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Abstract

Free surface flow problems occur in numerous disaster simulations, such as tsunamis inland pen-
etration in urban area. Simulation models for these problems have to be non-hydrostatic, three-
dimensional and highly resolved because of the strong non-linearity and higher-order physical phe-
nomena. Despite all the progress in the modern computational fluid dynamics, such simulations still
present formidable challenges both from numerical and computational cost point of view due to the
pressure Poisson equation in the incompressible Navier-Stokes equations’ fluid modellings.

Emerging as a powerful numerical technique in recent years, the lattice Boltzmann method
exhibits unique numerical and computational features in specific problems for its ability to simulate
large scale flow fields as well as its inherent advantage to deliver favourable computational efficiencies
on massively parallel processors such as multi-core processors or graphical processing units. The
lattice Boltzmann method is one of computational fluid dynamics solvers. It starts with a fully
discrete model rather than discretising a set of particle differential equations and solving them,
directly. In this regard, the lattice Boltzmann method is suitable for a large-scaled fluid simulation
and gains substantial expectation as an efficient three-dimensional tsunami simulation approach.

In this thesis, two classes of the lattice Boltzmann method for tsunami flow simulations are
developed which are coupled with the piecewise linear interface calculation with the Volume-of-Fluid
technique and based on the non-linear shallow water theory. The first model is for an efficient three-
dimensional tsunami simulation by a one-fluid formulation, where the lattice Boltzmann equation is
assigned to solve for a single virtual fluid and the gas-liquid interface is captured through convection
of fluid fraction values by solving the advection equation with the finite volume method.

The most famous model generated with the lattice Boltzmann method is based on the Bhatnagar-
Gross-Krook collision model, using the single relaxation time coefficient. This approach, however,
has obvious defects; for example, the Prandtl number is fixed for its simplicity. The collision model
additionally tends to encounter stability problems in high-Reynolds number flows. An advanced
multiple-relaxation-time collision model has been developed simultaneously with the Bhatnagar-
Gross-Krook model. One attractive advantage of the model is the improvement in the numerical
stability in high-Reynolds number flows. The multiple-relaxation-time model, thus, can be seen as
an alternative approach to overcome the defects of the Bhatnagar-Gross-Krook model.
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Researchers have developed an epoch-making fluid model and confirmed its accuracy by the
multiple-relaxation-time model; however, few studies have validated the collision model in three-
dimensional free surface flows, especially in spacing fluid density. It is well known that pseudo-
compressibility appears in the lattice Boltzmann method because of an explicit method, which means
the lattice Boltzmann method does not assume the sound speed to be infinity, and the compressibility
has to be controlled and reduced by the calculation parameters to simulate incompressible flow
fields as accurately as possible in coastal engineering. In this thesis, some benchmark problems were
carried out with the multiple-relaxation-time model to conduct a usability assessment of proposed
free surface model and to parameterise the model for the compressibility to achieve the validation
of the lattice Boltzmann method as a three-dimensional tsunami simulation method.

The second model provides a hydrostatic two-dimensional tsunami simulation based on the non-
linear shallow water theory. It is well known that this approach gives a good approximation of
large-scaled tsunami simulation within a hydrostatic pressure can be assumed. Various benchmark
problems are also carried out to validate the utility of the proposed models in term of turbulent flow
problems. We concretely applied the two-dimensional model for the tsunami by the 2011 great east
Japan earthquake. To carry out the simulation, we also added a moving shoreline boundary condition
based on simple linear extrapolation approach and modified coupling technique for multiple scale
grid analysis. The proposed two-dimensional tsunami simulation model by the lattice Boltzmann
method was validated by comparison with the conventional finite difference method, which is solving
the non-linear shallow water equations, directly.

A hybrid technique for coupling two and three-dimensional fluid models, moreover, is developed
to achieve a consistent tsunami simulation from its occurrence to inland penetration. Considering
tsunami simulation, it is necessary to correspond the flow situation, in which a large amount of fluid
flows into three-dimensional computing area. In addition to the requirement, the coupling algorithm
between two and three-dimensional fluid model has to be taken the compressibility effects. In this
thesis, a coupling algorithm was proposed considering the compressibility and applied the scheme
in the benchmark problem.

From the theoretical point of view, we have successfully developed a general free surface fluid
model, which is expected to offer a more flexible and highly resolved tool in the investigation of fluid
structure, in details. The main practical contribution offered by this study is to enable large-scaled
tsunami simulation more efficiently. It allows to understand the interaction behaviour such as fluid
transport in soils coupling with the discrete element method, which can be considered as starting
points for future researches.
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Chapter 1

Introduction

1.1 Motivation

Hydrodynamic free surface flows have received an ever-increasing interest over the past few years.
Applications of such flows range from coastal architecture to offshore, marine and tsunami engineer-
ing. Free surface flow problems involve an air and a water phase, so that, technically, such flows can
be classified as multi-phase flows. However, as for most problems, the flow behaviour is dominated
by the water phase, which means that it is not necessary to resolve the full aerodynamics inside
the air phase. Instead, the latter can be represented by proper kinematic and dynamic boundary
conditions at the free surface by a one-fluid flow formulation, and the sharp interface is allowed to
move freely [DD91, Her07].

Typical free surface flow problems occur in many different fields of civil and coastal engineering.
Moreover, large-scaled free surface flows, such as breaking waves or tidal currents, are fascinating, as
they give us indications of the enormous amount of energy that water can contain, for both good and
bad reasons. Natural disasters have, recently, attracted public attention to hazardous free surface
flow events. Particularly, the recent 2011 Tohoku tsunami [DMM+11] have increased the awareness
of the potential threat posed by tsunamis and, consequently, the responsibility of civil engineers to
minimise the consequences of such major impacts. Here, numerical tools can help to establish early
warning systems and to provide accurate and fast predictions for tsunami severeness and the details
of coastal impact [SB06, Jos11].

Despite offering a powerful tool to investigate tsunamis, three-dimensional tsunami simulations
have been successfully applied only in limited computing environment. The overall implicit scheme
of most Navier-Stokes solvers has to solve one or more linear system of equations in each time
step (i.e., the pressure Poisson equation), this implies that the capillary effects could acts as a
formidable computational barrier. Implicit inclusion of force terms would then be considered as a
solution [Hys07], the subsequent computational complications, however, are yet to be questioned.
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Consequently, one may think of computationally less sophisticated kinetic-based methods which
basically march in time in an explicit fashion with naturally slow paces, enabling them to detect
rapid temporal changes without imposing an extra cost. This is where the lattice Boltzmann method,
as the most evolved variant of kinetic schemes [MZ88, CCM92].

The aim of this thesis is development of a consistent and efficient tsunami simulation model by
the advanced lattice Boltzmann method in order to solve the above-mentioned problems.

1.2 Contributions of this thesis

The goal of this thesis is the efficient and large-scaled tsunami simulation with the lattice Boltzmann
method. The main contributions of this thesis to achieve this are:

• A non-hydrostatic free surface model to enable an efficient tsunami simulation in three dimen-
sion by the advanced one-fluid Volume-of-Fluid approach.

• Parameterisations of the lattice Boltzmann method to reduce the pseudo-compressibility. It
gives an incompressible flow field similar to the conventional approaches.

• A hydrostatic non-linear shallow water model to achieve a consistent tsunami simulation from
its occurrence to inland penetration.

• A hybrid algorithm to enable simulations of large-scaled tsunami flows by coupling two and
three-dimensional fluid model.

1.3 Outline

This thesis is organised as follows. The theoretical background for the lattice Boltzmann method de-
veloped as a very good alternative solver for the conventional Navier-Stokes equations is investigated
in Chapter 2. Chapter 3 outlines the implementation of free surface model based on the higher-order
volume of fluid approach for an efficient three-dimensional tsunami simulation. Chapter 4 briefly
describes the lattice Boltzmann method for non-linear shallow water equations for hydrostatic two-
dimensional tsunami simulation. Chapter 5 presents a hybrid fluid simulation algorithm coupling
hydrostatic shallow water flow model and non-hydrostatic free surface model to achieve a consistent
tsunami simulation from its occurrence to inland penetration. A summary of the work and the
outlook for future studies is eventually presented as the closure of the thesis in Chapter 6.
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Chapter 2

Lattice Boltzmann method

2.1 Introduction

Historically, the lattice Boltzmann method (LBM) evolved from methods for the simulation of gases
that computed the motion of each molecule in the gas purely integer operations. In [HDP76], there
was a first attempt to perform fluid simulations with this approach. It took ten years to discover
that the isotropy of the lattice vectors is crucial for correct approximation of the Navier-Stokes
equations [FDH+87]. Motivated by this improvement [MZ88], they developed the algorithm that was
actually called LBM by performing simulations with averaged floating point values instead of single
fluid molecules. The important contribution to the basic LBM was the simplified collision operator
with a single relaxation parameter. This collision model is well-known as the Bhatnagar-Gross-Krook
(BGK) approximation [BGK54], and was derived independently by [CCM92], and [QDL92]. Since
then, the LBM has been applied to many classes of fluid mechanics problems: the direct numerical
simulation of turbulence [YGL05], Eulerian-Lagrangian simulations [MC98], the single-phase free
surface simulations analogous to the volume-of-fluid (VOF) approach [KTH+05, TPR+06, JK11],
and two-phase fluid simulation coupling with the phase field modelling approaches, e.g., the Cahn-
Hilliard equations [IOTK04, IYTT16, BJG14, BJGK14] or the level-set method [BJK+09, ST16,
SPT17], among others. The primitive background of LBM will be described in detail as below.

2.2 Statistical mechanics and Boltzmann equation

Statistical mechanics was pioneered by the Austrian physicist Ludwig Boltzmann from the 1870s.
It provides a framework for the interpretation and prediction of the macroscopic bulk properties
of materials by the macroscopic properties of individual atoms and molecules. The atomistic dy-
namics that describes the motion of individual molecules by the deterministic Newton equations
or Hamiltonian system and the thermodynamics that describes thermodynamic quantities such an
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pressure, momentum and energy by continuity, momentum and energy quantities are bridged by the
statistical mechanics in a probabilistic approach. The Boltzmann equation, established by Ludwig
Boltzmann in 1872 is the cornerstone of the development of statistical mechanics.

The atomistic dynamics for the molecules of the air governed by Newton equations are:

dxi

dt
=

pi

m
(2.1)

dpi

dt
= Fi (2.2)

where i = 1, . . . , N , xi is the position coordinate of the ith molecule, pi = mξi the linear momentum
and Fi the external force from intermolecular interactions or external fields such as gravity. In three-
dimensional space, there are totally 6N functions of time (xi (t) ,pi (t)) , i = 1, . . . , N . The above
equations provide a detailed description of all the N molecules, from which there is the possibility
to capture the behaviour of the whole system. However, N is generally too big for the ability of any
foreseeable computer.

This problem is taken into account by a higher level of description with a system of N particles by
distribution functions fN (x1,p1, . . . ,xN ,pN , t), where N is much smaller than the real number of
molecules. fN (x1,p1, . . . ,xN ,pN , t) dx1dp1 · · · dxNdpN is the probability to find a particle within
the interval [x1,x1 + dx1]×[p1,p1 + dp1]×· · ·×[xN ,xN + dxN ]×[pN ,pN + dpN ]. fN encompasses
all statistical information of the dynamical process, and evolves according to the Liouville equation:

∂fN
∂t

−
3N∑
j=1

(
∂HN

∂xj

∂fN
∂pj

− ∂HN

∂pj

∂fN
∂xj

)
= 0 (2.3)

where HN is the Hamiltonian of the system. Integrating over part of the phase space, we define the
reduced densities as:

Fs (x1,p1, . . . ,xs,ps, t) = V s

∫
fN (x1,p1, . . . ,xs,ps, t) dxs+1dps+1 · · · dxNdpN (2.4)

where V s is a normalisation factor. A coupled system of differential equations for Fs (1 ≤ s ≤ N)

with the name of BBGKY after Bogoljubov, Born, Green, Kirkwood and Yvon has been shown to
be equivalent to the Liouville equation. The Boltzmann equation has been derived from BBGKY by
the assumption of two-partial local collisions with uncorrelated velocities before collision and free of
external forces. The integro-differential Boltzmann equation describes a single partial distribution
function f (x, ξ, t) ∝ F1 (x1,p1, t) as:

(∂t + ξ · ∇x + g · ∇ξ) f (x, ξ, t) = Q (f, f) (2.5)

where g (x, t) is the acceleration depending only on space and time, with F (ξ) = −g · ∇ξf as the
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body force. The collision integral Q (f, f) with σ (Ω) the differential collision cross section for the
two-particle collision which transforms from the incoming velocity (ξ, ξ1) to the outgoing velocity
(ξ′, ξ′1) is defined as:

Q (f, f) =

∫
dξ1

∫
dΩσ (Ω) |ξ − ξ1| (f (ξ′) f (ξ′1)− f (ξ) f (ξ1)) (2.6)

it can be shown that the collision integral has five elementary collision invariants ψk (ξ) , k =

0, 1, 2, 3, 4 as: ∫
Q (f, f)ψk (ξ) dξ = 0 (2.7)

where ψ0 = 1, (ψ1, ψ2, ψ3) = ξ, ψ4 = ξ2 related to mass, momentum, and kinetic energy. Written in
a linear combination, the general collision invariants φ (ξ) is as:

φ (ξ) = a+ b · ξ + cξ2 (2.8)

it can also be shown that only the functions with the form:

f (ξ) = exp
(
a+ b · ξ + cξ2

)
(2.9)

can satisfy the null collision integral Q (f, f) = 0. The special case of the Maxwell-Boltzmann
equilibrium distribution function is defined as:

f (0) (x, ξ, t) =
ρ (x, t)

(2πθ (x, t))
D/2

exp

(
− (ξ − u)

2

2θ (x, t)

)
(2.10)

where ρ (x, t) and u (x, t) are the density and velocity of the fluid at spatial position x and time
t; θ is defined as kBT/m with kB the Boltzmann constant, m the molecular mass of gas particles
and T the absolute temperature under our consideration (one notices that for isothermal fluid T

is constant). As can be seen from Equation 2.6, the complicated collision integral is a big obstacle
when dealing with Boltzmann equation. In order to simply the collision integral Q (f, f) to a
convenient integral J (f), two rules have to be obeyed. The first one is that J (f) conserves all the
collision invariants ψk (ξ) of Q (f, f). While the other one is that the collision term should bear the
tendency of distribution function to the Maxwell-Boltzmann distribution function by H-theorem.
Both of the two rules are fulfilled by the widely used BGK model developed by Bhatnagar, Gross
and Krook [BGK54, QDL92].
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2.3 From the Boltzmann-BGK equation to the Navier-Stokes
equations

The Boltzmann-BGK equation in D-dimensional space is defined as:

(∂t + ξ · ∇x + g · ∇ξ) f (x, ξ, t) = −1

τ

(
f − f (0)

)
(2.11)

where τ is the relaxation time and f (0) is the Maxwell-Boltzmann distribution function in equilibrium
state as defined in Equation 2.10. Here and throughout the following context, we rescale all the
velocity ξ, u by the sound speed cs =

√
kBT/m and θ by c2s so that all the variables become

dimensionless. Especially, θ = 1 for isothermal fluid. The rescaled equilibrium distribution function
is still given by Equation 2.10.

Compared to the macroscopic thermodynamic variables, the kinetic distribution function pro-
vides much more detailed information. In fact, the macroscopic thermodynamic variables can be
expressed as the moments of the distribution function with different order with respect to velocity.
Specifically, we have mass density:

ρ (x, t) =

∫
f (x, ξ, t) dξ (2.12)

momentum density:
ρu (x, t) =

∫
ξf (x, ξ, t) dξ (2.13)

kinetic energy density:
ρε (x, t) =

1

2

∫
c2f (x, ξ, t) dc (2.14)

pressure or stress tensor:
P =

∫
ccf (x, ξ, t) dc (2.15)

energy or heat flux:
q =

1

2

∫
cc2f (x, ξ, t) dc (2.16)

where c = ξ − u is defined as the intrinsic velocity or mean velocity. The form of c2 stands for the
inner product c2 = cici while cc represents the tensor product such that (cc)ij = cicj , where the
subscripts i, j denote Cartesian components and Einstein summation convention is used for repeated
indices in the component notation, with the meaning of cici =

∑
i c

2
i .

If stories for fluid in the mesoscopic world are all about distribution function f subjected to
Boltzmann-BGK equation, then the bridge to go to the macroscopic world from the mesoscopic
one are velocity average (integral) in different order of moments with respect to the distribution
function. When we are in the macroscopic world with its own variables such as density ρ and
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velocity u, what we would play should be submitted to Newton’s laws, including mass conservation,
momentum conservation and energy conservation in the realm of classical fluid mechanics.

Define an integral operator I [·] - as the rule to cross the bridge as follows:

I [h] (x, t) =
1

ρ (x, t)

∫
RD

= h (ξ) f (x, ξ, t) dξ (2.17)

where h (ξ) is an integrable function dependent only on the velocity ξ. In particular, 1, ξ, ξ2/2,
corresponding to mass, momentum and energy are chosen among the moments of velocity. In general,
multiplying by h (ξ) and integrating both sides of the Boltzmann-BGK equation over the velocity
space, we can obtain:∫

(∂tf + ξ · ∇xf + g · ∇ξf)hdξ = −1

τ

∫ (
f − f (0)

)
hdξ (2.18)

where h (ξ) = 1, ξ, ξ2/2 respectively, the right hand side of Equation 2.18 vanishes thanks to the
conservation laws of mass, momentum and kinetic energy for ideal collision. While for the left hand
side, term by term we have:∫

(∂tf)h (ξ) dξ = ∂t

(
ρ

ρ

∫
fh (ξ) dξ

)
= ∂t (ρI [h (ξ)]) (2.19)

∫
(ξ · ∇xf)h (ξ) dξ = ∇x ·

(∫
h (ξ) ξfdξ

)
−
∫
f∇x · (ξh (ξ)) dξ

= ∇x ·
(
ρ

ρ

∫
h (ξ) ξfdξ

)
= ∇x · (ρI [h (ξ) ξ])

(2.20)

∫
(g (x, t) · ∇ξf)h (ξ) dξ =

∫
(h (ξ) g (x, t)) · ∇ξfdξ

=

∫
(h (ξ) g (x, t)) · (fn) dγ −

∫
∇ξ · (h (ξ) g (x, t)) fdξ

= −ρ
ρ

∫
g (x, t) · ∇ξh (ξ) fdξ = −ρI [g (x, t) · ∇ξh (ξ)]

(2.21)

substituting the above three terms into Equation 2.18 and noticing that the right hand side vanishes,
the following integral-differential equation holds for h (ξ) = 1, ξ, ξ2/2:

∂t (ρI [h (ξ)]) +∇x · (ρI [h (ξ) ξ])− ρI [g (x, t) · ∇ξh (ξ)] = 0 (2.22)
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In addition, we can easily verify that the following equalities for h (ξ) = 1, ξ, ξ2/2,

I [1] = 1, I [ξ] = u, I [c] = I [ξ]− I [u] = u− u = 0

I
[
ξ2
]
= I

[
(c+ u)

2
]
= I

[
c2
]
− 2I [c] · u+ u2 = 2ε+ u2

I [ξξ] = I [(c+ u) (c+ u)] = I
[
c2c
]
+ 2I [cc] · u+ I [c]u2 + I

[
ξ2
]
u

= 2q/ρ+ 2P/ρ · u+
(
2ε+ u2

)
u

(2.23)

With Equation 2.23 at hand, Equation 2.22 for h (ξ) = 1, ξ leads to the continuity equation and
momentum equation respectively:

∂tρ+∇ · (ρu) = 0 (2.24)

∂t (ρu) +∇ · (ρuu) = −∇ · P + ρg (2.25)

with the constraint of the continuity equation (2.24), the momentum equation (2.25) can be simplified
in the Eulerian frame as:

ρ∂tu+ ρ (u · ∇)u = −∇ · P + ρg (2.26)

Equations 2.24 and 2.25 or 2.26 define the full compressible Navier-Stokes equations. Notice that
stress tensor P is unknown. When h (ξ) = ξ2/2, the energy equation is obtained from Equation 2.22
as follows:

0 =
1

2
∂t
(
ρI
[
ξ2
])

+
1

2
∇x ·

(
ρI
[
ξ2ξ
])

− 1

2
ρI
[
g (x, t) · ∇ξξ

2
]

(2.27)

(by Equation 2.23) = ∂t

(
ρε+

1

2
ρu2

)
+∇ ·

((
ρε+

1

2
ρu2

)
u+ P · u+ q

)
− ρg · u (2.28)

(reorder) = (∂t (ρε) +∇ · (ρuε))︸ ︷︷ ︸
Term 1

+

(
1

2
∂t
(
ρu2

)
+

1

2
∇ ·
((
ρu2

)
u
)
+ P · u

)
︸ ︷︷ ︸

Term 2

+∇ · q − ρg · u

(2.29)

(Term 1) = (∂tρ) ε+ ρ∂tε+ (∇ · (ρu)) ε+ ρu · (∇ε) (2.30)

(by Equation 2.24) = − (∇ · (ρu)) ε+ (∇ · (ρu)) ε+ (ρ∂tε+ ρu · (∇ε))

= ρ (∂t + (∇ε) · u) = ρ
dε

dt

(2.31)

(Term 2) =
1

2

(
(∂tρ)u

2 + ρ
(
∂tu

2
)
+ (∇ · (ρu))u2 + ρu ·

(
∇u2

))
+ (u · (∇ · P ) + P : (∇u)) (2.32)

where P : (∇u) =
∑

i,j Pi,j (∇u)i,j .

(by Equation 2.24) =
1

2

(
− (∇ · (ρu))u2 + (∇ · (ρu))u2 + 2ρu · (∂tu+ (u · ∇)u)

)
+ u · (∇ · P ) + P : (∇u)

(2.33)
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(by Equation 2.26) = P : (∇u) + ρg · u (2.34)

substituting Term 2.30, 2.31 and Term 2.32-2.34 into Equation 2.29, we can get the energy equation
in the Lagrangian formulation as:

ρ
dε

dt
+ P : (∇u) +∇ · q = 0 (2.35)

Briefly, Equations 2.24, 2.25 and 2.35 are the hydrodynamic equations for a fluid, which take both
thermal and compressible effects into account. From the definition of stress tensor and kinetic energy
density we have the following relation:

Pii = 2ρε (2.36)

while the average of the trace of the stress tensor is borrowed to define the hydrostatic pressure as:

p =
Pii

D
(2.37)

Meanwhile, by the perfect gas law, the kinetic energy density is related to temperature according to
the equipartition theorem as:

p = ρθ = ρc2s (2.38)

2.4 The Chapman-Enskog expansion

There are several approaches to investigate the property of the lattice Boltzmann method mathemat-
ically, such as the Grad’s approach [Gra49], S-expansion [IYO97] and Chapman-Enskog expansion.
We will use the Chapman-Enskog approach, which is the most popular approach in this thsis.

In the Chapman-Enskog expansion approach, the derivation from the Boltzmann-BGK equation
to the Navier-Stokes equations can find its roots in lattice gas automata, in which field many results
are ready to be used. Moreover, the Chapman-Enskog expansion approach could also be used to
analyse the numerical accuracy of initial condition and boundary conditions. Roughly speaking,
the Chapman-Enskog expansion is based on the multi-scale expansion of the distribution function,
spatial and temporal variables as well as the projection of the lattice Boltzmann equation on the
lattice symmetries in different scales so as to get the corresponding macroscopic equations.

2.4.1 The lattice Boltzmann-BGK model

Unlike the Grad’s representation approach, where the derivation from the Boltzmann-BGK equation
to the Navier-Stokes equations is carried out in continuous system and then discretisation is applied
to the continuous system to obtain the numerical model, the Chapman-Enskog expansion starts
from the discrete system - lattice Boltzmann system directly. The lattice structure of the discrete
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system is originated from the Lattice-Gas Cellular Automata model, while it can also be obtained
from the Gauss-Hermite quadrature for the weights as well as discrete velocity - the abscissae of the
quadrature.

The lattice Boltzmann - BGK model is given in the lattice Boltzmann system (all variables have
lattice units, in particular δx = 1, δt = 1) as:

fi (x+ ξi, t+ 1)− fi (x, t) = −1

τ

(
fi (x, t)− f

(0)
i (x, t)

)
+ Fi (x, t) (2.39)

where fi (x+ ξi, t+ 1), fi (x, t) are the discrete distribution functions and Fi (x, t) is the unknown
discrete body force along the spatial direction ξi for i = 0, 1, . . . , q − 1. τ is the single relaxation
time. And the lattice is constructed such that the two adjacent nodes id the lattice are connected
by the spatial discrete velocity ξi.

The equilibrium distribution functions f (0) (x, t) represent a stationary state of the fluid. The
Maxwell-Boltzmann distribution is used as the equilibrium distribution function in the lattice Boltz-
mann method. This function will be Taylor expanded in u up to the second order, which is a valid
approximation for small velocities, and low Mach numbers. The following formula will be used as
the local equilibrium distribution for the following derivations assuming an athermal fluid:

f
(0)
i (x, t) = wiρ

(
1 +

ξi · u
c2s

+
(ξi · u)2

2c4s
− u · u

2c2s

)
(2.40)

where wi is the particle weighting parameter, which can be determined in the course of the Chapman-
Enskog expansion for each square lattice model.

The force term Fi (x, t) will be specified as a modification in deriving Navier-Stokes equations.
The macroscopic density and momentum are defined under the conservation laws as:

ρ (x, t) =

q−1∑
i=0

fi (x, t) =

q−1∑
i=0

f
(0)
i (x, t) (2.41)

j (x, t) = ρ (x, t)u (x, t) =

q−1∑
i=0

ξifi (x, t) =

q−1∑
i=0

ξif
(0)
i (x, t) (2.42)

2.4.2 The Chapman-Enskog expansion

The basic idea behind Chapman-Enskog expansion is to separate the physical time and space as
well as distribution function into multiple scales with respect to the order of Knudsen number
ε. Physical properties of the macroscopic variables, including the density and momentum, are
automatically separated into the corresponding different scales. By applying Taylor expansion for
the convection term of the lattice Boltzmann-BGK equation and analysing it in different scales, the
physical properties of mass conservation and momentum conservation are formulated into continuity
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equation and momentum equation respectively, ending up with the Navier-Stokes equations.
Recall the lattice Boltzmann-BGK equation with the fictitious lattice collision Ωi defined as:

Ωi (x, t) = −1

τ

(
fi (x, t)− f

(0)
i (x, t)

)
+ Fi (x, t) = fi (x+ ξi, t+ 1)− fi (x, t) (2.43)

the Chapman-Enskog expansion for time t, space x, distribution function fi together with collision
Ωi in different scales of Knudsen number, in two different scales are given as:

∂t = ε∂t1 + ε2∂t2 +O
(
ε3
)

∇ = ε∇1 + ε2∇2 +O
(
ε3
)

fi = f
(0)
i + εf

(1)
i ++O

(
ε2
)

Ωi = εΩ
(1)
i + ε2Ω

(2)
i +O

(
ε3
)

(2.44)

in most of the literatures, the spatial derivative is expanded only up to the first order ∇ = ε∇1 +

O
(
ε2
)
. The reason for this could be intuitively explained as that in order to achieve the Navier-

Stokes equations, involving both the second order derivative - diffusion term ∇2u and the first order
derivative - convection term (u · ∇)u while the temporal derivative is only the first order ∂t (ρu),
we need to parallelise the spatial derivative and temporal derivative to the same order, i.e., second
order in time and first order in space. In the following multi-scale analysis, we first stick to the
second order expansion for space as in Equation 2.44.

Applying Taylor expansion with respect to fi (x, t) for the lattice Boltzmann equation 2.43 up
to the second order, we have:

Ωi (x, t) = fi (x+ ξi, t+ 1)− fi (x, t)

= (∂t +∇ · ξi) fi +
1

2

(
∂2t + 2∂t∇ · ξ +∇∇ : ξiξi

)
fi +O

(
d3t
)
fi

(2.45)

where O
(
d3t
)
fi denote higher order of derivative. Substituting Equation 2.44 into Equation 2.45,

we obtain the multi-scale expansion as:

εΩ
(1)
i + ε2Ω

(2)
i +O

(
ε3
)
=
(
ε (∂t1 +∇1 · ξi) + ε2 (∂t2 +∇2 · ξi)

+
1

2
ε2
(
∂2t1 + 2∂t1∇1 · ξi +∇1∇1 : ξiξi

)
+O

(
ε3
))(

f
(0)
i + εf

(1)
i + ε2f

(2)
i +O

(
ε3
)) (2.46)

Separating the multi-scale expansion Equation 2.46 on different scales of ε, we have the following
two equations on the scales of ε and ε2:

Ω
(1)
i = (∂t1 +∇1 · ξi) f (0)i (2.47)
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for ε, and:

Ω
(2)
i = (∂t1 +∇1 · ξi) f (1)i + (∂t2 +∇2 · ξi) f (0)i

+
1

2

(
∂2t1 + 2∂t1∇1 · ξi +∇1∇1 : ξiξi

)
f
(0)
i

(2.48)

for ε2. Corresponding to the expansion of distribution function, from the definition of the macro-
scopic variables, we have the expansion for momentum as:

j = j(0) + εj(1) +O
(
ε2
)

(2.49)

The force term, which is responsible for the change of momentum is located on the first order
scale as:

F = εF (1) +O
(
ε2
)

(2.50)

and suppose:
j(1) = −F (1)/2 (2.51)

which will be highly depended for derivation later on. Therefore, the zeroth order and first order
collision invariants can be written as:

0 =

q−1∑
i=0

Ωi =

q−1∑
i=0

(
εΩ

(1)
i + ε2Ω

(2)
i +O

(
ε3
))

F =

q−1∑
i=0

ξiΩi =

q−1∑
i=0

ξi

(
εΩ

(1)
i + ε2Ω

(2)
i +O

(
ε3
)) (2.52)

Hence, the zeroth order (with respect to velocity ξ) macroscopic equations are given on the scales
of ε and ε2 respectively by collision invariant from Equation 2.47 and 2.48 as:

0 =

q−1∑
i=0

Ω
(1)
i =

q−1∑
i=0

(∂t1 +∇1 · ξi) f (0)i

= ∂t1

(
q−1∑
i=0

f
(0)
i

)
+∇1 ·

(
q−1∑
i=0

ξif
(0)
i

)
= ∂t1ρ+∇1 · j(0)

(2.53)
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for ε. Noticing ξiξi = Qi + c2sI and defining Π =
∑q−1

i=0 Qifi, we have:

0 =

q−1∑
i=0

Ω
(2)
i

=

q−1∑
i=0

(
(∂t1 +∇1 · ξi) f (1)i + (∂t2 +∇2 · ξi) f (0)i +

1

2

(
∂2t1 + 2∂t1∇1 · ξi +∇1∇1 : ξiξi

)
f
(0)
i

)

= ∂t1

(
q−1∑
i=0

f
(0)
i

)
+∇1 ·

(
q−1∑
i=0

ξif
(1)
i

)
+ ∂t2

(
q−1∑
i=0

f
(0)
i

)
+∇2 ·

(
q−1∑
i=0

ξif
(0)
i

)

+
1

2
∂2t1

(
q−1∑
i=0

f
(0)
i

)
+ ∂t1∇1 ·

(
q−1∑
i=0

ξif
(0)
i

)
+

1

2
∇1∇1 :

(
q−1∑
i=0

(
Qi + C2

sI
)
f
(0)
i

)

= ∇1 · j(1) + ∂t2ρ+∇2 · j(0) +
1

2
∂2t1ρ+ ∂t1∇1 · j(0) +

1

2
∇1∇1 : Π(0) +

1

2
c2s∇2

1ρ

= ∇1 · j(1) + ∂t2ρ+∇2 · j(0) +
1

2
∂t1∇1 · j(0) +

1

2
∇1∇1 : Π(0) +

1

2
c2s∇2

1ρ

(2.54)

for ε2. While the first order (with respect to velocity ξ) macroscopic equations are given on the
scales of ε from Equations 2.46 as:

F (1) =

q−1∑
i=0

ξiΩ
(1)
i =

q−1∑
i=0

ξi (∂t1 +∇1 · ξi) f (0)i

= ∂t1

(
q−1∑
i=0

ξif
(0)
i

)
+∇1 ·

(
q−1∑
i=0

(
Qi + c2sI

)
f
(0)
i

)
= ∂t1j

(0) +∇1 ·Π(0) + c2s∇1ρ

(2.55)

for ε. From the equation we have:∂t1∇1 · j(0) = ∇1 · F (1) −∇1∇1 : Π(0) − c2s∇2
1ρ

∂2t1j
(0) = ∂t1F

(1) − ∂t1∇1 ·Π(0) − c2s∂t1∇1ρ
(2.56)

substituting Equation 2.56 and Equation 2.51 into Equation 2.54, we obtain the simplified macro-
scopic equation with zeroth order of moment on the second scale Equation 2.54 as:

0 =− 1

2
∇1 · F (1) + ∂t2ρ+∇2 · j(0)

+
1

2

(
∇1 · F (1) −∇1∇1 : Π(0) − c2s∇2

1ρ
)

+
1

2
∇1∇1 : Π(0) +

1

2
c2s∇2

1ρ = ∂t2ρ+∇2 · j(0)

(2.57)
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Equations 2.53 and 2.57 lead to the continuity equation as (noticing j(0) = ρu):

∂tρ+∇ · (ρu) = 0 (2.58)

defining

R =

q−1∑
i=0

ξiξiξifi (2.59)

we have the first order (with respect to velocity ξ) macroscopic equations given on the scales of ε2

from Equations 2.47 as:

0 =

q−1∑
i=0

ξiΩ
(2)
i

=

q−1∑
i=0

(
ξi (∂t1 +∇1 · ξi) f (1)i + ξi (∂t2 +∇2 · ξi) f (0)i +

1

2
ξi
(
∂2t1 + 2∂t1∇1 · ξi +∇1∇1 : ξiξi

)
f
(0)
i

)

= ∂t1

(
q−1∑
i=0

ξif
(1)
i

)
+∇1 ·

(
q−1∑
i=0

(
Ωi + c2sI

)
f
(1)
i

)
+ ∂t2

(
q−1∑
i=0

ξif
(0)
i

)
+∇2 ·

(
q−1∑
i=0

(
Ωi + c2sI

)
f
(0)
i

)

+
1

2
∂2t1

(
q−1∑
i=0

ξif
(0)
i

)
+ ∂t1∇1 ·

(
q−1∑
i=0

(
Ωi + c2sI

)
f
(0)
i

)
+

1

2
∇1∇1 :

(
q−1∑
i=0

ξiξiξif
(0)
i

)
= ∂t1j

(1) +∇1 ·Π(1) + ∂t2j
(0) +∇2 ·Π(0) + c2s∇2ρ

+
1

2
∂2t1j

(0) + ∂t1∇1 ·Π(0) + c2s∂t1∇1ρ+
1

2
∇1∇1 : R(0)

= −1

2
∂t1F

(1) +∇1 ·Π(1) + ∂t2j
(0) +∇2 ·Π(0)

+ c2s∇2ρ+
1

2

(
∂t1F

(1) − ∂t1∇1 ·Π(0) − c2s∂t1∇1ρ
)

+ ∂t1∇1 ·Π(0) + c2s∂t1∇1ρ+
1

2
∇1∇1 : R(0)

= ∇1 ·Π(1) + ∂t2j
(0) +∇2 ·Π(0) + c2s∇2ρ

+
1

2

(
∂t1∇1 ·Π(0) + c2s∂t1∇1ρ+∇1∇1 : R(0)

)
(2.60)
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Therefore, for the first order of moment we have the full macroscopic equation by taking Equa-
tions (2.55) + ε2 × (2.60) as:

εF (1) =
(
ε∂t1 + ε2∂t2

)
j(0) +

1

2

(
ε∇1 + ε2∇2

)
·
(
ε∂t1Π

(0) + c2sε∂t1ρI + ε∇1 ·R(0)
)

− 1

2
ε2∇2 ·

(
ε∂t1Π

(0) + c2sε∂t1ρI + ε∇1 ·R(0)
)
+
(
c2s
(
ε∇1 + ε2∇2

)
ρ
)

+
(
ε∇1 ·

(
Π(0) + εΠ(1)

)
+ ε2∇2 ·Π(0) + ε2∇2 ·

(
εΠ(1)

)
− ε2∇2 ·

(
εΠ(1)

))
= ∂tj

(0) +
1

2
∇ ·
(
ε∂t1Π

(0) + c2sε∂t1ρI + ε∇1 ·R(0)
)
+ c2s∇ρ+∇ ·Π+O

(
ε3
)

(2.61)

from the above equation, we can see that if the spatial derivative is expanded up to the first order
∇ = ε∇1, all of the terms with ∇2 vanish, and we can also have the accuracy up to the second order
of Knudsen number. Moreover, in order to have the second order accuracy, temporal derivative
up to the second order is necessary. This multi-scale derivation could explain theoretically why we
may only provide expansion of the spatial derivative to the first order of Knudsen number while the
second order is needed for temporal expansion.

