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論 文 内 容 要 旨          
Fine structures have been studied largely to provide materials with functionalities such as a reduction in friction, change of the 

wettability, the antireflection of light and an improvement of biocompatibility. Ultraprecision cutting, ultrasonic machining and 

photolithography have been widely used to create these functional surfaces, however, these traditional methods have many 

disadvantages such as complicated processing steps, environmental burden and difficulty processing large area and three 

dimensional shapes.  

A laser is also a suitable method to fabricate fine structures, and an ultrashort-pulsed laser can fabricate fine periodic surface 

structures called as LIPSS (laser induced periodic surface structures) through self-organizing phenomena. An ultrashort-pulsed laser 

is a promising method for solving problems associated with traditional fabrication methods and providing functions by LIPSS. 

However, this method still has such problems as low repeatability and difficulty controlling LIPSS since the principles and the 

phenomena of fabricating LIPSS have not been clarified completely. Moreover, a ultrashort-pulsed laser which unstably irradiates 

at high cost have mainly been used to fabricate LIPSS since it has been reported that the laser with shorter pulse duration than the 

collisional relaxation time (CRT) can fabricate LIPSS. Industry needs a laser with as long pulse duration as possible to stably 

fabricate LIPSS at low cost. Hence, in this dissertation, fabrication of LIPSS using a short-pulsed laser with 20 ps pulse duration 

was proposed and investigated to clarify principles and phenomena of fabricating LIPSS. In addition, the machining-assisted 

short-pulsed laser was proposed to investigate the effects of the surface geometry before laser irradiation on fabrication of LIPSS 

and to control LIPSS. 

This thesis consists of seven chapters. 

Chapter 1 gives the introduction of this dissertation. Various functionalities produced by fine structures on material surfaces and 

fabrication techniques of them are elucidated. A ultrashort-pulsed laser, capable of fabricating LIPSS in an efficient way, is stated as 

an effective method to fabricate fine structures. On the other hand, its issues concerning stability of laser irradiation, equipment cost, 
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at high cost have mainly been used to fabricate LIPSS since it has been reported that the laser with shorter pulse duration than the 

collisional relaxation time (CRT) can fabricate LIPSS. Industry needs a laser with as long pulse duration as possible to stably 

fabricate LIPSS at low cost. Hence, in this dissertation, fabrication of LIPSS using a short-pulsed laser with 20 ps pulse duration 

was proposed and investigated to clarify principles and phenomena of fabricating LIPSS. In addition, the machining-assisted 

short-pulsed laser was proposed to investigate the effects of the surface geometry before laser irradiation on fabrication of LIPSS 

and to control LIPSS. 

This thesis consists of seven chapters. 

Chapter 1 gives the introduction of this dissertation. Various functionalities produced by fine structures on material surfaces and 

fabrication techniques of them are elucidated. A ultrashort-pulsed laser, capable of fabricating LIPSS in an efficient way, is stated as 

an effective method to fabricate fine structures. On the other hand, its issues concerning stability of laser irradiation, equipment cost, 

principles, phenomena and control of LIPSS are pointed out. In addition, principles and phenomena of fabricating LIPSS were stated, 

and the effects of laser irradiation conditions and environments on fabrication of LIPSS were studied. The interference between 

incident lights and scattered lights, surface plasmons or the parametric decay, one of them changes the electric field distribution and 

ionizes atoms inducing the Coulomb explosions periodically on the material surface. After the CRT, the heat distribution causes either 

the ablation or the inhibition of LIPSS, resulting in LIPSS. Dependency of the pitch length of LIPSS on the laser wavelength, the laser 

fluence and the incident angle is pointed out. Next, the pulse duration of a laser used in this study was decided to 20 ps, about the 

upper limit of CRT, via calculation of the CRT to clarify the principles and phenomena of fabricating LIPSS. Moreover, 

low-temperature environment experiment is introduced to fabricate sharp LIPSS easily and effectively due to extension of the CRT. 

Finally, the objectives and organization of this dissertation were drawn. 

