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1. Introduction 

The objective of this paper is to determine the economic and process feasibility of extracting 

thorium oxide from monazite ore. As nuclear energy advances, fuels other than uranium may be 

needed as replacements. One potential fuel is thorium. Thorium, along with many other rare 

earth elements (REEs), are found in a sand-like mineral called monazite. Monazite is a byproduct 

of the mining industry, so it presents great potential as a source of thorium. In this study, we will 

evaluate the economic potential and feasibility of an acid extraction of thorium from monazite. 

The process will separate other REEs and recover phosphoric acid. 

          

Design Objectives 

1. Accuracy of economics of + 30% to -20%  

2. Process scale: 1000 kg/hr of monazite 

3. Feed composition in table 2 

4. Process must be safe and environmentally 

friendly 

5. Product streams are to be economically feasible 

6. ChE index is 2019 

Table 1. List of Design Objectives 

 

2. Synthesis Information for Processes 

In the mining industry, monazite is typically a waste product; however, by using sulfuric acid, 

thorium and uranium can be extracted. The products can then be sold at a profit (2015, Rodliyah 

et al.). In this process, the desired product is thorium, which means we made all decisions to 

maximize the conversion to thorium. With this in mind, we used a reactor combined with a 

filtration process. The series of chemical reactions for thorium is as follows: 
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𝑇ℎ3(𝑃𝑂4)4 + 6𝐻2𝑆𝑂4 → 3𝑇ℎ(𝑆𝑂4)2 + 4𝐻3𝑃𝑂4 

3𝑇ℎ(𝑆𝑂4)2 + 12𝑁𝐻4𝑂𝐻 →  3𝑇ℎ(𝑂𝐻)4 + 6(𝑁𝐻4)2𝑆𝑂4 

3𝑇ℎ(𝑂𝐻)4 → 3𝑇ℎ𝑂2 + 6𝐻2𝑂   

______________________________________________________________________________ 

𝑇ℎ3(𝑃𝑂4)4 + 6𝐻2𝑆𝑂4 + 12𝑁𝐻4𝑂𝐻 → 3𝑇ℎ𝑂2 + 6𝐻2𝑂 + 6(𝑁𝐻4)2𝑆𝑂4 + 4𝐻3𝑃𝑂4 

The following overall reaction is for the remaining rare earth elements in monazite: 

2(𝑅𝐸𝐸)𝑃𝑂4 + 3𝐻2𝑆𝑂4 + 6𝑁𝐻4𝑂𝐻 → 2𝐻3𝑃𝑂4 + 3(𝑁𝐻4)2𝑆𝑂4 + (𝑅𝐸𝐸)2𝑂3 + 3𝐻2𝑂 

The process relies on the easy separation of thorium from the mixed REE stream since thorium 

sulfate is solid at 57°C, while the mixed REEs remain in solution.  Figure 1 shows the block flow 

diagram for the separation of thorium and the recycle system for H₂SO₄ and NaOH. 

 

 
Figure 1: Block Flow Diagram  

This process involves several challenges that must be overcome to ensure safety, maintainability, 

and ultimately, profitability. One such challenge is the abrasiveness of the feed material. 

Monazite will be damaging to the rotating kiln drum. Further investigation is required to 

determine design parameters of the drum to ensure it withstands the abrasion for prolonged 
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periods. This could limit the lifespan of the drum. Variability in the composition of monazite can 

also cause issues with sizing of the vessels. If the vessel is sized incorrectly it could restrict the 

maximum inlet flow rate. 

2.1 Brief Literature Summary  

“Decomposition of Monazite Concentrate in Sulfuric Acid” by Berry, L., V.Agarwai, J.Galvin, 

and M.S. Safarzadeh (2) looks at the various conditions that optimize the process of separating 

monazite by using an acid extraction. Based on that research there are three things needed to 

maximize thorium extraction efficiency. First, is a residence time of 5 hours. Second, a 

temperature between 180-250 C. Lastly, maintaining a 4:1 sulfuric acid to ore ratio. Thorium 

extraction is increased when the set temperature is towards the lower end of the range, but has 

little effect on the other REEs. Particle size during the addition of the acid has little effect on the 

REEs extraction.  