By the definition of equilibrium distribution function, we can compute j(0), Π(0), R(0) explicitly
provided the following lattice symmetries (which are related to the orthonormal properties of Hermite
polynomials):

q−1∑
i=0

wi = 1,

q−1∑
i=0

wiξiξi = c2sI = c2sδα1α2

q−1∑
i=0

wiξi = 0,

q−1∑
i=0

wiξiξiξi = 0,

q−1∑
i=0

wiξiξiξiξiξi = 0

q−1∑
i=0

wiξiξiξiξi = 3c4sII = c4s (δα1α2δα3α4 + δα1α3δα2α4 + δα1α4δα2α3)

(2.62)

where δ is a Kronecker delta. Therefore j(0), Π(0) and R(0) are given by:

j(0) =

q−1∑
i=0

ξif
(0) = ρu

Π(0) =

q−1∑
i=0

Qif
(0)
i = ρuu

∇1 ·R(0) =

q−1∑
i=0

ξiξiξif
(0)
i = c2s

(
∇1 (ρu) + (∇1 (ρu))

T
+∇1 · (ρu) I

)
(2.63)

16



Equation 2.61 is simplified with accuracy up to the second order of Knudsen number as:

F = ∂tj
(0) +∇ ·

(
Π(0) + εΠ(1) + c2sρI +

ε

2

(
∂t1

(
Π(0) + c2sρI

))
+∇1 ·R(0)

)
= ∂t (ρu) +∇ ·

(
ρuu+ c2sρI +

(
εΠ(0) +

ε

2

(
Π(0)

)))
+∇ ·

(
1

2
c2s

(
∇ (ρu) + (∇ (ρu))

T
)
+

1

2
c2s (ε∂t1ρ+∇ · (ρu)) I

) (2.64)

which is explicit expressed except for the first order stress tensor Π(1), left to be approximated later
on. Recall the full Navier-Stokes equations in the following form:∂tρ+∇ · (ρu) = 0

∂t (ρu) +∇ · (ρuu+ ρI − τ ) = ρg
(2.65)

where the deviatoric stresses τ is defined as:

τ = ρν
(
∇u+ (∇u)

T
)

(2.66)

where ν is the dynamic shear viscosity, or with an additional term:

τ = −ρν′ (∇ · u) I + ρν
(
∇u+ (∇u)

T
)

(2.67)

where ν′ is the dynamic bulk viscosity. Comparatively, the continuity equation is the same as we
can see from Equation 2.58 and Equation 2.67, while the momentum equations are the same in
Equation 2.64 and Equation 2.67 except for the item of deviatoric stresses. In order to retrieve
the exact Navier-Stokes equations, the so called Chapman-Enskog ansatz is applied to the collision
operator to achieve the term with dynamic shear viscosity and an additional term with dynamic
bulk viscosity respectively.

2.5 Chapman-Enskog ansatz

Suppose that the collision operator is given in the form of a BGK relaxation term as:

Ωi (x, t) = −1

τ

(
fi (x, t)− f

(0)
i (x, t)

)
+ Fi (x, t) + Ci (x, t) (2.68)
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where Fi is the force term and Ci is the correction term and they are given by:
Fi (x, t) =

a

c2s
wiξi · F +

b

2c4s
wiQi : (Fu+ uF )

Ci (x, t) =
c

2c4s
wiQi : δΠ

(2.69)

where the coefficients a, b and c are left to be determined. We will show in several steps that the
force term Fi is responsible for the dynamic shear viscosity ν while the additional correction term
Ci is responsible for the dynamic bulk viscosity ν′. Firstly, corresponding to the scale expansion of
force F and second order tensor δΠ, we have on the first scale of the expansion for force term and
correction term that:

F
(1)
i (x, t) =

a

c2s
wiξi · F (1) +

b

2c4s
wiQi :

(
F (1)u+ uF (1)

)
C

(1)
i (x, t) =

c

2c4s
wiQi : δΠ

(1)
(2.70)

in order to determine what coefficients should be, we will examine the mass conservation law, the
momentum conservation law and beyond for the higher order moments.

For the zeroth order moment ξ0, we have:

0 =

q−1∑
i=0

Ωi = −1

τ

q−1∑
i=0

(
fi (x, t)− f

(0)
i (x, t)

)
+

q−1∑
i=0

Fi (x, t) +

q−1∑
i=0

Ci (x, t)

= −1

τ
(ρ− ρ) +

a

c2s

q−1∑
i=0

wiξi︸ ︷︷ ︸
Term 1

·F +
b

2c4s

q−1∑
i=0

wiQi︸ ︷︷ ︸
Term 2

: (Fu+ uF ) +
c

2c4s

q−1∑
i=0

wiQi︸ ︷︷ ︸
Term 3

: δΠ = 0

(2.71)

where Term 1 = Term 2 = Term 3 = 0, because of the lattice symmetries Equation 2.62.
For the zeroth order moment ξ1, we have:

F =

q−1∑
i=0

ξΩi = −1

τ

q−1∑
i=0

(
ξfi (x, t)− ξf

(0)
i (x, t)

)
+

q−1∑
i=0

ξFi (x, t) +

q−1∑
i=0

ξCi (x, t)

= −1

τ

(
j − j(0)

)
︸ ︷︷ ︸

=−F /2

+
a

c2s

q−1∑
i=0

wiξξi︸ ︷︷ ︸
Term 1

·F +
b

2c4s

q−1∑
i=0

wiξQi︸ ︷︷ ︸
Term 2

: (Fu+ uF )

+
c

2c4s

q−1∑
i=0

wiξQi︸ ︷︷ ︸
Term 3

: δΠ =

(
a+

1

2τ

)
F

(2.72)
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where Term 1 = c2sI, Term 2 = Term 3 = 0, because of the lattice symmetries Equation 2.62. From
the above equation, we have for the first coefficient a = 1− 1 (2τ).

With the definition Π =
∑q−1

i=0 Qifi, we have that Π(1) =
∑q−1

i=0 Qif
(1)
i holds on the first order of

expansion. It is left to compute f (1)i in order to obtain Π(1) for Equation 2.64. By the expansion of
distribution function and operator, we have:

εΩ
(1)
i +O

(
ε2
)
= Ωi = −1

τ
εf

(1)
i + εF

(1)
i + εC

(1)
i +O

(
ε2
)

(2.73)

together with Equation 2.47 and equilibrium distribution function, we have:

f
(1)
i = −τΩ(1)

i + τ
(
F (1)i + C

(1)
i

)
= −τ (∂t1 +∇1 · ξi) f (0)i + τ

(
F

(1)
i + C

(1)
i

)
= −wiτ (∂t1 +∇1 · ξi)

(
ρ+

ξi · (ρu)
c2s

+
1

2c4s
Qi : ρuu

)
+ τ

(
F

(1)
i + C

(1)
i

)
= −wiτ

(
∂t1ρ+

1

c2s
∂t1 (ξi · ρu) +

1

2c4s
∂t1 (Qi : ρuu)

+ξi · ∇1ρ+
1

c2s
ξiξi : ∇1 (ρu) +

1

2c4s
(ξi · ∇1) (Qi : ρuu)

)
+ τ

(
F

(1)
i + C

(1)
i

)
(2.74)

for the three temporal derivatives, by virtue of continuity equation and momentum equation as well
as assumption of weak compressibility, i.e. ∂tρ = O (Ma), we have:

∂t1ρ = −∇1 · (ρu) (2.75)

by Equation 2.53,
1

c2s
∂t1 (ξi · ρu) =

1

c2s
ξi · F (1) − 1

c2s
ξi∇1 : ρuu− ξi · ∇1ρ (2.76)

1

2c4s
∂t1 (Qi : ρuu) =

1

2c4s
Qi :

∂t1 (ρu)u+ u∂t1 (ρu)− ∂t1 (ρ)uu︸ ︷︷ ︸
O(Ma1+2)


=

1

c4s
Qi : ∂t1 (ρu)u (Qi is symmetric)

=
1

c4s
Qi :

F (1) −∇1 · (ρuu)︸ ︷︷ ︸
O(Ma2)

−c2s∇1ρ

 u︸︷︷︸
O(Ma)

=
1

c4s
Qi :

(
F (1) − c2s∇1ρ

)
u

(2.77)

by Equation 2.55. By substituting the three temporal derivatives into Equation 2.74, neglecting the
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terms of O
(
Ma3

)
, the distribution function on the scale of first order of Knudsen number becomes:

f
(1)
i = −wiτ

c2s

(
Qi : ρ∇1u− ξi∇1 : ρuu+

1

2c2s
(ξi · ∇1) (Qi : ρuu)

)
− 3wiτ

2c2s
ξi · F (1) +

(b− 1)wiτ

2c4s
Qi :

(
F (1)u+ uF (1)

)
+
cwiτ

2c4sε
Qi : δΠ

(2.78)

Therefore, with the lattice symmetries Equation 2.62 we obtain the explicit expression for Π(1) as:

Π(1) =

q−1∑
i=0

Qif
(1)
i = −c

2
sτ

ε
ρ
(
∇u+ (∇u)

(T)
)
+ (b− 1) τ

(
F (1)u+ uF (1)

)
+
cτ

ε
δΠ (2.79)

From the calculation of Equation 2.77, we can also obtain by Equation 2.53:

∂t1Π
(0) = ∂t1 (ρuu) = F (1)u+ uF (1) − c2s ((∇1ρ)u+ u (∇1ρ)) (2.80)

ε× (2.79) + ε× (2.80) /2 leads to:

εΠ(1) +
ε

2
∂t1Π

(0) =

(
τ (b− 1) +

1

2︸ ︷︷ ︸
Term 1

)
(Fu+ uF )− c2sτρ

(
∇u+ (∇u)

T
)

− 1

2
c2s ((∇ρ)u+ u (∇ρ)) + cτδΠ

(2.81)

taking b = 1− 1 (2τ) so as to eliminate Term 1, substituting the above equation into Equation 2.64,
we get:

F = ∂t (ρu) +
(
ρuu+ c2sρI − c2sτρ

(
∇u+ (∇u)

T
)
+ cτδΠ

)
+∇ ·

(
1

2
c2s

(
∇ (ρu) + (∇ (ρu))

T
)
− 1

2
c2s ((∇ρ)u+ u (∇ρ))

)

+∇ ·

1

2
c2s

 ∂tρ+∇ · (ρu)︸ ︷︷ ︸
continuity equation=0

−ε2 ∂t2ρ︸︷︷︸
O(Ma)

 I


= ∂t (ρu) +∇ ·

(
ρuu+ c2sρI − c2s

(
τ − 1

2

)
ρ
(
∇u+ (∇u)

T
)
+ cτδΠ

)
+O

(
ε2Ma

)
∂t (ρu) +∇ ·

(
ρuu+ c2sρI − τ

)

(2.82)

with accuracy order up to ε2 ×Ma, where we denote:

τ = 2νρS − cτδΠ, S =
1

2

(
∇u+ (∇u)

T
)
, ν = c2s

(
τ − 1

2

)
(2.83)

If c = 0, we recover by Equations 2.82 and 2.83 the same Navier-Stokes equations. As the side
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product, we obtain the force term as:

Fi = wi

(
1− 1

2τ

)(
ξi · F
c2s

+
Qi : (Fu)

c4s

)
(2.84)

Equation 2.82 is the Navier-Stokes equations with dynamic share viscosity but not bulk viscosity.
To retrieve the dynamic bulk viscosity, the correction term Ci has to be taken into account. Suppose
the correction term as:

δΠ =
ε

D

(
Tr
(
Π(1)

)
+ kF (1) · u

)
I (2.85)

where D is the dimension of the system, Tr
(
Π(1)

)
is the trace of the tensor Π(1) and k is a coefficient

to be determined. In order to have Tr
(
Π(1)

)
, taking the trace of Equation 2.79 yields:

Tr
(
Π(1)

)
=
cτ

ε
Tr (δΠ)− 2c2sτρ∇1 · u− F (1) · u

=
cτ

ε

(
Tr
(
Π(1)

)
+ kF (1) · u

)
− 2c2sτρ∇1 · u− F (1) · u

(2.86)

from the above equation, we have:

Tr
(
Π(1)

)
=

1

1− cτ

(
(cτk − 1)F (1) · u− 2c2sτρ∇1 · u

)
(2.87)

hence, the partial correction term turns out to be:

cτδΠ =
ε

1− cτ

cτ

D

((1 + cτ) k − 1)︸ ︷︷ ︸
Term 1

F (1) · u− 2c2sτρ∇1 · u

 I (2.88)

When
k = 1/ (1 + cτ) (2.89)

Term 1 vanishes, and choose c as:
c =

1

τ − 2c2sτ
2/ (dν′)

(2.90)

we have eventually:
cτδΠ = ρν′∇ · uI (2.91)

which is responsible for the dynamic bulk viscosity in Equation 2.82 such that:

τ = −ρν′ (∇ · u) I + 2ρνS (2.92)

21



As a result, the full correction term is:

Ci =
cwi

2Dc4s

(
Tr
(
εΠ(1)

)
+ kεF (1) · u

)
(Qi : I)

=
cwi

2Dc4s

(
Tr
(
Π−Π(0)

)
+ kF · u

) (
ξ2i − c2sD

)
+O

(
ε2
)

=
cwi

2Dc4s

(
Tr

(
q−1∑
i=0

ξiξifi − ρuu− ρc2sI

)
+ kF · u

)(
ξ2i − c2sD

)
+O

(
ε2
)

=
cwi

2Dc4s

(
q−1∑
i=0

ξ2i fi − ρu2 − ρc2sd+ kF · u

)(
ξ2i − c2sD

)
+O

(
ε2
)

(2.93)

with k and c given in Equations 2.89 and 2.90. Equation 2.93 shows that the correction term finds
itself up to the scale of the first order of the Knudsen number.

In summary, the Chapman-Enskog approach is based on the asymptotic multi-scale analysis
of the lattice Boltzmann equation and sheds light on the second order accuracy with respect to
Mach number of retrieving Navier-Stokes equations up to the scale of the first order of Knudsen
number. In order to obtain the continuity equation for mass conservation and the momentum
equation for momentum conservation as in the full Navier-Stokes equations, the following three
main steps are carried our. First of all, expand the temporal and spatial variables up to the second
order of Knudsen number while the distribution function, density as well as momentum up to the
first order of Knudsen number. Secondly, by examining the lattice Boltzmann - BGK equation
on the scale of zeroth order, first order and second order of Knudsen number with the truncated
equilibrium distribution to the second order of Mach number, we have the exact continuity equation
corresponding to mass conversation and momentum conservation for the Navier-Stokes equations.
However, the stress tensor for Navier-Stokes equations is unknown on the scale of first order of
Knudsen number. Finally, by ansatz of the collision operator, including the force term and the
correction term for dynamic bulk viscosity, we succeed in closing the full Navier-Stokes equations
with not only the shear viscosity but also the desirable bulk viscosity from appropriate choice of
force term and correction term.

2.6 The basic calculation algorithm

The basic calculation algorithm of the lattice Boltzmann method consists of two steps, the streaming
step and the collision step as described above sections. These are usually combined with solid
wall [IYO95, ZH97, MBG96, BFL01] or free surface boundary conditions [KTH+05] for an obstacle
and gas-liquid interface in calculation domain. This simplicity of the algorithm is especially evident
when implementing it, which, for the basic algorithm, requires roughly a single page of fortran
or C-code. Using the LBM, the virtual particle movement is restricted into a limited number of
directions. In this thesis, We will use the three-dimensional 19-speed square lattice (D3Q19) model

22



for three-dimensional fluid simulation. Alternatives are models with 15 or 27 velocities. However,
the latter one has no apparent advantages over the 19 velocity model, while the model with 15
velocities has a decreased stability. The D3Q19 model is thus usually preferable as it requires less
memory than the 27 velocity model. The D3Q19 model with its lattice velocity vectors e0,...,18 is
shown in Figure 2.1 The velocity vectors take the following values:

ei =


0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1


(2.94)

For each of the velocities, a floating point number f0,...,18, representing the fraction of particles
moving with this velocity, needs to be stored. In the D3Q19 model there are particles not moving
at all (f0), moving with speed 1 (f1,...,6) and moving with speed

√
2 (f7,...,18). In the following, a

subscript of I will denote the value from the inverse direction of a value with subscript i. Thus, fi and
fI are opposite distribution functions with inverse velocity vectors eI = −ei. During the first part
of the algorithm (the streaming step), all distribution functions are advected with their respective
velocities. This propagation results in a movement of the floating point values to the neighboring
cells, as shown in Figure 2.2. Formulated in terms of distribution functions the streaming step can
be written as:

f∗i (x, t+∆t) = fi (x+ eI∆t, t) (2.95)

Here, ∆x denotes the size of a cell and ∆t the time step interval. Both are normalised by the condition
∆x/∆t = 1, which makes it possible to handle the advection by a simple copying operation. These
post-streaming distribution functions f∗i have to be distinguished from the standard distribution
functions fi, and are never really stored in the grid. The streaming step alone is clearly not enough
to simulate the behaviour of incompressible fluids, which is governed by the ongoing collisions of
the particles with each other. The second step of the lattice Boltzmann method, the collision step,
amounts for this by weighting the distribution functions of a grid with the so called the equilibrium
distribution functions, denoted by feqi . These depend solely on the macroscopic density ρ and
velocity u of the fluid. The density and velocity can be calculated by the summation of all the
distribution functions for one grid:

ρ =
∑
i

fi (2.96)

ρu =
∑
i

eifi (2.97)

for a single direction i, the equilibrium distribution functions feqi are determined as:

feqi = wiρ

[
1 + 3ei · u+

9

2
(ei · u)2 −

3

2
(u · u)

]
(2.98)
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where wi is a weighting parameter given as:

wi =


1/3 (i = 0)

1/18 (i = 1, . . . , 6)

1/36 (i = 7, . . . , 18)

(2.99)

for D3Q19 square lattice model.
The equilibrium distribution functions represent a stationary state of the fluid. However, this

does not mean that the fluid in not moving, but only that the values of the distribution functions
would not change, if the whole fluid was at an equilibrium state. For very viscous flows, such an
equilibrium state can be globally reached. In this case, the distribution functions will converge
towards constant values. The collision of the molecules in a real fluid are approximated by linear
relaxing the distribution functions of a cell towards their equilibrium state. Thus, each distribution
function fi is weighted with the corresponding feqi using the lattice Boltzmann equation based on
Boltzmann-BGK approach:

fi (x, t+∆t) = f∗i (x, t+∆t)− 1

τ
[f∗i (x, t+∆t)− feqi ] (2.100)

Here, τ is the single relaxation time that controls the viscosity of the fluid. Often, ω = 1/τ is also
used to denote the lattice viscosity. This parameter is in the range of (0, 2], where values close to 0

result in very viscous fluids, while values near 2 result in more turbulent flows. However, for values
close to 2, the lattice Boltzmann method can become numerical instability.

2.7 Compressibility effect of the lattice Boltzmann method

As shown in the above sections, the continuity equation in the simplified lattice Boltzmann method
introduces a compressibility effect which become critical for the simulation of the incompressible
flows. In order to reduce the compressibility effect for the time dependent flows, we need the following
incompressible lattice Boltzmann approach [HL97], a slight modification of the compressible one with
respect to the density.

It is well understood that in incompressible flows the density is a constant, say ρ0, and the density
fluctuation δρ, should be of the order O

(
Ma2

)
in the limit of Ma → 0. If we explicitly substitute

ρ = ρ0+δρ into the equilibrium distribution function, and neglect the terms proportional to δρ (u/c)
and δρ (u/c)2, which are of the order O

(
Ma3

)
or higher, then the equilibrium distribution function

becomes:

feqi = f
(0)
i (x, t) = wi

[
ρ+ ρ0

(
(ei · u)
c2s

+
(ei · u)2

2c4s
− (u · u)

2c2s

)]
(2.101)
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while to recover the velocity from distribution function, we have:

ρ0u =
∑
i

eifi (2.102)

The above distribution function is the equilibrium distribution function of the incompressible
lattice Boltzmann model. By the same Chapman-Enskog expansion procedure, we can obtain the
incompressible Navier-Stokes equations accurate up to the second order of Mach number O

(
Ma2

)
for continuity equation and third order of Mach number O

(
Ma3

)
for momentum equations as:∇ · u = 0 +O

(
Ma2

)
∂tu+ (u · ∇)u = −∇p+ ν∇2u+ g +O

(
Ma3

) (2.103)

Notice that the above system is still biased from standard Navier-Stokes equations by the com-
pressibility effect related to Mach number. In order to reduce this compressibility effect, small Mach
number is preferable, which means that the time step ∆t has to be small with respect to the space
step ∆x.

2.8 The multiple-relaxation-time collision model

The simplest collision model - single relaxation BGK approach easily becomes numerical unstable
in high-Reynolds-number flow. To overcome the defects of the lattice BGK model, the multiple-
relaxation-time (MRT) collision approach is receiving a lot of attention in recent years.

The MRT lattice Boltzmann collision approach was also developed at the same time with
the BGK model. The MRT lattice Boltzmann equation overcomes some obvious defects of the
BGK model, such as fixed Prandtl number (Pr = 1 for the BGK model) and fixed ratio be-
tween the kinetic an bulk viscosities. The MRT lattice Boltzmann equation has been persistently
pursued, and much progress has been made. Successes include formulation of optimal boundary
conditions [GA94, Lad94], interface conditions in multiphase flows [GA95, SPT17] and free sur-
faces [GS02, JK11], thermal [MGA95] and viscoelastic models [GDL97, GDL98], models with re-
duced lattice symmetries [DBL01, BDLL02], and improvement of numerical stability [LL00]. As of
today, stabilised D3Q27 lattice MRT collision model has been proposed by [SKTC15], and success-
fully applied in a grid-refinement method for more efficient fluid simulation [KS16]. It should be
stressed that most of the above results cannot be obtained with the BGK models.
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2.8.1 The multiple-relaxation-time lattice Boltzmann equation

The MRT collision approach defines the collision term Ωi [fi (x, t)] as:

Ωi [fi (x, t)] = −S [|f (x, t)〉 − |feq (x, t)〉] (2.104)

in this equation, we use the following notation for column vectors in q-dimensional space as:

|f (x, t)〉 = (f0 (x, t) , f1 (x, t) , . . . , fq−1 (x, t))
T (2.105)

|feq (x, t)〉 =
(
feq0 (x, t) , feq1 (x, t) , . . . , feqq−1 (x, t)

)T (2.106)

where the superscript T denotes the transpose operator and we always assume that e0 = 0. From
here on the Dirac notations of bra 〈·| and ket |·〉 vectors are used to denote, respectively, the row and
column vectors. The q eigenvalues of S are all between 0 and 2 so as to maintain linear stability and
the separation of scales, which means that the relaxation times of non-conserved quantities are much
faster that the hydrodynamic time-scales. The BGK collision models are special cases in which the
q relaxation times are all equal, and the collision matrix S = ωI, where I is the identity matrix,
ω = 1/τ , and τ (> 1/2) is the single relaxation time of the model.

To simulate athermal fluids, a necessary criterion is that the discrete velocity set must be sufficient
to represent a scalar (fluid density ρ), a vector (momentum j), another scalar (pressure P ), and a
symmetric traceless second-rank tensor (viscous stress tensor σij). More generally, the velocity set
must possess sufficient symmetries for the hydrodynamic equations to hold; the conserved quantities
and their fluxes must transform properly so that they can approximate their continuous counterparts
in an appropriate limit. The local conserved quantities must be the fluid density ρ and the momentum
j for athermal fluids.

Given a chosen set of discrete velocities ei (i = 0, 1, . . . , q − 1) and corresponding distribution
functions fi (i = 0, 1, . . . , q − 1), an equal number of moments mβ (β = 0, 1, . . . , q − 1) of the distri-
bution functions fi can be obtained as:

mβ = 〈φβ |f〉 = 〈f |φβ〉 , 〈f | = (f0, f1, . . . , fq−1) (2.107)

where |φβ〉 (β = 0, 1, . . . , q − 1) is an orthogonal dual basis set constructed by the Gram-Schmidt
orthogonalisation procedure [BDLL02] from polynomials of the column vectors |exi

〉 in space. Vector
|exi

〉 is built from the components of the ei (e.g., |ex〉 , |ey〉 , |ez〉 in three dimensions).
The set |φβ〉 is analogous to the Hermite tensor polynomials in continuous velocity space. It

should be stressed that the orthogonal functions defined on a finite set of discrete velocity ei has some
degeneracies which do not exist in the Hermite tensor polynomials in continuous space. Obviously,
the moments are simply linear combinations of the fi, therefore velocity space, spanned by |f〉 =
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(f0, f1, . . . , fq−1)
T, and the moment space, spanned by |m〉 = (m0,m1, . . . ,mq−1)

T, are related by
a linear mapping M: |m〉 = M |f〉 and |f〉 = M−1 |m〉. The transformation matrix M would be an
orthogonal transformation if the basis vector |φβ〉 are normalised.

If the matrix S is chosen such that the |φ〉β are its eigenvectors, the linear relaxation of the
kinetic modes in moment space naturally accomplishes the collision process. Then the collision term
of the MRT lattice Boltzmann equation becomes [LL00, DGK+02]:

Ωi [fi (x, t)] = −M−1Ŝ [|m (x, t)〉 − |meq (x, t)〉] (2.108)

where the collision matrix Ŝ = M · S · M−1 is diagonal; Ŝ = diag (s0, s1, . . . , sq−1), meq
i is the

equilibrium value of the moment mi. The q moments can be separated into two groups: the ’hydro-
dynamic’ (conserved) moments and the ’kinetic’ (non-conserved) moments. The first group consists
of the moments locally conserved in the collision process, so that in general meq

β = mβ . The second
group consists of the moments not conserved in the collision process so that meq

β 6= mβ . The equi-
librium distribution functions meq

β are functions of the conserved moments and are invariant under
the symmetry group of the underlying lattice. For models designed to simulate athermal fluids, the
only hydrodynamic moments are fluid density ρ (a scalar value) and momentum j (a vector value);
energy is not a conserved quantity for athermal fluids. Equilibrium values of kinetic moments are
functions of ρ and ‖j‖2 for scalars, and j times some functions of ρ and ‖j‖2 (eventually a constant)
for vectors, and so on.

2.8.2 The multiple-relaxation-time model for D3Q19 model

In D3Q19 square lattice model, the 19 discrete velocities are given by Equation 2.94, and the
components of the 19 orthogonal basis vectors are given by [TFK06]:

|φ0〉i = e0i

|φ1〉i = e2i − e2

|φ2〉i = 3
(
e2i
)2 − 6e2i e

2 + e4

(2.109)


|φ3〉i = eix

|φ5〉i = eiy

|φ7〉i = eiz

(2.110)
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|φ4〉i =

(
3e2i − 5e2

)
eix

|φ6〉i =
(
3e2i − 5e2

)
eiy

|φ8〉i =
(
3e2i − 5e2

)
eiz

(2.111)

|φ9〉i = 3e2ix − e2i

|φ11〉i = e2iy − e2iz

(2.112)


|φ13〉i = eixeiy

|φ14〉i = eiyeiz

|φ15〉i = eizeix

(2.113)

|φ10〉i =
(
2e2i − 3e2

) (
3e2ix − e2i

)
|φ12〉i =

(
2e2i − 3e2

) (
e2iy − e2iz

) (2.114)


|φ16〉i =

(
e2iy − e2iz

)
eix

|φ17〉i =
(
e2iz − e2ix

)
eiy

|φ18〉i =
(
e2ix − e2iy

)
eiz

(2.115)

where i ∈ (0, 1, . . . , 18). The corresponding 19 moments mβ (β = 0, 1, . . . , 18) are arranged in the
following order:

|m〉 = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pzx,mx,my,mz)
T (2.116)

The diagonal collision matrix Ŝ is:

Ŝ = diag (0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) (2.117)
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and the transformation matrix M is given by:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 −2 −2 −2 −2 −2 −2 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 −2 2 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1

0 0 0 −2 2 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1

0 0 0 0 0 −2 2 0 0 0 0 1 −1 −1 1 1 −1 −1 1

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 −2 −2 1 1 1 1 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1


(2.118)

the 4th, 6th and 8th row vectors of M (corresponding to jx, jy and jz, respectively) uniquely define
the ordering (or labelling) of the velocity ei with respect to subscript i.