In Chapter 2, fabrication of LIPSS using the short-pulsed laser with 20 ps pulse duration was investigated on SUS304 surfaces to 

verify the effects of laser irradiation conditions and experimental environments on the fabrication of LIPSS. The fundamental 

experiments were conducted, that the 20-ps pulse laser was irradiated on a substrate, and LIPSS were fabricated at the specified 

conditions. The pitch length of LIPSS and the height of LIPSS slightly increased with increasing the energy density. Electromagnetic 

field analysis was performed using an FDTD simulation to investigate the effects of the electric field distribution on fabrication of 

LIPSS and to predict the effective conditions and the shapes of LIPSS. The simulation demonstrated that the decrease of the laser 

wavelength increased the electric field intensity at the bottom of grooves and decreased the pitch length of LIPSS, and the electric field 

intensity is large just at the bottom of grooves under a low temperature. Subsequently, Experiments were conducted to verify the 

effects of the laser irradiation conditions on fabrication of LIPSS. The pitch length of LIPSS was close to the laser wavelength, and 

increased with increase of the incident angle. In addition, LIPSS were fabricated sharply at 223 K, in contrast to those at 293 K and the 

pitch length of LIPSS depends on the laser wavelength regardless of the material temperature. 

Chapter 3 describes the effects of material characteristics (the refractive index, the extinction coefficient and the reflectance) and the 

crystal structures on fabrication of LIPSS. The FDTD simulations were performed under the configuration of various material 

properties to verify the effect of material characteristics, especially the refractive index, the extinction coefficient and the reflectance, 

on fabrication of LIPSS. SUS304, Ti and Ni-P were conducted as the substrate. The results demonstrate that the low LIPSS with the 

long pitch length are fabricated on the Ni-P surface, and the pitch length of LIPSS of SUS304 and Ti will be same but their height of 

SUS304 will be greater than that of the Ti surface because it has the lowest refractive index, extending the wavelength of incident 

lights. Subsequently, experiments were conducted with different materials to verify the effects of material characteristics on fabrication 

of LIPSS. The work materials were SUS304, Ti and Ni-P. LIPSS were fabricated on all materials perpendicular to the direction of the 

laser polarization. The pitch length of LIPSS on the Ni-P surface was calculated to be about 0.85 times as long as the laser wavelength 

of 1064 nm, while that of LIPSS on the SUS304 and Ti surfaces were about 0.75 times as long as the laser wavelength. The height of 
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LIPSS decreased in the order of SUS304, Ti and Ni-P, according with the analytical results. Next, the effects of the crystal structure 

on fabrication of LIPPS was investigated with short-pulsed laser irradiation at low energy density on SUS304 surfaces. The surface 

topographies considered as crystal grain boundaries were seen on irradiated areas and an electron backscattered diffraction (EBSD) 

pattern analysis was performed to confirm the appearance caused by the crystal structure and the appearing structures after the 

irradiation of the short-pulsed laser depend on the crystal structure. Moreover, the fabricated LIPSS varied with crystal orientations. 

Additionally, the three-dimensional topographies were analyzed to verify the difference in expansion on each crystal orientation and 

the geometry of LIPSS depended on the atom arrangement which varies with the crystal orientation.  

In Chapter 4, the short-pulsed laser assisted by the magnetic abrasive finishing (MAF), capable of creating straight nanogrooves, 

was proposed to investigate the effects of the initial surface geometry on fabricating LIPSS and to fabricate straight and 

high-aspect-ratio LIPSS since LIPSS follow depressions and debris. In order to investigate the effects of nanogroove geometry on 

the electric field distribution by laser irradiation and predict LIPSS on the MAFed surface, an FDTD simulation was performed and 

influence of the groove pitch on the electric field is larger than that of groove depth, in the case of nanogrooves, causing large 

ablation and removal of surfaces. Subsequently, experiments were conducted to fabricate straight LIPSS with high aspect ratio and 

to investigate the effects of the groove geometry on fabrication of LIPSS. Straight nanogrooves with various depths and different 

pitches were fabricated on all surfaces by using MAF. A short-pulsed laser was irradiated on them to fabricate straight and 

high-aspect-ratio LIPSS and to investigate the effects of the nanogroove geometry on the fabricated LIPSS. The direction of laser 

polarization was perpendicular to the direction of MAF grooves. Straight LIPSS were fabricated on all MAFed surfaces with 

various scratching depths, whose direction was perpendicular to the laser polarization. . The aspect ratio of LIPSS on the Ni-P and 

SUS304 surfaces fabricated using the MAF-assisted short-pulsed laser are approximately 0.2–0.25 and 0.4–0.7, respectively. From 

analytical and experimental results, the surface geometry before laser irradiation as the key factor is pointed out to control LIPSS 

since grooves facilitate the induction and the propagation of the surface plasma waves. 

