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Abstract

Cation ordering in perovskite-derived phases can lead to a wealth of tunable phys-

ical properties. Ordering is typically driven by a large difference between cation size

or charge, but many Ruddlesden-Popper phases An+1BnO3n+1 appear to lack such

B -site ordering, even when these differences are present. One such example is the

‘double’ Ruddlesden-Popper n=1 composition LaSr3NiRuO8. In this material, lack of

B -site ordering is observed through traditional crystallographic techniques, but anti-

ferromagnetic ordering in the magnetism data suggests B-site cation ordering is indeed

present. Neutron total scattering, particularly analysis of the neutron pair distribu-

tion function, reveals the structure is locally B-site ordered below 6 Å, but becomes

slightly disordered in the mid-range structure around 12 Å. This provides evidence

for paracrystalline order in this material: cation ordering within a single perovskite

sheet that lacks perfect registry within the 3-dimensional stack of sheets. This work

highlights the importance of employing a structural technique that can probe both the

local and mid-range order in addition to the crystallographic structure, and provides

a structural origin to the observed magnetic properties of LaSr3NiRuO8. Further, it is

proposed that paracrystalline order is likely to be common amongst these layered-typed

oxides.
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Introduction

The ABO3 perovskite structure is almost ubiquitous in mixed-metal oxide chemistry.1 This

is largely because the mechanical flexibility of the network of apex-linked BO6 octahedra

which constitutes the perovskite framework leads to a high level of chemical flexibility, en-

abling almost all the transition metals to be accommodated within perovskite oxide phases.

As a result, chemists have numerous opportunities to modify the chemical compositions of

perovskite oxide materials by substituting some or all of the A- or B -site cations. These sub-

stitutions can modify the electron counts/valence states of metals, and/or adjust the subtle

collective structural distortions of the perovskite network, which in turn can rationally tune

the physical and chemical properties of these materials.2

A further feature which can be utilized to change the physical behavior of perovskite

oxides is cation order. The most common cation ordered formulations are the AA’B2O6 and

A2BB ’O6 double perovskites which exhibit A- and B -cation ordering respectively.3 There

is much interest in these cation-ordered phases because they can have physical and chem-

ical behaviors which are strikingly different to cation-disordered analogues. For example,

A-cation ordered LaBaMn2O6 is observed to have a much higher ferromagnetic ordering

temperature than the A-cation disordered analogue La0.5Ba0.5MnO3,
4 while the tunneling

magnetoresistance observed in samples of Sr2FeMoO6 is extremely sensitive to the degree of

Fe/Mo B -site order present in the phase.5

It has generally been observed that B -site cation-ordered perovskite phases only become

stable with respect to disordered analogues when there is a significant charge difference

between the cations to be ordered.6 Typically a difference of 3 charge units or more is

required to stabilize cation ordered perovskite structures, although this requirement can

be softened if there is a large difference in size between cations or if they have different

local coordination preferences. More subtle features such as the tilting distortions of a

phase or local Jahn-Teller distortions can add to the charge/size difference to influence the

arrangement the ordered cations adopt,3 and by appreciating these features, chemists have
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been able to prepare a large and ever-expanding list of cation-ordered perovskite oxides.7

Layered variants of the perovskite structure, such as An+1BnO3n+1 Ruddlesden-Popper

phases (n =1 illustrated in Figure 1a), can in principle exhibit an analogous ordering of

cations to that seen in the n =∞ perovskite oxides. However, while there are many examples

of A-site cation-ordered Ruddlesden-Popper phases (most based on segregation of cations

between 9- and 12-coordinate A-sites) there are relatively few which exhibit B -site cation

order. This dearth of B -site ordered Ruddlesden-Popper phases is particularly surprising

given that there are numerous examples of phases with suitable compositions to exhibit 1:1

B -site order (i.e. A2B0.5B ’0.5O4) with charge differences between the B and B ’ cations of

greater than 2 units, and for which the corresponding A2BB ’O6 perovskite phase adopts a

cation ordered structure.