The article “Process development to recover rare earth metals from monazite mineral: A review” 

by) Kumari, Panda, Kumar, Kumar, and Lee (4) evaluates several methods to extract thorium 

and REEs from monazite. The article also gives an overview of the environmental impacts of 

extracting REEs from monazite. It cites that using a byproduct like monazite and utilizing 

reactant/byproduct recovery schemes can reduce the environmental impact of REE mining. This 

review suggests that NaOH treatments are more effective than H2SO4 acid leaching in 

conversion of sulfates to hydroxides. 

The review article by Farzaneh Sadri et al., “A review on the cracking, baking and leaching 

processes of rare earth element concentrates,” (5) investigates several methods for recovering 

REE concentrates. The article outlines an industrially acceptable method to extract high purity 
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REEs. The first step of the process is acid baking. This is followed by neutralization and 

precipitation by increasing pH. Lastly, the process fluid is re-leached with HCl. It also cites that 

alkaline cracking is often a more economical process. This is due to avoiding equipment 

degradation caused by the phosphate-acid interaction. 

2.2 Cost Information  

 

The feed to the process includes monazite, H2SO4, and NH4OH. The monazite composition is 

outlined in Table 4. Of the products, ThO2 is the most valuable, but Nd2O3 is also highly 

valuable (Table 2.). Since the REEs are to be sold in a mixed stream, we estimated the products 

are worth half their potential value. Most of the feed cost comes from the monazite. Energy costs 

for the process are calculated using natural gas as the primary utility (Table 5). 

    

Product $/kg 

ThO2 80 

Nd2O3 60 

La2O3 2 

Ce2O3 2 

Table 2. Cost of Products 

 

Feed $/kg 

Monazite 1 

H2SO4 0.04 

NH4OH 0.10 

Table 3. Raw Materials Cost 

 

Component Mass % 

Lanthanum 14.46 

Cerium 29.17 

Thorium 4.83 

Phosphorous 12.89 

Neodymium 12.01 

Oxygen 26.64 

Table 4. Monazite 

Composition 
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Utility $/1000 ft3 

Natural Gas 10.25 

Table 5. Energy Cost 

 

 

  

3. Method of Approach 

The approach for this project begins with determining the design objectives and chemical 

reactions needed to achieve the desired result. With these considerations in mind, the block flow 

diagram was developed and a mass balance was calculated. This was followed by an analysis of 

process constraints, raw material costs, and economic potential. Next, the process design is 

modeled and simulated using the OLI Flowsheet software. Using this software, recycle structures 

and waste streams are examined as well as equipment design. Once the process was simulated 

and the final design parameters were decided upon, a full cost analysis was completed. This 

included equipment costs, operating costs, utilities costs, annualized costs, and profitability 

analysis. From the information gathered throughout this approach, a full report was completed by 

April 24, 2020 and submitted for review. 

4. Results 

4.1 Optimization 

Certain optimizations can be performed despite the coarse approach taken in a study-level 

process draft.  Much of this comes from determining the minimum materials required to perform 

the process to an adequate standard.  In the first pass of modeling, we used an excess of the 

reagents and components required to drive the reaction to completion.  In subsequent iterations, 

more care was taken to refine these values. Separate mass balance analyses were performed, in 
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order to determine more reasonable quantities.  This serves to reduce material cost, equipment 

size, and process waste. Additionally, a scheme to extract the phosphoric acid from the process 

stream was designed to maximize profit. 

4.2 Process Flow Diagram 

Figure 2 shows the process flow with a corresponding chart including all flow rates. Not 

included due to software constraints is a 41.31 m3 rotary kiln located prior to the S-1 stream. The 

rotary kiln has an inlet flow of pure monazite and sulfuric acid. A second rotary kiln is located 

after filter 3 with S-16 as the inlet flow. This rotary kiln is 20.5 m3. 