With c2s = 1/3 and s9 = s13, the non-zero equilibria of the non-conserved moments are given as
functions up to second-order in ρ and u with an incompressible flow as follows:

meq
0 = ρ, meq

3 = ρ0ux, meq
5 = ρ0uy, meq

7 = ρ0uz

meq
1 = eeq = ρ0

(
u2x + u2y + u2z

)
meq

9 = 3peqxx = ρ0
(
2u2x − u2y − u2z

)
meq

11 = peqww = ρ0
(
u2y − u2z

)
meq

13 = peqxy = ρ0uxuy, meq
14 = peqyz = ρ0uyuz, meq

15 = peqzx = ρ0uzux

(2.119)

where ρ0 is a constant fluid density.
In D3Q19 square lattice model, the bulk viscosity ζ is given by:

ζ =

(
5− 9c2s

)
9

(
1

s1
− 1

2

)
=

2

9

(
1

s1
− 1

2

)
(2.120)
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and its kinematic viscosity ν is given by:

ν =
1

3

(
1

s9
− 1

2

)
=

(
1

s13
− 1

2

)
(2.121)

The non-zero values of the collision matrix S are determined as follows:

sl,1,1 = sl,a

sl,2,2 = sl,b

sl,4,4 = sl,6,6 = sl,8,8 = sl,c

sl,10,10 = sl,12,12 = sl,d

sl,9,9 = sl,11,11 = sl,13,13 = sl,14,14 = sl,15,15 = −1

τ
= sl,ω

sl,16,16 = sl,17,17 = sl,18,18 = sl,e

(2.122)

the parameters sl,a, sl,b, sl,c, sl,d and sl,e are freely chosen in the range [−2, 0]. These values depend
of the flow conditions, such as the initial and boundary conditions, and cannot be determined
generically. We chose sl,a = sl,b = sl,c = sl,d = sl,e = −1.0 as the moments as the relaxation rate
approaches its equilibrium state, which is a reasonable way to determine these parameters.

2.9 A Smagorinsky subgrid-scale model

In order to simulate turbulent flows by the lattice Boltzmann method, the basic calculation procedure
has to be extended, as its stability is limited once the relaxation rate τ approaches 1/2. Here, the
Smagorinsky sub-grid-scale model [Sma63] is applied in this thesis. Its primary use is to stabilise the
fluid simulation. Compared to the small slowdown due to the increased complexity of the collision
operator, this usually results in large improvement of efficiency, as the simulations would otherwise
require considerably finer grid resolutions.

The Smagorinsky sub-grid-scale turbulence model applies the calculation of the local stress ten-
sor as described in [Sma63] to the lattice Boltzmann method. The computation of this tensor is
relatively easy for the lattice Boltzmann method, as each lattice already contains information about
the derivatives of the hydrodynamic variables in each distribution function fi. The magnitude of
the stress tensor is then used in each lattice to modify the relaxation time according to the eddy
viscosity. For the calculation of the modified relaxation time, the Smagorinsky constant CS is used.
For the simulations in the following, CS will be set to 0.162. Values in this range are commonly
used for the lattice Boltzmann simulations, and were shown to yield good modelling of the sub-
grid vortices [GFN02]. The turculence model is integrated into the basic algorithm by adding the
calculation of the modified relaxation time.

The modified relaxation time τs is calculated by performing the steps that are described in the
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following. First the non-equilibrium stress tensor Πα,β is calculated for each lattice as:

Πα,β =
∑
i

eiαeiβ (fi − feqi ) (2.123)

using the notation from [HSCD96, KTL03]. Thus, α and β each run over the three spatial dimensions,
while i is the index of the respective velocity vector and distribution function for the D3Q19 model.
The intensity of the local stress tensor S is then computed as:

S =
1

6CS∆2

(√
ν2 + 18CS∆2

√
Πα,βΠα,β − ν

)
(2.124)

now the modified relaxation time is given by:

τs = 3
(
ν + CS∆

2S
)
+

1

2
(2.125)

where ∆ = 1 is a spatial filter.
From Equation 2.124 it can be seen that S will always have a positive value - thus the local vis-

cosity will be increased depending on the size of the stress tensor calculated from the non-equilibrium
parts of the distribution functions of the cell to be relaxed.

2.10 Boundary condition for the lattice Boltzmann method

2.10.1 Overview of boundary conditions

Boundary conditions play a very important role for numerical methods, such as a finite element
method, to solve any differential system. In a similar way, imposing boundary conditions accurately
is crucial for the lattice Boltzmann method. In general, there are three distinct kinds of boundary
conditions for macroscopic differential equations, namely Dirichlet boundary conditions which specify
the value of the function on the boundary, Neumann boundary conditions that provide the normal
derivative of the function on the boundary, and the combination of prescribed function and it’s
normal derivative with the name of Robin boundary conditions. When the boundary conditions are
approximated on the boundary the same way as that within the domain by a certain conventional
numerical method, the problem ends up with solving a linear nor non-linear algebraic system.

As for the conventional method, the macroscopic function imposed on the boundary is usually
the same as the function directly treated by the method. Take velocity in Navier-Stokes equations for
example, the prescribed velocity or pressure on the boundary is the unknown macroscopic variables
to be solved by ’macroscopic methods’. For some aspects, the lattice Boltzmann method is quite
different from the conventional methods. More in detail, the leading role playing on the stage is
not macroscopic variables but rather microscopic function. Since there is no explicit distribution
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function streaming from the boundary into the bulk, we have to construct the unknown distribution
functions based on the macroscopic imposed boundary conditions, which is also one of the significant
difficulties for the lattice Boltzmann method. In this thesis, we will concentrate on how to impose
solid wall boundary conditions for the lattice Boltzmann method in term of a tsunami modellings.

2.10.2 Solid wall boundary conditions

For no-slip solid wall boundaries, we impose a second-order bounce-back scheme [BFL01]. It slightly
violates the conservation of mass, but because it is second order in space, an overall scheme of second
order can be achieved. The modified bounce-back scheme is given by:

f t+1
IA =


(1− 2q) f tiF + 2qf tiA (0.0 ≤ q < 0.5)

(2q − 1)

2q
f tIA +

1

2q
f tiA (0.5 ≤ q ≤ 1.0)

(2.126)

where fI and fi are anti-parallel incoming (missing) and outgoing distribution functions, respectively,
and where q denotes the subgrid wall distance for direction i. fiF and fiA are pre- and post-collision
distribution functions.

At slip boundaries, the macroscopic velocity u at the boundary has to determined, then projected
onto the surface normal vector n̂ as:

u|| = u− (u · n̂) n̂ (2.127)

and finally applied as boundary velocity u|| using the following modified version of the second-order
bounce-back scheme:

f t+1
IA =


(1− 2q) f tiF + 2qf tiA − 2ρwi

ei · u||

c2s
(0.0 ≤ q < 0.5)

(2q − 1)

2q
f tIA +

1

2q
f tiA − ρwi

ei · u||

qc2s
(0.5 ≤ q ≤ 1.0)

(2.128)

2.11 Parametrisation

Below, the conversion of dimensional quantities, denoted by primed symbols, into dimensionless
quantities used in the lattice Boltzmann method will be described. Given the real-world values for
kinematic viscosity ν′

(
m2/s

)
, domain size S′ (m), a desired grid resolution r, and a gravitational

force g′ (m/s2), the corresponding lattice quantities are computed as described in the following. Let
S′ be the length of one side of the domain that should be resolved with r cells. The cell size used
by the lattice Boltzmann method can then be computed as ∆x′ = S′/r.

The dimensional time step interval ∆t′ should be determined by limiting the weak compressibil-
ity of the lattice Boltzmann method. In the lattice Boltzmann method, the Mach number which
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determine the order of the weak compressibility is defined by the following equation:

Ma ∼ ‖umax‖
cs

(2.129)

where ‖umax‖ is a maximum fluid velocity in a simulation domain. This means that the weak com-
pressibility of the lattice Boltzmann method can controlled by the sound velocity (Equation 2.103)
if the maximum fluid velocity ‖umax‖ can be estimated.

Given ∆x′ and ∆t′, the dimensionless lattice viscosity ν, and relaxation rate τ can be determined
as:

ν = ν′
∆t′

∆x′2
(2.130)

and
τ = 3ν +

1

2
(2.131)

Likewise, the lattice acceleration g (e.g., gravity acceleration) is determined as:

g = g′∆t
′2

∆x′
(2.132)

The gravity acceleration effect is calculated by adding a term directly to the collision step in every
time step in this thesis as:

∆fi = 3ωiρei · g (2.133)

In conclusion, a valid parametrisation for the lattice Boltzmann fluid simulation is given by
the physical scale, the desired kinematic viscosity and the compressibility factor. For a given grid
resolution, the values of τ and ∆t can then be calculated. Note that when the grid resolution is
small in combination with a low viscosity, the resulting value of τ will be close to 1/2. Due to the
turbulence mode, the simulation will remain stable, but effectively increase the viscosity to a value
that can be handled with the chosen grid resolution.

2.12 The calculation procedure

Once the lattice structure is specified, the lattice Boltzmann method is determined. And the general
algorithm can be given as follows: (flow chart is shown in Figure 2.3).

1. Set initial macro variables: density ρ and velocity u. The initial distribution function fi (x, 0)
is given by the equilibrium distribution function feqi (x, 0).

2. Calculate collision step using the BGK or MRT collision model.

3. Calculate streaming step.

4. Impose boundary conditions.
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5. Calculate macroscopic variables: density ρ and velocity u.

6. Stop and go to the step of post processing if certain stopping condition is satisfied. Otherwise
go back to step 2.

2.13 Primitive model verification

Two-dimensional lid-driven cavity flows are investigated for a primitive model verification of the
lattice Boltzmann method. Figure 2.4 shows the computing domain and boundary conditions,
where x and y are the components of the domain, and Umax is the dimensionless velocity of the top
boundary, which is also one of the characteristic value. Umax = 0.1 was set and fixed by varying
the Reynolds number Re. The characteristic velocity Umax should be properly set in the lattice
Boltzmann simulation to reduce its the weak-compressibility (i.e., ‖Umax‖/cs < 0.3). L is the length
of the domain, which is also the characteristic length.

The boundary conditions on the top lid are obtained in velocity space by assigning distributions
to [Lad94]:

fi = wiρ0
ei · Umax

c2s
(2.134)

it should be stressed that this particular implementation of a sliding boundary imposes a constant
pressure p0 = c2sρ0 at the boundary, which is incorrect; and the momentum transfer in the direc-
tion perpendicular to the moving lid is significantly weakened. The correct boundary conditions
consistent with the bounce-back conditions should be [Luo98, Luo00, BFL01]:

fI = fi + 2wiρ0
eI · Umax

c2s
= fi − 2wiρ0

ei · Umax

c2s
(2.135)

The bounce-back boundary condition given in Equation 2.126 are applied to the rest three walls as
no-slip boundary conditions.

The criterion for steady state of this simulation is defined as the following condition:√√√√√√√
N∑[(

un+1
x − unx

)2
+
(
un+1
y − uny

)2]
N∑[

unx + uny
] < 10−10 (2.136)

where N is the total number of computing cells in the domain.
(
unx , u

n+1
x

)
and

(
uny , u

n+1
y

)
are the

velocity of each component for the previous and current time steps, respectively.
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2.13.1 Performance of parallel computing

The lattice Boltzmann method has a high-potential to utilise high-performance parallel computing
due to the data locality [RDVC12, OKTR13, CGK+16, DSGS17]. In this thesis, the Message Passing
Interface (MPI), which is one of the distributed memory parallel programming API is used. To divide
a spacing computing domain by MPI, the data of the distribution functions fi are required for the
streaming step at the boundary layer as shown in Figure 2.5. The other macroscopic variables (i.e.,
density ρ and velocity u) do not have to communicated. These are all local in computing cells.

Figure 2.6 shows the strong scaling of the benchmark. The measurement conditions are as
followings:

1. Domain size: 256× 256 cells.

2. Iteration: 1000 time step.

3. Collision model: The MRT-LBM with the Smagorinsky sub-grid-scale model.

The computing speed increases monotonically without saturating with the 64 MPI process comput-
ing. In addition, we achieved an effective parallelisation ratio of 99.7%. It appears that the processes
that have to apply the lid-driven or bounce-back boundary condition decreased the performance of
the other processes. We should derive a way to apply the boundary condition to bring the effective
parallelisation ratio much closer to 100%.

2.13.2 Comparison between the BGK-LBM and MRT-LBM

This investigation was conducted to clarify the model accuracy between the BGK-LBM and MRT-
LBM. According to the study of [BS06], the critical Reynolds number of the benchmark problem
is from 8000 to 8050 within less than 1% of error. The simulation, thus, has been performed until
Re = 7500 to focus on the steady solutions. The number of computing cells is 256 × 256. This
parameter is common to both collision models.

Figure 2.7 compare the calculated dimensionless velocity components of the ux and uy profiles
in the steady state along vertical and horizontal lines at y/L = 1/2 and x/L = 1/2.

In the cases of Re = 100 and Re = 400, both the BGK-LBM and MRT-LBM are in good
agreement with the results of [GGS82]. In the extremely low Reynolds number flow, the BGK-LBM
can be applicable and satisfy the accuracy requirement with a 256 × 256 grid calculation. The
BGK-LBM model velocity profile, however, disagrees with the references data. This tendency is
particularly strong near the no-slip boundary. We confirmed that the bounce-back scheme with the
BGK-LBM is difficult for conducting high accuracy simulations even when the Reynolds number is
smaller than the critical number with 256× 256 cells.

In contrast, the results of the MRT-LBM are in good agreement with the references data regard-
less of the increase of the Reynolds number. The results near the no-slip boundary do not decrease
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in accuracy; It is, therefore, shown that the bounce-back scheme with the MRT-LBM model can
satisfy the accurate no-slip condition, more accurately. It is assumed that the parameters that affect
the accuracy boundary condition are set correctly in the MRT-LBM relaxation rates. Accordingly,
the relaxation rates must be determined by each flow field.

Through the model comparison, it can be concluded that the MRT-LBM is capable of higher
accuracy calculations compared to the BGK-LBM in lid-driven cavity flows, particularly near the
no-slip boundary.

2.13.3 Detailed verification of the MRT-LBM

We verified the accuracy of the MRT-LBM depending on the spacing grid sizes. The Reynolds
numbers are 1000, 3200, 5000 and 7500 to examine the steady state. The numbers of grids are set
as 128× 128, 256× 256, 512× 512, 1024× 1024 and 2024× 2024. The criterion for steady state is
defined by Equation 2.136.

Figure 2.8 show the ux and uy velocity profiles in the steady state. The results of the MRT-LBM
are is in good agreement with the reference data in all calculation cases. In addition, we calculated
the relative error defined as:

Error =

∣∣∣∣uLBM − uGhia

uGhia

∣∣∣∣× 100 (2.137)

to evaluate the model accuracy, quantitatively; where Error is the relative error, uLBM is the velocity
calculated by the MRT-LBM, and uGhia is the reference data. We did, however, not take the points
where the reference velocity is near 0 into account to avoid a dividing-by-zero.

Figures 2.9 and 2.10 show the relative error for each Reynolds number. The results of the MRT-
LBM become closer to the reference data as the number of calculation grids is larger, particularly
near the solid wall boundary. It is required to set at least 512×512 grid points in less than 5% error
calculation to obtain the accuracy results especially near the solid wall boundary in this benchmark
by the MRT-LBM.

In the case of Re = 7500, the accuracy of the results decreases as the number of computing
points increases, which is in contrast to the other calculation cases. The absolute value of velocity
calculated by the MRT-LBM in the case of Re = 7500 decreases as the number of computing grids
increases, similar to the other Reynolds number cases. In addition, the other Reynolds number
cases increase in accuracy as the number of the computing grids increases; therefore, we hypothesise
that this problem is caused by the coarse grid computing (129 × 129 computing grid) in the data
by [GGS82]. Except for the Re = 7500 case, the MRT-LBM model increases in accuracy as the
number of computing grids increases. It can be concluded that the MRT-LBM has a convergence
of calculation capability that depends on the grid size similar to the other computational fluid
dynamics.
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2.13.4 Periodic solutions of high-Reynolds number flow

In the case of Re = 10000, this Reynolds number is larger than the critical Reynolds number. A
numerical simulation was performed on the MRT-LBM with the Smagorinsky sub-grid-scale model.
The number of computing grids is from 128×128 to 1024×1024. We validated the MRT-LBM using
the time series velocity calculated at the monitoring point, which is set referring to [BS06] because
of difficulty to examine the steady state.

Figure 2.11 shows the time evolution of the dimensionless velocity along the x-axis at monitoring
point (14/16, 13/16), and Fourier transform analysis is performed for the time series velocity signal.
Time, which is the horizontal axis, is a non-dimensional value calculated by the characteristic velocity
U and length L. The time series velocity along the horizontal axis is periodic regardless of the number
of computing grids. Furthermore, the horizontal velocity is smaller as the number of computing
points increases. The diminution converges in the case of 1024 × 1024 computing. The power
spectrum shows one large peak around a frequency of 0.4. The results converge in the 1024× 1024

computing case. Bruneau et al. [BS06] reported that a plurality of peaks appears in Re = 10000

lid-driven cavity flow simulation; we showed that there is one strong peak through the MRT-LBM
Smagorinsky sub-grid-scale model simulation. In addition, because the results of the 512× 512 case
are in good agreement with the 1024× 1024 case, the 512× 512 calculation can ensure accuracy in
Re = 10000 lid-driven cavity flow with the MRT-LBM simulation.

Figure 2.12 also shows the time series velocity profile at the monitoring point. The horizontal
axis is dimensionless velocity along the y-axis, and the vertical axis is dimensionless velocity along
the x-axis. This figure cannot describe a circle if both axis velocities are not periodic. In the MRT-
LBM results, the plotted lines perfectly overlap from 10000 to 10040 times. According to the above
discussion, we conclude the the MRT-LBM Smagorinsky sub-grid-scale model flow field is perfectly
periodic in Re = 10000 lid-driven cavity flow. Sufficient calculation accuracy can be achieved in
more than 512× 512 simulations.

2.13.5 Three-dimensional lid-driven cavity flow

We also carried out a primitive benchmark test for the three-dimensional lattice Boltzmann method
with the multiple-relaxation-time model. Figure 2.13 shows initial setting and calculation param-
eters. The critical Reynolds number of the three-dimensional problem is around 1000. We, thus,
simulated the benchmark until Re = 1000 to investigate the velocity profile in steady state.

Figure 2.14 shows the calculated dimensionless velocity components of the ux and uz profiles in
th steady state along the vertical and horizontal line. All the simulated results are in good agreement
with the reference data [KHT87]. Through the primitive model verification, it can be concluded that
the two and three-dimensional MRT-LBM are capable of high accuracy fluid simulation in low Mach
number. We will expand the three-dimensional MRT-LBM with a free surface flows to enable it a
tsunami modelling in the next chapter.
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2.14 Conclusion

In this chapter, the Euler equations and Navier-Stokes equations were derived from the kinetic
Boltzmann - BGK equation by the Chapman-Enskog expansion. The Chapman-Enskog expansion
and ansatz can also be used to analyse the accuracy of the approximation up to a certain order for
the derivation from the lattice Boltzmann - BGK equation to the Navier-Stokes equations. What’s
more, by the Chapman-Enskog anasatz we can also obtain independent bulk and shear viscosity for
the Navier-Stokes equations. The advanced multiple-relaxation-time (MRT) collision approach was,
moreover, shown to overcome the numerical defects of the conventional Boltzmann - BGK approach.

Finally, we performed a detailed verification of the BGK-LBM and MRT-LBM to investigate
the accuracy in the two and three-dimensional lid-driven cavity flows which is one of primitive
benchmark problems for computational fluid dynamics. From the benchmark tests, the following
conclusions can be drawn:

• Compared to the BGK-LBM, results of the MRT-LBM are in good agreement with the refer-
ence data, particularly near the solid wall boundary. Hence, it appears that no special treat-
ments are required for the simple bounce-back scheme with the MRT-LBM in the benchmark
problem.

• A convergence of calculation capability of the MRT-LBM that depends on the spacing grids
were demonstrated as a computational fluid dynamics through the detailed numerical simula-
tions.

It is observed that, the lattice Boltzmann method should require more computing cells compared
with the conventional incompressible Navier-Stokes solvers such as the finite difference method.
It is assumed that the grid-refinement approach [TFK06, YF09, FL14, KS16] enables the lattice
Boltzmann method to perform a more efficient fluid simulation.
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Figure 2.1: Three-dimensional 19-speed square lattice (D3Q19).

Figure 2.2: Collision and propagation.
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Figure 2.3: The general calculation procedure for the lattice Boltzmann method.
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Figure 2.4: The computational domain of the two-dimensional lid-driven cavity flow.
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Figure 2.5: MPI communication before streaming step for the benchmark [GGS82].
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Figure 2.7: Dimensionless velocity profiles: (a) Re = 100, (b) Re = 400, (c) Re = 1000, (d)
Re = 3200, (e) Re = 5000, (f) Re = 7500.
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Figure 2.8: Dimensionless velocity profiles of the MRT-LBM: (a) Re = 1000, (b) Re = 3200, (c)
Re = 5000, (d) Re = 7500.
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Figure 2.9: Relative error values for ux, (a) Re = 1000, (b) Re = 3200, (c) Re = 5000, (d) Re = 7500.
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Figure 2.10: Relative error values for uy, (a) Re = 1000, (b) Re = 3200, (c) Re = 5000, (d)
Re = 7500.
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Figure 2.11: (a) Horizontal velocity history, (b) the power spectrum.
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Figure 2.12: Phase portrait at the monitoring point.
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Moving Lid:

Calculation parameters

Relaxation rate is given as:

Figure 2.13: The computational domain and calculation parameters for the three-dimensional lid-
driven cavity flow.
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Figure 2.14: Dimensionless velocity profiles of the MRT-LBM along x-axis ux: (a) Re = 100, (b)
Re = 400, (c) Re = 1000, along z-axis uz: (d) Re = 100, (e) Re = 400, (f) Re = 1000.
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Chapter 3

Free surface simulation by the
Volume-of-Fluid method

3.1 Introduction

When the governing equations are solved on a fixed grid such as the lattice Boltzmann method, using
one set of equations for the whole flow field, the different fluids have to be identified in some way.
This is generally done by using a marker function that takes different values in the different fluids.
Sometimes a material property, such as the fluid density for incompressible fluids, can serve as a
marker function, but here we shall assume that the role of the marker function is only to identify the
different fluids. As the fluids move, and the boundary between the different fluids changes location,
the marker function must be updated. Updating the marker function accurately is both critical for
the success of simulations of multiphase flows and also surprisingly difficult. In this chapter, we
discuss the difficulties with advecting the marker function directly and the various methods that
have been developed to overcome these difficulties. Next, we implement the free surface algorithm
in the lattice Boltzmann method for three-dimensional tsunami modellings.

The volume-of-fluid (VOF) method [HN81, You82, Rud97] is the oldest approach to advect
a marker function and - after many improvements and innovations - continues to be widely used.
Other marker function methods include the level-set method [OS88, SSO94, SFSO98, OF01, DSG17],
advanced hybrid VOF/Level-set method [SP00, Sus03], simplified hybrid VOF/Level-set method for
interFoam with OpenFOAM [ADR+13, YOD17], the phase-field method [Jac99, YFLS06, DSS07],
and the cubic interpolated profile (CIP) method [TY87, NY99, YXU01]. Instead of advecting the
marker function directly, the boundary between the different fluids can also be tracked using marker
points, and the marker function then reconstructed from the location of the interface. Methods
using marker points are generally referred to as front-tracking methods to distinguish them from
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front-capturing methods, where the marker function is advected directly.

3.2 Notations

To identify whether a given fluid i is present at a particular location x, we use a Heaviside function
H, defined by:

Hi (x) =

1 (if x is in fluid i)

0 (if x is not in fluid i)
(3.1)

for a two-fluid system, i = 1, 2 and H2 = 1 − H1, so it is sufficient to work with H = H1. As
the interface moves, the shape of the region occupied by each fluid changes, but each fluid particle
retains its identity. Thus, the material derivative of H is zero, or:

DH

Dt
=
∂H

∂t
+ u · ∇H = 0 (3.2)

once H is known, the material properties of each fluid can be found, and the velocity updated.
The colour function C is defined as the average value of H in each computational cell. For a

rectangular two-dimensional cell:

Ci,j =
1

∆x∆y

∫
V

H (x, y) dxdy (3.3)

cells away from the interface are either full, C = 1, or empty, C = 0, but if an interface is located
somewhere in a given cell, C for that cell has a fractional value.

3.3 Advection of the colour function

It is perhaps somewhat counterintuitive that the seemingly simple problem of pushing a piecewise-
constant function around by a prescribed velocity field, using the linear 1-st order advection equation,
should be one of the hard problems in computational science. The difficulty is even more surprising
given the deceptive simplicity of the one-dimensional problem. Yet, the one-dimensional problem
can serve as both an introduction to the difficulties and as a motivation for the various techniques
that have been designed to overcome the difficulties. We shall therefore examine the one-dimensional
problem in some detail here assuming the flow is incompressible so that the velocity is constant,
u = U > 0.

The advection of the colour function is governed by:

∂C

∂t
+
∂F

∂x
= 0 (3.4)
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where F = UC is the flux function. As the interface moves to the right. C flows into cell j through
the left boundary and our through the right boundary. For cell j we denote the left and the right
boundaries by j − 1/2 and j + 1/2, respectively, and the fluxes by Fj−1/2 and Fj+1/2. If the value
of C in cell j at time level n is denoted by Cn

j and the value at the end of a time step ∆t by Cn+1
j ,

then we can write as following:

Cn+1
j = Cn

j − 1

∆x

∫ t+∆t

t

(
Fj+1/2 − Fj−1/2

)
dt (3.5)

or, the change in Cj is the difference between what flows in and what flows out of cell j. Here,
Fj−1/s = UCj−1/2 and Fj+1/2 = UCj+1/2, and the key challenge is to accurately estimate Cj−1/2

and Cj+1/2.
Assuming C in each cell to be a constant, then the integration of the fluxes over time is simple.

The value of C that crosses the j − 1/2 boundary is simply the value in the cell to the left, Cj−1,
and the value of C crossing the j + 1/2 boundary is Cj . Thus, as long as limiting the size of each
time step to ∆tU ≤ ∆, we can update Cj by:

Cn+1
j = Cn

j − U∆t

∆x
(Cj − Cj−1) (3.6)

3.4 The volume of fluid (VOF) method

3.4.1 Introduction

In one dimension, as depicted in Figure 3.1, the answer is embarrassingly simple. Cj is either 0 or
1, except in an interface cell, so the value of Cj in the interface cell yields immediately the exact
location of the interface. If Cj−1 = 1, Cj = 1/3 and Cj+1 = 0 then the interface is ∆x/3 from the
left boundary. If Cj = 1/2, then the interface is in the middle of the cell, and so forth. If U ≥ 0,
then the flux through the left boundary is always U and we can compute exactly the flux through
the right boundary, since we know the exact location of the interface. If U∆t < (1− Cj)∆x, then
the flux is zero; and if U∆t > (1− Cj)∆x, then the flux is first zero and then U after the interface
reaches the right boundary:

∫ t+∆t

t

Fj+1/2dt =

0 (∆t ≤ (1− Cj)∆x/U)

(Cj − 1)∆x+ U∆t (∆t > (1− Cj)∆x/U)
(3.7)

thus, for one-dimensional problems the advection of the marker function is essentially trivial. The
first attempt to extend the advection described by the above equation to higher dimensions was
the simple line interface calculation, or simple linear interface calculation (SLIC) method [NW76].
In this approach the marker function is advected by time splitting, where we advect first in one
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coordinate direction and then in the other (assuming two-dimensional flow). For advection in the
horizontal direction, an interface cell is divided by a vertical line into a full part and an empty part,
with the decision of which side is empty and which is full depending on the volume fraction in the
cells to the left and the right. Once the location of the interface has been determined, the time
integration of the fluxes is done using the above equation. The interface is then advected in the
vertical direction by dividing the cell by a horizontal line into a full and an empty part. In three
dimensions this process obviously must also be repeated for the third coordinate direction. Hirt and
Nichols [HN81] proposed a slightly different method where the interface was still approximated by
straight lines, parallel to the coordinate directions. To determine whether the interface should be
horizontal or vertical, Hirt and Nichols [HN81] have found the normal to the interface, using values
of C in the neighboring cells, and selected the orientation of the interface depending on whether
the normal was more closely aligned with the horizontal or the vertical axis. Although perhaps
more appealing than the original SLIC method, tests by [Rud97] suggest that the [HN81] method
is not significantly more accurate. In addition to distorting the interfaces, both methods generally
generate considerable amount of ”floatsam” and ”jetsam”, where pieces of the interface break away
in an unphysical way.

Although the method of [HN81] perhaps did not improve significantly on the SLIC approach,
it nevertheless suggested that the key to improving the behaviour of the advection scheme was the
reconstruction of the interface in each cell, using the value of the marker function in each cell, along
with the value in the neighbouring cells. In the piecewise linear interface calculation (PLIC) method
introduced by Youngs [You82], the interface is approximated by a straight-line segment in each cell,
but the line can be oriented arbitrarily with respect to the coordinate axis. As of today, Multi-
interface advection and reconstruction solver (MARS) has been proposed by [KK05] as an advanced
PLIC algorithm for multiphase fluid analysis. The orientation of the line is determined by the normal
to the interface, which is found by considering the value C in both the cell under consideration and
in the adjacent cells. Once the interface in each cell has been constructed, the fluxes from one
cell to another are computed by geometric considerations. The result of the advection generally
depends on the accuracy of the interface reconstruction; finding the normal accurately, therefore,
becomes critical for PLIC methods. Several methods have been proposed to do so. Given C in each
cell and the normals, the exact location of the interface can be determined. In two dimensions the
line segment can cross any of two adjacent or opposite cell faces, so there are two basic interface
configurations. In three dimensions there are many more possible configurations, adding considerably
to the complexity of the method.

3.4.2 Basic properties

The volume fraction or colour function C is the discrete version of the characteristic function H. We
will be considering only free surface flows in this thesis, so that the C data represent the fraction of
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each grid cell occupied by reference phase. Furthermore, we restrict our analysis to Cartesian grids
with square cells of side h = ∆x = ∆y for simplicity.

The function C varies between the constant value one in full cells to zero in empty cells, while
mixed cells with an intermediate value of C define the transition region where the interface is
localised.

Low-order VOF methods do not need to specify the location of the interface in the transition
region, but a geometrical interpretation of these methods shows that in two dimensions the interface
line in each mixed cell is represented by a segment parallel to one of the two coordinate axes. The
interface is clearly not continuous across the cell boundary, and the jump usually is of order h,
O (h), as seen in Figure 3.2(b). Higher order methods reconstruct the interface in various ways.
The standard one is the PLIC reconstruction, where the interface in each mixed cell is represented
by a segment perpendicular to the local gradient, m = −∇C, of the scalar function C. There is,
however, still no requirement that the interface be continuous at the cell boundary, but now the
interface discontinuity is usually much smaller and in general it is a function of the grid spacing h.

The VOF method proceeds in two steps:

1. Reconstruction of the interface shape: from the knowledge of the volume fraction in each cell,
one has to build an approximation of the interface. The problem is illustrated in Figure 3.3.
The key issue for the PLIC reconstruction is to find the local normal vector.

2. Advection of the reconstructed interface in a given velocity field. This amounts to exchanging
reference phase volumes across the boundary of neighbouring cells.

We describe these two steps in the following sections using in this thesis. Several qualities are
expected from a VOF method. It preserves mass in a natural way provided the advection method is
adequate. Topology changes, such as those occurring during reconstruction or breakup, are implicit
in the formulation. The extension from two-dimensional to three-dimensional Cartesian geometry
is relatively straightforward. The fraction C data structure is a static matrix on a fixed grid and
does not require any dynamical adjustment, as opposed to a marker approach. Furthermore, the
algorithms are local, in the sense that only the C values of the neighbouring cells are needed to
update the C value in a given cell. For this reason, it is relatively simple to implement these
algorithms in parallel, in the framework of domain decomposition techniques.

