
A Study on Deep Learning Based Packet
Transmission Strategy for Intelligent Network
Traffic Control

著者 毛 伯敏
学位授与機関 Tohoku University
URL http://hdl.handle.net/10097/00127356

A Study on Deep Learning Based Packet Transmission
Strategy for Intelligent Network Traffic Control

A dissertation presented
by

Bomin Mao

submitted to
Tohoku University

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Nei Kato

Department of Applied Information Sciences
Graduate School of Information Sciences

Tohoku University

January, 2019

A Study on Deep Learning Based Packet Transmission
Strategy for Intelligent Network Traffic Control

A dissertation presented by

Bomin Mao

approved as to style and content by

Professor Nei Kato,
Graduate School of Information Sciences

Professor Ayumi Shinohara,
Graduate School of Information Sciences

Professor Masanori Hariyama,
Graduate School of Information Sciences

Associate Professor Zubair Md. Fadlullah,
Graduate School of Information Sciences

Tohoku University
Sendai, Japan.

To My Family

Abstract

Recent years, an increasing number of devices are connected to the Internet for pro-

viding users with various kinds of services. Accompanying the era of Internet of Things

(IoT), the number of devices connected to the Internet will be three times as high as

the global population in 2021. To offer users different services, the connected devices

generate and receive the traffic. Therefore, the significant increase in the quantity of the

connected devices usually leads to the exponential growth of the global IP traffic. It is

forecast by the industry that the global IP traffic will increase nearly threefold over the

next 5 years and reach 3.3 ZB annually by 2021. The surging traffic demand does not

mean the growing profits for the Internet Service Providers (ISPs). On the other hand,

the ISPs are confronted with the problem of declining profits due to the traffic explo-

sion. This is because the main idea behind the routing algorithms has traditionally been

remarkably similar and the manner in which the Internet core and the wired/wireless

heterogeneous backbone networks are constructed have largely remained unchanged over

the years. To accommodate the tremendous growth of network traffic, the ISPs have

to reconsider the core network structure and the packet transmission strategy instead

of just adding more/larger routers and more/faster links to scale up the Internet core

infrastructure, which on the other hand results in a huge cost.

As we know, the computation capacities of different platforms, such as the Central

Processing Unit (CPU) and the Graphic Processing Unit (GPU), are enlarged significantly

driving by the Moore’s Law. For example, the single precision processing power of V100

GPU accelerator launched by Nvidia in June 2017 reached as high as 14028 GFLOPS,

while that of S870 GPU in May 2007 was only 1382.4 GFLOPS. Besides the much better

experience realized by the increasing computation capacities, some existing technologies

have benefited from the more powerful computation platforms and achieved some break-

through. For instance, as one of the machine learning techniques, the deep neural networks

can be trained with much lower time consumption, which lays the solid foundation for

the wide applications. Currently, deep learning, emerged from the deep neural networks,

has shown its predominant intelligence in many complex activities. Moreover, researchers

have also considered this technique to develop the networking management algorithms to

improve the performance.

Inspired by the development in the computing hardware and the Artificial Intelligence

(AI) technology, in this dissertation, we explore new opportunities in packet process-

ing with deep learning to inexpensively shift the computing needs from rule-based route

computation to deep learning based route estimation for high-throughput packet process-

ing. Also, driven by the development of the computation platforms, Software Defined

i

Routers (SDRs) (programmable routers) have emerged as a viable solution to provide

a cost-effective packet processing platform with easy extensibility and programmability.

Moreover, multi-core platforms significantly promote SDRs’ parallel computing capacities,

enabling them to adopt artificial intelligent techniques to manage routing paths. This dis-

sertation first envisions a supervised deep learning system to construct the routing tables

and show how the proposed method can be integrated with programmable routers using

both CPUs and GPUs. We demonstrate how our uniquely characterized input and out-

put traffic patterns can enhance the route computation of the deep learning based SDRs

through both analysis and extensive computer simulations. In particular, the simulation

results demonstrate that our proposal outperforms the benchmark method in terms of

delay, throughput, and signaling overhead.