One explanation of the dearth of B -site cation ordered Ruddlesden-Popper phases can

be found in the observation that low concentrations of stacking faults can mask the sig-

natures of B -site cation order in conventional X-ray and neutron powder diffraction data.

This effect can clearly be seen in the Li/Ru and Li/Mn series of “double” Ruddlesden-

Popper oxides. La2Sr2LiRuO8 adopts a structure with rigorous A-site La/Sr and B -site

Li/Ru cation order, which can be readily deduced from both X-ray and neutron powder

diffraction data, and confirmed by 7Li MAS NMR and HRTEM imaging.8 In contrast X-

ray and neutron powder diffraction data collected from La4LiMnO8 and La3SrLiMnO8 show

no evidence for B -site Li/Mn cation order.9 However a combination of 7Li MAS-NMR and

HRTEM images reveal that both phases exhibit Mn/Li B -site cation-ordered sheets, anal-

ogous to the Li/Ru ordered sheets in La2Sr2LiRuO8, but show no registry in the positions

of the Li and Mn positions between neighboring perovskite layers, as illustrated in Figure

1b. La4LiMnO8 and La3SrLiMnO8 thus exhibit rigorous intralayer cation order, but almost

no interlayer cation order. The Li/Mn cation order in these phases can therefore be con-

sidered to be 2-dimensional rather than 3-dimensional, a situation dubbed “paracrystalline”

order.9 Similar B -site paracrystalline order has also been observed for La2Sr2MgMnO8 and
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La2Sr2ZnMnO8.
10

It is likely that this type of paracrystalline order is common in A4BB ’O8 “double”

Ruddlesden-Popper phases because the defect energy associated with faults in the stack-

ing of B/B ’ cation-ordered sheets is likely to be low. This low defect energy can be ratio-

nalized by noting that the relative (1
2
,1
2
, z) shift between adjacent perovskite sheets in the

Ruddlesden-Popper structure (Figure 1a) means that while at first sight it appears there

are two choices (P and Q shown in Figure 1c) when stacking two B -site cation ordered per-

ovskite sheets, these two configurations are in fact equivalent. This is because each (B/B ’)O6

unit in the top sheet lies above a square hole in the bottom sheet made from 2 BO6 and 2

B ’O6 units, as shown in Figure 1c. As a result the two configurations P and Q are simply

related by a 90◦ rotation around the stacking axis. The difference between a rigorously 3-

dimensionally B -cation ordered phase (e.g. La2Sr2LiRuO8)
8 and a paracrystalline ordered

phase (e.g. Li4MnLiO8)
9 arises from the registry between the positions of the B and B ’

cations in the next-nearest perovskite layers. These next-nearest layers are rather remote

from each other so typically any stabilizing/destabilizing interactions are going to be weak

and thus the energy difference between stacking configurations R and R’, shown in Figure

1d will be small. We can therefore conclude that it is likely that many A4BB ’O8 “double”

Ruddlesden-Popper phases will exhibit paracrystalline B -cation order, and given the lack of

any strong signature in conventional powder diffraction data, it is likely that paracrystalline

order is present in many candidate phases already reported in the literature.

One such candidate phase is LaSr3NiRuO8 – a compound reported recently as part of

work looking at the preparation of transition-metal oxyhydride phases.11 LaSr3NiRuO8 is ob-

served by synchrotron X-ray powder diffraction to adopt a simple n = 1 Ruddlesden-Popper

structure, with A-site cation disorder and no indication of B-site cation order in the diffrac-

tion data. However the expected transition metal oxidation state combination of Ni2+ and