Of all these qualities, the mass conservation is specific to the VOF technique. Let us consider the
multidimensional version of the advection equation for the marker function H for an incompressible
flow:

∂H

∂t
+∇ · (uH) = 0 (3.8)

we first integrate this equation over the square cell (i, j) of side h of a Cartesian two-dimensional
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grid and use the definition of the colour function C:

h2
∂Ci,j (t)

∂t
+

∫
Γ

u · nH (x, t) dl = 0 (3.9)

where Γ is the cell boundary line and n the outgoing unit normal. Finally, we integrate the above
equation in the time ∆t = tn+1 − tn to get:

h2
(
Cn+1

i,j − Cn
i,j

)
= −

(
Φn

x:i+1/2,j − Φn
x:i−1/2,j

)
−
(
Φn

y:i,j+1/2 − Φn
y:i,j−1/2

)
(3.10)

where the flux Φn
x:i+1/2,j denotes the reference phase area crossing the right side of the cell in the time

∆t. By summing the above equation over all the grid cells with appropriate boundary conditions,
the internal fluxes cancel out in pairs and we get:

∑
ij

Cn+1
i,j =

∑
ij

Cn
i,j (3.11)

which leads to conservation of the total area. Notice that in writing expression the Equation 3.10
we have implicitly assumed that the numerical algorithm does not generate unphysical overshoots,
C > 1, or undershoots, C < 0, in the volume fraction and that it dose not flux some area twice
across the cell boundary.

3.5 Interface reconstruction

For PLIC methods the reconstruction is basically a two-step procedure. In any given cell the normal
m (the notation n is used for the unit normal, i.e. n = m/‖m‖) is first determined from the
knowledge of the colour function in this cell and in the neighbouring ones. The equation of the
interface segment is then written as:

m · x = mxx+myy = α (3.12)

Geometrically, the interface line given as the above equations is moved along the normal direction,
i.e. the parameter α is adjusted, until the area under the interface equals h2Ci,j .

3.6 Convergence order of a reconstruction method

The numerical estimate of the integral of a given function f (x) geometrically requires the evaluation
of the area comprised between the graph of the function and the coordinate x-axis. When we
reconstruct an interface from the volume fraction data we are actually solving the inverse problem:
we know the area under the interface line and we want to find the function.

61



To integrate a function f (x) we can subdivide the range a ≤ x ≤ b into n equal subintervals
of size h = ∆x = (b− a) /n. In particular, in the trapezoidal rule we approximate the function
with a piecewise linear interpolation and in each subinterval the area under the function is given
by the area of a right trapezoid, as shown in Figure 3.4. The truncation error in the evaluation
of the area spanned by the function, which is supposed to have continuous second derivatives, is
proportional to f ′′ (ξ)h2, with a ≤ ξ ≤ b. Hence, the trapezoidal rule is a second-order method,
O
(
h2
)
, and a straight line, by having a zero second derivative, is reproduced correctly. In Figure 3.4

we see that the line arc is approximated differently by the trapezoidal rule and a typical PLIC-VOF
reconstruction. However, it is reasonable to require that a second-order reconstruction algorithm
should have a similar truncation error. Reconstruction techniques that do not reproduce an arbitrary
straight line exactly are lower than second order, i.e. they are O (hn) with n < 2. A method that
approximates interfaces as circle arcs could be third order, which is very high for a VOF method.
In our opinion it is not practical to attempt to develop VOF methods with polynomials of such an
order, in particular in three dimension.

3.7 Evaluation of the interface unit normal

The choice of the method used to calculate the interface normal is independent of the other steps:
it can be based on a finite-difference approximation of the volume fraction gradient ∇C or satisfy
some other minimizing criteria. All the algorithms described in this section use a 3× 3 block of cells
to determine the approximate interface in the central cell of the block. In Figure 3.2(c) this central
cell is denoted by the two indices (i, j).

3.7.1 Youngs’ finite-difference method

In this method, developed by [You84], the normal m of the equations of the interface segment is
estimated as a gradient:

m = −∇hC (3.13)

with finite differences. We first evaluate the normal vector m at the four corners of the central cell
(i, j); for example, the components of m in two dimension on the top-right corner are given by:

mx:i+1/2,j+1/2 = − 1

2h
(Ci+1,j+1 + Ci+1,j − Ci,j+1 − Ci,j) (3.14)

my:i+1/2,j+1/2 = − 1

2h
(Ci+1,j+1 − Ci+1,j + Ci,j+1 − Ci,j) (3.15)
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and similarly for the other three corners. The cell-centred vector is finally obtained by averaging
the four cell-corner values:

mi,j =
1

4

(
mi+1/2,j+1/2 +mi+1/2,j−1/2 +mi−1/2,j+1/2 +mi−1/2,j−1/2

)
(3.16)

This finite-difference scheme does not reproduce any straight line exactly. This may by shown
by working out the expressions in a particular case, for instance by considering the line y = 2x/3+h

in the 3× 3 block of cells of side h with the origin in the bottom-left corner.

3.7.2 Centred-columns difference method

In the same block of cells the volume fractions can be added column-wise along the vertical direction
to define the height function y = f (x), or row-wise for the width function x = g (y). For example,
the height yi−1 at the abscissa xi−1, placed in the centre of the column as shown in Figure 3.5(a),
is given by the expression hyi−1 = h2

∑1
k=−1 Ci−1,j+k, while in Figure 3.5(b) the width xj+1 at the

ordinate yj+1 is hxi−1 = h2
∑1

k=−1 Ci+k,j+1. The height yi−1 is placed exactly on a linear interface
only if the straight line cuts the two vertical sides of the column (Figure 3.5(a) and (c) for two
different cases). We approximate the height function y = f (x) in the central cell of the block with
the linear equation:

sgn (my) y = −mxx+ α′ (3.17)

and compute the slope of the straight line with a centred scheme, mx = mxc,

mxc = − 1

2h
(yi+1 − yi−1) = −1

2

1∑
k=−1

(Ci+1,j+k − Ci−1,j+k) (3.18)

since my = −∂C/∂y, we compute the sign of the variation of C along the y-direction with centred
finite differences. We have to calculate explicitly the sing of my, because by adding C column-wise
we lose information about which phase is on the top or on the bottom of the block of cells.

We can also describe the interface line with the width function x = g (y) and approximate it
linearly with:

sgn (mx)x = −myy + α′′ (3.19)

and similarly compute my as:

myc = − 1

2h
(xj+1 − xj−1) = −1

2

1∑
k=−1

(Ci+k,j+1 − Ci+k,j−1) (3.20)

it is evident from Figure 3.5 that when a linear interface cuts two opposite sides of the block of cells,
one of the two representations gives the correct slope, mxc in case (a) and myc in case (b). In case
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(c), where the interface cuts two consecutive sides, the centred-columns scheme does not compute the
correct slope. As a matter of fact, a wider stencil with more columns or rows should be used; however,
backward and forward difference schemes can also be considered. Since the centred-columns scheme
cannot reconstruct any straight line exactly, it is not second order. Furthermore, the interface shape
is not actually known, so we need a strategy to select one between the two numerically computed
values myc and mxc. To this aim we define a simple criterion based on the reconstruction of a linear
interface. We consider the two linear equations y = mxx + α′ and x = myy + α′′ and notice the
following conditions between the two coefficients mx and my: |mx| = |my| = 1 for a straight line
with a 45-degree slope, |mx| = 1/|my| < 1 for the line shown in Figure 3.5(a) and |my| = 1/|mx| < 1

in Figure 3.5(b). Therefore, to reconstruct exactly the straight line in the two case (a) and (b), we
have to select the angular coefficient with the minimum absolute value:

|m∗| = min (|mxc|, |myc|) (3.21)

in the centred-columns method, we have considered a centred scheme to compute the angular coef-
ficient, but one can also use forward or backward finite differences, as in the efficient least-squares
VOF interface reconstruction algorithm (ELVIRA) method. A different criterion should be applied
when we have two or more estimates for the same angular coefficient, say mx. In Figure 3.5(c), yi−1

overestimates the local value of the height function and the absolute value of mxc, based on the
centred scheme, is smaller than the angular coefficient of the straight line. Hence, if we have two
different estimates for the same angular coefficient, say mx1 and mx2, we now choose:

|m∗| = max (|mx1|, |mx2|) (3.22)

with these two simple criteria we can reconstruct any linear interface, but they may not be very
efficient in the case of a curved interface.

3.7.3 Parker and Youngs’ method

This method is the most efficient and high-precision approach to calculate an interface normal by
an explicitly way. In this method, due to [PP04], one calculates an approximation to ∇C, which is
taken to point in the direction normal to the approximate interface. One calculates ∇C with the
following difference scheme:

∂C

∂x
=
CE − CW

2h
(3.23)

∂C

∂y
=
CN − CS

2h
(3.24)
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in two dimension; where the variables CE , CW , CN and CS are centred in the cells as shown in
Figure 3.6 and are given by:

CE =
1

2 + α
(Ci+1,j−1 + αCi+1,j + Ci+1,j+1) (3.25)

CW =
1

2 + α
(Ci−1,j−1 + αCi−1,j + Ci−1,j+1) (3.26)

CN =
1

2 + α
(Ci−1,j+1 + αCi,j+1 + Ci+1,j+1) (3.27)

CS =
1

2 + α
(Ci−1,j−1 + αCi,j−1 + Ci+1,j−1) (3.28)

where α is a free parameter. Parker and Youngs has repeated that α = 2 seems to give the best
results. In order to determine how well Parker and Youngs’ method approximates straight lines, we
consider the line y = x/3 + h in Figure 3.7(a) The volume fractions due to this line are shown in
Figure 3.7(b). The values of CE , CW , CN and CS can be calculated as:

CE =
1

α+ 2

(
5α

6
+ 1

)
(3.29)

CW =
1

α+ 2

(
α

6
+ 1

)
(3.30)

CN = 0 (3.31)

CS =
1

α+ 2
(1 + α+ 1) = 1 (3.32)

and hence:
∂C

∂x
=
CE − CW

2h
=

α

3 (α+ 2)h
(3.33)

∂C

∂y
=
CN − CS

2h
= − 1

2h
(3.34)

the slope of the appropriate interface is therefore:

m̄ = −∂C/∂x
∂C/∂y

=
2α

3 (α+ 2)
(3.35)

the correct slope of the line is m = 1/3. Thus if we wish to choose α so that:

m =
2α

3 (α+ 2)
=

1

3
(3.36)

We must have α = 2. In other words, only the value of α = 2 will yield the correct linear interface
y = x/3+h, We now show that choosing α = 2 does not result in an algorithm that reconstructs all
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lines exactly. Consider the line y = 2x/3 + h shown in Figure 3.7(c). The volume fractions due to
this line are shown in Figure 3.7(d). When α = 2 the values CE , CW , CN and CS can be calculated
as:

CE =
1

4

(
1 + 2 +

2

3

)
=

11

12
(3.37)

CW =
1

4

(
1 +

2

3
+ 0

)
=

5

12
(3.38)

CN =
1

4

(
0 +

2

12
+

2

3

)
=

5

24
(3.39)

CS =
1

4
= (1 + 2 + 1) = 1 (3.40)

and hence:
∂C

∂x
=
CE − CW

2h
=

1

2h

(
11

12
− 5

12

)
=

1

4h
(3.41)

∂C

∂y
=
CN − CS

2h
=

1

2h

(
5

24
− 1

)
= − 19

48h
(3.42)

the slope of the appropriate interface is therefore:

m̄ = −∂C/∂x
∂C/∂y

=
1

4

48

19
=

12

19
(3.43)

Since the correct slope is m = 2/3, we conclude that [PP04] algorithm does not reconstruct all
linear interfaces exactly as same as [You84] method.

Note that the quantity in the above result is independent of the grid with h. This implies that
the approximation to the slope does not improve as h → 0; i.e., in general this algorithm makes
an O (1) error in the slope of the interface. We therefore conclude that [PP04] algorithm is at best
first-order accurate and have used the scheme to evaluate the interface normal in this thesis.

In three dimension, the gradient ∇hC is obtained from the surrounding cell fluid fraction values:

∇hC =
1

2h


C̄x (x+ 1, y, z)− C̄x (x− 1, y, z)

C̄y (x, y + 1, z)− C̄y (x, y − 1, z)

C̄z (x, y, z + 1)− C̄z (x, y, z − 1)

 (3.44)

where C̄x,y,z (x) are averaged values of the neighbouring cells as:

C̄x (x, y, z) =

1∑
i=−1

1∑
j=−1

C (x, y + i, z + j) · wi,j (3.45)

C̄y (x, y, z) =

1∑
i=−1

1∑
j=−1

C (x+ i, y, z + j) · wi,j (3.46)
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C̄z (x, y, z) =

1∑
i=−1

1∑
j=−1

C (x+ i, y + j, z) · wi,j (3.47)

where wi,j is the weighting factor similar to α in two dimension. In three dimension, the following
weights produce the best results:

w0,0 = 4, w±1,0 = w0,±1 = 2 and w±1,±1 = 1 (3.48)

3.7.4 The ELVIRA method

Other high order schemes can be used to determine the interface normal m. One of them is
the efficient least squares volume-of-fluid interface reconstruction algorithm (ELVIRA) introduced
by [PP04]. We consider the height function y = f (x), and for the slope mx we compute the centred
scheme and also the backward and forward estimates mxc, mxb and mxf , which are given by the
following expressions:

mxc = − 1

2h
(yi+1 − yi−1) = −1

2

1∑
k=−1

(Ci+1,j+k − Ci−1,j+k) (3.49)

mxb = − 1

h
(yi − yi−1) = −

1∑
k=−1

(Ci,j+k − Ci−1,j+k) (3.50)

mxf = − 1

h
(yi+1 − yi) = −

1∑
k=−1

(Ci+1,j+k − Ci,j+k) (3.51)

and similarly we compute myc, myb and myf for the angular coefficient my of the width function.
There are now six different choices and a criterion has to be designed in order to select the best linear
approximation. In the ELVIRA strategy the choice is done by minimizing a measure of the error
between the volume fractions given by true and approximate interfaces. For each of the six normal
vectors mn, with 1 ≤ n ≤ 6, the corresponding value of the line constant αn is first determined by
area conservation in the central cell. Then the approximate linear interface is drawn across the whole
3 × 3 block of cells, defining a new volume fraction value C̃ in each of the surrounding eight cells.
The normalised area in the cell (k, l) under the line corresponding to the normal mn is h2C̃k,l (mn),
and the area error in L2 is:

E (n) = h2
i+1∑

k=i−1

j+1∑
l=j−1

(
C̃k,l (mn)− Ck,l

)2
(3.52)

and in L∞ it is:
E (n) = h2 max |C̄k,l (mn)− Ck,l| (3.53)
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The selected value of mn among the six angular coefficients is the one that minimises E. It is
easy to verify that there is always at least one selection that reproduces correctly a straight line
even when it cuts two consecutive sides of the block of cells, as in Figure 3.5(c), since the line is
constrained to go across two consecutive rows or columns at least. For a tessellation of the plane
with rectangular cells of equal size, this algorithm requires a 3× 3 block of cells to reconstruct any
linear interface; however, a wider stencil is required when the cell size is not constant across the
computational domain. The ELVIRA method has the drawback of being relatively slow, especially
in three dimensions, where the number of evaluations of the predicted volume fractions C̄k,l,p (mn)

becomes large.

3.8 Determination of the interface parameter

Once the normal m has been calculated, the non-homogeneous term α of the interface segment
equation is determined by enforcing area conservation. With reference to Figure 3.8, for a more
general rectangular cell, of sides ∆x and ∆y in two dimension, it can be computed with an iterative
procedure that requires an estimate of α, the determination of the area A (α) of the polygon ABFGD,
and its comparison with the value ∆x∆yC, until the difference between the two areas is below some
prescribed tolerance. In other terms, we have to find a zero of the nonlinear function:

h (α) = A (α)−∆x∆yC (3.54)

with a root-finding algorithm (e.g., Brent method). The area of ABFGD can be found by collecting
in counterclockwise order the coordinates (xi, yi) of its vertices and by using the following formula
for the area A of a n-sided polygon:

A =
1

2

n∑
k=1

(xkyk+1 − xk+1yk) (3.55)

where vertex n + 1 coincides with vertex 1 We describe an alternative approach [SZ00] which is
not iterative and that relies heavily on the symmetry of Cartesian cell so that, with proper mirror
reflections about the coordinate axes, the interface segment equation has both coefficients mx and
my positive, as shown in Figure 3.8. In this case the area V of the polygon ABFGD is given by the
expression:

V =
1

2mxmy

[
α2 − F2 (α−mx∆x)− F2 (α−my∆y)

]
(3.56)

where Fn (z) = zn when z > 0 and zero otherwise. the three contributions to V represent the areas
of the similar triangles AEH, BEF and DGH. The expression the about equation is a quadratic
function of α when the interface line cuts two consecutive cell sides, then one of the two cut figures
is a triangle, and it is linear when the two intersections with the cell boundary are on opposite sides.
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Furthermore, it is a continuous, strictly monotonically increasing function of α and it can be easily
inverted.

In three-dimensional space with Cartesian coordinates (x1, x2, x3) we consider a rectangular
parallelepiped of sides ∆x1, ∆x2, ∆x3 and a plane with normal vector m = (m1,m2,m3) given by:

m · x = m1x1 +m2x2 +m3x3 = α (3.57)

In the standard forward problem we assume that the three coefficient mi are all positive and we
need to determine the cut volume ABGHKNML of the rectangular cell which is also below the given
plane shown in Figure 3.9. Then the function f (x1, x2, x3) = m1x1 +m2x2 +m3x3 − α is negative
at point A and positive at point F , while the vector m is pointing toward the region where f is
positive. If we interchange the two species the normal vector reverses its orientation, the coefficients
mi are now negative, and the volume of interest becomes DCFEKNML. The volume ABGHKNML
in three dimension is given by:

V =
1

6m1m2m3

[
α3 −

3∑
i=1

F3 (α−mi∆xi) +

3∑
i=1

F3 (α− αmax +mi∆xi)

]
(3.58)

where αmax =
∑

imi∆xi.
For the moment, we restrict an analysis to a unitary cube, i.e. ∆xi = 1; also normalise the

plane equation by dividing it by (
∑

imi); then αmax =
∑

imi = 1. The normalisation of the two-
dimensional problem is similar. Later we will generalise this procedure to negative mi and to a
rectangular parallelepiped. We can now summarise some useful properties:

1. V is a continuous, one-to-one, monotonically increasing function of α with continuous first
derivative,

2. Both V and α vary in the range [0, 1],

3. The expression for V is invariant with respect to a permutation of the indices, so we need to
consider only one case, say m1 ≤ m2 ≤ m3 in three dimension and m1 ≤ m2 in two dimension,

4. The graph of V has odd symmetry with respect to the point (V, α) = (1/2, 1/2), so we can
restrict the analysis to the range 0 ≤ α ≤ 1/2,

5. In three dimension we let m12 = m1 +m2 and m = min (m12,m3); then V varies cubically
in the region 0 ≤ α ≤ m1, quadratically in m1 ≤ α ≤ m2, again cubically in m2 ≤ α ≤ m,
and finally in m ≤ α ≤ 1/2 cubically if m = m3 and otherwise linearly if m = m12; in two
dimension with m = m1, V varies quadratically in the region 0 ≤ α ≤ m and linearly in
m ≤ α ≤ 1/2,

69



6. In the interval 0 ≤ α ≤ 1/2 and for arbitrary mi there is a lower bound for V (α). In three
dimension this line is realised for m1 = m2 = m3 = 1/3, corresponding to a plane cutting each
coordinate plane with a 45◦-angle line, and it is a quadratic function of α: V = 2α2,

7. In the same region there is also an upper bound. In three dimension this is the line with
m1 = m2 = 0 and it represents a plane parallel to one of the three coordinates planes. The
function V (α) is linear: V = α. In two dimension the same linear function is obtained with
m1 = 0, representing a line parallel to one of the two coordinate axes.

8. In three dimension, the limit m1 → 0 is smooth: the lines become those of the two-dimensional
problem. In particular, the first cubic region collapses into the origin, the quadratic one extends
itself to 0 ≤ α ≤ m2 = m, the next cubic region collapses to the point of the line at α = m,
and finally the straight line, since now m3 = (1−m) ≥ m12 = m, extends itself to the interval
m ≤ α ≤ 1/2. The further limit m2 → 0 is also smooth with the quadratic region collapsing
into the origin.

From the above discussion, in two-dimensional forward problem we have:

V =


α2

2m (1−m)
(0 ≤ α < m)

α

1−m
− V1 (m ≤ α ≤ 1/2)

(3.59)

the two-dimensional inverse problem is specified by:

α =


√

2m (1−m)V (0 ≤ V < V1)

V (1−m) +m/2 (V1 ≤ V ≤ 1/2)
(3.60)

where V1 = m/2 (1−m). Notice that the limit m = 0 is correctly described by these expressions.
Similarly, in three dimension forward problem is:

V =
α3

6m1m2m3
for 0 ≤ α < m1 (3.61)

V =
α (α−m1)

2m2m3
+ V1 for m1 ≤ α < m2 (3.62)

V =
α2 (3m12 − α) +m2

1 (m1 − 3α) +m2
2 (m2 − 3α)

6m1m2m3
for m2 ≤ α < m (3.63)

for the fourth interval there are two possible cases, one for m = m3 < m12 and the other for
m = m12 < m3:

V =
α2 (3− 2α) +m2

1 (m1 − 3α) +m2
2 (m2 − 3α) +m2

3 (m3 − 3α)

6m1m2m3
for m3 ≤ α < 1/2 (3.64)
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V =
2α−m12

2m3
for m12 ≤ α < 1/2 (3.65)

the three-dimensional inverse problem is given by:

α = 3
√
6m1m2m3V for 0 ≤ V < V1 (3.66)

α =
1

2

(
m1 +

√
m2

1 + 8m2m3 (V − V1)

)
for V1 ≤ V < V2 (3.67)

P (α) = a′3α
3 + a′2α

2 + a′1α+ α′
0 = 0 for V2 ≤ V < V3 (3.68)

again there are two cases in the fourth interval, one for V3 = V31 < V32 and the other for V3 = V32 <

V31:
P (α) = a′′3α

3 + a′′2α
2 + a′′1α+ α′′

0 = 0 for V31 ≤ V < 1/2 (3.69)

α = m3V +
m12

2
for V32 ≤ V < 1/2 (3.70)

in the previous relations V1 = m2
1/ (max (6m2m3, ε)), which is an approximation of the value

m2
1/6m2m3. This approximation is needed because the limit for V1 as m1, m2 → 0 is zero; however,

numerically we must prevent the denominator of V1 from becoming zero, so ε is an arbitrary small
number. Aside from that, the above set of expressions for V and α is well behaved numerically for
all possible mi. The other limiting values of the range of validity of each relation are given by the
following expressions:

V2 = V1 + (m2 −m1) /2m3 (3.71)

V3 = V31 =
[
m2

3 (3m12 −m3) +m2
1 (m1 − 3m3) +m2

2 (m2 − 3m3)
]
/ (6m1m2m3) (3.72)

when m = m3 or V3 = V32 = m12/2m3 when m = m12. For the coefficients of the two cubic
polynomials we have a′3 = −1, a′2 = 3m12, a′1 = −3

(
m2

1 +m2
2

)
, a′0 = m3

1 + m3
2 − 6m1m2m3V ,

a′′3 = −2, a′′2 = 3, a′′1 = −3
(
m2

1 +m2
2 +m2

3

)
, a′′0 = m3

1 +m3
2 +m3

3 − 6m1m2m3V .
In the third and fourth regions, when V31 ≤ V ≤ 1/2, there is the need to find the roots of the

cubic polynomial P (α). An analytical solution can be easily found following [AS64]. With a3 = 1,
the discriminant ∆ = p30 + q30 is negative, and P (α) has three real roots (α1, α2, α3). However, only
α2 satisfies the requirement that P (α) is an increasing function of α:

α =
√
−p0

(√
3 sin θ − cos θ

)
− a2

3
(3.73)

where we have set p0 = a1/3− (a2/3)
2, (a1a2 − 3a0) /6− (a2/3)

3, and cos (3θ) = q0/
√
−p30.

As of today, a simple algorithm has been proposed by [Kaw16] to determine the interface param-
eter α. This approach is much more suitable for high-performance computing in single instruction
multiple data (SIMD). We, even through, used the original algorithm in this thesis, because the
bottleneck of the fluid simulation is not the advection of the free surface but the iterative computing
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for the Poisson equation in the conventional incompressible Navier-Stokes simulation.

3.9 Geometrical one-dimensional linear-mapping method

In PLIC methods the interface is first reconstructed by a discontinuous piecewise linear line and then
advected in a given velocity field up to the next discrete time. This evolution may be approximated
with geometrical methods, by computing the reference phase fluxes across the cell boundary.

In the geometrical approach [PAB+97], a deep insight on interface advection can be gained by
expressing one-dimensional advection schemes along the x-direction as different mappings of the
plane onto itself. The mappings possess the remarkable property that the consistency condition
0 ≤ C ≤ 1 is satisfied after advection in each grid cell.

We discuss two different linear mappings. In the first one we advect in a given one-dimensional
velocity field each grid cell and then we mark out the deformed cells in the original grid to update
the volume fraction data; hence the name out-of-cell. By contrast, in the onto-cell mapping we
compute the area that will be advected into each grid cell.

3.9.1 Operator splitting

In one-dimensional advection we follow the interface as it is advected by a discretised velocity fields
u (x). In two dimensions, one-dimensional advections in the two directions are performed in sequence.
To reduce possible asymmetries induced by the splitting we can consider first a motion along the
x-direction and then along y on odd time steps and vice versa on even time steps. For three-
dimensional Cartesian grids we need three one-dimensional sweeps and a more complex sequence of
sweep direction orders.

3.9.2 The out-of-cell explicit linear mapping

Consider the case in which we perform the advection along the x-axis first. In the linear mapping
method the reconstructed interface at time step n is mapped on the interface at time tn+1 by a
linearised velocity field. Each end point of the interface segments is moved with and interpolated
velocity. Consider the motion x (t) of a particle in the velocity field u (x). The equation of motion
is dx/dt = u (x). An explicit first-order scheme for its integration is:

x
(
tn+1

)
= x (tn) + u [x (tn)]

(
tn+1 − tn

)
(3.74)

Before proceeding further, it is useful to rescale space and time in grid spacing and time step units.
Using dimensions of h and ∆t = tn+1− tn, the new non-dimensional physical variables are x′ = x/h,
t′ = t/∆t, and u′ = u∆t/h. Notice that the x-component of the velocity vector is now a CFL
number. The grid cells are mapped to unit squares and the origin of the local coordinate system
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is in the lower-left corner. From now on, we drop the primes when using the cell non-dimensional
variables; then:

x
(
tn+1

)
= x (tn) + u [x (tn)] (3.75)

To complete the integration of the equation of motion we need an approximation of u. We label
with

∑
the unit area of the cell (i, j) and consider a linear interpolation of the u velocity between

the two values ui−1/2,j , on the left edge of the MAC cell, and ui+1/2,j , on its right edge:

u (x) = ui−1/2,j (1− x) + ui+1/2,jx (3.76)

combining the above equations we see that the updated position of the point x′ = x
(
tn+1

)
is a

function of the old coordinates: x′ = bx+ ui−1/2,j

y′ = y
(3.77)

where b = 1 + ui+1/2,j − ui−1/2,j . This equation describes a linear mapping x′ = TE
x (x). The

mapping of the whole computational domain is piecewise linear, each piece transforming a square
cell

∑
of the grid onto a rectangular Γx:

Γx = TE
x

(∑)
(3.78)

In Figure 3.10 we show the case where the velocity field compresses the square, but depending
on the velocity values the square may also be expanded and shifted to the left or to the right
as well. Because the mapping is linear, straight lines are transformed into straight lines and the
reconstructed interface is easily advected and then remapped onto the original mesh. In the case
depicted in Figure 3.10 the new volume fraction in the central cell

∑
is obtained by adding the three

area contributions from the central and the two adjacent cells after their transformation by TE
x :

Cn+1
i,j = D + E + F (3.79)

The three-dimensional extension is straightforward, except that D, E and F are now polyhedra
obtained by cutting right hexahedra by the transported planar interface elements. Their volume is
computed by the technique described in the above section. It is important to stress that the entire
plane is partitioned in a tessellation made of image rectangles such as Γx (Figure 3.11). In other
words, the Γx rectangles do not overlap or leave empty space, which ensures that area is properly
advected. The method has the important feature that the updated volume fraction C satisfies
0 ≤ C ≤ 1. This is because the volume fraction is computed as the sum of the three areas D, E,
and F .
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It is now possible to construct a two-dimensional advection method with two consecutive out-of-
cell explicit linear mappings:

1. reconstruct the interface at time step tn,

2. perform the advection along x-axis by using the mapping TE
x to move the two interface end

points in each cut cell,

3. from the updated position of the end points, compute the areas with the expressions given in
the above section and update an intermediate volume fraction field C∗:

C∗
i,j = Dx + Ex + Fx (3.80)

4. reconstruct the interface from the C∗ data,

5. perform the advection along the y-axis by using the TE
y to compute in a similar way:

Cn+1
i,j = Dy + Ey + Fy (3.81)

the extension to three dimensions requires three reconstructions and three one-dimensional advec-
tions. This method has a major disadvantage: it does not preserve volume and mass exactly. To
achieve mass conservation it must be combined with a different one-dimensional advection scheme.

3.9.3 The onto-cell implicit linear mapping

To construct this new mapping instead of the explicit method, we consider an implicit first-order
scheme to integrate the equation of motion:

x
(
tn+1

)
= x (tn) + u

[
x
(
tn+1

)]
(3.82)

but notice that the x-position at time tn+1 is calculated with the velocity field u at time tn. By
using the above equation we find that the action of the mapping x′ = T I

x (x) reads in components:x′ = ax+ aui−1/2,j

y′ = y
(3.83)

where a = 1/
(
1− ui+1/2,j + ui−1/2,j

)
. Consider now the pre-image Γx of the central square

∑
of

Figure 3.12 by T I
x ; then ∑

= T I
x (Γx) (3.84)
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We compute the new volume fraction in the central cell by considering the area of the reference
phase in Γx sent onto

∑
:

Cn+1
i,j = D + E + F (3.85)

where the three area contributions are defined in Figure 3.12. For clarity, we point out a few
differences between the two mappings TE

x and T I
x . In particular, the width of the area D is ui−1/2,j

in Figure 3.10 and aui−1/2,j in Figure 3.12. Furthermore, the slope of the advected interface changes
in a different way, since the coefficient of the linear mapping is b for TE

x and a for T I
x . Finally, it is

important to stress that, as in the explicit mapping, the whole computational domain is partitioned
in a tessellation made of pre-image rectangles such as Γx. This ensures that no area is lost or fluxed
twice; however, the sequence of two consecutive onto-cell implicit mappings in the x and y-directions
does not conserve the area.

3.9.4 Combined linear mapping

A remarkable conservation property is achieved when we combine the two mappings. Indeed, the
mapping sequence T I

x followed by TE
y conserves area/mass exactly. When the initial rectangle

Γx is mapped onto
∑

, the reference phase area is compressed (or expanded) by the factor a =

1/
(
1− ui+1/2,j + ui−1/2,j

)
. Then, when

∑
is mapped onto a new rectangle Γx, it is expanded (or

compressed) by the mapping TE
y , which reads:x′ = x

y′ = by + vi,j−1/2

(3.86)

with b = 1 + vi,j+1/2 − vi,j−1/2. The combination of the two mappings leads to the following
two-dimensional advection scheme:

1. reconstruct the interface at time step tn,

2. perform the advection along x-axis by using the onto-cell mapping T I
x and get the provisional

scalar field C∗:
C∗

i,j = Dx + Ex + Fx (3.87)

3. reconstruct the interface from the C∗ data,

4. perform the advection along the y-axis by using the out-of-cell mapping TE
y and get:

Cn+1
i,j = Dy + Ey + Fy (3.88)
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The area of Γy = TE
y (
∑

) = TE
y T

I
x (Γx) is the area of Γx multiplied by:

ab =
1 + vi,j+1/2 − vi,j−1/2

1− ui+1/2,j + ui−1/2,j
(3.89)

but for an incompressible flow the divergence-free condition on a staggered MAC grid with square
cells reads:

ui+1/2,j − ui−1/2,j + vi,j+1/2 − vi,j−1/2 = 0 (3.90)

then ab = 1 and Γy = Γx. Thus, for an incompressible flow, the area is conserved exactly and
the consistency condition 0 ≤ C ≤ 1 is always satisfied. To minimise asymmetries, the combined
mapping TE

y T
I
x at one time step should be alternated with TE

x T
I
y at the next time step. Finally,

notice that if we consider the mapping T I
y T

E
x TE

y T
I
x , the velocity components of different cells appear

in the two coefficients a and b; then the above equation does not apply and the area is not conserved.
An extension to three dimensions has been proposed by [AMSZ03, AMSZ07]. The velocity field

u = (u, v, w) may be split in the three fields u1 = (u1, v1, 0), u2 = (u2, 0, w2), u3 = (0, v3, w3),
where each field ui is assumed to be incompressible, ∇·ui = 0, and u1+u2+u3 = u. There are six
scalar equations for the six unknowns (u1, v1, u2, w2, v3, w3), but only five of them are independent.
For example, if u1 and u2 satisfy ∇ · u1 = ∇ · u2 = 0, then u3 = u − u1 − u2, but in this case
∇ · u3 = ∇ · (u− u1 − u2) = 0 is automatically satisfied. Therefore, it is possible to exploit this
degree of freedom to specify one of the six unknowns and, starting from the boundary where the
velocity field is given, to compute on a staggered MAC grid the velocity field components which are
still unknown by solving the divergence-free equations.