Figure 2. Process Flow Diagram 

The first step of the process is feeding 1000 kg/hr of monazite and 1700 kg/hr of sulfuric acid into a rotary 

kiln at 300oC for 300 minutes. The literature supports that this reaction occurs best at this temperature and 

residence time to convert the phosphate forms of the REEs and thorium to sulfates. Next, this stream enters 

the first filter to separate the solid thorium sulfate from the aqueous REE stream. The solid thorium is then 

dissolved with NaOH in Reactor 2 to produce thorium oxide. In filter 2, the thorium is filtered out and the 
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waste aqueous stream is neutralized in neutralizer 1. From reactor 1, the aqueous REE stream goes through 

a liquid-liquid extraction to remove phosphoric acid. After the phosphoric acid is removed, the stream enters 

reactor 1 and reacts with NaOH to convert sulfates to hydroxides. Filter 3 removes the solid REEs and the 

liquid waste stream is neutralized in neutralizer 2. The solid REEs are then processed through the final 

rotary kiln to convert hydroxides into oxides. 

   

Stream Flow Rate (m3/hr) Stream Location 

S1 3.2 Filter 1 Inlet 

S2 0.021 Reactor 2 Inlet 

S3 1.13 Filter 2 Inlet 

S4 5.57E-03 Thorium Outlet 

S5 1.12 Neutralizer 1 Inlet 

S6 1.12 Waste Outlet 

S7 3.18 Extractor Outlet 

S8 3.06 Reactor 1 Inlet 

S9 11.7 Filter 3 Inlet 

S10 11.5 Neutralizer 2 Inlet 

S11 11.8 Waste Outlet 

S12 1.1 Reactor 2 Inlet 

S13 0.0035 Neutralizer 1 Inlet 

S14 0.19 Extractor Outlet 

S15 8.1 Reactor 1 Inlet 

S16 0.21 Filter 3 Outlet 

S17 0.49 Neutralizer 2 Inlet 

Table 6. Process Flow Diagram Stream 

Information 
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Process Step Size Type 

Filter 1 15 m2 Single Vacuum Filter 

Calciner 1 41.31 m3 Stainless Steel Rotary Kiln 

Calciner 2 21.91 m3 Stainless Steel Rotary Kiln 

Reactor 1 22.57 m3 Stainless Steel Continuous Stream Reactor 

Reactor 2 0.553 m3 Stainless Steel Continuous Stream Reactor 

Filter 2 8 m2 Single Vacuum Filter 

Filter 3 18 m2 Single Vacuum Filter 

Neutralizer 1 0.094 m3 Vertical Oriented Stainless Steel Neutralizer 

Neutralizer 2 0.839 m3 Vertical Oriented Stainless Steel Neutralizer 

Agitator for Reactor 1 - Mechanical Seal Agitator with Propellor 

Agitator for Reactor 2 - Mechanical Seal Agitator with Propellor 

Liquid-Liquid Extraction 47.12 m2 Extractor 

Liquid-Liquid Extraction 47.12 m2 Stripper 

      

Table 7. Process Equipment and Costs 

 

4.3 Safety, Health and Environmental Analysis 

The safety analysis chart for all chemicals in this process can be found in Appendix A (Table 

A.1). This process presents several challenges with regards to safety and the environment. In 

general, the process converts waste into valuable products, therefore it is an inherently 

environmentally friendly process. However, many hazardous, flammable, and toxic chemicals 

are used. Corrosion resistant materials must be used throughout the process to reduce the risk of 

loss of containment. Additionally, the process will be conducted at atmospheric pressure to avoid 

risks associated with high pressure processes. While more expensive, it is safer to include 

analyzers at critical sampling points to eliminate the need to take physical samples. Several 

chemical reactions occur in the process that are exothermic. With any exothermic reaction, there 

is potential for a runaway reaction. While unlikely in this process, all reactors will be continuous 

to better control the reaction. Process controls must be present to ensure safe operation. The 

aqueous waste streams of this process contain acids, bases, and sulfur trioxide. The waste 
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streams will be neutralized, but further processing and containment is necessary to make the 

waste streams safe. It is also important to ensure that a high degree of filtration in process 

streams is achieved to avoid excess thorium in other streams, as it is a safety hazard. An 

electrodialysis scheme would help to clean the waste stream, but further feasibility analysis must 

be conducted to design such a scheme in an efficient manner. 

4.4 Capital Cost Estimates 

To determine the equipment capital cost, it was first necessary to size the equipment based on 

residence times and flow rates. The cost for all stainless-steel equipment was estimated using 

charts in Ulrich. The total capital cost was found to be $9.706 million. A list of the equipment 

costs is included in Table 8. 