Since the labeled data is usually unavailable in some Software Defined Communica-

tion Systems (SDCSs) with heterogeneous networks as the data plane, the supervised

training manner is not suitable. To alleviate the congestion in the SDCSs with varying

traffic patterns, in this dissertation, we utilize Convolutional Neural Networks (CNNs) to

intelligently compute the paths according to the input real-time traffic traces. To reduce

the computation overhead of the central controller and improve the adaptation of CNNs

to the changing traffic pattern, we consider an online training manner. Analysis shows

that the computation complexity can be significantly reduced through the online training

manner. Moreover, the simulation results demonstrate that our proposed CNNs are able

to compute the appropriate paths combinations with high accuracy. Furthermore, the

adopted periodical retraining enables the deep learning structures to adapt to the traffic

changes.

The above research focuses on the static network scenarios. However, it has been

forecast that the traffic generated by the wireless and mobile devices will jump to more

than 63% of the global IP traffic by 2021. Therefore, we further propose a Value Iteration

Architecture based Deep Learning (VIADL) method to conduct routing design in order

to address the limitations of existing deep learning based routing algorithms in dynamic

networks. Besides the network performance analysis, this dissertation also studies the

complexity of our proposal as well as the resource consumption in different deployment

manners. Moreover, this dissertation adopts the Heterogeneous Computing Platform

(HCP) to conduct the training and running of the proposed VIADL since the theoretical

analysis demonstrates the significant reduction of the time complexity with the multiple

GPUs in HCPs. Furthermore, simulation results demonstrate that compared with the

existing deep learning based method, our proposal can guarantee more stable network

performance when network topology changes.

ii

Acknowledgments

Firstly, this dissertation would have never been completed without the continuous support

and guidance from my supervisor, Prof. Nei Kato. I have been really fortunate to have

him as my supervisor since he provided me enough freedom and resource to conduct the

research I feel interested in. His kindness, prudence, and work of ethics have made my

PhD period one of the best periods of my life. I am also grateful to Associate Prof.

Zubair Md. Fadlullah for closely watching, directing, and guiding me throughout each

stage of this work. His enthusiasm and prompt suggestion always inspire me to work

hard towards my goal. I could not find works strong enough to express my gratitude for

him. I would like to thank also the other two professors in my thesis committee, Prof.

Ayumi Shinohara and Prof. Masanori Harayama, for their interest, concern, and valuable

comments on both the writing of the thesis and the defense.

During the three and half years’ study overseas, I always feel fortunate to meet my wife,

Ms. Wei Zou. She has offered me so much support which enables me to concentrate on

my research. Being accompanied by her, to study overseas becomes more meaningful and

interesting. I wish to thank my dear parents who were always supporting and encouraging

me to strict on my choice. I am deeply grateful for their strong faith in me. I cannot

imagine how much hardships they have gone through to bring up me, my brother and

sister. I would also link to sincerely thank my brother and sister for that they take my

responsibility to look after my parents when I was studying overseas. I would repay them

during my rest life.

This dissertation would not be possible without the help of my colleagues and friend,

Fengxiao Tang. I would never forget his valuable suggestions, discussions, and help over

the years. Special thanks go to Motoko Shiraishi, Keisuke Miyanabe, and Yibo Zhou for

sincerely helping me with all the necessary documents. Acknowledgments are also given

to Chinese Scholarship Council (CSC) for the strong support that enabled me to pursue

the challenging route during my doctoral years. Last, but not least, special thanks to all of

my lab-mates for their responsiveness, technical help, and mainly for having contributed

to this long journey I had to make to pursue my Ph.D degree.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Background . 1