Ru5+ yields a 3 unit charge difference which should favor Ni/Ru order, and the correspond-

ing perovskite phase, LaSrNiRuO6, does adopt a B -site cation ordered double perovskite
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Figure 1: a) The A2BO4, n = 1 Ruddlesden-Popper structure. b) Arrangement of B -
cations (dark and light blue) in 3D ordered and 2D “paracrystalline” ordered phases. c)
Configurations P and Q of two stacked B-cation ordered sheets are equivalent, related by
a 90◦ rotation. d) 3D B -cation order is determined by the registry between B -cations in
next-nearest layers.
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structure.12,13 Furthermore, analysis of the magnetic couplings present in LaSrNiRuO6
11,13,14

suggest that a disordered arrangement of Ni2+ and Ru5+ should exhibit spin glass behav-

ior, but LaSr3NiRuO8 appears to be antiferromagnetically ordered at low temperatures, in

common with B -cation ordered LaSrNiRuO6.
13 We have therefore conducted a neutron total

scattering study to investigate the Ni/Ru B -site cation order in LaSr3NiRuO8. Our study

indicates that the local structure is well described by Ni-Ru order within a layer, whereas the

mid-range structure points to small deviations from cation ordering. This work highlights

the importance of utilizing local and mid-range structural probes to gain a complete under-

standing of the structure-property relationships in a material, particularly in the context of

properties that arise from multiple length scale interactions such as magnetic ordering.

Experimental

Sample Preparation and Characterization

Synthesis. Samples of LaSr3NiRuO8 were prepared by a high-temperature ceramic method.

Suitable stoichiometric ratios of La2O3 (99.999%, dried at 900◦C), SrCO3 (99.994%), RuO2

(99.99%, dried at 800◦C) and NiO (99.998%) were ground together using an agate mortar

and pestle, transferred into an alumina crucible, and then heated at a rate of 1◦C min−1

to 1000◦C in air to decompose the carbonate. The sample was then reground, pressed into

pellets and then heated for 3 periods of 48 hours at 1300◦C in air, with grinding between

heating periods.

Characterization. High-resolution synchrotron X-ray powder diffraction (SXRD) data

were collected using instrument I11 at the Diamond Light Source Ltd. Diffraction patterns

were collected using Si-calibrated X-rays with an approximate wavelength 0.825 Å, from

samples sealed in 0.3 mm diameter borosilicate glass capillaries. Neutron powder diffraction

(NPD) data were collected using the D2b instrument (ILL, France) using a wavelength of

λ = 1.5943 Å from samples contained within vanadium cans. Rietveld profile refinements
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were performed using the GSAS suite of programs.15,16 Time of flight (TOF) neutron total

scattering data were collected on a powdered sample of LaSr3NiRuO8 on the NOMAD in-

strument located at the Spallation Neutron Source, Oak Ridge National Laboratory.17 The

sample was loaded in a vanadium can, and data were collected at ambient temperature for

approximately 2 hours. The pair distribution function (PDF), G(r), was obtained by the

transformation of the total scattering function, S(Q), according to the equation:

g(r)− 1 =
1

2π2rρΣb2

∫ Qmax

Qmin

(S(Q)− 1)Qsin(Qr)dQ (1)

where r is the peak position in Å, ρ is the number density in atoms per Å3, b is the coherent

neutron scattering length of each atom in barns, Q is the magnitude of the scattering vector

in Å−1, G(r) = [g(r) − 1], Qmin = 0.5 Å, and Qmax = 40 Å−1 utilizing the Mantid software

framework.18,19 This range was selected to balance between resolution and termination rip-

ples in the reduced data. Least squares refinements were performed on the data using the

PDFgui software suite,20 using Qbroad and Qdamp as obtained from a Si standard, and mod-

eling correlated motion within the system using the delta-2 parameter. Crystal structures

were visualized using the VESTA software suite.21 DC magnetization data were collected

using a Quantum Design MPMS SQUID magnetometer.

Results and Discussion

To verify phase purity and the average, crystalline structure of LaSr3NiRuO8, a series of

diffraction experiments were performed on the material using various structural probes:

synchrotron X-ray, constant wavelength (CW) neutron, and TOF neutron. A summary of

the refined synchrotron and CW neutron diffraction data can be found in Tables 1 and

2, and Figure 2 summarizes the refined fits of these sets of data. Synchrotron and CW

neutron analysis do not indicate 3-dimensional ordering of the B-site cations, as this would

be evidenced by an expansion of the lattice with respect to disordered cations. However,
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Table 1: Structural parameters from the refinement LaSr3NiRuO8 against synchrotron X-ray
powder diffraction data.