3.10 Related one-dimensional advection methods

The terminology we have employed in the previous section is not the most widespread one. Instead,
for historical reasons one often refers to Eulerian and Lagrangian methods. The two linear mappings
have been naturally derived from an explicit or implicit Lagrangian point of view. In Lagrangian
methods, particles or markers are transported in space by the velocity field. The velocity is defined
at the grid nodes and needs to by interpolated to the points where markers are located. If a fixed grid
is used, then a Lagrangian method requires the interface after its advection to be projected back to
the underlying grid to calculate local field values. On the other hand, in Eulerian methods the field
values are updated at the local grid points or cells. For the volume fraction field this is performed by
exchanging area fluxes between adjacent cells. The difference between the two methods is illustrated
in Figure 3.13.
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3.10.1 One-dimensional advection equation for the volume fraction

We consider again the advection equation, for the marker function for an incompressible flow:

∂H

∂t
+∇ · (uH) = H∇ · u = 0 (3.91)

For operator split schemes we consider the one-dimensional version of the above equation, integrate
it over the square cell (i, j), and consider for the term ∂u/∂x and average value across the cell:

h2
∂Ci,j (t)

∂t
+

∫
Γ

u · nH (x, t) dl = h2Ci,j (t)
∂u

∂x
(3.92)

where the term on the right-hand side represents a one-dimensional compression or expansion that
may differ from zero even if the multidimensional flow is incompressible, as pointed out by [RK98].
We integrate this equation in time, approximate the velocity derivative with a centred finite-
difference scheme, and use again non-dimensional variables:

Cn+1
i,j = Cn

i,j − Φ̄i+1/2,j + Φ̄i−1/2,j + C̄i,j

(
ui+1/2,j − ui−1/2,j

)
(3.93)

there are different choices for C̄i,j , but once we have selected one we have to compute properly the
fluxes Φ̄i+1/2,j and Φ̄i−1/2,j . The geometrical method will help us to calculate correctly the fluxes.

3.10.2 The Lagrangian explicit scheme

We have used the scheme for advection calculation in this thesis. We set C̄i,j = Cn
i,j in the above

equation, then the scheme is explicit and we get:

Cn+1
i,j = bCn

i,j − Φ̄i+1/2,j + Φ̄i−1/2,j (3.94)

where b = 1 + ui+1/2,j − ui−1/2,j is the contraction/expansion coefficient of the out-of-cell linear
mapping. With reference to Figure 3.10, where the cell area

∑
is mapped onto Γx, the term bCn

i,j is
the value of the area E. Therefore, the two fluxes Φ̄ of the above equation must be equal to the two
areas D and F of Figure 3.10. This Lagrangian scheme for interface advection was first introduced
by Li. If the two fluxes are not calculated after the interface line has been advected by the mapping.,
minor inconsistencies may arise for example, [RK98] and [PAB+97]. They are usually seen as small
unphysical overshoots, C > 1, or undershoots, C < 0, in the volume fraction, but also as little holes
generated in the bulk of the reference phase or as some level of small debris outside it, which are
usually called wisps. These minor inconsistencies should not be confused with the so-called floatsam
and jetsam, which are bigger in nature and mainly due to low-order reconstruction methods, such as
SLIC, where the interface discontinuity at the cell boundary is O (h). The easiest way to get around
the problem is simply to ignore it. This is conveniently done when the over/undershoots are rather
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small by letting:
Ci,j = min (1,max (Ci,j , 0)) (3.95)

we have used this technique in this thesis.

3.11 The volume-of-fluid in the lattice Boltzmann method

3.11.1 Free surface boundary condition of the lattice Boltzmann method

When we apply the single-phase free surface model into the lattice Boltzmann method, another prob-
lem be occurred in the interface cells. As described above, the distribution functions of empty gas
cells are never accessed. Interface cells, however, always have empty cell neighbours (Figure 3.15).
Therefore, during the streaming step only distribution functions from fluid cells or other inter-
face cells are streamed normally, while the distribution functions that would be read from empty
cells need to be reconstructed with corresponding free surface boundary conditions at the interface
cell [KTH+05, TR09]. This boundary condition does not require additional constructs, such as ghost
layers around the interface. Thus, they can be treated locally for each cell. An atmospheric pressure
of ρA = 1.0 is used, as this is also the reference density and pressure of the fluid. Moreover, it is
assumed that the viscosity of the fluid is significantly lower than that of the gas phase, while having
a higher density. Hence, the gas follows the fluid motion at the interface. In terms of distribution
functions, this means that if at (x+∆tei) there is an empty cell:

f ′I (x, t+∆t) = feqi (ρA,u) + feqI (ρA,u)− fi (x, t) (3.96)

where I is the index parameter that satisfies eI = −ei; u is the velocity of the interface cell at position
(x) and time t. The pressure of the atmosphere onto the fluid interface is introduced by using ρA
for the density of the equilibrium distribution functions. Applying Equation 3.96 to all directions
with empty neighbour cells would result in a full set of distribution functions for interface cells.
This boundary condition, thus, can be used for a multiphase flow [ABR+14] taking proper density
instead of density for atmosphere. However, to balance the forces on each side of the interface, the
distribution functions coming from the direction of the interface normal n are also reconstructed.
Thus, as shown in Figure 3.14, if the distribution function fi would be streamed from an empty gas
cell, or if n · eI > 0 holds, fi is reconstructed using Equation 3.96. Hence, the interface normal n is
approximated with the Parker and Youngs’ method [PP04] in the PLIC-VOF approach by the fluid
fraction value C in each spatial direction.
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3.11.2 Introduction of a control volume

A fluid fraction variable C is introduced to describe the fill level of a control volume VCV, i.e., the
volume fraction being filled with fluid, similar to the conventional volume-of-fluid (VOF) method as
described above as:

C =
Vfluid
VCV

(3.97)

for a unit cell (∆xi = 1.0) filled with a fluid of density ρf and mass mf , we can state:

C =
mf/ρf
VCV

=
mf

ρf∆x1∆x2∆x3
=
mf

ρj
(3.98)

Thus, a fill level of C = 0.0 indicates a completely empty cell, while a fill level of C = 1.0 indicates
a completely filled cell (Figure 3.15).

We will develop not a two-phase multiphase flow model but a single-phase free surface model
based on the volume-of-fluid approach in this thesis, because the dynamics of gas-phase can be
ignored in large-scale three-dimensional tsunami simulations. It should be noted that gas cells has
any physical variables in this model.

3.11.3 Choice of the control volume

The layout of the control volume VCV has not been specified. In the conventional free-surface
volume-of-fluid approaches, the control volumes are directly assigned to the lattice Boltzmann grids.
In contrast to the approaches, we use a staggered grid layout to apply to PLIC-VOF method as
described above sections into the lattice Boltzmann method. In a staggered grid layout, every
calculation cell (i.e., control volume) is spanned by eight the lattice Boltzmann grids.

The new layout leads to additional requirements for the consistency between cell and node states.
A cell is considered fluid if and only if all its vertices are fluid nodes. A cell considered gas if and only
if all its vertices are gas nodes. All other cells are interface cells. With this layout, the exchanges
of the fluid fluxes will take place between six neighbouring cells in three-dimensional problems (cf.
Equation 3.99).

n̂i (i = 0, . . . , 5) =


1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

 (3.99)

3.11.4 Discretisation of the advection equation

The fluid fluxes exchange between neighbouring cells can no longer be determined in terms of the
lattice Boltzmann distribution functions fi, but must be evaluated from macroscopic velocity and
density information on the participating the lattice Boltzmann nodes. For the weak-compressible
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lattice Boltzmann method, the sum of fill levels is not conserved perfectly, so a recourse to the con-
tinuity equation and the principle of conservation of mass is used to derive the advection algorithm:

Dρ

Dt
=
∂ρ

∂t
+∇ · (uρ) = 0 (3.100)

We discrete the above equation with a conventional finite volume method by integrating the
equation over the control volume and applying the divergence theorem to obtain a surface integral
for the convective term:∫

Ω

∂ρ

∂t
dΩ +

∫
Ω

∇ · (uρ) = ∂

∂t

∫
Ω

ρdΩ +

∫
Γ

(uρ) · n̂dΓ (3.101)

where n̂ is the unit out-normal vector on the corresponding face of the control volume. Discretising
in time with an explicit Euler finite difference scheme leads to:

mt+1 = mt −
5∑

i=0

Φi (3.102)

where Φi denotes the flux through the i-th face of the control volume. The new cell fill level of an
interface cell is calculated by:

C∗ =
Ctρt − Φ0 − Φ1

ρt+1
, C∗∗ =

C∗ρt − Φ2 − Φ3

ρt+1
, and Ct+1 =

C∗∗ρt − Φ4 − Φ5

ρt+1
(3.103)

similar to the split method. Where C∗ and C∗∗ are the intermediate values for fill level.

3.11.5 Averaging of cell fill levels

The fluxes Φi are determined locally for every interface cell, and the mass flux can immediately be
balanced. One important criterion for the quality of a numerical model for transport problems is that
it preserves the conservation of mass. Below we present two different surface reconstruction schemes:
a straightforward scheme without detailed surface reconstruction and a classical PLIC-VOF scheme.
Both schemes lead to consistent flux terms.

In the simplest averaged cell fill level approach [JK11], the face fill level is determined without
geometrical surface reconstruction by averaging the fill level of the two cells between which the mass
exchange takes place. This approach is mass-conserving for the transfer between two interface cells
but not for the transfer between interface and fluid cells. For this latter case, an effective face fill
level below one is obtained for the interface cell, yet for an adjacent (completely filled) fluid cell, the
whole edge is moistened. To fix this problem, a case distinction in introduced, which sets the face
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fill level to one if either of the two participating cells is a fluid cell:

Ci =


1.0 C (x+ ei) = 1.0

0.0 C (x+ ei) = 0.0

C (x+ ei)− C (x)

2
Otherwise

(3.104)

subsequently, the resulting value for Ci is used to calculate the fluid flux Φi. This simple scheme
leads to good results with minimum effort. No detailed surface reconstruction needs to be done, and
even the normal vector information is not necessary. This approach is similar to the one in Thürey
approach, but instead of using all 18 lattice directions for the mass exchange, only the six orthogonal
directions are used. This may be the reason why, although the global shape and advection behaviour
is represented fairly accurately, oscillations can still occur on the interface cells.

3.12 Implementation the PLIC-VOF approach into the lat-
tice Boltzmann method

3.12.1 Calculation of cell face velocities

The treatment and calculation of free surface velocities has to be done with great care. In standard
VOF methods, the advection velocities are defined on each face centroids of the control volume.
In most cases, the same staggered grid layout is also used for the solution of the Navier-Stokes
equations, so that inter or extrapolation is not needed. By contrast, in the present free surface
method, the fluid velocities are known on the eight lattice nodes in the centre of each cell. To
determine the cell face velocity ui, we use the 1-st order inter- or extrapolation method from the
cell centred velocity in this thesis:

ui (x) = u (x) + 0.5 (u (x)− u (x− n̂i)) (3.105)

accurate velocity extrapolation is crucial to ensuring accurate free surface results, especially in
regions with high gradients and high interface curvature as, e.g., in breaking wave jets. A higher-
order extrapolation might further improve the results.

3.12.2 Algorithm and implementation

After the lattice Boltzmann collision and streaming steps, the position of the interface is updated
on the basis of the new, valid velocity fields (Algorithm 1).

The advection algorithm loops over whole domain. The first part (Algorithm 2) evaluates the
fluid fluxes for fluid and interface phase as described above sections. If an interface cell changes its
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Algorithm 1 Calculation loop of three-dimensional free surface flows
collision with the BGK-LBM or MRT-LBM
forcing gravity effect
streaming
apply the interface and solid wall boundary conditions
–
evaluate fluid fluxes and determine cell status changes (Algorithm 2)
apply cell changes and update status (Algorithm 3)

Algorithm 2 Evaluate fluid fluxes and determine cell changes
if cell type == interface then

determine cell face velocity ui

determine interface normal vector n
reconstruct surface (i.e., determine plane parameter α)

end if
calculate fluid flux and evaluate new fill level Ct+1

state (i.e., becomes filled or void), it is added to a list of new fluid or new gas cells.
In the second part of the interface update (Algorithm 3), these changes are stored in the state

matrix, and consistency between the nodal state and cell fill level is ensured. In the loop over the
new cells, the eight nodes of the cell are checked and, in case they change their state, are stored in
a list of new gas or fluid nodes.

Afterwards, the new fluid nodes have to be initialised because they do not have any physical
variables. The macroscopic values of density and velocity from neighbouring old fluid and interface
cells are interpolated by an ensemble average. Based on this information, the distribution functions
fi at new interface cells are initialised with the equilibrium distribution functions.

3.13 Verification and validation

3.13.1 Analysis of a standing waves in rectangular tank

Standing waves in rectangular tank were simulated to verify our three-dimensional model. The
purpose of the simulation is to investigate the weak-compressibility of the lattice Boltzmann method
by its theory. In this benchmark problem, Wu and Taylor [WT94] have calculated an analytical
solution by non-linear water wave theory in second order accuracy. Figure 3.16 shows calculation
domain and initial settings. The simulation was carried out for 5 seconds. The maximum magnitude

Algorithm 3 Apply cell changes and update nodal states
set new cell status
initialise new fluid nodes
check and adjust interface cell status
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of the velocity was calculated by the wave speed
√
gH, where g is the gravity acceleration and H is

the still water depth. The spacing resolution is fixed with (x, y, z) = (400, 100, 300).
Figure 3.17 shows the calculated interface shapes by the MRT-LBM in three-dimensional view.

It looks like that our approach is free srom the non-physical oscillations of the interface cells unlike
the conventional free surface model for the lattice Boltzmann method [TR09]. In the simplest free
surface model by [TR09], free surface shapes becomes discontinuity when the large deformation
occurred because the approach does not consider the shape of the interface. Our proposed approach
can easily consider the interface shapes by the PLIC-VOF approach. This difference is critical in
term of coastal engineering because the breaking wave may often occur in tsunamis.

Figure 3.18 compares the spacing density profile at t = 0.5s between the MRT-LBM and BGK-
LBM. The effect of the weak-compressibility in both the collision models appear in the Mach numbers
square O

(
Ma2

)
based on the theory of lattice Boltzmann method. The BGK-LBM, however, caused

artificial oscillations. In the lattice Boltzmann method, the gradient of fluid pressure ∇P in Navier-
Stokes equation is directly determined by the gradient of density ∇ρ. It is, thus, important to
calculate the spacing density profile in high accuracy. MRT-LBM has successfully become the defect
of BGK-LBM well. It can calculate the density profile naturally.

Figure 3.19 shows the Timeseries of water level at the centre of the tank. The key feature of
2nd order solution is that the 1st and 3rd crests are higher that 2nd one. This is caused by the
non-linear effects of waves. The phenomena, hence, can not seen in first order solution because that
is based on linear theory. Our model has successfully reproduced non-linear effects well. On the
other hand, our model leave room for improvement to enhance a energy conservation because the
water level was damped after t = 3.0s.

3.13.2 Verification for the weak-compressibility in dam-breaking flows

We simulated the classical dam-breaking flow [KO96] to verify the weak-compressibility of the lattice
Boltzmann method. Figure 3.20 shows the initial settings of the flow domain.

The purpose of this benchmark test was also to investigate whether our proposed model can
control the weak-compressibility by setting the time step ∆t in realistic tsunami modellings, if the
maximum velocity magnitude is known. We estimated the maximum flow velocity as follows [SCB98]:

umax = 2
√
gH (3.106)

where H is the initial water depth.
Table 3.1 shows the calculation parameters. We determined the spacing grid size ∆x = L/100

and fixed it in this verification, where L = 0.146m in this experiment [KO96]. He and Luo [HL97]
reported that the incompressible limit is Ma < 0.15, although Ma < 0.3 in general. We assessed
additional smaller Mach numbers Ma = 0.1 and Ma = 0.01, considering their report as a criterion.
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Figure 3.21 compares the density profiles at t = 0.3s with the MRT-LBM. The weak-compressibility
decreases at smaller Mach numbers, and the density decreases in O

(
Ma2

)
. Our model controls the

weak-compressibility and approximates the incompressible flows well, setting the time step interval
∆t by the Mach number with the required accuracy. The calculation costs, however, increase as
the Mach number decreases. We, thus, should determine ∆t in view of the trade-off between the
calculation cost and the required accuracy.

Figure 3.22 compares the density profiles of the BGK-LBM and MRT-LBM as a preliminary
investigation. Both MRT-LBM and BGK-LBM exhibited the same behaviour in terms of free surface
movements. The density profile of the BGK-LBM, however, became non-physical especially at solid
wall boundaries. We must calculate the fluid density with high accuracy because the pressure
gradient is simulated by the density gradient. The calculated pressure, therefore, was disturbed
in the BGK-LBM. On the other hand, the MRT-LBM could accurately simulate natural density
profiles in the flow field.

3.13.3 Validation for the spacing resolution

We also simulated some dam-breaking benchmarks to validate the accuracy depending on the its
spacing resolution. Figure 3.23 shows the initial condition of the dam-breaking flow [MM52]. In
this benchmark, we validated the convergence behaviour of the model accuracy depending on the
competing grid size, which is an important factor in determining the applicability of the model to
other problems from an engineering perspective. The model accuracy was evaluated based on the
dimensionless position of the surge front in the time evolution.

Table 3.2 shows the calculation parameters. In this benchmark test, the dimensionless time T
and distance from the left side of the competing domain Z were defined using the realistic t (s),
z (m), and a (m) shown in Figure 3.23 and gravity g

(
m/s2

)
as follows [MM52]:

T = t

√
2g

a
(3.107)

Z =
z

a
(3.108)

The effect of gate opening was considered to shift the plots [NH71] instead of directly solving, for
example, by the immersed boundary method. We applied modified bounce back rule as slip boundary
conditions for the edge boundaries in the domain.

Figure 3.24 shows the dimensionless time series position of the surge front. Experimental data
from [KO96] were also plotted. The results of our model were in good agreement with the exper-
imental data from the Case2 and 3 simulations. Our model has a convergence of the calculation
capability that depends on the resolution through the simulations. We found that our model achieves
results that match the experimental data well, and we can resolve at least 80 computing cells per
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the characteristic length a in the benchmark.
On the other hand, the underestimations in the Case1 simulation are due to the difference in

physical properties caused by the coarse grid size. The Reynolds number in the flow field will be
smaller in the LBM if we cannot ensure a sufficient spacing resolution. To overcome this problem,
it can be considered that another parameterisation approach for the relaxation time τ , determined
by not the viscosity ν but the Reynolds number in the flow. This method might fix the Reynolds
number as turbulence. However, we believe that a practical solution for the problem is to ensure
high resolution in space because we could not determine the Reynolds number in unsteady flows,
such a free-surface flow. The solid wall boundary condition also should be treated carefully. Nishi
and Doan [ND13] have pointed out that three is room improvement for the modified bounce-back
scheme especially in free surface model because the accuracy of the bounce-back scheme in the lattice
Boltzmann method depends on the relaxation time τ .

Finally, we simulated another dam-breaking benchmark [AK09] to validate a two-dimensional
free-surface model with the lattice Boltzmann method according to [TR09] in a strong current or
flow, such as a splash along the vertical wall with bubbles. We calculated this benchmark in three
dimension. Figure 3.25 shows the calculation domain, where Points 1 and 2 were the measurement
points of the time series water depth.

Table 3.3 shows the calculation parameters. Case2 was considered to have sufficient resolution
based on the above discussion. We used Ma = 0.01 to determine the time step interval ∆t, assuming
incompressible flows.

Figure 3.26 shows the free-surface shapes in a three-dimensional view with Case2. Non-physical
oscillation and diffusion near the interfaces did not occur in our results because we reconstructed
the shapes via PLIC. Our model succeeded in reproducing non-hydrostatic three-dimensional free-
surface flows. On the other hand, in some cells, especially on the wall boundary, the fluid fraction
was not fully filled. We believe that this problem is caused by the modified bounce-back condition
in the corner cells. We should use a high-order scheme [SFH89, MBG96] for the boundary condition
for a more precise simulation. In addition, some bubbles remained in the fluid domain and did not
rise. Our model cannot address the bubble dynamics directly because of the single-phase volume-
of-fluid model. The remaining bubbles, however, negatively affected the stability of the model and
the calculation accuracy of the interface normal n. Numerical treatments are required to address
the bubbles.

Figure 3.27 compares the free surface shapes between the experimental data and simulated
results. Our model well reproduced the realistic dam breaking flows such as the breaking waves
or involving the fluid after collision with the solid wall. Figure 3.28 also shows the time series
water depth at Points 1 and 2 in Figure 3.25. Our model results approached the experimental data.
Accordingly, the resolution increases and the Case2 simulation results were in good agreement with
the experimental results. We conclude that our model can simulate realistic tsunami flows analogous
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to dam breaks by choosing an appropriate spacing resolution and time step interval.

3.13.4 A dam-breaking flow with a single obstacle

From the above sections, the standard dam breaking bottlenecks were successfully simulated by our
proposed free surface model. Here, this bottleneck is extended with the addition of a solid obstacle
in the centre of the flow domain by [Köl05] (Figure 3.29).

Upon removal of gate, the collapsing of the water column is initiated and the front evolves and
finally impacts the solid obstacle. At the moment, the flow pattern changes drastically, similar to
what occurs during wave impact on structures. As the water height decreases, highly curved jet
evolves, and the water is deflected to the top of the obstacle.

Figure 3.30 compares between the calculated results with the experimental data by [Köl05]. We
fixed ∆x = 1.25 × 10−3 and ∆t = 3.12 × 10−6 to reduce the weak-compressibility. Very good
agreement can be seen, at least for this qualitative comparison. The jet evolves slightly faster in
computations tan in the experiment. Hence, we conclude that a proper grid resolution is essential,
to capture at least the large-scale sprays and the resulting energy dissipation, and to accurately
represent the solid body in conjunction with the above discussions. We also verified that, in the
lattice Boltzmann method, a careful treatment of the corner boundaries is crucial to achieve good
results. For example modified slip boundary conditions in the lattice Boltzmann method, an ac-
curate normal vector is required in the corner cells, which is discontinuous points. If a smoothed
geometry [SS13, SS15] is used, where the corner is rounded out and the corner node uses a linear
interpolation of the neighbouring surface normal vectors, the jet shape is affected. For this reason,
the normal vector at the obstacle corners is set to the normal vector of each respectively participating
face.

3.13.5 Breaking wave in a rectangular tank

We simulated a three-dimensional breaking ocean wave at an air-water interface. Numerical sim-
ulations based on fully non-linear potential flow theory [LHC76, GSS89] showed that a periodic
sinusoidal wave of large amplitude, with initial velocities specified from linear wave theory, is not
stable in a fully non-linear model and rapidly overturns and breaks.

The initial velocity field and interface shape for a two-dimensional linear wave of height H
in depth h, specified in a three-dimensional, are given by [LVAC06] with z denoting the vertical
direction and z = 0 at the undisturbed air-water interface:

η =
H

2
cos (kx) (3.109)

ux =
H

2
σ
cosh k (h+ z)

sinh (kh∗)
cos (kx) (3.110)
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uz =
H

2
σ
sinh k (h+ z)

sinh (kh∗)
sin (kx) (3.111)

uy = 0 (3.112)

where σ = 2π/T is the wave angular frequency, k = 2π/L is the wave number, and h∗ = h+ε, where
ε (y) = 0.08y is a small linear perturbation of the seafloor geometry. In this thesis, we set L = 0.1m

and T = 0.308s. As a result, the initial velocity profiles is shown in Figure 3.31.
Figure 3.32 compares the calculated interface shapes between our results and the reference

data [LVAC06]. We fixed the spacing resolution as (x, y, z) = (1024, 128, 256) in this simulation.
As expected, the wave quickly overturns and develops a plunging jet. The agreement of our results
with [LVAC06] results is good, although the shape after breaking wave was a little weakened. This is
caused by the averaging extrapolation approach for empty cells, which become interface cells at the
next time step. The extrapolation velocities for the empty cell crucial affects a numerical accuracy
in the VOF approach. However, using high order schemes easily causes a numerical instability. We,
thus, used averaging extrapolation approach in this thesis.

3.13.6 Tsunami inundation in realistic bathymetry

We finally simulated three-dimensional tsunami inundation in realistic urban area. Figure 3.33 shows
the 10mm bathymetry data (Scale: 1/250) of Onagawa benchmark test [Pra17, PYMM18] carried
out by the Disaster prevention research institute, Kyoto university. The purpose of this benchmark is
to bring back the tsunami by the 2011 Great East Japan Earthquake in Onagawa (Miyagi prefecture)
with three-dimensional realistic bathymetry. The spacing resolution is (x, y, z) = (383, 439, 75) from
two-dimensional bathymetry data. The time step interval was fixed ∆t = 2.0× 10−4s to reduce the
weak-compressibility of LBM. Figure 3.34 shows the incident wave (input wave) from right-hand
boundary in Figure 3.33.

Figure 3.35 shows timeseries free surface in three-dimensional view. Our model qualitatively
reproduced the tsunami inundation in Onagawa town. The Onagawa hospital was actually inundated
in the event as shown in Figure 3.35 (f). We, thus, conclude that our model can simulate realistic
tsunami flows in three dimension. On the other hand, a detailed validation of our model in urban area
such as estimating flow velocity and pressure acting an obstacle in still remain as future challenges.

3.14 Conclusion

In this chapter, we presented the implementation the single-phase free surface model based on
PLIC approach to the lattice Boltzmann method to enable three-dimensional tsunami modellings
more efficient. Moreover, we performed the verification and validation of the BGK-LBM and MRT-
LBM in classic dam-break benchmark problems. The following conclusions were drawn from the

87



discussions above:

• We have developed a fully explicit three-dimensional free-surface model by the lattice Boltz-
mann method. Our model reduces interface oscillations and diffusions using the PLIC ap-
proach.

• We found that the MRT-LBM can overcome the defects of the BGK-LBM, such as the distur-
bance of the fluid density, and can simulate the flow field naturally.

• We determined the appropriate spacing resolution by the characteristic length of the dam-break
benchmark tests. Moreover, we demonstrated the application to other problems.

• We substantiated that the weak-compressibility in the MRT-LBM can be controlled within
O
(
Ma2

)
by choosing a time step interval based on the maximum velocity magnitude in the

flow field.

The MRT-LBM might require finer resolution than that of other computational fluid dynamic. As
described in the last chapter, the adaptive mesh refinement [ZAK15, OI18] technique will be needed
to execute more efficient simulations. In addition to model development, we will investigate more
detailed reconstruction tests [RK98, AMSZ07] and the wave force acting on structures [KFV+05] by
our model, which allows the weak-compressibility to appear from the viewpoint of coastal engineer-
ing.
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Figure 3.1: One-dimensional advection by the VOF method. Given the value of the colour function
in the interface cell j, and the side where the full cell is, the location of the interface can be found
and the fluxes computed exactly.
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Figure 3.2: The basic principle of the VOF methods: (a) a portion of the interface line and the
colour function value in each cell; (b) the SLIC reconstruction, where each segment in parallel to
one coordinate axis; (c) a PLIC reconstruction with unconnected segments across each cell; the
normal vector m = −∇C is pointing outwards from the reference phase.
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(a) (b)

Figure 3.3: Representing the colour function as shaded squares of size proportional to the fractional
volumes helps to understand the reconstruction problem. (a) A well-behaved distribution of the
colour function; it corresponds to a smooth circular arc. (b) A more confused distribution.

Figure 3.4: A line cutting two grid cells (thick solid line). In the trapezoidal rule the piecewise
linear approximation connects consecutive points on the line and it is continuous across the cell
boundary (dashed lines). The PLIC-VOF reconstruction is not continuous across the cell boundary
but satisfies the area conservation constraint (thin solid lines). The dotted regions represent the
area error for a PLIC-VOF reconstruction (left) and the trapezoidal rule (right).
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(a) (b) (c)

Figure 3.5: In the centred-columns scheme, volume fractions are added column-wise, heights yi−1

and yi+1, for case (a) and row-wise, widths xj−1 and xj+1, for case (b), to get the correct slope of
the linear interface. In case (c), an off-centred scheme, with heights yi and yi+1 should be used.

Figure 3.6: The stencil that Parker and Youngs use to determine ∇f in two dimension.
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Figure 3.7: (a) Parker and Youngs’ method will reconstruct this line exactly only if α = 2. (b) The
volume fractions associated with the line shown in (a). (c) Parker and Youngs’ method does not
reconstruct this line exactly for α = 2. Thus it does not reproduce all linear interface exactly, and
so we conclude it is at best first-order method. (d) The volume fractions associated with the line
shown in (c).
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Figure 3.8: The cut volume refers to the region within the rectangle ABCD which also lies below
the straight line EH.
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Figure 3.9: The cut volume is the region inside the parallelepiped ABCEFGH and below the plane
IJK.
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(a)

(b)

Figure 3.10: (a) The horizontal one-dimensional mapping TE
x transforms the square cell

∑
onto the

rectangle Γx, by transporting the cell edges with the one-dimensional flows. (b) Three consecutive
cells are transformed by the piecewise linear mapping TE

x onto three rectangles, which are projected
back to the original grid to calculate the three contributions D, E and F to the square cell

∑
.

94



Figure 3.11: The images of the square cells by the mapping TE
x form a tessellation of the plane by

rectangles (thick solid lines). These may be either expanded or compressed and shifted to the left or
to the right with respect to the original square cells (thin solid lines), depending on the local value
of the velocity field.
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(a)

(b)

Figure 3.12: (a) The horizontal one-dimensional mapping T I
x transforms the rectangle Γx onto the

square cell
∑

by using the velocity at the cell sides. The velocity field u is the same as Figure 3.10.
(b) The contributions to Γx of three consecutive cells are transformed by the linear mapping T I

x

onto D, E and F of the central cell
∑

.

96



A

B

(a) (b)

Figure 3.13: (a) In the Lagrangian method, the end points A and B of the interface segment are
advected by the flow. The local velocity may be interpolated linearly between the velocities u− and
u+ at the cell faces. (b) In the Eulerian method, the total area flux through the right side of the cell
is the area of the rectangle with width u+∆t, while the reference phase flux is the shaded portion
of this rectangle.
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Figure 3.14: The missing distribution functions fi on the interface cells, (red functions) functions
from empty gas cells, (green functions) functions along the interface normal n determined by the
VOF algorithms (broken line).
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Figure 3.15: Here the different cell types required for the free surface algorithm can be seen. (yellow)
Gas-phase which means cells without fluid. (light blue) Interface-phase which means cells filled with
fluid partly. (deep bule) Fluid-phase which means cells completely filled with Fluid.
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Figure 3.16: The calculation domain and initial settings [WT94] (left), Calculation parameters
(right).

Figure 3.17: The calculated interface shapes with MRT-LBM (Ma = 0.01), (a) t = 0.3s, (b) t = 0.6s,
(c) t = 0.9s, (d) t = 1.1s, (e) t = 1.4s, (f) t = 1.7s.

99



Figure 3.18: The comparison of the spacing density profiles at t = 0.5s, (a) MRT-LBM, (b) BGK-
LBM.
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Figure 3.19: Timeseries of the water level at the centre of the numerical tank.
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Figure 3.20: The calculation domain of the Koshizuka and Oka [KO96] dam breaking flows.

Figure 3.21: Fluid density profiles of the MRT-LBM due to the difference in Mach numbers at
t = 0.3s.