1.2 Breakthrough of Deep Learning . 3

1.3 Development of Hardware Computation Capacities 4

1.4 Purpose of Research . 6

1.5 Summary and Organization of the Thesis 8

2 Overview of Deep Learning and Traffic Control 10

2.1 Introduction . 10

2.2 Overview of Deep Learning Technologies 10

2.2.1 Preliminaries of Deep Learning . 12

2.2.2 Two Commonly Utilized Deep Learning Architectures 15

2.2.2.1 Deep Belief Architecture 15

2.2.2.2 Convolutional Neural Networks 19

2.2.3 Different Training Manners . 23

2.2.4 Survey of Deep Learning Based Networking 24

2.2.4.1 Network Parameter Prediction 24

2.2.4.2 Intelligent Resource Allocation 25

2.2.4.3 Smart Anomaly Detection 25

2.3 Overview of Traffic Control . 26

2.3.1 Traditional Traffic Control Strategies 26

2.3.1.1 Data Link Layer . 27

2.3.1.2 Network Layer . 27

2.3.1.3 Transport Layer . 28

2.3.2 Research on Deep Learning Based Traffic Control 28

2.3.2.1 Network Scenarios and Problem Analysis 29

iv

Contents

2.3.2.2 Deep Learning Structure Construction 29

2.3.2.3 Network Performance Analysis 29

2.3.2.4 Computation Analysis and Proposal Deployment 30

2.4 Summary . 30

3 Deep Learning Based Routing Algorithm for Core Networks Running

on GPU Accelerate SDRs 31

3.1 Introduction . 31

3.2 Design of Deep Learning based Routing Strategy 32

3.2.1 Input and Output Design . 32

3.2.2 Deep Learning Structure Design . 34

3.2.3 Considered Router Architecture . 35

3.3 The Procedures of the Proposed Deep Learning based Routing Strategy . . 37

3.3.1 Initialization Phase . 37

3.3.2 Training Phase . 37

3.3.3 Running Phase . 39

3.4 Computation Performance Analysis . 40

3.4.1 DBA Precision Analysis . 41

3.4.2 Complexity Analysis of the Training Phase 42

3.4.3 Complexity Analysis of the Running Phase 45

3.5 Network Performance Evaluation . 47

3.6 Summary . 51

4 Online Learning Based Routing Strategy for Software Defined Commu-

nication Systems 53

4.1 Introduction . 53

4.2 Problem Statement and Model Design . 55

4.3 Procedures of Our Proposal . 58

4.3.1 Initial Phase . 58

4.3.2 Running Phase . 60

4.3.2.1 Data Collection . 60

4.3.2.2 Routing Judgement . 61

4.3.2.3 Retraining Phase . 62

4.4 Complexity Analysis . 63

4.5 Performance Evaluation . 64

4.6 Summary . 68

v

Contents

5 Value Iteration based Deep Learning Architecture for Routing in Dy-

namic Networks 69

5.1 Introduction . 69

5.2 Problem Formulation . 70

5.3 Preliminaries . 73

5.3.1 Markov Decision Process (MDP) 73

5.3.2 Value Iteration . 75

5.4 Design of the Deep Reinforcement Learning Based Routing Strategy 75

5.5 Complexity Analysis From the HCP Perspective 79

5.6 Performance Evaluation . 81

5.6.1 Deployment Analysis . 83

5.6.2 Performance with Link Failures . 85

5.7 Summary . 86

6 Conclusion 87

Appendix 90

Method to Adjust the Weights and Biases of RBMs 90

Bibliography 93

Publications 101

vi

List of Figures

1.1 The Global IP Traffic per Month. 2

1.2 The next generation network paradigm. 5

1.3 The Nvidia GPU processing power roadmap. 6

1.4 Recent inter-disciplinary trends indicate an inter-disciplinary area involving

computing systems, computer networks, and machine intelligence. Partic-

ularly, network traffic control systems are becoming robust and intelligent

owing to the advancement in CPU/GPU technologies and deep learning,

respectively. 7

1.5 The research contents of this dissertation. 8

2.1 The architecture of deep neural networks. 11

2.2 The commonly utilized deep learning architectures. 12

2.3 Considered model of the proposed deep learning system. 15

2.4 The process of convolution between two three-dimensional matrices. 20

2.5 The timescales of approaches to congestion control. 27

3.1 Considered system model and problem statement. 32

3.2 Considered input and output design. 33

3.3 The architecture of GPUs and steps of how packets are passed in the GPU-

accelerated SDR. 35

3.4 Mean Square Errors (MSEs) of different DBAs. 40

3.5 The time cost of training phase on the chosen GPU and CPU-based SDRs. 45

3.6 The time cost of running phase on the chosen GPU and CPU-based SDRs. 46

3.7 Comparison of network performance under different network loads in our

proposal and the bencmark method (OSPF) in terms of signaling overhead,

throughput, and average delay per hop. 48

3.8 Comparison of network performance under different signaling intervals in