x y z Fraction Uiso (Å2)
La/Sr (1) 0 0 0.35709(2) 0.25/0.75 0.0090(1)
Ni/Ru (1) 0 0 0 0.5/0.5 0.0040(2)
O (1) 0 0 0.1656(1) 1 0.0133(4)
O (2) 1

2
0 0 1 0.0060(6)

LaSr3NiRuO8 space group I4/mmm (#139)
Formula weight : 689.53 g mol−1, Z = 2

a = 3.8904(1) Å, c = 12.6297(1) Å, Volume = 191.16(1) Å3

Radiation source: Synchrotron X-ray, λ = 0.82626(1) Å
Temperature: 298 K

χ2 = 9.87; Rwp= 5.67%;Rp = 3.63%

Table 2: Structural parameters from the refinement LaSr3NiRuO8 against monochromatic
CW neutron powder diffraction data.

x y z Fraction Uiso (Å2)
La/Sr (1) 0 0 0.3569(1) 0.25/0.75 0.0032(1)
Ni/Ru (1) 0 0 0 0.5/0.5 0.0015(2)
O (1) 0 0 0.1637(1) 1 0.0049(3)
O (2) 1

2
0 0 1 0.0097(2)

LaSr3NiRuO8 space group I4/mmm (#139)
Formula weight : 689.53 g mol−1, Z = 2

a = 3.88945(5) Å, c = 12.6266(2) Å, Volume = 191.015(7) Å3

Radiation source: monochromatic neutrons, λ = 1.5942 Å
Temperature: 298 K

χ2 = 7.014; Rwp= 6.36%;Rp = 4.75%
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Figure 2: Observed, calculated and difference plots from the structural refinement of a cation
disordered model of LaSr3NiRuO8 against (a, b, c) synchrotron X-ray powder diffraction data
and (d, e) constant-wavelength neutron data. (a, b) Plots show poor fitting of (110) and
(200) reflections in the X-ray data, and (d) shows poor fitting of the (200) reflection of the
neutron data.

10



several peaks of index (hk0) exhibit peak tailing, (Figure 2a, b, and d) suggesting additional

complexity in the stacking of the perovskite sheets, given the miller indices of the affected

reflections. Neutron TOF data (from the total scattering experiment) were also fit with

the refined CW neutron structure, and is in good agreement (Rwp = 6.84% for bank 4 of

NOMAD data). Peak tailing was not investigated in this data set due to the complex profile

shape of TOF peaks.

Zero-field cooled (ZFC) and field-cooled (FC) magnetization data collected from LaSr3NiRuO8

in an applied field of 100 Oe (Figure 3a) diverge below a temperature of approximately 50

K, with the ZFC data exhibiting a maximum at a temperature of approximately 30 K.

Magnetization-field data collected at 5 K after cooling in a 50,000 Oe applied field (Figure

3b) show hysteresis, but crucially, are symmetric about the origin. This combination of

magnetic behavior is characteristic of a canted antiferromagnet, and is incompatible with

spin-glass behavior, for which a displaced magnetization-field response is expected. Consid-

ering the magnetic exchange interactions between Ni and Ru cations, the antiferromagnetic

behavior observed for LaSr3NiRuO8 is incompatible with a disordered arrangement of the

metals, and instead suggests an ordered Ni/Ru configuration. However, this contradicts the

crystallographic structure obtained through diffraction analysis. We therefore performed a

more detailed structural analysis to resolve this apparent paradox.

To investigate the possibility of cation ordering over various length scales and to elucidate

the origin of the observed antiferromagnetic behavior, neutron total scattering was employed

and analyzed through the atomic pair distribution function (PDF). The PDF is a histogram

of all of the atom-atom correlations in a material, G(r), and can provide insight on the local

and mid-range atomic interactions. In the context of LaSr3NiRuO8, this technique provides

crucial insight on cation ordering within the perovskite layers (local interactions), as well as

registry between adjacent and next-nearest neighbor layers (mid-range correlations). The

use of neutrons as a scattering probe provides contrast between the oxygen and metal atoms

in the system, as well as good contrast between the Ni and Ru atoms in question (13.3 barn
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Figure 3: (a) Zero-field cooled and field-cooled magnetization data collected from
LaSr3NiRuO8 in an applied filed of 100 Oe. (b) Magnetization-field isotherms collected
from LaSr3NiRuO8 at 5 K and 300 K.
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and 6.21 barn coherent neutron scattering cross sections, respectively22).