Process Step Type Bare Module Cost Annualized Cost 

Filter 1 Single Vacuum Filter $533,340.00  $128,001.60  

Calciner 1 Stainless Steel Rotary Kiln $2,504,040.00  $600,969.60  

Calciner 2 Stainless Steel Rotary Kiln $2,012,175.00  $482,922.00  

Reactor 1 Stainless Steel Continuous Stream Reactor $988,201.50  $237,168.36  

Reactor 2 Stainless Steel Continuous Stream Reactor $116,259.00  $27,902.16  

Filter 2 Single Vacuum Filter $426,672.00  $102,401.28  

Filter 3 Single Vacuum Filter $800,010.00  $192,002.40  

Neutralizer 1 Vertical Oriented Stainless Steel Neutralizer $232,518.00  $55,804.32  

Neutralizer 2 Vertical Oriented Stainless Steel Neutralizer $581,295.00  $139,510.80  

Agitator for Reactor 1 Mechanical Seal Agitator with Propellor $162,965.00  $39,111.60  

Agitator for Reactor 2 Mechanical Seal Agitator with Propellor $37,037.50  $8,889.00  

Liquid-Liquid Extraction Extractor $655,820.00  $157,396.80  

Liquid-Liquid Extraction Stripper $655,820.00  $157,396.80  

    $9,706,153.00  $2,329,476.72  

Table 8. Capital Costs 

4.4 Manufacturing Cost Estimates 

The process requires several expenses related to normal operations. This includes direct costs, 

such as those associated with raw materials and operating labor; indirect costs, associated with 

overhead, insurance, and taxes; and utilities such as electricity and water. A summary of cost 
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estimates is shown in Table 9. The most significant of these expenses is raw material costs. The 

process is designed to use 1000 kg/hr of monazite ore, which is priced at $1.00 per kg. When 

dealing with high value materials, it is expected for them to dominate the operating expenses. 

Necessary reagents for the process such as NaOH also contribute significantly. 

Costing Category Annual Cost 

Capital Investment  
Fixed Capital  $13,163,096.45  

Working Capital  $1,974,464.47  

Total  $15,137,560.92  

Direct Costs   

Raw Materials $14,998,512.00  

Operating Labor $1,023,255.06  

Supervisory and Clerical Labor $204,651.01  

Total $16,226,418.07  

Utility Costs  
Electricity $72,558.00  

Process Water $8,000.00  

Waste Disposal $86,400.00  

Natural Gas $112,404.00  

Maintenance and Repairs $1,316,309.65  

Operating Supplies $263,261.93  

Laboratory Charges  $204,651.01  

Patents and Royalties  $1,380,218.24  

Total $3,443,802.83  

Indirect Costs  
Overhead $859,534.25  

Local Taxes $394,892.89  

Insurance $394,892.89  

Total $1,649,320.03  

Total Manufacturing Expense $21,319,540.93  

General Expenses  
Administrative Costs  $214,883.56  

Distribution and Selling $213,195.41  

Research and Development  $1,000,000.00  

Total General Expense $1,428,078.97  

Depreciation $1,316,309.65  

Total Expenses $24,063,929.55  

Profit   

Revenue from Sales $84,059,032.00  

Annual Profit $59,995,102.46  

Income Taxes $20,998,285.86  

Annualized Equipment Costs $2,329,476.72  

Net Annualized Profit $36,667,339.88  

Table 9. Manufacturing Costs and Net Annualized Profit 
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5. Discussion of Results 

These results summarize the equipment, process, economic commitments and safety concerns of 

extracting thorium from monazite. In order to optimize this series of reactions, it was determined 

that 11 pieces of major equipment are needed. Due to the corrosive material, all equipment 

should be stainless steel and should be sized (Table 7) to function at the appropriate flow rate. 