our proposal and the bencmark method (OSPF) in terms of signaling over-

head, throughput, and average delay per hop. 49

4.1 The considered structure of SDCS. 54

vii

List of Figures

4.2 An illustrative example: when switches S1, S2, and S3 choose S5 as the

next node to destination S8, S5 will be the bottleneck, which means that

traffic congestion will easily happen to S5. 55

4.3 The input of the CNN in our proposal. 56

4.4 The process in the running phase. 62

4.5 The network performance before and after training. 65

4.6 The network performance comparison between the conventional routing

protocol and our proposal in terms of packet loss rate and average packet

delay. 65

4.7 The throughput comparison in the considered SDCS. 66

4.8 Comparison of SDCS performance under different packet generation rates

in our proposal and the bencmark methods (OSPF) in terms of packet loss

rate, average packet delay, and throughput. 67

5.1 The considered network topology. 70

5.2 The Heterogeneous Computing Platform (HCP) and the applications built

on it. 71

5.3 The proposed Value Iteration Architecture (VIA). 76

5.4 The log time cost of training VIA with the single GPU HCP and the

multiple GPUs HCP. 79

5.5 The log time cost of running VIA with the single GPU HCP and the mul-

tiple GPUs HCP. 80

5.6 Training computation consumption of networks with different percentages

of centralized controlled switches. 82

5.7 Running time cost for networks with different percentages of centralized

controlled switches. 83

5.8 Considered network performance for different cases. 84

viii

List of Tables

2.1 Comparison of three training methodologies. 23

2.2 Existing networking research based on deep learning 24

2.3 Some congestion control protocols in the transport layer. 28

3.1 Routing Table Built in R3. 39

3.2 Effect of different input and output characterization strategies on the net-

work control accuracy for N=16. 42

4.1 The parameters of the considered CNN structure 63

6.1 Comparison of the three deep learning based strategies. 88

ix

List of Acronyms

3G The third Generation of wireless mobile telecommunications technology

4G The forth Generation of wireless mobile telecommunications technology

5G The fifth Generation of wireless mobile telecommunications technology

ADD Addition

AI Artifical Intelligence

AP Access Point

CAIDA Center for Applied Internet Data Analysis

CD Contrastive Divergence

CIFAR Canadian Institute for Advanced Research

CNN Convolutional Neural Network

CPU Central Processing Unit

DBA Deep Belief Architecture

D2D Device to Device

DIV Division

DMA Direct Memory Access

DNN Deep Neural Network

DRAM Dyanmic Random Access Memory

ECN Explicit Congestion Notification

EXP Exponention

FiWi Fiber-Wireless

x

List of Acronyms

HTTP Hyper Text Transfer Protocol

IoT Internet of Things

ISP Internet Service Provider

GB Giga Byte

Gbps Giga byte per second

GHz Giga Hertz

GPU Graphic Processing Unit

HCP Heterogeneous Computing Platform

IEEE Institute of Electrical & Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

LSTM Long-Short Term Memory network

MDP Markov Decision Process

MSE Mean Square Error

ML Machine Learning

MOS Mean Opinion Score

MUL Multiplication

NAPI Northbound Application Programming Interface

NEG Negation

NIC Network Interface Card

NN Neural Network

OD Origin Destination

OSPF Open Shortest Path First

QoS Quality of Service

QoE Quality of Experience

xi

List of Acronyms

RAM Random Access Memory

RBM Restricted Boltzmann Machine

ReLu Rectified Linear Units

SAPI South Application Programming Interface

SDCS Software Defined Communication System

SDN Software Defined Networking

SDR Software Defined Router

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

SP Shortest Path

SQRT Square Root Operation

SUB Subtraction

SVM Support Vector Machine

TCP Transmission Control Protocol

V2X Vehicle to Everything

VIA Value Iteration Architecture

VIADL Value Iteration Architecture based Deep Learning

WMN Wireless Mesh Network

WLAN Wireless Local Area Network

XCP eXplicit Control Protocol

ZB ZettaByte

xii

Chapter 1

Introduction

1.1 Background

In recent decades, it has been witnessed that the significant improvement has been ful-

filled in the communication field to provide people with services of better quality and

more convenience due to the development of various technologies, such as Fiber-Wireless

