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Abstract: Graph theory, which studies the theoretical properties of graphs, is an area of applied
and discrete mathematics, and has various applications towards engineering. For example, network
topologies can be characterized by graphs and those topologies can be used to find better solutions
in smooth communications.

In this paper, we explain how graph theory has been applied in data storage media. In particular, we
explain storing/reading schemes for typical data storage media, and then present how graph theory
plays an important role in coding for data storage media, together with our contributions. More
precisely, we review our results from constrained systems, which control the appearance of certain
data sequences, and how the results work for reliable data storage media.
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1 Introduction

A graph is a way to represent connections of ob-

jects using points (vertices) and lines (edges). For

example, people are considered to be vertices and

friendships can be presented using edges. Also, net-

work connections are depicted using graphs by con-

sidering users in the networks as vertices.

Graph theory is, of course, a research for theo-

retically studies on graphs. Vertex colorings and the

Max-flow problem (see, for example, [1]) would be

typical examples of problems in graph theory. Graph

theory is also considered to be an area of applied and

discrete mathematics, and has various applications

towards engineering. For example, network topolo-

gies can be characterized by graphs and those topolo-

gies can be used to find better solutions in smooth

communications.

The main agenda of this paper is to present how

graph theory is applied in the coding for data storage

media. Indeed, typical data storage media (such as

CDs, DVDs, HDDs and USB memory sticks) apply

coding schemes to reduce the likelihood of errors, and

theoretical analysis on those coding schemes come

from the study of graphs representing the schemes.
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In this paper, we review the theoretical analysis and

how it works, together with our contributions. Our

contributions are strongly based on the study of con-

strained systems (see, for example, [2, 3]), which con-

trol the appearance of certain sequences in data. Such

a control, in fact, works to reduce the errors in read-

ing data, and therefore, the control is a key point to

make the data media more reliable.

The rest of the paper is organized as follows. We

go over fundamental back grounds and notations in

Section 2. In Section 3, we explain typical data stor-

age media and typical errors in storage media, and

the relation with constrained systems. We then re-

view in Section 4 our main contributions on storage

media from the perspective of coding schemes uti-

lizing graph theory. We terminate this paper with

conclusion and future works in Section 5.

2 Preliminaries and
Basic Backgrounds

We first go over fundamental backgrounds, based

on [1, 2, 3], that will be used throughout this paper.

2.1 Language

Let Σ be an alphabet, a finite set of symbols.

Throughout this paper, we mainly assume that Σ =
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{0, 1} for simplicity, but results on binary case can

be naturally extended to q-ary cases (i.e., when an

alphabet consists of q symbols with q ≥ 2).

A word w = w0w1 . . . wℓ−1 is a finite-length se-

quence over Σ, and denote its length (that is, ℓ in this

case) by |w|. The empty word ϵ is a unique word of

length 0. Given two words w = w0w1 . . . wℓ−1 and

ŵ = ŵ0ŵ1 . . . ŵℓ̂−1 such that ℓ̂ ≤ ℓ, we say that ŵ

is a subword of w if ŵ = wiwi+1 . . . wi+ℓ̂−1 for some

0 ≤ i ≤ ℓ− ℓ̂. In particular, ŵ is a prefix of w when

i = 0, and a suffix of w when i = ℓ− ℓ̂. The notation

ww′ represents the word generated by concatenating

w followed by w′. In particular, wr for some integer

r ≥ 0 represents the word generated by concatenat-

ing r copies of w. We assume by convention that for

any word w, ϵw = wϵ = w (so ϵ is a prefix and a

suffix of w) and w0 = ϵ.

2.2 Graph Theory

A graph G = (V,E) consists of the vertex set

V and the edge set E ⊂ V × V , where each edge

e = (u, v) in E can be characterized by two end points

u, v ∈ V . If the direction of edges is not considered,

then G is simply called a graph and (u, v) = (v, u)

holds. However, when the direction should be con-

sidered, vertices u and v are called the starting ver-

tex and the terminating vertex, respectively, of edge

e, and such a graph is called a directed graph or a

digraph in short. Throughout this paper, we assume

that graphs are always directed if not specified.

A path π : p0, p1, . . . , pk is a sequence of ver-

tices such that (pt, pt+1) ∈ E for each 0 ≤ t ≤ k.

A directed graph is called irreducible or strongly-

connected if a path from vertex u to vertex v exits

for each pair of vertices u, v.