The initial capital investment will be $9.706 million with an annual equipment upkeep cost of 

$2.329 million. In addition to these costs, there are other direct and indirect manufacturing 

expenses, as listed in Table 9 that are $21,319,540.93 yearly. It is expected that, after all 

expenses are considered, this process will have an annual profit of $36,667,339.88 and a return on 

investment of 401%. While the financial considerations are promising, safety must also be 

considered. An analysis of each chemical throughout the process was researched and the list of 

potential concerns is shown in Table A.1. From this research it was determined that the main 

concerns are flammability, skin irritability, and potential water contamination from the toxicity 

of the chemicals. Flammability should be mitigated by performing the process at atmospheric 

pressure and using monitoring equipment to ensure the reactions are occurring properly. Nearly 

all the chemicals used can cause skin irritation so proper personal protective equipment should 

be used inside the facility at all times. To keep the water contamination risk low, the waste 

streams will be neutralized and although it is not required, it is recommended that an 

electrodialysis process be added in order to further treat the wastewater. 
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6. Conclusions 

The process of extracting thorium from monazite ore to produce product streams of thorium 

oxide, phosphoric acid, and mixed rare earth oxides is economically incentivized based on the 

result of this study level design. With a capital investment of just under $10 million, there is an 

expected annual net profit of $40 million. Approximately half of the economic potential comes 

from the valuable product-thorium, while approximately 30% of the profit comes from  

phosphoric acid. Each REE was discounted to half worth since the REEs are to be sold in a 

mixed stream. Since Nd2O3 is significantly more valuable than La2O3 or Ce2O3, it would likely 

be incentivized to separate Nd2O3 to capture its full value, making that stream more valuable 

than the thorium oxide stream. Phosphoric acid removal relies on liquid-liquid extraction of the 

process stream containing thorium and other REEs. The chemistry and costing of this process 

needs significant further investigation to define the necessary solvent, extractors, and evaporators 

to provide product-grade acid. Even if phosphoric acid is not refined into a salable product, the 

process is still profitable based on the profit from thorium and the mixed REEs. Several 

challenges exist in making this process reliable, safe, and profitable, however, with further study,  

this process could achieve profitability while maintaining environmental and personal safety.  
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Material Flow Rate ($/kg) Bulk Price ($/kg) $/yr % of Cost/Profit 

Feeds     

Monazite 1000 $1.00  $8,000,000  53% 

NaOH 4872 $0.14  $5,456,640  36% 

H2SO4 4872 $0.04  $1,525,872  10% 

MIBK 1 $2.00  $16,000  0.10% 

      $14,998,512    
     

Products     

H3PO4 5120 $0.64  $26,214,400  31% 

ThO2 55 $80.00  $35,200,000  42% 

La2O3 198 $1.00  $1,580,944  2% 

Ce2O3 198 $1.00  $1,591,408  2% 

Nd2O3 81 $30.00  $19,472,280  23% 

      $84,059,032    

  Economic Potential $69,060,520    

Table 10. Economic Potential Analysis 

 

7. Recommendations 

This study level design exposed several areas in which further study is necessary. For all 

processes, we assumed 100% conversion of reactions and 100% filtration. In the next phase of 

design, lab work is needed to determine more realistic figures for conversion/reaction kinetics 

and percent filtration. In OLI simulations, thorium sulfate was converted to thorium oxide when 

exposed to heat and NaOH. This was an unexpected result as thorium sulfate was thought to 

need calcining to convert to oxide. This result needs to be tested at lab scale.  

Next, the liquid-liquid extraction of phosphoric acid by MIBK needs to be refined to better 

understand the process equipment required, the amount of solvent necessary, and compatibility 

with the thorium/REEs present in the stream. From an environmental perspective, it is important 

to explore an electrodialysis scheme to treat the wastewater. While expensive, this could recover 
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some of the acids and bases used in the process and reduce cost by allowing the water to be 

internally treated and recycled. 

Lastly, the REEs are estimated to sell at a 50% discount when sold in a mixed stream. It would 

be worth investigating how to efficiently separate all the REEs to capture additional income. 