(FiWi) [1], Device to Device (D2D) [2], and 5G [3]. For example, the emerging mobile

telecommunication technology, 5G, can offer people Internet connections with a speed of

1 Gbit/s [4], while 3G proposed in 2000 can only provide an information transfer rate

of lower than 1 Mbit/s [5]. Inspired by the development, new Internet services requiring

much higher packet transfer rate become a reality. The 5G network can transfer the

real-time road information to automatic vehicles in time for avoiding the potential acci-

dence [6]. Another more encouraging application is the Internet of Things (IoT), which

enables everything to be connected to the Internet [7]. The IoT technology creates op-

portunities for more direct integration of the physical world into computer-based systems,

resulting in efficiency improvements, economic benefits, and reduced human exertions [8].

On the one hand, the development of communication technologies is beneficial to

human being’s life. On the other hand, as more Internet services are emerging, the

Internet Service Providers (ISPs) are confronted by several challenges [9]. Recent years,

the network traffic is increasing tremendously. The global Internet Protocol (IP) traffic

per annum exceeded the ZettaByte (ZB) threshold at the end of 2016, and is expected

to increase up to 3.3 ZB by 2021 as shown in Fig. 1.1 [10]. It becomes critically urgent

to improve the traffic control performance in order to provide the Internet services of

guaranteed quality. At the same time, it is expected that the number of devices connected

to the IP networks will be three times as high as the global population in 2020 [10]. As

the packets are generated by various devices for different services, the heterogeneous

packet configurations as well as the corresponding different requirements for the Quality

of Service (QoS) further complicate the problem.

1

Chapter 1: Introduction

0

0.5

1

1.5

2

2.5

3

3.5

4

2016 2017 2018 2019 2020 2021

A
n

n
u

al
 G

lo
b

al
 IP

 T
ra

ff
ic

 (
ZB

)

Figure 1.1: The Global IP Traffic per Month.

To accommodate the tremendous growth of network traffic, the Internet core infras-

tructure has simply continued to scale up by adding more/larger routers and more/faster

links [11]. The increasingly larger core networks have driven the architectures of core

routers to be more powerful in computation and switching capacities. Even with the

recent surge in the data traffic, the network operators are confronted by the challenges of

traffic management for ensuring the QoS as well as dealing with the declining profits [12],

which is because the hardware solution results in a massive investment splurge. Besides

the implementation of more infrastructure, scholars have conducted a lot of meaningful

research on the traffic control algorithms, which can be utilized in specified scenarios

for some performance improvement [12, 13]. However, most of these strategies cannot

be practically applied, for which two reasons can be summarized. First, current routers

and switches still consist of proprietary hardware, meaning that the routing strategies

are integrated into the specified hardware to fulfill the packet forwarding tasks. There-

fore, the software aspect of traffic management mainly focuses on the application of new

routing strategies that may not be possible until a new generation of capable hardware

architectures emerge [14]. Second, current packet transmission strategies lack the ability

of reconfiguration to fit for the changing network environment. Due to the limitations of

fixed hardware architectures, many factors are neglected when designing the algorithms to

reduce the computation overhead. Therefore, the current packet transmission strategies

still follow the traditional manner (e.g., the Shortest Path (SP) algorithm and so forth)

which chooses the paths according to the maximum or minimum metric values [15]. To

design an efficient traffic control strategy, it is necessary to improve the packet forwarding

algorithms and reconsider the hardware architecture.

2

Chapter 1: Introduction

1.2 Breakthrough of Deep Learning

Recent years, the field of Artificial Intelligence (AI), dictated by deep learning, is drawing

the attentions from the academia and industry. Technology giants such as Google, Mi-

crosoft, Facebook, Amazon, Nvidia, and others are investing heavily with their powerful

computing resource to drive AI research, particularly aiming at deep learning break-

throughs [16]. As the most efficient and promising AI technique, deep learning is now a

thriving field with a widely covered active research topics and relevant applications rang-

ing from speech recognition to driver-less smart cars [17]. In 2006, a group of researchers

brought together by the Canadian Institute for Advanced Research (CIFAR) introduced

an unsupervised learning method to pretrain the deep forward neural networks, which

enables the hidden layers of deep neural networks to extract the features from the input

data without requiring labeled data [18]. Since this method pretrains the neural networks

layer by layer with the reconstruction objective, the weights of a deep neural network can

be initialized to sensible values, which significantly overcomes the difficulty in training a

deep architecture. As the deep architectures can learn more complex features, in March