Each graph can be represented in terms of a ma-

trix. Given a graphG of vertex set V = {v1, v2, . . . , v|V |},
the adjacency matrix A = AG of G is a |V | × |V |
square matrix such that

• the i-th row and the i-th column correspond

to vi, 1 ≤ i ≤ |V |; and

• the (i, j)-coordinate is the number of edges

from vertex vi to vertex vj , 1 ≤ i, j ≤ |V |.

A labelled directed graph G = (V,E, L) is a di-

graph with a function L : E → Σ assigned to edges.

More precisely, in a labelled directed graph, each edge

e is labelled with a symbol s = L(e) ∈ Σ. A labelled

graph is called deterministic if edges starting from the

same vertex are labelled distinctly. In other words,

for a deterministic graph, if the edges e, e′ start from

the same vertex, then L(e) ̸= L(e′).

2.3 Constrained System

A constrained system S is a set of words gener-

ated by reading off labels along the paths in a la-

belled directed graph G. In this case, we say that

S is presented by G or G is a presentation of S. A

constrained system S is called irreducible if there ex-

ists an irreducible presentation for S, and is called

reducible if not.

It has to be mentioned that any constrained sys-

tem S can be characterized by a forbidden set F , a

set of forbidden words. In other words, a word w is in

S = SF if and only if w does not contain any forbid-

den word f ∈ F as a subword. A typical example of

constrained systems is the set of binary words satisfy-

ing the (d, k)-Run-Length-Limited (RLL) constraint

such that

• there are at least d 0’s between two consecutive

1’s; and

• the run-length of 0’s is at most k.

We call the constrained system the (d, k)-RLL sys-

tem. The conditions above derive that (d, k)-RLL

system is characterized by a forbidden set

F = {11, 101, . . . , 10d−11, 0k+1}.

Furthermore, we can easily observe that (d, k)-RLL

system is indeed a constrained system since it has a

presentation in Figure 1.
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Figure 1: A presentation of the (d, k)-RLL system

Let Wℓ(S) be the set of words of length ℓ in a

constrained system S. The capacity C(S) of S is

defined to be

C(S) = lim
ℓ→∞

log2 |Wℓ(S)|
ℓ

.

The capacity can be considered as an asymptotic growth

rate. Indeed, the number of words of length ℓ in S(S)
is estimated as

|Wℓ(S)| = 2ℓC(S).

In addition, the capacity is an important value when

considering the coding scheme since the capacity gives

the maximum coding rate under finite state encoders.

It is important to emphasize that each constrained

system has a deterministic presentation, and that the

capacity can be computed as

C(S) = log2 λA, (1)

where λA is the largest eigenvalue for the adjacency

matrix of a deterministic presentation (see, for exam-

ple, [2, Section 4]).

3 Data Storage Media
and Typical Errors

There are various types of data storage media that

have been used these days. In this section, we focus

on, as examples, Compact Discs (CDs) and Digital

Versatile Discs (DVDs) in detail together with their

typical errors. We also explain how constrained sys-

tems work to reduce the likelihood of errors.

3.1 Compact Disc
and Digital Versatile Disc

Compact Discs (CDs) and Digital Versatile Discs (DVDs)

are classic storage media that have been often used in

real life. For those media, the surface is covered with

a “land”, a shiny layer which reflects the laser. When

data is stored in the media (where data is again con-

sidered to be a binary word), “pits” whose ends are

at the positions of 1’s are created on the land. The

land and pits have different reflectances, which is a

key for reading data. Indeed, when data is read form

the media, a laser is irradiated to the land and deter-

mine when reflectance changes occur. The positions

of these reflectance changes are read as the positions

of 1’s, and the number of 0’s between 1’s is counted

based on the time course after the last reflectance

change (see Figure 2).

��������������������������

�����

���
����

������

���� ����

Figure 2: An image on how to store and read data
for CDs and DVDs

For these media, typical errors occur when read-

ing data. For example, let us suppose that two 1’s are

located pretty close. Then the reflectance detector

might not be able to catch the reflectance changes.

Furthermore, if two 1’s are located very far, then

the error in measuring time after the last reflectance

change (i.e. clock drift) might occur. Those errors

cause misreads in data, so some robustness against

these errors should be applied.

3.2 Relation with Constrained Systems

To avoid these typical errors discussed above, encod-

ing data to binary words so that the run-length of 0’s

are suitably adjusted would be effective. This way

{0, 1} for simplicity, but results on binary case can

be naturally extended to q-ary cases (i.e., when an

alphabet consists of q symbols with q ≥ 2).