This could result in an additional $25 million a year. 
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Appendix A: Additional Tables & Charts 
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Figure A.1: Graphs used to cost Reactor 1 (Ulrich) 

 
 

Figure A.2: Graphs used to Cost Reactor 1 Agitator (Ulrich) 
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Appendix B: Sample Calculations 

 

Cost of Material per Hour 

 

𝐶𝑜𝑠𝑡/ ℎ𝑜𝑢𝑟 =  𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (𝑘𝑔/ℎ𝑟)  ∗  $/𝑘𝑔 =  $/ℎ𝑟 

 

Level 2 Economic Potential  

 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 +  𝐵𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 −  𝑅𝑎𝑤 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 

 

  =
$17,333.23

ℎ𝑜𝑢𝑟
∗

24ℎ𝑟𝑠

𝑑𝑎𝑦
∗

365𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
−

$1,963.55

ℎ𝑜𝑢𝑟
∗

24ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
∗ 365

𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
 =

$282,555,945

𝑦𝑒𝑎𝑟
 

  

 

Reactor 1 Sizing   

 

𝑉𝑜𝑙𝑢𝑚𝑒 =  𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑒𝑎𝑚 𝐹𝑒𝑒𝑑 / 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑇𝑖𝑚𝑒 

𝐹𝑣 = 11.285
𝑚3

ℎ𝑟
∗ (60 𝑚𝑖𝑛𝑠) ∗ (

1 ℎ𝑟

60 𝑚𝑖𝑛
)  =  22.57 𝑚3 

𝑉𝑜𝑙𝑢𝑚𝑒 =
3 ∗ 𝑝𝑖 ∗ 𝐷3

4
 

𝐷 =  (
4 ∗ 22.57

𝑝𝑖
)

1
3

=  3.06 𝑚 

𝐻𝑒𝑖𝑔ℎ𝑡 =  3 ∗ 𝐷 

𝐻𝑒𝑖𝑔ℎ𝑡 =  3 ∗ 2.65 𝑚 =  9.18 𝑚  
 

Using Graph A.1 

𝐹𝑝 𝑥 𝐹𝑚 =  4 ∗ 1.5 = 6 

𝐹𝑏𝑚 →  𝑓𝑟𝑜𝑚 𝑔𝑟𝑎𝑝ℎ =  13 
𝐹𝑟𝑜𝑚 𝑔𝑟𝑎𝑝ℎ → 𝐶𝑝 =  $38,500 

𝐶𝑏𝑚 =
𝐼𝑛𝑑𝑒𝑥 (2019)

𝐼𝑛𝑑𝑒𝑥 (2004)
∗ 𝐹𝑏𝑚 ∗ 𝐶𝑝 

𝐶𝑏𝑚 = (
596.2

400
) ∗ $52,000 ∗ 13 = $988,201.50 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡 = 𝐶𝑏𝑚 ∗ 0.24 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡 = $988,201.50 ∗ 0.24 = $237,168.36 

 

Agitator Costs for Reactor 1 

 

Agitator Type: Mechanical Seal Propeller agitator 

 

Power consumption is determined by Table 4.16 in Ulrich 

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  =  12.10 
𝐶𝑏 = $44,000 
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𝐹𝑏𝑚 = 2.5 
𝐶ℎ𝑒𝑚 𝐸 𝐼𝑛𝑑𝑒𝑥 = 596.2 

𝐶𝑏𝑚 = $162,965 
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡𝑠 = $39,111.60 

 

 

Extractor and Splitter Costs 

Volumetric Flow Rate = 3.18 𝑚3/ℎ𝑟 

Diameter of Column = 2m 

Tray need = 4 stages plus additional height for the top and bottom 

Height = 14 meters 

 

Using Graph A.1 

𝐹𝑝 𝑥 𝐹𝑚 =  1.5 𝑥 4 =  6 
𝐹𝑏𝑚 →  𝑓𝑟𝑜𝑚 𝑔𝑟𝑎𝑝ℎ = 11 

𝐹𝑟𝑜𝑚 𝑔𝑟𝑎𝑝ℎ →  𝐶𝑝 =  $40,000 
 

𝐶𝑏𝑚. =
$40,000 ∗ 596.2

400
∗ 11 =  $655,820.00 

 

Annualized Costs =$157,396.80 

Extractor costs = Splitter costs 

Total Cbm = $1,311,640.00 

 

Rotary Kiln / Calciner Sizing 

 

𝑇 =
0.19 ∗ 𝐿

𝑁 ∗ 𝐷 ∗ 𝑆
 

 

T = residence time (min) 

L = kiln length (ft) 

N = revolutions / min 

D = kiln diameter (ft) 

S = kiln slope (ft/ft) 

 
0.19 ∗ 200

1 ∗  0.05 ∗ 3
≈ 4.5 ℎ𝑟𝑠 
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