2016, Google’s DeepMind AI program firstly adopted the deep learning technique in the

board game ”Go”, which is concerned with more than 2 × 10 170 legal positions [19]. And

the developed programs, AlphaGo and AlphaGo Zero managed to beat the world top

players, Lee Sedol and Ke Jie, in October 2015 and May 2017, respectively [19, 20]. The

breakthrough of the deep learning technology in board games inspires people to realize its

huge potential and also encourages researchers in different fields to develop and discover

the intelligent solutions of complex problems. Nowadays, deep learning has been widely

studied and applied in the fields of medical diagnose, automatic drive, and industrial

control [21, 22, 23].

One important reason for the wide applications of deep learning is because of its

flexibility resulting from the various architectures, different training manners, and cor-

responding numerous algorithms. For instance, as a machine learning method, the con-

structed deep learning architectures can be trained with different manners according to

the purpose. Specifically, the supervised learning is usually applied for classification and

regression problems, and the unsupervised learning is suitable for clustering, dimension-

ality reduction problems, while the reinforcement learning is mainly utilized to learn a

policy [24]. To fit for the various application scenarios and purposes, different deep learn-

ing architectures have also been developed, such as the Deep Belief Architecture (DBA),

Convolutional Neural Network (CNN), Long-Short Term Memory network (LSTM), which

significantly increases the flexibility and efficiency of this technique. Therefore, it can be

concluded that deep learning is one of the most important paradigm technologies in the

future [25].

3

Chapter 1: Introduction

As mentioned above, the deep learning technique can be utilized to effectively analyze

the complex relationships among multiple inputs through training with example data.

The trained deep learning architecture can predict the values of some parameters when

we input the necessary information. Since the deep learning technique has exhibited

superior performance in extremely difficult applications which have traditionally been

dominated by humans [19, 20, 25], e.g. board games, it is a promising technology to

address the challenges of network traffic control. Moreover, considering the increasing

complexities and surging demand in current communication networks, the deep learning

technique provides an efficient tool to analyze the network condition and improve the

performance. For instance, the deep learning technique can be adopted to accurately

predict the traffic changes in heterogeneous networks, which can be considered to improve

the packet transmission paths and allocate the network resource, resulting in reduced

probabilities of network congestion.

1.3 Development of Hardware Computation Capaci-

ties

Besides the endeavors in software for improving the algorithms, it is also necessary to

rethink the core networks. If we want to deploy the deep learning based network traffic

control strategies, the network architectures as well as the routers/switches need to be

taken into account. As we know, the infrastructures of the Internet backbone networks

have remained largely unchanged since the invention [11]. As one of the main components

in the core networks, the practically deployed routers still rely on the circuit structure to

accomplish the packet switching tasks [26]. Even though the circuit switching can achieve

a throughput more than 100 Gbps, the hardware-based architecture lacks flexibility to fit

for different routing algorithms, for which the main idea behind the routing algorithms

has traditionally been remarkably similar [27]. On the other hand, if we want to apply

some new networking algorithms to accommodate the increasing traffic, it is necessary to

redesign the hardware architecture of routers and replace existing architecture with the

newly developed one, which leads to invaluable expense and time cost.

To address the problems in traditional core network architectures, researchers have

proposed the Software Defined Networking (SDN) [28]. Different from the traditional

networks which integrate the algorithms into the proprietary hardware architectures to

fulfill management in high efficiency, as shown in Fig. 1.2, the proposed SDN consists

of three planes: the data plane, control plane, and the application plane, in which the

complex network control logics are separated from the data plane to the central con-

trollers composed by various computation platforms [29, 30, 31]. Moreover, since they

4

Chapter 1: Introduction

Internet

Router

Switch

Gateway

Server

Access

point Access

point

Firewall

Northbound APIs

…Deep Learning

based Routing

Southbound APIs

(OpenFlow protocol)