Figure 4: (a) Representative B cation correlations that illustrate [1] a Ni-Ru correlation
within the same layer, [2] a Ni-Ru correlation between adjacent layers, and [3,4] a Ni-Ru
correlation between next-nearest layers. (b) A comparison between the total PDF and Ni/Ru
dependent partials. Dashed lines indicate [1], [2], [3], and [4] correlations indicated in (a).

Figure 4 illustrates the total calculated PDF for a fully 3D ordered n = 1 Ruddlesden

Popper phase of LaSr3NiRuO8, along with various Ni- and Ru-dependent partial contribu-

tions. The partial correlations illustrate that the first intralayer Ni-Ru correlation can be

found at approximately 3.9 Å, the first interlayer Ni-Ru correlation at approximately 6.8 Å,

and the first next-nearest Ni-Ni and Ni-Ru correlations at approximately 12.5 and 13.0 Å,

respectively. Knowledge of the locations of these partials can help guide our analysis when

comparing the cation ordering across the material: ordering within a layer is best charac-

terized using a local range between 1 and 10 Å, whereas the investigation of the existence

of “paracrystalline” order and next-nearest registry requires a mid-range analysis over 10 to

25 Å.

As indicated by Figure 4, the regions in the PDF that indicate paracrystalline order are

the first Ni/Ru correlation within the same layer at approximately 3.7 Å and the Ni/Ru

13



Figure 5: Comparison of the data fit against Ni/Ru ordered (a, b) and Ni/Ru disordered (c,
d) models. The first Ni/Ru correlation, indicated by the dashed line at approximately 3.7
Å, is better fit by an ordered model (Rw = 5.1%) than a disordered model (Rw = 7.0%),
whereas the the next-nearest neighbor, indicative of layer ordering, is fit moderately better
by the ordered model than the disordered model (Rw = 5.4 and 6.5%, respectively).
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correlations between next nearest layers between approximately 12.5 and 13.5 Å. Two initial

models were constructed: the completely ordered model shown in Figure 4 and a completely

disordered model, where Ni and Ru occupancy was set at 50% for all B sites. The two models

were fit against the neutron PDF over a range of 1–5 Å and 10–15 Å, illustrated in Figure

5. Although there is good contrast between the scattering cross sections of Ni and Ru, the

differences in the two models are subtle, primarily due to the combinations of Ni-Ni, Ru-Ru,

and Ni-Ru correlations within a layer: in the ordered model, each Ni has 4 Ru neighbors

and each Ru has 4 Ni neighbor, and in the disordered model, each Ni has an average of 2

Ni and 2 Ru neighbours, as does each Ru. Therefore, only four of the eight correlations will

change between the models. Regardless of this small difference between the two models, a

better description of the Ni/Ru correlation within the layer is obtained with the ordered

model (Figure 5a), indicating the Ni and Ru cations are ordered within a single layer. A

comparison of the two models against the data representative of the next nearest layers

shows that the ordered model is still moderately a better fit than the disordered model, but

it can be seen that there are clear misfits of data with both models, suggesting a completely

ordered or disordered model are not accurate pictures of the next nearest neighbor layer,

supporting the idea of paracrystallinity of this sample.