A word w = w0w1 . . . wℓ−1 is a finite-length se-

quence over Σ, and denote its length (that is, ℓ in this

case) by |w|. The empty word ϵ is a unique word of

length 0. Given two words w = w0w1 . . . wℓ−1 and

ŵ = ŵ0ŵ1 . . . ŵℓ̂−1 such that ℓ̂ ≤ ℓ, we say that ŵ

is a subword of w if ŵ = wiwi+1 . . . wi+ℓ̂−1 for some

0 ≤ i ≤ ℓ− ℓ̂. In particular, ŵ is a prefix of w when

i = 0, and a suffix of w when i = ℓ− ℓ̂. The notation

ww′ represents the word generated by concatenating

w followed by w′. In particular, wr for some integer

r ≥ 0 represents the word generated by concatenat-

ing r copies of w. We assume by convention that for

any word w, ϵw = wϵ = w (so ϵ is a prefix and a

suffix of w) and w0 = ϵ.

2.2 Graph Theory

A graph G = (V,E) consists of the vertex set

V and the edge set E ⊂ V × V , where each edge

e = (u, v) in E can be characterized by two end points

u, v ∈ V . If the direction of edges is not considered,

then G is simply called a graph and (u, v) = (v, u)

holds. However, when the direction should be con-

sidered, vertices u and v are called the starting ver-

tex and the terminating vertex, respectively, of edge

e, and such a graph is called a directed graph or a

digraph in short. Throughout this paper, we assume

that graphs are always directed if not specified.

A path π : p0, p1, . . . , pk is a sequence of ver-

tices such that (pt, pt+1) ∈ E for each 0 ≤ t ≤ k.

A directed graph is called irreducible or strongly-

connected if a path from vertex u to vertex v exits

for each pair of vertices u, v.

Each graph can be represented in terms of a ma-

trix. Given a graphG of vertex set V = {v1, v2, . . . , v|V |},
the adjacency matrix A = AG of G is a |V | × |V |
square matrix such that

• the i-th row and the i-th column correspond

to vi, 1 ≤ i ≤ |V |; and

• the (i, j)-coordinate is the number of edges

from vertex vi to vertex vj , 1 ≤ i, j ≤ |V |.

A labelled directed graph G = (V,E, L) is a di-

graph with a function L : E → Σ assigned to edges.

More precisely, in a labelled directed graph, each edge

e is labelled with a symbol s = L(e) ∈ Σ. A labelled

graph is called deterministic if edges starting from the

same vertex are labelled distinctly. In other words,

for a deterministic graph, if the edges e, e′ start from

the same vertex, then L(e) ̸= L(e′).

2.3 Constrained System

A constrained system S is a set of words gener-

ated by reading off labels along the paths in a la-

belled directed graph G. In this case, we say that

S is presented by G or G is a presentation of S. A

constrained system S is called irreducible if there ex-

ists an irreducible presentation for S, and is called

reducible if not.

It has to be mentioned that any constrained sys-

tem S can be characterized by a forbidden set F , a

set of forbidden words. In other words, a word w is in

S = SF if and only if w does not contain any forbid-

den word f ∈ F as a subword. A typical example of

constrained systems is the set of binary words satisfy-

ing the (d, k)-Run-Length-Limited (RLL) constraint

such that

• there are at least d 0’s between two consecutive

1’s; and

• the run-length of 0’s is at most k.

We call the constrained system the (d, k)-RLL sys-

tem. The conditions above derive that (d, k)-RLL

system is characterized by a forbidden set

F = {11, 101, . . . , 10d−11, 0k+1}.

Furthermore, we can easily observe that (d, k)-RLL

system is indeed a constrained system since it has a

presentation in Figure 1.
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of thinking is strongly related to the (d, k)-RLL con-

straint described in Subsection 2.3, which restricts

the run-length of 0’s. Indeed, CDs and DVDs utilize

RLL constraints to avoid such anticipatable errors.

4 Main Contributions

In this section, we review our main contributions

for data storage media. In particular, we summarize

our results for constrained systems.

4.1 Main Contributions
for Shannon Covers

For a constrained system S, let us consider the

set of deterministic presentations G of S. Amongst

all deterministic presentations for S, we can find one

with the smallest number of vertices. Such a pre-

sentation is called a Shannon cover of S, which we

denote by GS . For example, the presentation in Fig-

ure 1 is the Shannon cover of the (d, k)-RLL system.