Control

plane

Internet

Deep Learning

based Channel

Assignment

Application

plane

Data

plane

Current Network Structure Future Intelligent Software Defined Network Structure

Switch

Access

point
Server

Access

point

Figure 1.2: The next generation network paradigm.

are based on the general architecture, the SDN controllers allow the upgrade of network

management algorithms to be fulfilled by just updating the corresponding applications,

which is more flexible than conventional networks [12, 32]. Specifically, any new net-

work management application can be installed in the controller through the Northbound

Application Programming Interfaces (NAPIs), while the communications between the

controller and switches are fulfilled via the Southbound Application Programming Inter-

faces (SAPIs) [29, 33]. Due to the advantages in flexibility and simplifications, the SDN

technology has been regarded as the next network paradigm as shown in Fig. 1.2 [34].

Moreover, encouraged by the idea of the SDN, researchers have considered the use of

software-defined infrastructure which provides the commodity hardware architecture to

install the programmable routing strategies to carry out packet processing and transmis-

sion, such as the Software Defined Routers (SDRs) [14] and Heterogeneous Computation

Platforms (HCPs) [35]. As the critical components of SDNs these software-defined archi-

tectures are required not only to support the software-based packet transmission but also

to flexibly execute other functions according to the network operators’ needs.

To enable the software-defined architectures to accomplish the complex network man-

agement, a general hardware architecture with enough computation capacity is necessary.

Therefore, the software-defined architecture integrating modern computation platforms is

a promising choice to redesign our backbone networks. As we know, the hardware compu-

tation capacity has been significantly improved driven by the Moore’s Law [36]. Fig. 1.3

gives the processing power roadmap of Nvidia’s Graph Processing Units (GPUs), which

clearly shows the step-by-step improvement of the computation capacity. The improve-

5

Chapter 1: Introduction

0.5

1

2

4

8

16

32

2008 20122010 2014 2016

Tesla

Fermi

Kepler

Maxwell
Volta

D
o

u
b

le
 p

re
ci

si
o

n
 G

fl
o

p
s

p
e

r
w

at
t

Figure 1.3: The Nvidia GPU processing power roadmap.

ment makes it possible to consider the commodity hardware for manufacturing network

infrastructure. Moreover, to improve the processing throughput performance compara-

ble to that of the proprietary-hardware-based routers, researchers as well as networking

manufacturers have explored multi-core-based architectures which consist of the Central

Processing Units (CPUs) and Graphics Processing Units (GPUs). As we know, the GPUs

can execute the same program to process different sets of data in a parallel fashion, while

the CPUs undertakes different instructions at the same time [37]. The cooperation of

GPUs and CPUs can significantly promote the efficiency to conduct the network manage-

ment work. Therefore, the software-defined architectures can be regarded as a competent

candidate for conducting the deep learning based routing strategies in modern backbone

networks.

The improvement of network architectures and the hardware computation capacities

enables the routers/switches to forward packets more efficiently [26]. Also, the general

hardware architectures driven by the GPUs pave the way to adopt deep learning in net-

working field. Different from conventional traffic control methods which neglect many

factors to reduce the analyze complexities, once the computing requirement is satisfied,

the deep learning technique enables researchers to take more parameters into account for

improving the calculation accuracy. Furthermore, the rich computation resource allows

the researchers to learn the traffic control strategies from past network traces through

the deep learning technique, which significantly overcomes the difficulty in analyzing the

exact relationship among multiple parameters.

1.4 Purpose of Research

After introducing the increasing traffic overhead in current networks as well as the devel-

opment in the deep learning and hardware, it is expected that the future network traffic

6

Chapter 1: Introduction

Deep learning

Traffic

control

systems

CPU/GPU

architectures

Machine

intelligence

Figure 1.4: Recent inter-disciplinary trends indicate an inter-disciplinary area involving
computing systems, computer networks, and machine intelligence. Particularly, network
traffic control systems are becoming robust and intelligent owing to the advancement in
CPU/GPU technologies and deep learning, respectively.

control will be an integration of the state-of-art techniques in the communication, com-

puter, and computing fields as shown in Fig. 1.4. However, in this paper, we will still

survey the existing traffic control methods to analyze the shortcomings. And inspired by

the advantages of deep learning as well as the development of computation capacities, we

will attempt to adopt the emerging techniques to improve the traffic control performance.