In Chapter 5, ultraprecision cutting prior to short-pulsed laser irradiation was proposed to investigate the effects of the groove 

geometry on fabricating LIPSS and to fabricate micro/nanostructures with microgrooves and LIPSS. The FDTD simulation was 

conducted to investigate the effects of straight microgrooves on the electric field distribution and intensity by laser irradiation, 

causing fabrication of LIPSS. Ni-P, an amorphous material, was used. Compared with the effects of the pitch length of the 

microgrooves on the electric field, high intensity was also detected on the surface with narrow-pitch microgrooves, causing ablation 

and large removal of material. Subsequently, experiments were conducted to fabricate straight LIPSS with microgrooves and to 

investigate the effects of the surface shape (straight microgrooves) on the fabricated LIPSS. Straight microgrooves with different 

pitches and depths were created on the flattened surface of an Ni-P substrate by using ultraprecision cutting, and the processed 

surface was then irradiated by a short-pulsed laser. Straight LIPSS were fabricated on all Ni-P surfaces compared to LIPSS on the 
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pitches and depths were created on the flattened surface of an Ni-P substrate by using ultraprecision cutting, and the processed 

surface was then irradiated by a short-pulsed laser. Straight LIPSS were fabricated on all Ni-P surfaces compared to LIPSS on the 

flat surface, whose direction was perpendicular to the laser polarization. The pitch length of LIPSS independent of the surface shapes 

after ultraprecision cutting in both cases. The height of LIPSS on the processed surfaces is larger than that on the flattened surface, and 

increased slightly with shortening grooves pitch of the processed surface due to intensification of surface plasma waves. Microgrooves 

are effective to expand the aspect ratio of LIPSS. Finally, micro/nanostructures were successfully fabricated using the short-pulsed 

laser assisted by ultraprecision cutting and ultraprecision cutting prior to irradiation with a short-pulsed laser is effective to fabricate 

micro/nanostructures.  

In Chapter 6, the effects of the groove angle on fabrication of LIPSS by laser irradiation on the surface with microgrooves changing 

the angle of laser polarization were investigated to fabricate LIPSS in complex structures. First, in order to investigate how 

groove-polarization angle makes the direction of LIPSS follow grooves or the laser polarization, a short-pulsed laser was irradiated on 

the surface with microgrooves changing the direction of the laser polarization. The direction of LIPSS is attributed to the direction of 

the grooves when φ = 45˚–90  ̊since microgrooves favorably induces the surface plasma waves. The newly proposed fabrication 

method of complex LIPSS uses a short-pulsed laser assisted by ultraprecision cutting were tried to fabricate complex LIPSS. The 

created zigzag and crosshatch microgrooved surfaces were passed through short-pulsed laser irradiations to fabricate complex LIPSS. 

As the results, the surface shape before laser irradiation is the important factor for fabrication and control of LIPSS, and a short-pulsed 

laser assisted by machining can control LIPSS and fabricate complex structures. 

In Chapter 7, the general conclusions of this research were given out. 

In this dissertation, a short-pulsed laser was proposed to clarify principles and phenomena of fabricating LIPSS and to fabricate 

LIPSS effectively. The short-pulsed laser capable of fabricating LIPSS and the geometry of LIPSS depending on laser irradiation 

conditions, material characteristics and crystal structures were stated. Moreover, the machining-assisted short-pulsed laser irradiation 

was proposed to investigate the effects of the initial surface geometry on fabrication of LIPSS and to control LIPSS. The simulations 

and experiments demonstrated the initial surface geometry as the key factor for control of LIPSS and the effectiveness of 

machining-assisted short-pulsed laser  to fabricate straight and high aspect ratio LIPSS. Finally, micro/nanostructures and complex 

fine structures with zigzag and crosshatch shapes can be fabricated using the machining-assisted short-pulsed laser. 

The results of this dissertation will let to the development of laser processing and largely spread the machining-assisted short-pulsed 

laser among the industry for fabrication of various functional interfaces.  
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