Shannon covers play important roles in the study

of constrained systems. Indeed, the study on con-

strained systems is strongly based on the study on

Shannon covers of constrained systems. For exam-

ple, Shannon covers are considered to be canonical

presentations for constrained systems. Furthermore,

the capacity of a constrained system (computed as

(1)) is easily derived using its Shannon cover, since

the complexity of computing the largest eigenvalue

of the adjacency matrix of graph G depends on the

number of vertices in G.

It is known that a Shannon cover turns out to

be unique when a constrained system is irreducible

(see, for example, [2, Theorem 3.3.18]), and an algo-

rithm to find the Shannon cover is also well known.

However, when a constrained system is reducible (not

irreducible), then there can be two or more Shannon

covers for the system, and there does not exist an

algorithm to find a Shannon cover, up to this point.

We presented some properties regarding Shannon

covers, based on the presentation generated under an

algorithm introduced by Chrochemore, Mignosi and

Restivo [5], which we call the CMR presentation. In

this case, we always argue based on a natural assump-

tion that a finite forbidden set F of a constrained sys-

tem is non-redundant ; that is, each forbidden word

f ∈ F is not a subword any other forbidden word

f ′ ∈ F (see [4] for details).

Definition 1 (Chrochemore, Mignosi, Restivo [5]).

Given a non-redundant finite forbidden set F of a

constrained system S = SF , the CMR presentation

of S is generated as follows;

• the vertex set V := {v : v is a proper prefix of

some f ∈ F} and Q := V ∪ F .

• for each v ∈ F and each symbol a ∈ Σ, let u

be the longest suffix of va in Q.

– if u ̸∈ F , draw an edge labeled a from v

to u.

– if u ∈ F , draw no edge labeled a from v.
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Figure 3: The CMR presentation when F =
{01, 111} and Σ = {0, 1}. Observe that elements in
V = {ϵ, 1, 0, 11} are proper prefixes of 01 or 110.

Theorem 1 shows that the CMR presentation de-

rives the Shannon cover when a constrained system

is characterized by a unique forbidden word.

Theorem 1 (Theorem 4.1 in [6] and Corollary 3.8 in

[4]). Let F be a singleton set. If a constrained system

SF characterized by F is irreducible, then the CMR

presentation is the Shannon cover of SF .

We next focused on the class of standard con-

strained systems, which are defined as follows.
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Definition 2. We call a constrained system SF stan-

dard if its forbidden set F has one of the following

forms.

1. Prefix Matching (PM): for a fixed symbol a ∈
Σ, the forbidden set F consists of t = |Σ| − 1

words

F = {ad1b1, ad2b2, . . . , adsbt}

for distinct t symbols b1, b2, . . . , bt ∈ Σ \ {a}.

2. Suffix Matching (SM): for a fixed symbol a ∈
Σ, the forbidden set F consists of t = |Σ| − 1

words

F = {b1ah1 , b2a
h2 , . . . , bsa

ht}

for distinct t symbols b1, b2, . . . , bt ∈ Σ \ {a}.

It can be shown that standard constrained sys-

tems are always reducible, so we cannot apply the re-

sults on Shannon covers to the standard constrained

systems. The following results (Theorem 2 and Corol-

lary 1) show the properties of Shannon covers for

standard constrained systems.

Theorem 2 (Lemmas IV.5 and IV.7 in [7]). A Shan-

non cover for a standard constrained system is eas-

ily obtained from the CMR presentation. In particu-

lar, the CMR presentation turns out to be a Shannon

cover when the standard constrained system is char-

acterized by a forbidden set of a prefix matching.

Corollary 1 (Corollary IV.6 in [7]). Shannon covers

for standard constrained systems are always unique.

Thus, our contributions on Shannon covers im-

ply that the CMR presentations can be a good start-

ing point for finding the Shannon covers. Indeed,

the CMR presentations have smaller number of ver-

tices compared with other well-known graphs (e.g.

De Bruijn graphs), so they can be easily constructed

with lower complexity.

4.2 Main Contributions
for Irreducibility

As we have observed so far, the irreducibility is

an important characteristic when we study Shannon

covers. We therefore considered some measurements

to determine whether a given constrained system is

irreducible or not, and presented some results on the

irreducibility in [8].

Our first result is related to the antidictionary

A(w) of w, which is defined as follows.