Figure 3.22: Fluid density profile of the MRT-LBM and BGK-LBM at at t = 0.3s.
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Figure 3.23: The calculation domain of the Martin and Moyce [MM52] dam breaking flows.
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Figure 3.24: Timeseries of the dimensionless position of the surge front.
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Figure 3.25: The calculation domain of the Araki and Koshimura [AK09] dam breaking flows.

Figure 3.26: Free surface shapes with case2 simulation in three-dimensional view, (a) t = 0.50s, (b)
t = 1.0s, (c) t = 1.5s, (d) t = 2.0s, (e) t = 2.5s, (f) t = 3.0s.
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Figure 3.27: Free surface shapes in two-dimensional view, (top) Case1, (middle) Case2, (bottom)
Experimental data [AK09].
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Figure 3.28: Timeseries water depth at the observed points (Figure 3.25), (a) Point1, (b) Point2.
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Figure 3.29: The calculation domain of the Kölke [Köl05] dam breaking flows.

Figure 3.30: The comparison of the interface shapes in two-dimensional view, (top) our results,
(bottom) experimental data [Köl05].
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Figure 3.31: Initial velocity profiles for three-dimensional breaking waves benchmark [LVAC06], (a)
initial phase profile, (b) velocity along x-axis, (c) velocity along y-axis.

Figure 3.32: Time evolution of the three-dimensional breaking wave. (left) Lubin et. al.’s three-
dimensional VOF results [LVAC06], (right) our results.
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Figure 3.33: The bathymetry data of the three-dimensional Onagawa benchmark problem (from
Disaster prevention research institute, Kyoto university).
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Figure 3.34: The incident wave from right-hand boundary in Figure 3.33.
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Figure 3.35: Free surface in three-dimensional view, (a) t = 0.0s, (b) t = 30.0s, (c) t = 40.0s, (d)
t = 50.0s, (e) t = 60.0s, (f) t = 70.0s. (g) t = 80.0s, (h) t = 90.0s.

108



Table 3.1: Calculation parameters of the dam breaking flow [KO96].

Case No. Ma Resolution ∆x (m) ∆t (s) τ

Case1 0.15 400× 100× 300 0.146× 10−3 5.28× 10−5 0.5 + 7.5× 10−3

Case2 0.10 400× 100× 300 0.146× 10−3 3.52× 10−5 0.5 + 5.0× 10−3

Case3 0.010 400× 100× 300 0.146× 10−3 3.52× 10−6 0.5 + 5.0× 10−4

Table 3.2: Calculation parameters of the dam breaking flow [MM52].

Case No. Resolution ∆x (m) ∆t (s) τ

Case1 200× 40× 60 2.86× 10−3 7.14× 10−6 0.5 + 2.6× 10−6

Case2 400× 80× 120 1.43× 10−3 3.57× 10−6 0.5 + 5.3× 10−6

Case3 800× 160× 240 7.14× 10−4 1.79× 10−6 0.5 + 1.1× 10−5

Table 3.3: Calculation parameters of dam breaking flow [AK09].

Case No. Resolution ∆x (m) ∆t (s) τ

Case1 100× 50× 100 1.0× 10−2 1.46× 10−5 0.5 + 4.4× 10−7

Case2 200× 100× 200 5.0× 10−3 7.29× 10−6 0.5 + 8.8× 10−7
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Chapter 4

Lattice Boltzmann method for
shallow water flows

4.1 Introduction

The non-linear shallow water equations have been applied widely in river and coastal engineer-
ings [MSH97, CPWC04, Zho04]. For example, it can be used to describe the tidal flows, tsunamis [Shu91],
hydraulic jump, and open channel flows. Furthermore, coupled with the solute transport equation,
the non-linear shallow water equations can be expanded to predict the solute transport such as distri-
bution of pollution concentration and transport of suspended sediments [TJB+01, SC06]. Although,
non-hydrostatic fluid models such as Boussinesq models [Per67, MS92, WKGS95, GS96, SKH+12]
are increasingly used in research and damage assessment for major tsunami events using high-
performance computing [PKAI11], the standard approach to simulate tsunami forecasting is still
based on using models based on non-linear shallow water equations, which are a depth-integrated
(hydrostatic) approximations of the Navier-Stokes equations [KM93]. The non-linear shallow water
equations are accurate for a long wave propagation and run-up problem in an urban area, in which
the horizontal length scale is much larger than the vertical length scale, such as for most tsunamis.
If vertical variations have to be taken into account, these can be separated from the horizontal ones,
resulting in a set of non-linear shallow water equations for a series of horizontal fluid layers [ZB11]
(i.e., multilayer non-linear shallow water equations).

Although the lattice Boltzmann method is not widely known in the community working on free
surface flow problems, several groups have already applied the lattice Boltzmann method to stan-
dard non-linear shallow water benchmark problems and test cases. For example, Frandsen [Fra08]
presented a so-called two-dimensional 9-speed lattice Boltzmann method implementation for the
simulation of wave run-up on a sloping beach. Thömmes et. al. [TSB07] applied a similar lattice
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Boltzmann method to test cases including bed slope and friction terms. The main focus of their
work was to demonstrate the ability of the method to cope with complex geometries and irregu-
lar bathymetry. This was illustrated by the simulation of the mean flow in the Strait of Gibral-
tar. These approaches were based on single relaxation time collision operators [BGK54, QDL92].
Tubbs [Tub10], however, applied an extended lattice Boltzmann method to a non-linear shallow
water equations with and multiple-relaxation-time collision operators [LL00, LLS12]. Moreover, the
author extended the standard lattice Boltzmann method to a multilayer approach that considers
vertical, three-dimensional effects. The model is capable of simulating wind and density driven
circulation over irregular bathymetry.

In this chapter, we describe conventional non-linear shallow water theory and its equations.
Next we discuss the implementation of the lattice Boltzmann method for shallow water equations
to tsunami modellings with moving shoreline algorithm and validate the proposed model in detail.

4.2 A non-linear shallow water equation

The governing equations for general incompressible flows are the three-dimensional continuity and
Navier-Stokes equations which are derived from Newton’s second law of motion and the mass con-
servation. The equations can be written in tensor form as:

∂uj
∂xj

= 0 (4.1)

∂ui
∂t

+
∂ (uiuj)

∂xj
= fi −

1

ρ

∂p

∂xi
+ ν

∂2ui
∂xjxj

(4.2)

where the subscripts i and j are space direction indices; fi is the body force per unit mass acting
on fluid in the i direction; and the Einstein summation convention is used.

The shallow water equations are derived from depth-integrating the Navier-Stokes equations with
assumption implying that the vertical velocity of the fluid is small with hydrostatic pressure and
constant velocities over the water depth [Zho04]. The shallow water equations are thus derived in
the following section.

Firstly, the continuity equation for shallow water equations is derived by integrating Equation 4.1
over depth: ∫ h+zb

zb

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0 (4.3)

which results in: ∫ h+zb

zb

∂u

∂x
dz +

∫ h+zb

zb

∂v

∂y
dz + ws − wb = 0 (4.4)

where wb and ws are the vertical velocities at channel bottom and the free surface, respectively; and
zb is the bed elevation above a datum as shown in Figure 4.1. The first and second terms on the left
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hand side of Equation 4.4 can be written using the Leibnitz rule [SR66] as:

∫ h+zb

zb

∂u

∂x
dz =

∂

∂x

∫ h+zb

zb

udz − us
∂

∂x
(h+ zb) + ub

∂zb
∂x

(4.5)

∫ h+zb

zb

∂v

∂y
dz =

∂

∂y

∫ h+zb

zb

vdz − vs
∂

∂y
(h+ zb) + ub

∂zb
∂y

(4.6)

Substituting Equations 4.5 and 4.6 into Equation 4.4 leading to:

∂

∂x

∫ h+zb

zb

udz +
∂

∂y

∫ h+zb

zb

vdz +

[
ws − us

∂

∂x
(h+ zb)− vs

∂

∂y
(h+ zb)

]
−
[
wb − ub

∂zb
∂x

− vb
∂zb
∂y

]
= 0

(4.7)

The kinematic conditions at the free surface and channel bottom are:

ws =
∂

∂t
(h+ zb) + us

∂

∂x
(h+ zb) + vs

∂

∂y
(h+ zb) (4.8)

wb =
∂zb
∂t

+ ub
∂zb
∂x

+ vb
∂zb
∂y

(4.9)

Substituting Equations 4.8 and 4.9 into Equation 4.7 results in:

∂h

∂t
+
∂ (hū)

∂x
+
∂ (hv̄)

∂y
= 0 (4.10)

which is just the continuity equation for the shallow water equations and ū and v̄ are depth-averaged
velocity components and defined as:

ū =
1

h

∫ h+zb

zb

udz (4.11)

v̄ =
1

h

∫ h+zb

zb

vdz (4.12)

Next, the momentum equation for shallow water flow will be derived. The Navier-Stokes equation
along x-axis is integrated over water depth and the following expression can be obtained:∫ h+zb

zb

[
∂u

∂t
+
∂ (uu)

∂x
+
∂ (uv)

∂y
+
∂ (uw)

∂z

]
dz =

∫ h+zb

zb

fcvdz +

∫ h+zb

zb

[
−1

ρ

∂p

∂x
+ ν∇2u

]
dz (4.13)

The Leibnitz rule [SR66] is used for the first three terms on the left-hand side leads to:

∫ h+zb

zb

∂u

∂t
dz =

∂

∂t

∫ h+zb

zb

udz − us
∂

∂t
(h+ zb) + ub

∂zb
∂t

(4.14)
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∫ h+zb

zb

∂ (uu)

∂x
dz =

∂

∂x

∫ h+zb

zb

uudz − usus
∂

∂x
(h+ zb) + ubub

∂zb
∂x

(4.15)

∫ h+zb

zb

∂ (vu)

∂y
dz =

∂

∂y

∫ h+zb

zb

vudz − vsus
∂

∂y
(h+ zb) + vbub

∂zb
∂y

(4.16)

The last term on the left hand side of Equation 4.13 can be integrated, leading to:∫ h+zb

zb

∂ (wu)

∂z
dz = wsus − wbub (4.17)

combing it with the above equations and rewriting the results yields the following equation:∫ h+zb

zb

[
∂u

∂t
+
∂ (uu)

∂x
+
∂ (uv)

∂y
+
∂ (uw)

∂z

]
dz =

∂

∂t

∫ h+zb

zb

udz +
∂

∂x

∫ h+zb

zb

uudz +
∂

∂y

∫ h+zb

zb

vudz

+us

[
ws −

∂

∂t
(h+ zb)− us

∂

∂x
(h+ zb)− vs

∂

∂y
(h+ zb)

]
− ub

(
wb −

∂zb
∂t

− ub
∂zb
∂x

− vb
∂zb
∂y

)
(4.18)

refer to the kinematic conditions. Combined with the Equations 4.11 and 4.12, the above equation
can be rewritten as:∫ h+zb

zb

[
∂u

∂t
+
∂ (uu)

∂x
+
∂ (uv)

∂y
+
∂ (uw)

∂z

]
dz =

∂ (ūh)

∂t
+

∂

∂x

∫ h+zb

zb

uudz +
∂

∂y

∫ h+zb

zb

vudz (4.19)

with the second mean value theorem for integrals:∫ b

a

f (x) g (x) dz = f (ζ)

∫ b

a

g (x) dz (4.20)

the second term on the right-hand side of Equation 4.19 can be expressed as:∫ h+zb

zb

uudz = ǔ1

∫ h+zb

zb

udz = ǔ1hū (4.21)

and the last term on the right-hand side of Equation 4.19 can be expressed as:∫ h+zb

zb

vudz = ǔ2

∫ h+zb

zb

udz = ǔ2hv̄ (4.22)

assuming ǔ1 = θ1ū and ǔ2 = θ2ū and substituting Equations 4.21 and 4.22 into Equation 4.19 leads
to: ∫ h+zb

zb

[
∂u

∂t
+
∂ (uu)

∂x
+
∂ (uv)

∂y
+
∂ (uw)

∂z

]
dz =

∂ (ūh)

∂t
+
∂ (θ1hūū)

∂x
+
∂ (θ2hv̄ū)

∂y
(4.23)

where theta1 and theta2 are momentum correction factors and are determined by Equations 4.21
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and 4.22 as:

θ1 =
1

hūū

∫ h+zb

zb

uudz (4.24)

θ2 =
1

hv̄ū

∫ h+zb

zb

vudz (4.25)

Similarly, the following expression for the terms on the left hand side by the Navier-Stokes equation
along y-axis can be obtained:∫ h+zb

zb

[
∂v

∂t
+
∂ (uv)

∂x
+
∂ (vv)

∂y
+
∂ (wv)

∂z

]
dz =

∂ (v̄h)

∂t
+
∂ (θ2hūv̄)

∂x
+
∂ (θ3hv̄v̄)

∂y
(4.26)

in which, an additional momentum correction factor θ3 is defined by:

θ3 =
1

hv̄v̄

∫ h+zb

zb

vvdz (4.27)

the first term on the right hand side of Equation 4.13 is integrated as:∫ h+zb

zb

fcvdz = fchv̄ (4.28)

Since the vertical acceleration can be ignored in comparison with the horizontal effect in shallow
water flows, the momentum along z-axis is reduced with w ≈ 0 to:

∂p

∂z
= −ρg (4.29)

which is integrated and the following expression can be obtained:

p = −ρgz + C0 (4.30)

where C0 is an integration constant. The pressure at the free surface is the atmospheric pressure
pa, for example: p = pa at z = h+ zb, in above equation, C0 can be calculated by:

C0 = ρg (h+ zb) + pa (4.31)

substituting the above equation into Equation 4.30 results in:

p = ρg (h+ zb − z) + pa (4.32)

pa is almost constant in the corresponding area and often assumed to be zero. Because the difference
in atmospheric pressure at water surface is usually small in most shallow water flows, the above
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equation reads:
p = ρg (h+ zb − z) (4.33)

the above equation is often referred to as the hydrostatic pressure approximation in shallow water
flows and differentiating it to z gives:

∂p

∂x
= ρg

∂

∂x
(h+ zb) (4.34)

because both of water depth h and the bed height zb are functions of the horizontal coordinates x
and y only, the following expression can be obtained:∫ h+zb

zb

1

ρ

∂p

∂x
dz =

h

ρ

∂p

∂x
(4.35)

combing Equation 4.34 with Equation 4.35 can give:∫ h+zb

zb

1

ρ

∂p

∂x
dz = gh

∂

∂x
(h+ zb) (4.36)

the following approximations are given for the third and fourth terms on the right hand side of
Equation 4.13: ∫ h+zb

zb

ν
∂2u

∂x2
dz ≈ ν

∂2 (hū)

∂x∂x
(4.37)

∫ h+zb

zb

ν
∂2u

∂y2
dz ≈ ν

∂2 (hū)

∂y∂y
(4.38)

the last term on the right hand side of Equation 4.13 is calculated as:∫ h+zb

zb

ν
∂2u

∂z2
dz =

(
ν
∂u

∂z

)
s

−
(
ν
∂u

∂z

)
b

(4.39)

the terms on the right hand side of Equation 4.39 can be approximated with the surface wind shear
stress and the bed shear stress in the x-axis, respectively:(

ν
∂u

∂z

)
s

=
τwx

ρ
(4.40)

(
ν
∂u

∂z

)
b

=
τbx
ρ

(4.41)

therefore, Equation 4.39 can be written as:∫ h+zb

zb

ν
∂2u

∂z2
dz =

τwx

ρ
− τbx

ρ
(4.42)
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combing the above equations leads to:

∂ (hū)

∂t
+
∂ (θ1hūū)

∂x
+
∂ (θ2hv̄ū)

∂y
= −g ∂

∂x

(
h2

2

)
+ ν

∂2 (hū)

∂x∂x
+ ν

∂2 (hū)

∂y∂y
− gh

∂zb
∂x

+ fchv̄+
τwx

ρ
− τbx

ρ
(4.43)

the above equation is the momentum equation for shallow water flows in the x-axis. The momentum
equation in the y-axis for shallow water flows can be derived similarly as:

∂ (hv̄)

∂t
+
∂ (θ1hūv̄)

∂x
+
∂ (θ3hv̄v̄)

∂y
= −g ∂

∂y

(
h2

2

)
+ ν

∂2 (hv̄)

∂x∂x
+ ν

∂2 (hv̄)

∂y∂y
− gh

∂zb
∂y

+ fchū+
τwy

ρ
− τby

ρ
(4.44)

theoretically, if the velocity profiles for u and v are known, the momentum correction factors θ1,
θ2 and θ3 can be calculated. It is, however, not easy to calculate these momentum correction
factors, normally because there are no universal velocity distribution which are valid for all flows.
On the other hand, θ1 = 1, θ2 = 2 and θ3 = 1 are used widely in numerical simulation for shallow
water flows and these study show that assumption can give good results for most shallow water
flows [KV73, MR78, BA97].

Therefore, when θ1 = 1, θ2 = 2 and θ3 = 1 are adopted, the above equations become:

∂ (hū)

∂t
+
∂ (hūū)

∂x
+
∂ (hv̄ū)

∂y
= −g ∂

∂x

(
h2

2

)
+ν

∂2 (hū)

∂x∂x
+ν

∂2 (hū)

∂y∂y
−gh∂zb

∂x
+fchv̄+

τwx

ρ
− τbx

ρ
(4.45)

∂ (hv̄)

∂t
+
∂ (hūv̄)

∂x
+
∂ (hv̄v̄)

∂y
= −g ∂

∂y

(
h2

2

)
+ν

∂2 (hv̄)

∂x∂x
+ν

∂2 (hv̄)

∂y∂y
−gh∂zb

∂y
+fchū+

τwy

ρ
− τby

ρ
(4.46)

after the overbars are dropped for convenience, the continuity equation and the momentum equations
can be expressed in a tensor form concisely as:

∂h

∂t
+
∂ (huj)

∂xj
= 0 (4.47)

∂ (hui)

∂t
+
∂ (huiuj)

∂xj
= −g ∂

∂xi

(
h2

2

)
+ ν

∂2 (hui)

∂xj∂xj
+ Fi (4.48)

in which, the force term Fi is defined as:

Fi = −gh∂zb
∂xi

+
τwi

ρ
− τbi

ρ
+ Ei (4.49)

where Ei is the Coriolis term. The Coriolis term and the wind shear stress can be ignored in
two-dimensional tsunami modelling because of the spacial scale.

The bed shear stress τbi in the i direction can be calculated by the depth-averaged velocities:

τbi = ρCbui
√
ujuj (4.50)
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where, Cb is the bed friction coefficient, estimated Cb = g/C2
z , where Cz is the Chezy coefficient

calculated by the following Manning equation:

Cb = h
1
6 /nb (4.51)

4.3 A Subgrid-scale stress model

The governing equations with the large-eddy-simulation (LES) for turbulent flows can be derived
by including a space-filtered quantity in the continuity equation and the momentum equation. The
space-filtered governing equations can be expressed as:

∂ũj
∂xj

= 0 (4.52)

∂ũi
∂t

+
∂ (ũiũj)

∂xj
= fi −

1

ρ

∂p

∂xi
+ ν

∂2ũi
∂xjxj

− ∂τij
∂xj

(4.53)

in which ũi is the space-filtered velocity component in the i direction and is defined by:

ũi (x, y, z, t) =

∫ ∫ ∫
∆x∆y∆z

u (x, y, z, t)G (x, y, z, x′, y′, z′) dx′dy′dz′ (4.54)

where G is a spatial filter function. τij is the subgrid-scale stress (SGS) that reflects the effect of
the unresolved scales with the resolved scales and determined by:

τij = ũiuj − ũiũj (4.55)

with the Bussinesq assumption for turbulent stresses, the subgrid-scale stress can be expressed using
a SGS eddy viscosity νe as:

τij = −νe
(
∂ũi
∂xj

+
∂ũj
∂xi

)
(4.56)

substituting the above equation into the momentum equation gives:

∂ũi
∂t

+
∂ (ũiũj)

∂xj
= fi −

1

ρ

∂p

∂xi
+ (ν + νe)

∂2ũi
∂xj∂xj

(4.57)

when the standard Smagorinsky SGS model [Sma63] is adopted and the eddy viscosity νe can be
expressed by:

νe = (Csls)
2√

SijSij (4.58)

The continuity and momentum equations are the modified continuity and the Navier-Stokes equa-
tions used as the LES for turbulent flows. The finer the grid size, the less the unresolved scale
eddies.
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Similarly, the shallow water equations including the SGS model [Zho04] can be derived as:

∂h

∂t
+
∂ (hũj)

∂xj
= 0 (4.59)

∂ (hũi)

∂t
+
∂ (hũiũj)

∂xj
= −g ∂

∂xi

(
h2

2

)
+ (ν + νe)

∂2 (hũi)

∂xj∂xj
+ Fi (4.60)

where ũi is the depth-averaged space-filtered velocity component, τij is the depth-averaged subgrid-
scale stress with eddy viscosity and is expressed by:

τij = −νe
(
∂ (hũi)

∂xj
+
∂ (hũj)

∂xi

)
(4.61)

the eddy viscosity νe takes the same form as Equation 4.58, but the Sij is represented by:

Sij =
1

2h

(
∂ (hũi)

∂xj
+
∂ (hũj)

∂xi

)
(4.62)

4.4 The lattice Boltzmann method for a non-linear shallow
water equation

4.4.1 Derivation of the lattice Boltzmann equation

The lattice Boltzmann equation is not only evolved from the lattice gas automata, but can also be
derived from the continuum Boltzmann equation [HL97, Abe97] as shown in the following.

The Boltzmann equation with the BGK collision operator reads [BGK54, QDL92]:

∂f

∂t
+ e · ∇f = − 1

λ
(f − feq) (4.63)

in which, f = f (x, e, t) is the single-particle distribution in continuum phase space, e is the particle
velocity, λ is a relaxation time, ∇ is the gradient operator given by:

∇ = i
∂

∂x
+ j

∂

∂y
(4.64)

and feq is the Maxwell-Boltzmann equilibrium distribution function expressed as:

feq =
ρ

(2π/3)
D/2

exp

[
−3

2
(e− V )

2

]
(4.65)

where D is the spatial dimension, e is particle velocity and V is fluid velocity; e and V are normalised
by

√
3RTc (R is the ideal gas constant and Tc is the temperature), which leads to a sound speed of
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Us = 1/
√
3 [CD98]. The fluid density and velocity are computed as follows:

ρ =

∫
fde (4.66)

ρV =

∫
efde (4.67)

If the fluid velocity V is relative small compared with the sound speed, the equilibrium distribution
function can be expanded up to the second-order accuracy [Koe91] as follows:

feq =
ρ

(2π/3)
D/2

exp

(
−3

2
e2
)[

1 + 3 (e · V ) +
9

2
(e · V )

2 − 3

2
V · V

]
(4.68)

For the purpose of developing a discrete model, a limited number of particle velocities are adopted
eα (α = 1, . . . ,K), and the distribution function including these velocities can be changed to:

feqα (x, t) = feq (x, eα, t) (4.69)

which satisfies Equation 4.63:

∂fα
∂t

+ eα · ∇fα = − 1

λ

(
fα − feqα

)
(4.70)

In the limited discrete space and time, the left hand side of Equation 4.70 is the Lagrangian time
derivative and can be discretized as:

∂fα
∂t

+ eα · ∇fα =
fα (x, t+∆t)− fα (x, t)

∆t
+ eαx

fα (x+∆x, t+∆t)− fα (x, t+∆t)

∆x
(4.71)

fα (x, t+∆t)− fα (x, t)

∆t
+ eαx

fα (x+∆x, t+∆t)− fα (x, t+∆t)

∆x
= −1

τ

(
fα − feqα

)
(4.72)

in which eαx can be defined by eαx = ∆x/∆t. Combining the above equation with Equation 4.70
produces the standard lattice Boltzmann equation:

fα (x+ eα∆t, t+∆t)− fα (x, t) = −1

τ

(
fα − feqα

)
(4.73)

where τ = λ/∆t. In fact, τ should be a single dimensionless relaxation time.
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4.5 The lattice Boltzmann equation

The governing equation which is generally valid for fluid flows including the shallow water flows [Zho04]
in the lattice Boltzmann method is as follows:

fα (x+ eα∆t, t+∆t) = fα (x, t) + Ωα [fα (x, t)] +
∆t

Nαe2
eαiFi (x, t) (4.74)

where Nα is a constant and is determined by the lattice pattern as:

Nα =
1

e2

∑
α

eαieαi (4.75)

where Ωα is the collision operator which represents the rate of change of fα during collision. The-
oretically, Ωα is a complex matrix and is determined by the microscopic dynamics. An idea to
linearize the collision operator is given firstly by Higuera and Jimenez [HJ89]. Based on this idea,
Ωα can be expanded about its equilibrium value [NCGB95] as follows:

Ωα (f) = Ωα (feq) +
∂Ωα (feq)

∂fβ

(
fβ − feqβ

)
+O

[(
fβ − feqβ

)2] (4.76)

the solution process of the lattice Boltzmann equation is characterised by fβ → feqβ , indicating
Ω(feq) ≈ 0. Furthermore, if the higher-order terms in Equation 4.76 are neglected, a linearized
collision operator can be obtained:

Ωα (f) = Ωα (feq) +
∂Ωα (feq)

∂fβ

(
fβ − feqβ

)
(4.77)

the Bhatnagar-Gross-Krook (BGK) scheme simplifies the lattice Boltzmann equation greatly and
makes the LBM used widely in various sectors. If the local particle distribution is assumed to be
relaxed to an equilibrium state at a single rate τ [CCMM91].

∂Ωα (feq)

∂fβ
= −1

τ
σαβ (4.78)

in which δαβ is the Kronecker delta function as:

δαβ =

0 (α 6= β)

1 (α = β)
(4.79)

the collision term can be rearranged as:

Ωα (f) = −1

τ
δαβ
(
fβ − feqβ

)
(4.80)
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leading to the lattice BGK collision operator:

Ωα (f) = −1

τ

(
fβ − feqβ

)
(4.81)

in which τ in named as the single relaxation time. Because the BGK simplifies the lattice Boltz-
mann equation extremely and increases efficiency; it is widely used in the lattice Boltzmann model.
Combining the governing equation and the BGK model, the following lattice Boltzmann equation
can be obtained:

fα (x+ eα∆t, t+∆t)− fα (x, t) = −1

τ
(fα − feqα ) +

∆t

Nαe2
eαiFi (x, t) (4.82)

the above equation becomes the most popular form of the lattice Boltzmann equation used today.

4.6 Lattice pattern

As in traditional methods, a lattice pattern is needed to represent the grid points and discrete
computational domain. Furthermore, the lattice pattern has been used to determine particles’
motions in the LBM, in which a microscopic model for molecular dynamics has been defined. Besides,
the constant Nα is decided by the lattice pattern.

Generally, there are two kinds of lattice patterns; square lattice and hexagonal lattice for 2D
cases. The square lattice can have 9-speed and hexagonal lattice can have 7-speed model according
to the number of particle speed at lattice node. However, not all of these models can recover the
correct flow equations and that requires sufficient lattice symmetry [FHP86]. Studies show that both
of 9-speed square lattice and 7-speed hexagonal lattice have such property and can give satisfactory
performance in numerical simulations. Therefore, these two kinds of lattice patterns have been used
widely in the LBM.

However, the studies indicate that the 9-speed square lattice usually can produce more accurate
result than that from the hexagonal lattice [Sko93]. Furthermore, the use of the square lattice leads
to an easy way to implement different boundary conditions [Zho01]. Consequently, the 9-speed
square lattice model (D2Q9) shown in Figure 4.2 is adopted in this thesis.

In the two-dimensional 9-speed square lattice model, each particle moves one lattice unit at its
velocity along one of the eight links indicated with 1-8 and 0 indicates the rest particle with zero
speed. The velocity vector of particles is given by:

eα =


(0, 0) (α = 0)

e

[
cos

(α− 1)π

4
, sin

(α− 1)π

4

]
(α = 1, 3, 5, 7)

√
2e

[
cos

(α− 1)π

4
, sin

(α− 1)π

4

]
(α = 2, 4, 6, 8)

(4.83)
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it is not difficult to demonstrate that D2Q9 has the following features:

∑
α

eαi =
∑
α

eαieαjeαk = 0 (4.84)

∑
α

eαieαj = 6e2δij (4.85)

∑
α

eαieαjeαkeαl = 4e4 (δijδkl + δikδjl + δilδjk)− 6e4∆ijkl (4.86)

where:

∆ijkl =

1 (i = j = k = l)

0 (otherwise)
(4.87)

substituting the Equation 4.83 into the Equation 4.75 and the following equation can be obtained:

Nα =
1

e2

∑
α

eαxeαx =
1

e2

∑
α

eαyeαy = 6 (4.88)

combing the above equation with the governing equation, the following equation can be obtained:

fα (x+ eα∆t, t+∆t) = fα (x, t) + Ωα [fα (x, t)] +
∆t

6e2
eαiFi (x, t) (4.89)

This equation is the most common form of a lattice Boltzmann model with D2Q9.

4.6.1 The equilibrium distribution function

To determine a suitable equilibrium distribution function has an important role in the lattice Boltz-
mann method because it decides what flow equations could be solved by the lattice Boltzmann
equation. In order to apply the equation to solve the two-dimensional shallow water equations, a
suitable equilibrium function feqα has to be derived.

According to the primitive lattice gas automata, an equilibrium function is based on the Maxwell-
Boltzmann state which is often expanded using a Taylor expansion in macroscopic velocity to its
second order [HL97, CD98]. The Navier-Stokes equations can be recovered by using such equilibrium
function in the lattice Boltzmann equation [CD98] as shown the above section. The shallow water
equation, however, cannot be recovered with this kind of approach. On the other hand, an alternative
method is to assume that an equilibrium function can be expressed as a power series in macroscopic
velocity [RZ97] which has been used successfully in [CCM92, Gua00] and show its accuracy and
suitability [Zho04].
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The equilibrium function can be expressed as:

feqα = Aα +Bαeαiui + Cαeαieαjuiuj +Dαuiui (4.90)

because the equilibrium function has the same symmetry as the lattice model, there are:

A1 = A3 = A5 = A7 = Ā

A2 = A4 = A6 = A8 = Ã
(4.91)

and the similar expressions for Bα, Cα and Dα are used. Therefore, Equation 4.90 can be rewritten
as:

feqα =


A0 +D0uiui (α = 0)

Ā+ B̄eαiui + C̄eαieαjuiuj + D̄uiui (α = 1, 3, 5, 7)

Ã+ B̃eαiui + C̃eαieαjuiuj + D̃uiui (α = 2, 4, 6, 8)

(4.92)

the coefficients can be determined by the constraints on the equilibrium distribution function, such
as mass and momentum conservations. In the shallow water equations, the constraints are the
following three conditions: ∑

α

feqα (x, t) = h (x, t) (4.93)

∑
α

eαif
eq
α (x, t) = h (x, t)ui (x, t) (4.94)

∑
α

eαieαjf
eq
α (x, t) =

1

2
gh2 (x, t) δij + h (x, t)ui (x, t)uj (x, t) (4.95)

The equilibrium distribution function Equation 4.90 can be obtained under the above constraints.
When Equation 4.92 is substituted into Equation 4.93, the following equation can be obtained:

A0 +D0uiui + 4Ā+
∑

α=1,3,5,7

B̄eαiui +
∑

α=1,3,5,7

C̄eαieαjuiuj + 4D̄uiui

+ 4Ã+
∑

α=2,4,6,8

B̃eαiui +
∑

α=2,4,6,8

C̃eαieαjuiuj + 4D̃uiui = h
(4.96)

combing the lattice model and equating the coefficients of h and uiui, respectively, the following
equations can be obtained:

A0 + 4Ā+ 4Ã = h (4.97)

D0 + 2e2C̄ + 4e2C̃ + 4D̄ + 4D̃ = 0 (4.98)
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Similarly, substituting Equation 4.92 into Equation 4.94 results in:

A0eαi +D0eαiuiui +
∑

α=1,3,5,7

(
Āeαi + B̄eαieαjuj + C̄eαieαjeαkuiuk + D̄eαiuiui

)
+

∑
α=2,4,6,8

(
Ãeαi + B̄eαieαjuj + C̃eαieαjeαkuiuk + D̃eαiuiui

)
= hui

(4.99)

rearranged the above equation yields:

2e2B̄ + 4e2B̃ = h (4.100)

Inserting Equation 4.92 to Equation 4.95 leads to:

A0eαi +D0eαiuiui +
∑

α=1,3,5,7

(
Āeαieαj + B̄eαieαjeαkuk + C̄eαieαjeαkeαlukul + D̄eαieαjukuk

)
+

∑
α=2,4,6,8

(
Ãeαieαj + B̄eαieαjeαkuk + C̃eαieαjeαkeαlukul + D̃eαieαjukuk

)
=

1

2
gh2δij + huiuj

(4.101)

combing the lattice model, the above equation can be expressed by:

2Āe2δij + 2C̄e4uiui + 2D̄e2uiui + 4Ãe2δij

+ 8C̃e4uiuj + 4C̃e4uiui + 4D̄e2uiui =
1

2
gh2δij + huiuj

(4.102)

based on the above equation, the following four equations can be obtained:

2e2Ā+ 4e2Ã =
1

2
gh2 (4.103)

8e4C̃ = h (4.104)

2e4C̄ = h (4.105)

2e2D̄ + 4e2D̃ + 4e4 + C̃ = 0 (4.106)

substituted the Equation 4.104 into the Equation 4.105, the following equation can be obtained:

C̄ = 4C̃ (4.107)

because of the symmetry of the lattice model, the following relations can be assumed:

Ā = 4Ã (4.108)
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B̄ = 4B̃ (4.109)

D̄ = 4D̃ (4.110)

combing the above equations and relations lead to:

A0 = h− 5gh2

6e2
, D0 = − 2h

3e2
(4.111)

Ā =
gh2

6e2
, B̄ =

h

3e2
, C̄ =

h

2e4
, D̄ = − h

6e2
(4.112)

Ã =
gh2

24e2
, B̃ =

h

12e2
, C̃ =

h

8e4
, D̃ = − h

24e2
(4.113)

Therefore, the equilibrium function can be expressed by:

feqα =


h− 5gh2

6e2
− 2h

3e2
uiui (α = 0)

gh2

6e2
+

h

3e2
eαiui +

h

2e4
eαieαjuiuj −

h

6e2
uiui (α = 1, 3, 5, 7)

gh2

24e2
+

h

12e2
eαiui +

h

8e4
eαieαjuiuj −

h

24e2
uiui (α = 2, 4, 6, 8)

(4.114)

with two-dimensional shallow water flows.