If an ordered modeled is assumed, a comparison of this model against various length-

scales within the data can provide meaningful information about the extent or lack of ordering

over a given data range. For example, a fit range of 1–5 Å is more representative of local

coordination environments, while a fit range of 1–25 Å captures more atom-atom interactions

and may more closely resemble the average, crystallographic structure. Neutron PDF data

were fit against the B-site cation ordered n = 1 Ruddlesden-Popper phase of LaSr3NiRuO8

across various real-space distances (r = 1.7 – 25, 1.7 – 12.5, and 1.7 – 5 Å, shown in the

right-hand panel of Figure 6 a, b, and c, respectively) to investigate the validity of cation

ordering throughout the structure. In addition to various r distances, several types of “box-

car” fits were performed up to a distance of r = 25 Å. “Box-car” fits are performed by
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Figure 6: Fits of the neutron PDF data against various r-range increments (∆r) illustrates
small deviations in the difference curves decrease with decreasing ∆r, indicating there is
some degree of correlation length dependence on the description of the atomic interactions.
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taking a set r-range, for example, 5 Å, and fitting the data at various length scales with

this range, for example 0–5 Å, 5–10 Å, 10–15 Å, etc., and can provide further insight on

any r-dependent behaviour of the material. Our “box-car” comparisons (ranges illustrated

by vertical solid lines in Figure 6) fit the data over a set r-range increment, ∆r, up to a

particular r maximum. The data were fit against the ordered structure with ∆r increments

of 25, 12.5, 5, and 4 Å to verify cation ordering within a layer (captured in the first ∆r

= 5 Å fit), between adjacent layers (captured in the first ∆r = 12.5 Å fit), and between

next-nearest neighbors (captured in the first ∆r = 25 Å fit). An additional increment of ∆r

= 4 Å was tested to ensure fits over small r -ranges were representative of actual structural

features, not artifacts of the fit range.

Figure 7: Fits from 1.7-5 Å obtained from various r-range increments (∆r) indicates a
good description of the observed in-layer correlations, and the fit is further improved with a
decreasing ∆r.

Regardless of fit range, the data are fit well by the 3D B-site cation ordered model, with

goodness-of-fit parameters Rw less than 10% for all fit ranges. This indicates that rather

than the random Ni/Ru distribution, suggested by the average structure determined from

17



Figure 8: Fits from 12-15 Å obtained from various r-range increments (∆r) indicates a poor
fit of the observed peak splitting in the next-nearest layer region of the data regardless of
∆r.
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SXRD and CW neutron diffraction data, La3SrNiRuO8 has a high level of B-site cation

order. Fits against various ∆r increments however, illustrate that the fit to the data is

further improved with decreasing ∆r values, indicated by flatter difference curves in Figure

6b, c, and d. Small deviations from the ordered model can be observed in several regions of

the ∆r = 25 Å fit (highlighted in Figures 7a and 8a) occurring around approximately 4.5

and 12 – 13 Å. The peak around 4.5 Å corresponds to La/Sr–O and O–O partials, and is

independent of Ru/Ni ordering; however, the correlations between 12 and 13 Å correspond to

next-nearest layer interactions. This indicates there are slight deviations from a completely

ordered 3D structure: there appears to be good Ni/Ru ordering within the perovskite layers

and extensive registry between adjacent nearest layers, but some degree of that registry is

lost between next-nearest neighboring layers. Upon lowering ∆r to 12.5, 5, or 4, a better

fit is obtained for the peak around 4.5 Å (Figure 7b, c, and d), but a poor description of

the peak splitting in the 12—13 Å region is still observed (Figure 8b, c, and d). Together,

this indicates that while the long range La/Sr–O and O–O interactions can most likely be

described by correlated atomic motion, the discrepancies between the fit and the data due to

next-nearest layer interactions are indeed due to paracrystalline Ni/Ru order in the material.

Goodness-of-fit parameters Rw and B-site atomic displacement parameters (ADPs, mod-

eled as Uiso) are shown as a function of rmax for the various ∆r series in Figure 8. As observed

from the fits of the data (Figure 6), a worsening of the fit of the data around 12 – 13 Å

is observed with decreasing ∆r. This is also supported by the evolution of Uiso, which is

elevated in the ∆r = 5 and 4 Å series around an rmax of 15 and 17 Å, respectively, indicating

that there is some degree of disorder of this site when three layers are considered. This is

opposed to one, two, or four layers, where the Uiso values of both cations are relatively low,

further indicating there is minimal disorder present within a single layer or two neighboring

layers.