Definition 3. For a word w, let x be a word such

that

• x is not a subword of w; and

• any proper subword of x is a subword of w.

We call such an x a minimal forbidden word of w,

and the antitictionary A(w) of w is a set of minimal

forbidden words of w.

We first showed the irreducibility from the per-

spective of the antidictionary as follows.

Theorem 3 (Theorem 3.2 in [8]). Let A(w) be the

antidictionary of a word w, and let S = SF be a con-

strained system characterized by a nonempty (proper)

subset F of A(w). If f is not a subword of w2 for

any f ∈ F , then S is irreducible.

We also derived the irreducibility by focusing on

the size of the alphabet as follows.

Theorem 4 (Theorem 3.11 in [8]). If a forbidden set

F of a constrained system S satisfies |F| ≤ |Σ| − 2,

then S is irreducible.

Theorem 5 (Theorem 3.14 in [8]). Let F be a for-

bidden set of a constrained system S such that |F| =
|Σ| − 1. Then S is reducible if and only if F is stan-

dard.
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For a constrained system S, let us consider the

set of deterministic presentations G of S. Amongst

all deterministic presentations for S, we can find one

with the smallest number of vertices. Such a pre-

sentation is called a Shannon cover of S, which we

denote by GS . For example, the presentation in Fig-

ure 1 is the Shannon cover of the (d, k)-RLL system.

Shannon covers play important roles in the study

of constrained systems. Indeed, the study on con-

strained systems is strongly based on the study on

Shannon covers of constrained systems. For exam-

ple, Shannon covers are considered to be canonical

presentations for constrained systems. Furthermore,

the capacity of a constrained system (computed as

(1)) is easily derived using its Shannon cover, since

the complexity of computing the largest eigenvalue

of the adjacency matrix of graph G depends on the

number of vertices in G.

It is known that a Shannon cover turns out to

be unique when a constrained system is irreducible

(see, for example, [2, Theorem 3.3.18]), and an algo-

rithm to find the Shannon cover is also well known.

However, when a constrained system is reducible (not

irreducible), then there can be two or more Shannon

covers for the system, and there does not exist an

algorithm to find a Shannon cover, up to this point.

We presented some properties regarding Shannon

covers, based on the presentation generated under an

algorithm introduced by Chrochemore, Mignosi and

Restivo [5], which we call the CMR presentation. In

this case, we always argue based on a natural assump-

tion that a finite forbidden set F of a constrained sys-

tem is non-redundant ; that is, each forbidden word

f ∈ F is not a subword any other forbidden word

f ′ ∈ F (see [4] for details).

Definition 1 (Chrochemore, Mignosi, Restivo [5]).

Given a non-redundant finite forbidden set F of a

constrained system S = SF , the CMR presentation

of S is generated as follows;

• the vertex set V := {v : v is a proper prefix of

some f ∈ F} and Q := V ∪ F .

• for each v ∈ F and each symbol a ∈ Σ, let u

be the longest suffix of va in Q.

– if u ̸∈ F , draw an edge labeled a from v

to u.

– if u ∈ F , draw no edge labeled a from v.

��

�
�

�
�

�

��

�

Figure 3: The CMR presentation when F =
{01, 111} and Σ = {0, 1}. Observe that elements in
V = {ϵ, 1, 0, 11} are proper prefixes of 01 or 110.

Theorem 1 shows that the CMR presentation de-

rives the Shannon cover when a constrained system

is characterized by a unique forbidden word.

Theorem 1 (Theorem 4.1 in [6] and Corollary 3.8 in

[4]). Let F be a singleton set. If a constrained system

SF characterized by F is irreducible, then the CMR

presentation is the Shannon cover of SF .

We next focused on the class of standard con-

strained systems, which are defined as follows.
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5 Conclusion

In this paper, we presented applications of graph

theory in the area of engineering. In particular, we

first described the summaries on typical data storage

media, and then introduced how the notions of graph

theory can be applied to the data storage media. Re-

sults based on graph theory (or constrained systems

to be more precise) derive important contributions in

coding theory for data storage media.

As a future work, we aim to apply the notion

of graph theory towards DNA storage media, new

data storage media with dramatically high density

and long-lasting (see, for example, [9]). For exam-

ple, proper coding schemes for DNA storage media

should be considered based on the notion of forbid-

den words, so the study of constrained systems will be

a promising approach. Furthermore, since the delay

in reading data is one of the serious problems in DNA

storage media, a data compression scheme based on

graph theory will be useful.
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