4.7 Macroscopic properties

The above sections have shown the lattice Boltzmann model for shallow water equations proposed
by [Zho02]. In order to recover the shallow water equation, the link between microdynamic variables
and macroscopic the physical quantities (such as the water depth h and velocity ui) will be established
in this section. The macroscopic properties of the lattice Boltzmann equation has been examined
by [Zho04].

The sum of the 0-th moment of the distribution function with the lattice Boltzmann equation is
shown by:

∑
α

[
fα (x+ eα∆t, t+∆t)− fα (x, t)

]
= −1

τ

∑
α

(fα − feqα ) +
∆t

6e2

∑
α

eαiFi (4.115)

It is easy to demonstrate
∑

α eαiFi = 0, and the above equation can be simplified as:

∑
α

[
fα (x+ eα∆t, t+∆t)− fα (x, t)

]
= −1

τ

∑
α

(fα − feqα ) (4.116)

the mass and momentum, are the corresponding summations of the microdynamic mass and mo-
mentum which are conserved in the lattice Boltzmann method, should also meet the requirement of
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mass conservation. The continuity equation with microdynamic variables can be expressed by:

∑
α

fα (x+ eα∆t, t+∆t) ≡
∑
α

fα (x, t) (4.117)

substituting the above equation into Equation 4.116 results in:

∑
α

fα (x, t) =
∑
α

feqα (x, t) (4.118)

combining Equation 4.93 with the above expression, the water depth can be obtained as:

h (x, t) =
∑
α

fα (x, t) (4.119)

Next, the velocity will be defined. The sum of the first moment of distribution function with the
lattice Boltzmann equation is taken:

∑
α

eαi
[
fα (x+ eα∆t, t+∆t)− fα (x, t)

]
= −1

τ

∑
α

eαi (fα − feqα ) +
∆t

6e2

∑
α

eαieαjFi (4.120)

combing with the feature of D2Q9, the above equation can be expressed:

∑
α

eαi
[
fα (x+ eα∆t, t+∆t)− fα (x, t)

]
= Fi∆t−

1

τ

∑
α

eαi (fα − feqα ) (4.121)

According to the Newton’s second law, the momentum equation with microdynamic variables re-
quires: ∑

α

eαi
[
fα (x+ eα∆t, t+∆t)− fα (x, t)

]
≡ Fi∆t (4.122)

substituting the above equation into Equation 4.121 leads to:

∑
α

eαifα (x, t) =
∑
α

eαif
eq
α (x, t) (4.123)

combing Equation 4.94 with above equation, the velocity ui can be defined as:

ui (x, t) =
1

h (x, t)

∑
α

eαifα (x, t) (4.124)

4.8 Recovery of the shallow water equations

For the purpose of demonstrating that the depth and velocities obtained from Equations 4.119 and
4.124 are the solution to the shallow water equations [Zho04], the lattice Boltzmann equation will
recover the macroscopic shallow water equations, in which the Chapman-Enskog expansion and
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Taylor expansion are used.
When ∆t is assumed to be small and is equal to ε:

∆t = ε (4.125)

the lattice Boltzmann equation can be expressed by:

fα (x+ eαε, t+ ε)− fα (x, t) = −1

τ
(fα − feqα ) +

ε

6e2
eαiFi (x, t) (4.126)

A Taylor expansion is applied to the first term on the left-hand side of the above equation in time
and space around point (x, t) and results in:

ε

(
∂

∂t
+ eαj

∂

∂xj

)
fα +

1

2
ε2
(
∂

∂t
+ eαj

∂

∂xj

)2

fα +O
(
ε2
)
= −1

τ

(
fα − f (0)α

)
+

ε

6e2
eαjFj (4.127)

in which f
(0)
α = f

(eq)
α and fα can be expanded around f

(0)
α :

fα = f (0) + εf (1) + ε2f (2) +O
(
ε2
)

(4.128)

Inserting Equation 4.128 into the governing equation and ignoring the high order term (higher than
second order), the equations to order ε and ε2 can be obtained, respectively:(

∂

∂t
+ eαj

∂

∂xj

)
f (0)α = −1

τ
f (1)α +

1

6e2
eαjFj (4.129)

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α +

1

2

(
∂

∂t
+ eαj

∂

∂xj

)2

f (0)α = −1

τ
f (2)α (4.130)

substituting Equation 4.129 into Equation 4.130 and rearranging lead to:(
1− 1

2τ

)(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α = −1

τ
f (2)α − 1

2

(
∂

∂t
+ eαj

∂

∂xj

)(
1

6e2
eαkFk

)
(4.131)

from
∑

(4.129) + ε× (4.131) about α, the following equation can be derived:

∂

∂t

(∑
α

f (0)α

)
+

∂

∂xj

(∑
α

eαjf
(0)
α

)
= −ε 1

12e2
∂

∂xj

(∑
α

eαjeαkFk

)
(4.132)

when the force term with the first-order accuracy is applied, Combining Equations 4.83 and 4.114
with above equation leads to:

∂h

∂t
+
∂ (huj)

∂xj
= 0 (4.133)

which is just the continuity equation for the macroscopic shallow water equations.
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Taking
∑
eαi [(4.129) + ε× (4.131)] about α can result in:

∂

∂t

(∑
α

eαif
(0)
α

)
+

∂

∂xj

(∑
α

eαieαjf
(0)
α

)
+ ε

(
1− 1

2τ

)
∂

∂xj

(∑
α

eαieαjf
(1)
α

)
= Fjδij − ε

1

2

∑
α

eαi

(
∂

∂t
+ eα

∂

∂xj

)(
1

6e2
eαjFj

) (4.134)

similarly, if the force term with the first-order accuracy is used, combining it with Equations 4.83
and 4.114, the above equation can be rearranged as:

∂ (hui)

∂t
+
∂ (huiuj)

∂xj
= −g ∂

∂xi

(
h2

2

)
− ∂

∂xj
Λij + Fi (4.135)

in which:
Λij =

ε

2τ
(2τ − 1)

∑
α

eαieαjf
(1)
α (4.136)

combining Equations 4.129, 4.83 and 4.114 and making some algebra, the following expression can
be obtained:

Λij ≈ −ν
[
∂ (hui)

∂xj
+
∂ (huj)

∂xi

]
(4.137)

substituting the above equation into the governing equation results in:

∂ (hui)

∂t
+
∂ (huiuj)

∂xj
= −g ∂

∂xi

(
h2

2

)
+ ν

∂2 (hui)

∂xjxj
+ Fi (4.138)

this equation is the momentum equation for the macroscopic shallow water equations; where the
kinematic viscosity ν is defined by:

ν =
e2∆t

6
(2τ − 1) (4.139)

4.9 Stability conditions

The lattice Boltzmann equation can be interpreted as a Lagrangian finite difference method [SC96].
Therefore, it is not surprising that it may suffer from numerical instability. Sterling and Chen [SC96]
have carried out an analysis of the stability for the lattice Boltzmann method using perturbations
method. In general, the stability conditions are not available for the method. Zhou [Zho04], however,
has indicated the LBM for shallow water equations is stable if some basic requirements are met:

First is the fluid resistance. It indicates that the kinematic viscosity ν should be positive. The
following expression can be obtained:

ν =
e2∆t

6
(2τ − 1) > 0 (4.140)
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Thus, the relaxation time needs to meet:
τ >

1

2
(4.141)

Secondly, as indicated by Zhou [Zho04] and Liu et. al. [LZB10], the Courant number should be
smaller than unity. It implies that the magnitude of the resultant macro velocity is smaller than the
lattice speed:

ujuj
e2

< 1 (4.142)

and the wave velocity also should be smaller than the lattice speed:

gh

e2
< 1 (4.143)

up to now, the LBM for shallow water equations is limited to subcritical shallow water flows, it
means:

ujuj
gh

< 1 (4.144)

meanwhile, the Froude number should smaller than unit:

Fr =

√
ujuj√
gh

< 1 (4.145)

It should be noted that the above first three stability conditions can be easily satisfied by adjusting
the relaxation time τ , the lattice size ∆x and time step ∆t. It has been tested that the lattice
Boltzmann method is stable normally, if these four stability conditions can be satisfied [Zho04].

As of today, Chopard et. al. [CPL13] proposed an asymmetric lattice pattern in the one-
dimensional lattice Boltzmann method to apply the model in a supercritical flow. This approach,
however, cannot be expanded in two-dimensional model because of its symmetry. We, thus, have to
satisfy the condition 4.145 in whole simulating domain.

4.10 Improved force term and treatment of bed slope

In the above method for the force term, it includes the calculation of the first order derivative related
to the bed slope. To improve the efficiency and remove the calculation of the derivatives. High order
scheme [Zho11, ZL13] has introduced the bed level into the lattice Boltzmann equation, directly. In
this scheme, the lattice Boltzmann equation can be rewritten as:

fα (x+ eα∆t, t+∆t)− fα (x, t) = −1

τ
(fα − feqα )−Wα

gh̄

C2
s

[
zb (x+ eα∆t)− zb (x)

]
+Wα

∆t

C2
s

eαjFj

(4.146)
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in which h̄ = [h (x+ eα∆t, t) + h (x, t)] /2 and Wα are the weights defined as:

Wα =

1/9 (α = 1, 3, 5, 7)

1/36 (α = 2, 4, 6, 8)
(4.147)

Equation 4.146 are adopted in this thesis.

4.11 Turbulence modelling

In order to simulate flows with relatively high Reynolds number, the LBM for shallow water equations
is extended to the shallow water equations with turbulence modelling which is proposed by [Zho04]
in this section. The LBM for shallow water equations with turbulence modelling includes the eddy
viscosity term which is not present in the original governing equation. It can be noted that the
only difference is the viscosity term. Because the kinematic viscosity ν is determined only by the
relaxation time with constant time and space step, this means that a new relaxation time τt can be
defined by:

τt = τ + τe (4.148)

which yields a total viscosity νt:
νt = ν + νe (4.149)

and the lattice Boltzmann equation can be rewritten as:

fα (x+ eα∆t, t+∆t)− fα (x, t) = − 1

τt
(fα − feqα ) +

∆t

6e2
eαiFi (4.150)

which can produce the solution to the shallow water equations. This is consistent with the idea
of the lattice Boltzmann model with subgrid-scale stress designed by [HSCD96]. Therefore, the
flow turbulence can be predicted easily by the standard lattice Boltzmann equation with the total
relaxation time τt.

For the purpose of determining the total relaxation time τt, the strain-rate tensor Sij needs to
be calculated. As Sij defined by Equation 4.62 involves calculation of derivatives, it is not suitable
or efficient to use in practice. To keep consistent with the lattice gas dynamics, Sij is expected to
be expressed in terms of the distribution function. Using the Chapman-Enskog expansion, it can be
seen that the strain-rate tensor Sij is related to the non-equilibrium momentum flux tensor and Sij

can be calculated by:
Sij = − 3

2e2hτt∆t

∑
α

eαieαj (fα − feqα ) (4.151)

Assuming νt and τt satisfy the definition of the macroscopic viscosity ν in the lattice Boltzmann
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method, the following expression can be obtained:

τt =
1

2
+

3νt
e2∆t

(4.152)

substituting Equation 4.148 and 4.149 into the above equation results in:

τe + τ =
1

2
+

3 (νe + ν)

e2∆t
(4.153)

substituting Equation 4.58 into the above equation provides:

τe =
3

e2∆t
(Csls)

2√
SijSij (4.154)

combining Equation 4.151 with the above equation gives:

τe =
3

e2∆t
(Csls)

2 3

2e2hτt∆t

√
ΠijΠij (4.155)

in which
Πij =

∑
α

eαieαj (fα − feqα ) (4.156)

with Equation 4.148, if ls = ∆x is adopted, Equation 4.155 can be rewritten as:

τe =
9

2

C2
s

e2h (τe + τ)

√
ΠijΠij (4.157)

solving the above equation gives:

τe =
−τ +

√
τ2 + 18C2

s/ (e
2h)
√
ΠijΠij

2
(4.158)

the total relaxation time τt can be by:

τt = τ + τe =
τ +

√
τ2 + 18C2

s/ (e
2h)
√

ΠijΠij

2
(4.159)

4.12 The multiple-relaxation-time collision model in the D2Q9
square lattice

Compared with the BGK scheme, the multiple-relaxation-time (MRT) is less used in the lattice
Boltzmann method for shallow water flows. In order to improve the stability of the approach, the
collision operator of MRT-LBM is incorporated into the lattice Boltzmann method for shallow water
equations in this section. This model will be used in the latter chapter show its accuracy. Together
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with the new force term introduced in the above section, the shallow water equations are recovered
correctly in this section.

The MRT-LBM can improve the stability of computation. It is incorporated into the lattice
Boltzmann method for shallow water equations in this thesis and the shallow water equations will
be recovered by the Chapman-Enskog expansion in the next section. When the D2Q9 model is
adopted, the lattice Boltzmann equation with the MRT-LBM for shallow water equations are as
follows:

fα (x+ eα∆t, t+∆t)− fα (x, t) = −
(
T−1
r S

)
αi

(mi −meq
i ) + ∆tFα (4.160)

where m = Trf , and S is the relaxation matrix, S = diag (s0, s1, s2, s3, s4, s5, s6, s7, s8), Tr is the
transform matrix defined in [LL00]:

Tr =



1 1 1 1 1 1 1 1 1

−4 −1 2 −1 2 −1 2 −1 2

4 −2 1 −2 1 −2 1 −2 1

0 1 1 0 −1 −1 −1 0 1

0 −2 1 0 −1 2 −1 0 1

0 0 1 1 1 0 −1 −1 −1

0 0 1 −2 1 0 −1 2 −1

0 1 0 −1 0 1 0 −1 0

0 0 1 0 −1 0 1 0 −1



(4.161)

the relaxation parameters s7 and s8 is chosen according to fluid viscosity as same with single relax-
ation time τ , and the other parameters can be chosen freely during the range of [0, 2] for maximum
stability. In practical application, these free parameters are little larger than 1 according to [LL00].

The equilibrium variables of moments meq are given as:

meq =

(
h,−4h+

3gh2

e2
+
3h
(
u2 + v2

)
e2

, 4h−9gh2

2e2
−
3h
(
u2 + v2

)
e2

,
hu

e
,−hu

e
,
hv

e
,−hv

e
,
h
(
u2 − v2

)
e2

,
huv

e2

)
(4.162)

4.13 Recovery of the MRT-LBM for shallow water equations

The Chapman-Enskog expansion is used to recover the shallow water equations from the MRT-LBM
model with improved force term. Assuming ∆t is small and ∆t = ε, Equation 4.160 can be expressed
as:

fα (x+ eαε, t+ ε)− fα (x, t) = −
(
T−1
r S

)
αi

(mi −meq
i ) + εFα (4.163)
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taking a Taylor expansion to the first term on the left hand side of the above equation in time and
space around point (x, t) leads to:

ε (∂t + eαj∂j) fα +
1

2
ε2 (∂t + eαj∂j)

2
fα +O

(
ε2
)
= −

(
T−1
r S

)
αi

(mi −meq
i ) + εFα (4.164)

according to the Chapman-Enskog expansion, fα can be written in a series of ε:

fα = f (0)α + εf (1)α + ε2f (2)α +O
(
ε2
)

(4.165)

which can be expressed in a vector form:

f = f (0) + εf (1) + ε2f (2) +O
(
ε2
)

(4.166)

the above equation can be easily converted into an expression in moment space by being multiplied
with T :

m = m(0) + εm(1) + ε2m(2) +O
(
ε2
)

(4.167)

when the centered scheme [Zho04] is used, the expression for Fα can be obtained:

Fα = Fα

(
x+

1

2
eαε, t+

1

2
ε

)
(4.168)

making the taylor expansion to the above yields:

Fα

(
x+

1

2
eαε, t+

1

2
ε

)
= Fα (x, t) +

1

2
ε (∂t + eαj∂j)Fα (x, t) +O

(
ε2
)

(4.169)

combining the above equations, the equations to orders ε0, ε and ε2 are given as:

m
(0)
i = m

(eq)
i (4.170)

(∂t + eαj∂j) f
(0)
α = −

(
T−1
r S

)
αi
m

(1)
i + Fα (4.171)

(∂t + eαj∂j) f
(1)
α +

1

2
(∂t + eαj∂j)

2
f (0)α = −

(
T−1
r S

)
m

(2)
i +

1

2
(∂t + eαj∂j)Fα (4.172)

The above equations can be written with matrices and vectors:

m(0) = m(eq) (4.173)

(∂tI +E)T−1
r m(0) = −T−1

r Sm(1) + F (4.174)

(∂tI +E)T−1
r m(1) +

1

2
Fr (∂tI +E)

2
T−1
r m(0) = −T−1

r Sm2 +
1

2
(∂tI +E)F (4.175)
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where I is the identity matrix; E is a diagonal matrix as:

E = diag [e0j∂j , e1j∂j , e2j∂j , e3j∂j , e4j∂j , e5j∂j , e6j∂j , e7j∂j , e8j∂j ] (4.176)

m(1) =
[
0, e(1), e2(1), 0, q(1)x , 0, q(1)y , p(1)xx , p

(1)
xy ,
]T

(4.177)

m(2) =
[
0, e(2), e2(2), 0, q(2)x , 0, q(2)y , p(2)xx , p

(2)
xy ,
]T

(4.178)

and

F =

[
0, 3w1

e1Fi

e2
, 3w2

e2Fi

e2
, 3w3

e3Fi

e2
, 3w4

e4Fi

e2
, 3w5

e5Fi

e2
, 3w6

e6Fi

e2
, 3w7

e7Fi

e2
, 3w8

e8Fi

e2
,

]T
(4.179)

substituting Equation 4.174 into Equation 4.175 leads to:

(∂tI +E)T−1
r

(
I − 1

2
S

)
m(1) = −T−1

r Sm(2) (4.180)

multiplying Equation 4.174 and the above equation by Tr gives:

(
∂tI + TrET−1

r

)
m(0) = −Sm(1) + Tr (4.181)

(
∂tI + TrET−1

r

)(
I − 1

2
S

)
m(1) = −Sm(2) (4.182)

writing our Equation 4.181 for s = 0, 1, 3, 5, 7 and 8 yields:

∂th+ ∂x (hu) + ∂y (hv) = 0 (4.183)

∂t

(
−4h+

3gh2

e2
+

3h
(
u2 + v2

)
e2

)
= −s1e(1) (4.184)

∂t

(
hu

e

)
+ ∂x

(
gh2

2e
+
hu2

e

)
+ ∂y

(
huv

e

)
=
Fx

e
(4.185)

∂t

(
hv

e

)
+ ∂y

(
gh2

2e
+
hu2

e

)
+ ∂x

(
huv

e

)
=
Fy

e
(4.186)

∂t

(
h
(
u2 − v2

)
e2

)
+

2

3
∂x (hu)−

2

3
∂y (hv) = −s7p(1)xx (4.187)

∂t

(
huv

e

)
+

1

3
∂x (hv) +

1

3
∂y (hu) = −s8p(1)xy (4.188)

writing out Equation 4.182 for the conserved moments, s = 3 and 5 results in the follow equations:

∂x

[
1

6

(
1− s1

2

)
e(1) +

1

2

(
1− s7

2

)
p(1)xx

]
+ ∂y

[(
1− s8

2

)
p(1)xy

]
= 0 (4.189)
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∂y

[
1

6

(
1− s1

2

)
e(1) +

1

2

(
1− s7

2

)
p(1)xx

]
+ ∂x

[(
1− s8

2

)
p(1)xy

]
= 0 (4.190)

combining the 0-th order Equations 4.185 and 4.186 with the 1-st order equations Equations 4.189
and 4.190 respectively:

∂t (hu) + ∂x

(
gh2

2
+ hu2

)
+ ∂y (huv) = Fx − ε

e2

6

(
1− s1

2

)
∂x

(
e(1)
)

+ ε
e2

6

(
1− s7

2

)
∂x

(
p(1)xx

)
− εe2

(
1− s8

2

)
∂y

(
p(1)xy

) (4.191)

∂t (hv) + ∂y

(
gh2

2
+ hv2

)
+ ∂x (huv) = Fy − ε

e2

6

(
1− s1

2

)
∂y

(
e(1)
)

+ ε
e2

6

(
1− s7

2

)
∂y

(
p(1)xx

)
− εe2

(
1− s8

2

)
∂x

(
p(1)xy

) (4.192)

ignoring the higher order terms, the following expansion from Equations 4.184, 4.187 and 4.188 can
be obtained:

e(1) = 0 (4.193)

p(1)xx = − 2

3s7
[∂x (hu)− ∂y (hv)] (4.194)

p(1)xy = − 2

3s8
[∂x (hv)− ∂y (hu)] (4.195)

substituting the above equations into Equations 4.191 gives:

∂t (hu) + ∂x

(
gh2

2
+ hu2

)
+ ∂y (huv) = Fx

+ ε
e2

3

(
1

s7
− 1

2

)
∂x [∂x (hu)− ∂y (hv)] + ε

e2

3

(
1

s8
− 1

2

)
∂y [∂x (hv) + ∂y (hu)]

(4.196)

when setting s7 = s8 = 1/τ , in which τ is the single relaxation time, the above equation can be
reduced to:

∂t (hu) + ∂x

(
gh2

2
+ hu2

)
+ ∂y (huv) = Fx + ν

[
∂2x (hu) + ∂2y (hu)

]
(4.197)

∂t (hv) + ∂y

(
gh2

2
+ hv2

)
+ ∂x (huv) = Fy + ν

[
∂2x (hv) + ∂2y (hv)

]
(4.198)

the above equations and Equation 4.183 are just the shallow water equations. It may be noted that
when s0, . . . , s8 = 1/τ , the lattice Boltzmann method with a single relaxation time τ is recovered.
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4.14 Boundary and initial conditions

4.14.1 No-slip boundary condition

One of the most attractive advantages of the lattice Boltzmann method is its simple treatment of
boundary conditions such as the bounce-back scheme. It can be implemented easily for flows in
arbitrary complex geometries. The bounce-back and similar schemes for different boundary con-
ditions, it very simple and efficient for no-slip, semi-slip and slip boundary conditions and is used
widely for various flow problems. For example, in the bounce-back scheme as shown in Figure 4.3,
the part below AB is a wall and defined as solid; the part above is fluid. The unknown incoming
distribution functions f2, f3 and f4 from the solid are simply equal to f6, f7 and f8, respectively.
Consequently, the specific location of solid points is not required and the programming is easy,
making it the most efficient treatment for a no-slip boundary condition for flows in complex geom-
etry [Zho04, CD98, GNGB97].

4.14.2 Slip boundary condition

If the boundary is smooth with lattice friction, the slip boundary should be used. As Figure 4.3
shows, the unknown distribution functions f2, f3 and f4:

f2 = f8, f3 = f7, f4 = f6 (4.199)

It means that no momentum is changed in the direction normal to a wall and the velocity along the
wall is kept.

4.14.3 Semi-slip boundary conditions

In practical flows, a large velocity gradient exists near the boundary for turbulent flows due to the
effect of wall friction. It cannot be described by slip or no-slip boundary conditions, and hence the
semi-slip boundary is described to deal with this case. In order to construct the semi-slip boundary
condition, the wall shear stress should be included. The wall shear stress τfi can be expressed
by [Zho04]:

τfi = ρCfui
√
ujuj (4.200)

in which, Cf is the friction factor at the wall and can be constant or determined by Cf = g
n2
f

h1/3 with
nf is the Manning’s coefficient at the wall. By adding the wall shear stress to the force term, the
semi-slip boundary condition is developed together with slip boundary. It should be noted that the
distribution function is still dealt with by the slip boundary condition.
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4.14.4 Initial condition

Before computation, the initial for distribution function needs to be specified. Generally, there are
two ways to specify the initial condition in the lattice Boltzmann method. One is to specify a
random value between 0 and 1 for the distribution function. The other is to assume a flow field with
water depth and velocity firstly, then compute the local equilibrium distribution function feqα and
use it as an initial condition for fα. Normally, it is easier to specify a macroscopic quantity than a
macroscopic. So, the second method is better in practical computation, which is used in the present
models. It is obvious that there is no difference between results calculated with these two initial
conditions for a steady flow problem.

4.15 Implementation for tsunami modellings

4.15.1 Moving shoreline algorithm

Solutions of the non-linear shallow water equations are only valid for a water depth h greater
than 0. For a moving shoreline, however, there will be areas of tsunami wave runup-rundown
where parts of the computational domain will successively be wetting and drying. The numerical
treatment of such drying or wetting boundaries requires additional considerations. As of today,
a lot of moving shoreline boundary condition are proposed for tsunami modellings. Hibberd and
Peregrine [HP79] developed a computational model based on the conventional non-linear shallow
water equations for wave run-up problems. Liu et. al. [LCB+95] presented an experimental and
numerical study of the interactions of solitary waves climbing up a circular island. Synolakis [Syn87]
and Briggs et. al. [BSHG95] experimentally studied long-wave evolution and run-up on piecewise
linear bathymetries. Li and Raichlen [LR02] investigated solitary wave run-up using the weighted
essentially non-oscillatory (WENO) shock capturing scheme [LOC94]. Carrier et. al. [CG58]. used a
semi-analytic solution technique to evaluate tsunami run-up and draw-down motions on a uniformly
sloping beach based on non-linear shallow water wave theory.

In the lattice Boltzmann method for non-linear shallow water equations, a moving shoreline
algorithm is used to artificially adjust the domain size in the wave runup-rundown region, depending
on the rising or falling water level at the boundary nodes. In this simple step-slot algorithm, the
water level in the neighbour of solid boundaries is checked via evaluating:

zb (x) + h (x) > zb (x+ ei∆t) + δ, ∀i (4.201)

where zb denotes the elevation of bottom grid cells, h is the total water depth, and δ is a proper
threshold value avoiding a divide-by-zero. We set δ = 1.0 × 10−5 in this thesis. If the water is
overflowing a given cell, the neighbouring inactive solid cell is activated and converted to a wetting
cell. The equilibrium distribution functions for an extrapolated water elevation and velocity are
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defined as:
fi = feqi (hinit,uinit) (4.202)

This approach leads to accurate results for tsunami modellings. For more complex bottom topogra-
phies, however, more advanced moving shoreline algorithm can be used. Balzano [Bal98] analysed
and discussed ten different moving shoreline algorithms, mainly for implicit methods, and compared
these for demanding run-up test cases. Lynett et. al. [LWL02] proposed used a linear extrapo-
lation scheme, which is a pure mathematical manipulation to deal with the wetting-drying front.
Frandsen [Fra08] incorporated both the linear extrapolation scheme and the thin water film into the
one-dimensional lattice Boltzmann shallow water model to investigate the behaviour of free-surface
waves. It appears from these references that the calculation of hinit and uinit is a challenging prob-
lem. In a very simple model, hinit is set by the linear extrapolation approach from the neighbouring
cells as shown in Figure 4.4, and the initial velocities are set to zero (with uinit = 0). This con-
stant extrapolation of water levels works well for most test cases, but might lead to instabilities
in some cases, due to inconsistent initialisation of velocities. In such cases, a linear extrapolation
might improve the run-up, but based on the stability conditions, Froude number stability limitations
must also be considered. Specifically, the lattice Boltzmann method for the non-linear shallow water
equations is only applicable to subcritical flows, so that an upper bound or similar technique has
to be satisfied during run-up, to limit the Froude number value (i.e., such that |uinit| ≤

√
ghinit)

and avoid inconsistent node initialisations. It was observed that the present run-up model is very
sensitive to such limitations, which may lead to instabilities, especially for low fluid viscosities ν.
Specifically, an improper choice of hinit induces shock waves that can lead to instabilities. Similar
effects have been reported in the Navier-Stokes type lattice Boltzmann simulations of fluid-structure
interaction problems, where nodes have to be initialised with proper values for fluid pressure and
velocity [GKT+06]. So far, to tackle this problem, we used increased values for the fluid viscosity.

4.15.2 Multiple spacing grid coupled model

There are several reasons for applying the nested multiple spacing grid model for tsunami modellings.
When the water depth varies within the computational domain, it might be desirable that different
spacing grid size be employed in different subregions so that the frequency dispersion is adequately
represented. On the other hand, we would like to obtain detailed information in the coastal region.
Finer grids should be used only in certain specific regions. We will briefly describe the technique
for two-way exchanging information between two subregions of different grid sizes. As shown in
Figure 4.5, a smaller grid system is nested in a larger grid system with the ratio of 1:3.

To interpolate depth averaged velocity u and total water depth h in a small subregion, we used
first order interpolation scheme in this thesis. On the other hand, we calculated the ensemble
average of the macroscopic variables from 9 small grids in the large size grid for connecting a
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small subregion to large region. The distribution functions fi in each region are calculated by the
equilibrium distribution functions feqi by the interpolated macroscopic variables.

4.15.3 The calculation procedure

The solution procedure for the lattice Boltzmann method for shallow water equations are extremely
simple. It involves only explicit calculations and consists of the following step:

Algorithm 4 Calculation loop of two-dimensional shallow water flows
collision with the BGK-LBM or MRT-LBM
forcing bed slope and friction term
streaming
apply the boundary conditions for unknown distribution functions
update the total water depth h and depth averaged velocity u

4.16 Primitive benchmarks

4.16.1 Simple dam-breaking flows

A typical dam-break flow problem was considered to compare the specific model features between the
MRT and BGK collision models when combined with the large eddy simulation model. Figure 4.6
shows the flow geometry and the initial water depth. The 1st-order mirror scheme, which represents
slip boundary conditions, was used at the solid-wall boundary. The numerical results were examined
in terms of the spatial distribution of the water depth and velocity compared with the analytical
solution [Sto57] after 1 second.

The various calculation cases, with different grid sizes and parameters, are summarised in Ta-
ble 4.1. The macroscopic fluid viscosity was set to ν = 1.0× 10−6m2/s. This is a realistic value for
water at 20◦C. Then, the relaxation time was calculated using Equation 4.140. The time step was
chosen to fulfill the requirement that the Courant number e should be much larger than the wave
velocity

√
ghmax. We chose a value of e = 10m/s for a wave velocity of 3.13m/s.

Figure 4.7 presents the water depth profiles for Case 1 to 3. The results of the MRT collision
model are in good agreement with the analytical solution, whereas the results of the BGK model
show numerical oscillations. There is a possibility of reducing this effect even when using the BGK
model. It is, however, assumed that the solution quality will degrade because of the viscosity effect.