The analysis of the PDF data described above reveals extensive Ni/Ru cation order in

LaSr3NiRuO8, with fully 3D cation-ordered models only having small mismatches with the

19



Figure 9: (a) Rw values obtained from fitting the neutron PDF data over various r-range
increments (∆r) as a function of rmax illustrate that as ∆r decreases, an apparent worsening
of the fit (indicated by an elevated Rw) is observed over the next-nearest neighbor region
of the PDF (approximately 12-13.5 Å). (b) Atomic displacement parameters, Uiso, of the
B -site cations as a function of rmax for the various ∆r series reveal an elevated Uiso in the
next-nearest neighbor range (10-15 Å), suggesting disorder in this region.
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Figure 10: Calculated SXRD profiles for Ni/Ru cation-ordered structural models containing
increasing concentrations of stacking faults. * indicates the location of supercell peaks in-
dicative of 3D cation order. The experimental SXRD data collected from LaSr3NiRuO8 is
also plotted for comparison.
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observed data. It is therefore a bit of a surprise that there is no direct indication of cation

order in the Rietveld fits to either the synchrotron X-ray or CW neutron diffraction data.

To further investigate this apparent contradiction, we have performed a series of simulations

using the FAULTS code23 to assess the effect of stacking faults on the appearance of the

supercell peaks which would be indicative of 3D Ni/Ru cation order.

Figure 10 shows a truncated range of the synchrotron X-ray diffraction pattern collected

from LaSr3NiRuO8 compared with a series simulated diffraction patterns with differing con-

centrations of stacking faults. The bottom trace (0%) in Figure 10 shows the diffraction

pattern expected for a fully 3D cation-ordered material, which in addition to the [101] and

[004] reflections, exhibits 2 supercell diffraction peaks (marked with a star) consistent with

an a′ = b′ =
√

2 ∗ a unit cell expansion. The traces above (5%-20%) show the influence

of adding stacking faults of the type shown in Figure 1b, which disrupt the registry in the

cation-order between perovskite sheets. A complete description of the FAULTS models is

given in the Supporting Information. It can be seen that the introduction of small amounts

of stacking disorder rapidly broadens the supercell reflections into the background so that

at a stacking fault concentration of around 20% no supercell reflections are observable, and

thus the data show no indication of Ni/Ru cation order although complete intralayer cation

order is retained. This analysis shows that the appearance of supercell reflections indicative

of B-site cation order is very sensitive to the presence of stacking disorder, so that materials

with essentially perfect in-plane cation order can exhibit no observable supercell reflections

when only modest concentrations of stacking faults are present.

Conclusions

Cation ordering can be a useful driver for functionality in a wide range of materials. As a con-

sequence, a detailed understanding of the form and length-scale of any cation order present

in a material can be decisive in achieving an accurate understanding of the underlying origin
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of the material properties. In this work we have demonstrated that in systems with exten-

sive 2D cation-order, but with stacking faults which limit the 3D cation order, conventional

powder diffraction measurements to establish the average structure of materials can show no

signature of the extensive cation order present, leading to the erroneous conclusion that the

system is cation-disordered, even over short length-scales. This observation emphasizes the

need to employ techniques that can provide information on the local-, mid-, and long-range

order to accurately characterize materials, especially paracrystalline materials which exhibit

extensive intra-layer cation order, but only limited inter-layer cation order.

In the specific case studied here, the observation of extensive intra-layer cation or-

der allows us to understand the antiferromagnetic behavior of LaSr3NiRuO8 on the basis

of the magnetic coupling interactions determined for the cation-ordered perovskite ana-

logue LaSrNiRuO6,[13] resolving the previous contradiction between an apparently cation-

disordered structure (which should lead to spin-glass behavior) and the observed antiferro-

magnetic order.

Given that average structure determination by powder diffraction is typically the only

structural characterization applied to most materials, it is likely that there are a large num-

ber of layered compounds in the literature that are currently assigned cation-disordered

structures, but which in fact exhibit extensive paracrystalline cation order. By revealing

this concealed cation-order, a better appreciation of the structure-property relations at play

in these phases can be achieved, and new functionality potentially induced.
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