 2 layer Multi-Layer Perceptron
network with loss calculated via mean squared error.

The proposed loss function is written as

Li (θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2
]

In this equation, s is the current state, a is the action taken,, r is the reward
for taking these actions, s′ is the next state, and a′ is the action taken from the
next state. γ is the discounting factor. The Adam optimizer will be used to
minimize this loss function. Q is the action-value function that will be learned
(the Multi-Layer Perceptron). U(D) is a uniform distribution of transitions in
the replay buffer D. Θ are the model’s parameters.

To effectively measure loss the model needs to take into an account an appro-
priate object. This is done via the reward function, which is modular and cus-
tomizable in this invention. It is allowed to optimize waiting time, travel time,
and any other desired objective (assuming appropriate mathematical proper-
ties). Given this modularity the invention is also claimed to be used for finding
poor, or sub-optimal schedules. Since the objective can be set to longest average
wait, for instance.

While this loss is standard in deep-Q learning, its use in elevator scheduling
paired with a simulation is unique to this invention.

In implementation, this invention uses a proprietary code base developed by
the authors in the open source, freely available Python language. The learning
algorithm uses open source deep learning frameworks, which are freely available
under the Modified BSD license.

ABSTRACT

The presented invention describes a novel approach towards combining advanced
reinforcement learning techniques with fully customizable, modular simulations
in order to discover optimal elevator scheduling for a desired building config-
uration. After configuring the simulation with the appropriate building setup,
elevator parameters, and people frequencies the simulation, provided the desired
optimization objective, will find an optimal schedule, which will be better than
current SCAN style approaches to scheduling. With the invention is also in-
cluded a custom visualization software to view elevator behavior before actually
integrating with a real system. Once an optimal network is found, the product
could be deployed to control a system in a building given main, central control
system.
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Figure 1: Workflow Overview
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Efficient Elevator Algorithm
 Owen Barbour, Austin Day, Carl Edwards, Daniel Nichols, Sean Toll

Overview
Elevators are not perfect, but they can be 
improved. There is currently a gap in the 
literature surrounding elevator optimization 
using modern reinforcement learning 
techniques. We attempted to fill in this gap. 
Our end goal was to create an elevator 
algorithm that could potentially handle future 
super-structures. 

Results
● Algorithm ran successfully with one 

elevator on 5 and 10 floors (Figures 2 and 
3 show 10 floors)

● With 20 floors, the algorithm collapsed 
during training due to the non-Markovian 
nature of the simulation  

Solution
Our approach to this problem consisted of 
an elevator simulation and a reinforcement 
learning algorithm to run on the simulation.

Simulation:
● Coded in Python
● Realistic Physics
● Visualization Built-in (Figure 1)

Reinforcement Learning:
● Coded in Python
● Handles 5, 10, and 20 floors
● Reward Function: negative number of 

people
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information processing systems, pages 
1017–1023, 1996.
[3] Robert H Crites and Andrew G Barto. Elevator 
group control using multiple reinforcement 
learning agents. Machine learning, 
33(2-3):235–262, 1998.
[4] Volodymyr Mnih, Koray Kavukcuoglu, David 
Silver, Andrei A Rusu, Joel Veness, Marc G 
Bellemare, Alex Graves, Martin Riedmiller, 
Andreas K Fidjeland, Georg Ostrovski, et al. 
Human-level control through deep reinforcement 
learning. Nature, 518(7540):529, 2015.

Abstract
Our goal was to improve elevator efficiency 
by running a custom reinforcement learning 
algorithm on an elevator simulation of our 
own creation. We had success learning 
elevator systems with a lower number of 
floors and a lower Poisson rate.

Conclusion/Future 
Work

We successfully simulated an elevator. With 
limited success, we optimized the simulation 
using a reinforcement learning algorithm.

Regarding future development on this 
project idea, we could:
● Make simulation more Markovian
● Make hybrid reinforcement/classical 

algorithm to guarantee consistency

Figure 1 - Elevator Simulation

Figure 2 - Return vs Epochs Graph of the 
Reinforcement Learning for 10 floors

Figure 3 - Running Average of Actions vs Steps 
Taken of the Reinforcement Learning for 10 floors

Epochs



Figure 8: This shows the loss for each step for an elevator system with 5 floors.
Note that all these figures show running average values as well.
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Figure 9: This shows the loss for each epoch for an elevator system with 5 floors.
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Figure 10: This shows the reward for each step for an elevator system with 5
floors.
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Figure 11: This shows the action for each step for an elevator system with 5
floors.
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Figure 12: This shows the loss for each step for an elevator system with 10
floors.

41



Figure 13: This shows the loss for each epoch for an elevator system with 10
floors.
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Figure 14: This shows the reward for each step for an elevator system with 10
floors.
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Figure 15: This shows the action for each step for an elevator system with 10
floors.
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Figure 16: This shows the loss for each step for an elevator system with 20
floors.
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Figure 17: This shows the loss for each epoch for an elevator system with 20
floors.
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Figure 18: This shows the reward for each step for an elevator system with 20
floors.
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Figure 19: This shows the action for each step for an elevator system with 20
floors.
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