As seen from the above numerical experiments, the large eddy simulation model based on the
MRT collision model achieves results that are essentially identical the analytical solution when we
set 100 computation points per unit length in the dam-break flow problem.
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4.16.2 Flows around a square cylinder

This benchmark test was performed to validate the reproducibility of the vortex separation behind
a square cylinder in a high-Reynolds-number flow. The calculation geometry, depicted in Figure 4.8,
was prepared in reference to Lui et al. [LLS12]. The origin point was placed at the center of the
square cylinder. We chose the length of the square cylinder to be L = 1m as the characteristic length
of the flow field. The x-axis velocity was initialised as the characteristic velocity U = 0.535m/s,
whereas the y-axis velocity was set to zero following Lyn et al. [LWL02]. The initial still water depth
h0 was set to 4m. The macroscopic fluid viscosity was set to ν = 2.5 × 10−5m2/s to obtain a flow
with a Reynolds number of 21400. In this scenario, the Reynolds number is defined as

Re =
UL

ν
(4.203)

The mirror scheme was used at the top and bottom wall boundaries. The left boundary was
initialised with the equilibrium distribution function calculated from the still water depth h0 and
the characteristic velocity U . At the right-hand boundary, we applied a non-reflecting boundary
condition, which is also called an impedance boundary condition [Sch14]. A semi-slip boundary
condition [Zho04] was applied at the boundary of the square cylinder to conduct a correct turbulence
simulation with a Manning roughness coefficient of 0.006. The bed slope was defined as a plane with
a roughness coefficient of 0.009. Table 4.2 summarises the calculation parameters for this test case.
Four simulation conditions with different grid sizes were chosen to confirm the dependence of the
simulated vortex behaviour on the spatial resolution. The total simulation time was 10 minutes in
all cases.

Figures 4.9 and 4.10 show the velocity profile for each direction after 10 minutes of iteration for
each component. Regular vortex appear behind the cylinder in Case1 and 2. On the other hand, it
is clear that the vortex occurrence and movement are fairly irregular in high resolution. Moreover,
Figure 4.11 shows the time series of velocities captured at (x, y) = (10m, 0m). It is seen that the
velocity profile indicates not a steady or periodic flow but rather a complex and aperiodic turbulent
flow. These results clearly differ from those of the previous study [LLS12]. It is speculated that the
difference is due to the grid size. In other words, the previous results are equivalent to the solution
of a zero-equation turbulence model because of the coarse grid size. This suggests that the shallow
water large eddy simulation model based on the MRT collision model requires sufficient calculation
points to resolve the turbulence vortexes, as do traditional computational fluid dynamics.

Figure 4.12 presents the time-averaged velocity profile for each calculation case. The trend
of the numerical results is generally consistent with the experimental data. There is, however, a
large quantitative discrepancy between the numerical and experimental values. We consider that
it is difficult to evaluate this problem in terms of the time-averaged velocity because of the high
irregularity of the flow in this test case, as mentioned above; therefore, an additional benchmark
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problem was considered for direct analysis of the velocity profile, as described in the next section.

4.16.3 Plane-driven cavity flows

A two-dimensional square-plane-driven cavity flow was investigated. This benchmark test has its
origin in the two-dimensional lid-driven cavity flow problem [GGS82, ECG05, Wah12]. Figure 4.13
shows the computation domain and the boundary conditions for the test case. The initial still water
depth h0 was set to 1.0m [LLS12]. U is the top-driven velocity, which is the characteristic velocity in
this flow. L is the vertical and horizontal length of the cavity, which is also the characteristic length.
These values were set to Umax = 1.0m/s and L = 1.0m, respectively, for all Reynolds numbers. The
critical Reynolds number for this problem is between 8000 and 8050, with an error of less than 1%,
in analogy to the previous study of Bruneau et al. [BS06]. Validation for the plane-driven cavity
flow problem using the LBM for shallow water theory has previously been performed for Reynolds
numbers of up to 10000 [LLS12]. We extended our numerical analysis up to a Reynolds number of
30000, as presented below. The Reynolds number, defined as Re = UL/ν, was set to 10000, 15000,
20000 or 30000 to simulate a turbulent flow. The large eddy simulation model should be applied
for these Reynolds numbers to consider sufficient turbulence of the flow. The numerical results were
assessed in terms of the streamlines and velocity profiles after 30 minutes of computation time, as it
was considered that the flow would not be in a steady state, such as a laminar flow. The calculation
conditions and parameters are summarised in Table 4.3.

The bounce-back scheme was applied for the edge boundary condition. The distribution function
at the moving lid boundary was determined by the equilibrium distribution functions calculated from
the characteristic velocity U and the still water depth h0. The y-axis velocity was constrained to
always be equal to zero at the top boundary.

To quantitatively evaluate the model accuracy, Figure 4.14 present comparisons of the profiles
of the dimensionless calculated velocity components ux and uy along a vertical and a horizontal line
at y/L = 1/2 and x/L = 1/2, respectively, consistent with the previous study. The results of the
MRT collision model are in good agreement with the previous study’s numerical solution. It is also
concluded that the bounce-back boundary condition in the MRT collision model reproduced the no-
slip boundary condition with satisfactory accuracy, as seen from the fact that the accuracy does not
decrease near the boundary. The reason is that the MRT collision rates can determine the accuracy
of the boundary condition, in analogy to the conventional Navier-Stokes-type lattice Boltzmann
equation with the MRT collision model; the rates s5 and s7 work especially well. Accordingly, it is
considered that the MRT relaxation rates must also be validated in detail. We intend to focus on
this issue in our future analysis.

The results of the MRT collision model better reproduce the reference data as the number of grid
points increases, especially at the solid wall boundary. It can be concluded that the convergence
behaviour of our turbulence model depends on the size of the computation grid. This is an important
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factor in determining the applicability of our model to other problems from an engineering point
of view. Moreover, for the current problem, it is necessary to set at least 256 × 256 grid points to
obtain results of comparable precision to those that have been previously reported. An adaptive
mesh refinement technique will be necessary to execute more efficient simulations using the MRT
collision model, for example, to refine the mesh near the solid wall boundary.

4.17 Verification with tsunami by the 2011 Great East Japan
Earthquake

Finally, we simulated the tsunami by the 2011 Great East Japan Earthquake to verify our proposed
tsunami simulation model. Figure 4.15 shows the computational domains. This tsunami simulation
consists of five sub-regions by multiple spacing grid coupled model. The grid sizes include 405,
135, 45, 15, and 5m for sub-domains (a), (b), (c), (d) and (e) respectively. Sub-domain (e) is the
inundation domain (Onagawa). Table 4.4 shows calculation parameters in this simulation. The
relaxation times τ manually determined to avoid the numerical instability for each sub-region. This
means that the values are the minimum number to enable the tsunami simulation stable.

The initial free surface elevation was generated by an analytical solution [Oka85], which is used
to simulate ground deformation produced by, e.g., tectonic faults, such as earthquakes. For a given
rectangular fault geometry, the free surface elevation can be computed. The equivalent roughness
model [III13] was adopted to model the resistance of building structures during tsunami inundation.
This approach uses the digital elevation model data and composite equivalent roughness coefficient
that is given by Equation 4.204 according to land use and building conditions:

nerm =

√
100− θ

100
n20 +

θ

100

CD

2gk
h4/3 (4.204)

where n0 is the roughness coefficient according to MLIT [MLI09] (n0 = 0.025 in urban areas:
n0 = 0.030 otherwise), θ is the relation of built-up area in the computational cell, CD is the drag
coefficient (CD = 0.5 in this thesis), g is the gravitational acceleration, k is the horizontal scale of
houses, and h is the total water depth.

The numerical results for the amplitude at ten different wave gauges [SFHN13] in sub-region1 are
compared to numerical results by the conventional finite difference method (FDM) in Figure 4.16.
All in all, the proposed model results reproduce the salient features of the tsunami-induced flow
quite well. The time of the initial wave impact and the arrival of the reflected wave match the FDM
results very well for all ten probes. Figure 4.17 also shows the amplitude at the gauge in Onagawa
(Sub-region3). Both the proposed model and FDM is a very good agreement with the observed
wave. A bidirectional coupling approach has successfully been implemented in the proposed model
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for the tsunami modellings.
The numerical results for the maximum inundation depth in Sub-region5 is shown in Figure 4.18.

The result of proposed model reproduce the inundation depth calculated by the FDM well. The surge
of wave front, however, is a little less than the FDM results. Attempts to fine-tune the LBM run-up
model and/or further reduce the fluid viscosity (i.e., relaxation time τ), to obtain a higher elevation
induced instabilities in the run-up region because of the its stability condition (Equation 4.145). This
can potentially be improved by more sophisticated wetting-drying algorithms for the simulation of
tsunami run-up.

4.18 Conclusion

In this chapter, we developed a two-dimensional tsunami simulation model based on the lattice
Boltzmann method for the non-linear shallow water equations with the multiple-relaxation-time
approach. Through the validation of the proposed model on traditional turbulence benchmark
problems and realistic tsunami flows, the following remarkable results were obtained:

• A comparison between the MRT and BGK collision models revealed that the latter model well
reproduces the analytical solution for a dam-breaking flow. We determined that it is necessary
to set at least 100 lattice points per unit wavelength in this problem to reproduce the analytical
solution using the proposed model.

• In benchmark tests based on the flow behind a square cylinder and a plane-driven cavity flow,
we demonstrated that the convergence behavior of the proposed model depends on the size
of the computation grid, as in the case of other computational fluid dynamics. Therefore,
it can be used for other, more realistic flow problems in hydrodynamic engineering, such as
coastal, lake, and river flows. In addition, it was shown that the results of the proposed model
markedly depend on the size of the computation grid. If there are insufficient lattice points
to resolve the vortexes, the model results may be equivalent to the solution of a zero-equation
turbulence model because of the coarse grid size.

• We presented application of the proposed model with practical tsunami simulation by the 2011
Great East Japan Earthquake. The validation shows a good performance of the code and a
good agreement of the numerical results by the conventional FDM approach with the reference
data in most of the cases.

In addition, it is well known that the LBM requires many lattice points to solve high-Reynolds-
number flows compared with conventional computational fluid dynamics. It is believed that adaptive
mesh refinement will be needed to perform more efficient simulations using the LBM. In future work,
several model aspects will be improved, particularly concerning wetting-drying models, higher order
boundary conditions near the no-slip wall.
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Water surface

Figure 4.1: Shallow water flows sketch.
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Figure 4.2: Two-dimensional 9-speed square lattice (D2Q9) in the horizontal plane.
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Figure 4.3: Layout of wall boundary and lattice nodes.
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Figure 4.4: Layout of moving shoreline algorithm in this thesis.
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Figure 4.5: Layout of connecting algorithm for different spacing grid sizes.

151



width : 1m

10m

5m

1m
0.4m

Figure 4.6: Geometry of the dam-breaking problem.
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Figure 4.7: Comparison of the total water depth between the BGK and MRT models t = 1.0s: (a)
Case1, (b) Case2, (c) Case3.
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Figure 4.8: Geometry of the square cylinder benchmark problem.
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Figure 4.9: The x-axis velocity profiles after 10 minutes iterations: (a) Case1, (b) Case2, (c) Case3,
(d) Case4.

Figure 4.10: The y-axis velocity profiles after 10 minutes iterations: (a) Case1, (b) Case2, (c) Case3,
(d) Case4.
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Figure 4.13: Geometry and boundary conditions of the plane-driven cavity flow.
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Figure 4.14: The velocity profiles along the centre line after 30 minutes iteration: (a) Re = 10000,
(b) Re = 15000, (c) Re = 20000, (d) Re = 30000.
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Figure 4.15: The calculation domains: (a) sub-region1, (b) sub-region2, (c) sub-region3, (d) sub-
region4, (e) sub-region5. Sub-region5 is the inundation area (Onagawa).
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Figure 4.16: Comparisons of calculated tsunami waveforms between LBM and FDM in sub-region1:
(a) TM-1, (b) TM-2, (c) Iwate N, (d) Iwate M, (e) Iwate S, (f) Miyagi M, (g) Mutsuogawara Port,
(h) Kamaishi, (i) Sendai NewPort, (j) Choshi.
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Figure 4.17: The observed and calculated tsunami waveforms in sub-region3 (Onagawa).
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Figure 4.18: Maximum inundation depth in sub-region5: (a) LBM, (b) FDM.
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Table 4.1: Parameters used in the dam-breaking problem.

Case No. Resolution ∆x (m) ∆t (s) τ

Case1 100× 10 0.1 0.01 0.5 + 3.0× 10−6

Case2 200× 20 0.05 0.005 0.5 + 6.0× 10−6

Case3 1000× 100 0.01 0.001 0.5 + 3.0× 10−5

Table 4.2: Parameters used in the square cylinder benchmark problem.

Case No. Resolution ∆x (m) Iterations ∆t (s) τ

Case1 200× 140 0.1 6.0× 105 0.001 0.5 + 7.5× 10−6

Case2 400× 280 0.05 6.0× 105 0.001 0.5 + 3.0× 10−5

Case3 800× 560 0.025 1.2× 106 0.0005 0.5 + 6.0× 10−5

Case4 1600× 1120 0.0125 1.2× 106 0.0005 0.5 + 2.4× 10−4

Table 4.3: Parameters used in the plane-driven cavity problem.

Re Resolution ∆x (m) Iterations ∆t (s) τ

10000 128× 128 7.81× 10−3 3.6× 106 5.0× 10−4 0.50246
256× 256 3.91× 10−3 3.6× 106 5.0× 10−4 0.50983

15000 128× 128 7.81× 10−3 3.6× 106 5.0× 10−4 0.50164
256× 256 3.91× 10−3 3.6× 106 5.0× 10−4 0.50655

20000 128× 128 7.81× 10−3 3.6× 106 5.0× 10−4 0.50123
256× 256 3.91× 10−3 3.6× 106 5.0× 10−4 0.50492

30000 128× 128 7.81× 10−3 3.6× 106 5.0× 10−4 0.50082
256× 256 3.91× 10−3 3.6× 106 5.0× 10−4 0.50327

Table 4.4: Parameters tsunami simulation in Onagawa.

Sub-region No. Resolution ∆x (m) ∆t (s) τ

Sub-region1 1330× 1632 405.0 0.1 0.5001
Sub-region2 419× 374 135.0 0.1 0.52
Sub-region3 558× 472 45.0 0.1 0.515
Sub-region4 776× 422 15.0 0.1 0.54
Sub-region5 680× 665 5.0 0.1 0.55
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Chapter 5

A 2D/3D hybrid coupling tsunami
modelling

5.1 Introduction

This chapter will focus on scenes that have a much larger physical scale, e.g., a tsunami propagation
from its generation concomitant with offshore earthquake to inundation in an urban area. As
these phenomena are simulated by physical-based fluid modellings, several issues arise. The most
significant problem is that the amount of computational work and the required resources grow when
the resolution of the simulation is increased. The full simulation of the scales mentioned the above
section with the volume-of-fluid (VOF) Navier-Stokes solver would hardly be possible even on a
large supercomputer. In the following, a hybrid fluid simulation approach will be presented that
computes the full fluid flow only in a bounded region of interest such as an unsteady flow around
buildings, and uses a fast two-dimensional shallow water fluid simulation approach to compute the
fluid surface around it.

As of today, a shallow water based two-dimensional (2D) and free surface three-dimensional
(3D) coupling fluid simulation modelling is still a important research topic in coastal engineer-
ing [FMG02, YMM12, TT12, PY13] as an efficient tsunami modelling approach. Recently, ap-
proaches to couple two-dimensional fluid modellings based on shallow water equations or Boussinesq
equations with three-dimensional particle fluid approaches such as Smoothed Particle Hydrodynam-
ics [Luc77] or Moving Particle Semi-implicit methods [KO96] were proposed [SIS14]. A different
coupling approach for grid-based modelling using OpenFOAM and shallow water equations was
proposed [PISH14, KMS14]. These, however, do not connect the three-dimensional results to two-
dimensional simulations. A two-way coupling model should be required in tsunami modelling in
term of the return flow.
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A different approach for detailed and precise two and three-dimensional hybrid fluid simulation
model that will be developed by the lattice Boltzmann method to achieve more efficient tsunami
simulation in this thesis. Several hybrid tsunami simulation techniques solving the conventional
Navier-Stokes equations and shallow water equations has been carried out simulations for the tsunami
of the 2011 off the Pacific coast of Tohoku Earthquake. These approaches, however, have only
successfully applied only in limited computing environment as described the above because of the
difficulty to solve the pressure Poisson equation, iteratively. More recently, Fukui et. al. [FKM10]
presented hybrid tsunami simulation techniques by the lattice Boltzmann method based on Thürey.
These works, however, were focused on scenes with a small deformation at the hybrid coupling
boundary. The weak-compressibility of the three-dimensional free surface flow model by the lattice
Boltzmann method has also to be considered to develop a hybrid simulation model. It cannot be
ignored especially in tsunami modellings.

5.2 2D/3D hybrid tsunami simulation

An overview of the hybrid simulation approach is given in Figure 5.1. Both 2D and 3D calculation
algorithms have been parametrised to solve the same fluid simulation problem. In the following
it will be assumed that the shallow water simulation is performed in the x and y plane, and the
gravitational force acts in the direction of the negative z axis. There is an inherent difference
between the two simulation approaches that has to be overcome: the derivation of the shallow water
simulation assumes a depth averaged velocity and has a coupling between fluid height and velocity.
The three-dimensional simulation, on the other hand, can have a velocity varying along the z axis,
and has boundary conditions that makes it independent of the initial height of the fluid surface hini.
In order to be able to couple both simulations, the 2D/3D hybrid coupling algorithms explained in
the following were developed.

5.3 Coupling 2D to 3D algorithm

The transfer from the 2D shallow water simulation to the 3D free surface simulation, is done by
initialising the 3D domain cells to represent the 2D shallow water simulation height and velocity.
For a 3D domain cell at (i, j) marked with orange colour in the upper part of Figure 5.2 cells are
thus removed if H (i, j) > h (i, j), otherwise new ones are added. Where H is the replaced fluid
height in 3D domain and h is the height calculated by 2D simulation. To correctly initialise the new
cells the velocity of the shallow water simulation is directly used as:

u3D,α = u2D,α, for α = i, j (5.1)

The k coordinate of the velocity is 0 because of depth averaged theory.
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For the outer layer of the 3D simulation (square cells marked with yellow colour in the upper
part in Figure 5.2) velocity boundary conditions with a fixed pressure are used. For the lattice
Boltzmann method the pressure of a cell with height k in the domain is given by:

ρk = ρ0 + 3ω (hin − k) · gl (5.2)

where hin total fluid depth in 3D domain calculated by 2D shallow water simulation and k is the
calculation integer index. The pressure thus increase further down in the grid in 3D domain, with
a gradient that depends on the relaxation time ω = 1/τ . This parameter determines the pressure
gradient according to the dimensionless gravity acceleration caused by the weak-compressibility of
the 3D free surface model based on the lattice Boltzmann approach. Equation 5.2, thus, satisfies
pressure boundary condition at the gas-liquid interface cell (e.g., ρk becomes ρ0 at the interface
which means the fluid pressure p = 0 at the interface). The velocity can again be taken directly
from the shallow water simulation as described above. Note that it is in this case not necessary to
scale the shallow water simulation velocities, as the whole height of the 3D simulation is set. The
distribution functions in 2D/3D coupling overlapping region can be calculated by the equilibrium
distribution functions.

The fluid fraction values C in 3D domain has also to be initialised by 2D shallow water simulation
water height as:

C =


0 (k∆x3D > h+∆x3D)

(h− k∆x3D) /∆x3D (k∆x3D ∈ Sk)

1 (k∆x3D < h−∆x3D)

(5.3)

where Sk is the existing range of the interface cells. It can be determined by the calculated 2D fluid
height h and ∆x3D as Sk = [h−∆x3D, h+∆x3D].

5.4 Coupling 3D to 2D algorithm

The height of the fluid at a position within the 3D simulation region is determined by searching for
the first interface cell from bottom assuming the single-valued function of the fluid height based on
the shallow water theory. Hence, the fluid height is computed for the first interface cell at (i, j, kH)

with:
H (i, j) = [(kH − 1) + C (i, j, kH)]∆x3D (5.4)

where C is the fluid fraction values of volume-of-fluid (VOF) approach. Thus, the height of the
interface cells can be accurately considered by the value.

The velocity of 2D model is also given by the depth averaged velocity of 3D simulation result
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based on the shallow water theory as:

u2D (i, j) =
1

k

∑
k∆x3D<H

uα,3D (i, j, k) , for α = i, j (5.5)

To transfer the information from the 3D simulation to the 2D shallow water simulation a cell at
(i, j), shown as a circle marked with X in Figure 5.2, is initialised with the equilibrium distribution
functions:

f2D,i (i, j) = feq2D,i (H (i, j) ,u2D (i, j)) (5.6)

the cells where height and velocity are set with the above equations represent the inner boundary
for the 2D shallow water simulation. Further inwards the full 3D simulation is performed, thus the
cells of the 2D shallow water simulation do not have to be updated in this region, as their values
are never used. To ensure a transfer with as few disturbances as possible, a double layered transfer
is used. Thus, a second type of boundary condition for the region of shallow water simulation cells
directly outwards of the boundary cells (the circle marked with O in Figure 5.2) is applied. For the
cells that are updated according to Equation 5.6 all distribution functions are reset each time step,
while for the second boundary layer the existing distribution functions are only rescaled to match
the calculated fluid height:

f∗2D,i = f2D,i ·
H (i, j)

h (i, j)
(5.7)

The combination of these two boundary conditions ensures a correct transfer of both fluid surface
height and velocity.

5.5 Calculation algorithm

The time step interval of the 3D free surface model ∆t3D generally smaller than the 2D shallow
water simulation one ∆t2D due to the stability condition of each model. In this thesis, the simple
linear interpolation technique is applied to determine the macroscopic variables between 2D and 3D
model as shown in Figure 5.3.

The developed 2D/3D hybrid tsunami simulation, thus, carried out in the following chart.

Algorithm 5 Calculation loop 2D/3D hybrid tsunami simulation
execute the two-dimensional shallow water simulation (Algorithm 4)
connect variables from two dimension to three dimension as the boundary condition
execute the three-dimensional free surface simulation (Algorithm 1)
connect variables from three dimension to two dimension
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5.6 Validation

5.6.1 A dam-breaking flow with obstacles

After the classical benchmark cases for both two and three-dimensional fluid model we proposed,
the hybrid 2D/3D model is tested against the experimental dam-breaking flow with three obstacles
by Fukui et. al. [FKM10]. The initial setting is shown in Figure 5.4. The 3D fluid simulation was
implemented on an elective basis around the first obstacle against the wave gate to calculate three-
dimensional fluid flow conditions in high accuracy. All the results of the 3D fluid simulation was
returned to the two-dimensional shallow water flow model in wetting area in this benchmark. From
the numerical point of view, this test case is demanding for two-dimensional shallow water model due
to high Froude number immediately after gate opening. Here, we defined an upper limit parameter
φ = 0.95 for the velocity only for two-dimensional model. When, due to high fluid velocity, the
stability condition cannot be hold, we compute a new suitable velocity magnitude as:

unew =

√
u · u√
gh

· φ (5.8)

and replace the distribution functions of the cell with new ones calculated by its equilibrium distri-
bution functions.

Table 5.1 shows the calculation parameters for each fluid model. The time step interval ∆t of
three-dimensional model generally much smaller than two-dimensional one, because the calculation
stability conditions are different. This trend remarkably appears in the lattice Boltzmann fluid
simulation compared with the conventional free surface model based on a direct solver for the
Navier-Stokes equations due to the weak-compressibility of three-dimensional model. We should
reduce the flow Mach number, which can be estimated by the maximum flow velocity magnitude to
inhibit the growth of the compressibility. The costs of computing times and this parameter settings,
however, are related to the trade-off relationship. The difference of the time step interval between
2D and 3D model should also be not large in term of the interpolation for values in time. We, thus,
set Ma = 0.1 in the three-dimensional fluid model so as to have the same time stepping order with
the two-dimensional fluid model in this benchmark.

Snapshots of the simulation results for selected time step t = 1.34s are given in Figure 5.5. This
figure is just after the surge front hits against the first obstacle. The proposed hybrid 2D/3D coupling
tsunami simulation model has been successfully implemented in the lattice Boltzmann method for
the single-phase solver and is currently adapted to the shallow water model. There is no discontinuity
connecting point and numerical oscillation in hybrid coupling region because the proposed hybrid
model can consider the effect of the weak-compressibility in the coupling. The results of hybrid
simulation, moreover, well reproduced three-dimensional flow around the obstacle compared with
the only two-dimensional simulation, such as the hitting against the obstacle. On the other hand, the
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hybrid approach cannot calculate small splashes seen in the experimental data. Breaking waves ware
observed just after the gate opening in the experiment. The two-dimensional model, however, cannot
simulate the phenomena because it is based on the depth-averaged model. The three-dimensional
computing area should be expanded to simulate such flows more accurately. Finally, the timeseries
water level at the two observed points compared to the experimental data are shown in Figure 5.6.
The hybrid simulation improves extremely overestimation of only 2D simulation around t = 1.0s. We
restricted the 2D model velocity due to the stability condition. It can be considered that the total
water depth, thus, grow up to satisfy the continuity condition locally. The three-dimensional model
does not have to be limited the velocity. This is why the results of 2D simulation overestimates
the experimental data. The numerical simulation for this hybrid model case took approximately
300 min, on the at most 8 cores with OpenMP. In combination with the high result accuracy, this
emphasises the applicability of our proposed 2D/3D hybrid fluid simulation approach to an efficient
tsunami simulation.

5.7 Conclusion

In this chapter, we developed a two and three-dimensional hybrid fluid model for large scale tsunami
modellings, e.g., a tsunami propagation from its generation concomitant with offshore earthquake
to inundation in an urban area. Through the validation of the proposed coupling approach on
benchmark problems and realistic tsunami flows,

• The proposed coupling approach is formulated by considering the weak-compressibility of three-
dimensional free surface model with the multiple-relaxation-time collision model at the time
of 2D → 3D connecting.

• Both the 2D → 3D and 3D → 2D is free from the non-physical oscillation of the interface
emerge with conventional Fukui et. al. [FKM10] model.

• We presented application of the proposed model with tsunami simulation benchmark problem.
The validation shows a good performance of the code and reproduce three-dimensional flow
phenomena efficiency and accurately such as flows around obstacles (e.g., buildings).

The coupling two and three-dimensional fluid simulation model we proposed in this thesis is
based on the shallow water theory (i.e., two-dimensional fluid model). The coupling model, thus,
should be applied in the region, in which the vertical acceleration can be ignored, because the vertical
velocity cannot be connected by the algorithm. The accuracy depending on the three-dimensional
area should deeply be validated with other benchmarks. This is an challenge for the future.
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3D computing region

Water surface
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2D→3DOnly 3D computing Only 2D computing

3D→2D

Figure 5.1: This schematic illustration gives an overview of the 2D/3D hybrid tsunami simulation
method. The full three-dimensional fluid flow is solved in a given region of interest (illustrated
by a 2D rectangle), and coupled to a two-dimensional shallow water simulation (shown as a one-
dimensional line in the picture).
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Figure 5.2: Detail of the double layer boundary conditions in the overlapping interface region.
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Figure 5.3: Here the effect of the different time step sizes for the 2D/3D hybrid fluid simulation is
shown. The numbers indicate the order in which the steps are performed. Dashed arrows indicate
interpolation, while straight arrows from one circle to another represent lattice Boltzmann steps
with the indicated time step length.
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Figure 5.4: The calculation domain of the Fukui et. al. [FKM10] dam-breaking flows.

Figure 5.5: Free surface shapes at t = 1.34s: (a) two-dimensional view of hybrid simulation (b) two-
dimensional view of only two-dimensional simulation, (c) three-dimensional view, (d) experimental
data [FKM10].
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Table 5.1: Parameters used in the dam-breaking benchmark [FKM10].

Model Resolution Ma ∆x (m) ∆t (s)

2D 1375× 113 – 8.0× 10−3 4.0× 10−4

3D 225× 115× 150 0.10 8.0× 10−3 1.0× 10−4
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Chapter 6

Conclusion

The goal of this thesis was to develop a tsunami simulation model with high efficiency, stability and
flexibility. The following section will summarise the contributions of this thesis that were presented
in order to achieve this goal. Afterwards, drawbacks and future extensions will be discussed.

6.1 Summary

The efficient tsunami simulation model, as presented in this thesis, is given due to the use of the
lattice Boltzmann method for the conventional Navier-Stokes equations and non-linear shallow water
equations. The basic algorithm performs very well on modern computer architectures, and is suitable
for shared and distributed memory machines using API for parallel programming. The single-phased
piecewise linear interface calculation approach can be directly integrated into the lattice Boltzmann
method, and likewise yields a high efficiency. It preserves mass, and allows a local treatment of the
free surface boundary conditions. The stability is mainly guaranteed by the turbulence model. In
its different forms the Navier-Stokes simulation, a simplified lattice Boltzmann method based on the
non-linear shallow water theory was developed to achieve a consistent tsunami simulation from its
occurrence to inland penetration. The coupling of the three-dimensional free surface simulation with
the non-linear shallow water simulation allows the tsunami simulation of large open water surfaces
that could hardly simulated due to memory and time requirements.

We presented several applications of the proposed model with practical relevance for various
coastal and tsunami engineering applications. Wave propagation, wave impact were addressed for
both two, three-dimensional and hybrid flow problems. The validations show a good performance
of the code and a good agreement of the numerical results with the reference data in most of the
cases.
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6.2 Discussion and future work

One of the main strength of the tsunami simulation model developed in this thesis is the com-
putational efficiency of its components due to the lattice Boltzmann method. The computations
usually involve only the local neighbourhood of a cell. Therefore, global properties - such as the
mass conservation or incompressibility - are guaranteed by the local treatment of the algorithm.
Several aspects will discuss areas of future work for coastal engineering applications: the solid-liquid
coupling simulation to investigate soil and fluid structure interaction and parallel computing with
GPGPUs for more efficient simulation.

6.2.1 Parallel adaptive mesh refinement implementations

Although using the piecewise linear interface calculation approach in the lattice Boltzmann method
rectifies the need to have very high resolutions, a great deal of computational time and memory is still
wasted on regions far from the interface or gas-phase where a coarse lattice resolution may suffice the
smooth variations in the fluid fraction as well as pressure and velocity. An adaptive mesh refinement
(AMR) technique was not carried out in this thesis so as to refrain from the complications it brings
to the parallel processing. Nevertheless, efficient GPGPU implementations for AMR algorithm
could be considered as a future work. In particular, NVIDIA’s Kepler generation GPGPUs provide
a so-called dynamic parallelism framework which are aimed at facilitating adaptive computations
through launching multiple levels of nested kernels, each resolving one lattice level in the refinement
hierarchy. Conventional multi-block lattice Boltzmann frameworks using variable time steps for each
level as in [GZZ11], or those based on a single time step finite difference formulations [FL14, FL15]
could then be considered as candidates for such parallel implementations.

6.2.2 Multiple GPGPU implementations

Parallel computing implementations in this thesis were designed using MPI and OpenMP on CPUs.
It is well known that the lattice Boltzmann method is originally suitable for GPUs which have
manycore and is low clock frequency. Although the convergence trend in three-dimensional bench-
mark flows proved that the results are approaching those of direct numerical simulation for the
Navier-Stokes equations, multiple GPGPU implementations will indeed facilitate reaching the same
accuracy level via high resolution simulations. In case a more memory efficient an adaptive mesh
refinement programming is also pursued, such massively parallel implementations also allow to treat
large real scale problems of interest for industrial applications within reasonable times and costs.
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6.2.3 Coupling with the discrete element method

Typical multiphysics problems occur in many different fields of civil and coastal engineering such as
investigating the flow structures between water and soil. The dynamic flow of water and other viscous
fluids through granular soil is commonly modeled by Darcy’s law with time-independent permeability
coefficients. Experimental studies show that this law is not valid for large nonlaminar fluid velocities
which may develop under high hydraulic gradients. Furthermore, particle rearrangements leading
to substantial variations in porosity are prevalent during soil liquefaction and other extreme flow
driven phenomena, such as piping. These variations in porosity affect significantly the soil hydraulic
conductivity and stiffness characteristics. Experimental investigations furnish only macroscopic
phenomenological characterisation of these complex response mechanism. Microscopic numerical
analyses provide effective alternative tools to assess the hydraulic and deformation characteristics
or granular soil in a coupled fashion.

As of today, the coupling discrete element method and the lattice Boltzmann method has been
proposed [RR18]. The free surface flow model proposed in this thesis is very suitable for coupling
soil and fluid simulation Hence, the extensions to compute the moving boundary by the immersed
boundary method with AMR [LS12, VPB14, JLZ15] is also important for an application for civil
engineering.
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