Even though various algorithms based on deep learning to optimize the network perfor-

mance have been proposed, these approaches do not focus on the network traffic control.

In this dissertation, we will focus on the challenges of network traffic control as shown in

Fig. 1.5 and extend our research from the following four fields.

Firstly, in this paper, to address the increasing traffic overhead, the existing traffic

control strategies need to be studied and analyzed. Since the traffic control needs to be

cooperatively fulfilled by different layers, in this paper, we need to do some analysis about

the promising directions. Also, the deep learning technique should be discussed since this

topic is still new in the networking field. The functions and characteristics of different

training manners and architectures need to be studied so as to choose the best one to

improve the accuracy and reduce the computation overhead.

Secondly, most of existing research simply utilizes the supervised learning to train

a neural network for future predictions, which does not carefully consider the network

characteristics. As the input and output of the deep learning architectures impact on the

structure design and the prediction accuracy, the characterizations of input and output

should be decided according to the considered factors. The purpose of my research is

to analyze the factors deeply concerned with the routing decision of core networks and

characterize the input and output.

7

Chapter 1: Introduction

1. Global IP traffic is increasing exponentially;

2. Existing routing protocols cannot cope with complex traffic environment;

3. Current core network structure lacks the flexibilities.

Challenges

Research Contents
1. Utilize deep learning to improve the traffic control performance;

2. Analyze the characterization of the input and output of the deep learning architecture;

3. Consider the design of deep learning architectures for static and dynamic network scenarios;

4. Analyze the deployment of the proposed strategies.

Figure 1.5: The research contents of this dissertation.

The third problem is that most of existing deep learning based research just focuses

on static network topology and the trained architectures cannot be applied in a different

network scenario. Once the network topology changes, such as some links fail, the trained

architectures have to be retrained with new data, which consumes a lot of computation

resource and causes some delay. On the other hand, if we do not retrain the deep learning

architectures when network changes, the prediction accuracy decreases sharply, losing the

advantages of deep learning. In this dissertation, we consider different network scenarios

and analyze how to design the intelligent routing algorithms to improve the traffic control

for both static and dynamic network scenarios.

Furthermore, current research focuses on the design of algorithms and neglects analysis

of the computation resource consumption. Since the deep learning methods are concerned

with more computation overhead compared with traditional strategies, our research also

discusses the computation consumption. Moreover, the adopted hardware architecture

significantly impacts on the computation complexity, while the deployment is a critical

problem for the practical application of the proposed deep learning based traffic control

methods. Therefore, in this paper, the adopted hardware architectures and the deploy-

ment to efficiently conduct the deep learning based methods are also analyzed considering

the requirement of the deep learning architecture and the characteristics of network struc-

tures.

1.5 Summary and Organization of the Thesis

To explore the deep learning technique to alleviate the increasing network traffic overhead,

in this dissertation, we attempt to develop the intelligent packet transmission strategies.

We first discuss the main challenges for the Internet networks and survey the existing

research to tackle these challenges. The new emerging technique, deep learning, is also

introduced. In this part, besides introducing the preliminary knowledge, we focus on some

commonly adopted deep learning architectures and the existing intelligent approaches.

Based on these introductions, we explain our proposals for different network scenarios.

8

Chapter 1: Introduction

The remainder of this paper consists of five chapters.

Chapter 2 mainly includes two parts. Firstly, the deep learning technique is in-

troduced in this part. The preliminaries of deep learning are explained, including the

forward and backward propagations. Then, the three training manners as well as several

deep learning architectures are discussed. Moreover, we survey some existing deep learn-

ing based research in the networking field. Secondly, we analyze the global network traffic

burden and the conventional strategies to alleviate the overhead. Specifically, the char-

acteristics of heterogeneity and complexities of current networks are emphasized, which

leads to extreme difficulties in designing the traffic control algorithms. Considering the

promising application of deep learning, we discuss the research contents to adopt the deep

learning to design the packet transmission strategy for improving the traffic control. A

summary of this chapter is finally given.

Chapter 3 proposes a deep learning based routing strategy for the static backbone

networks. In this chapter, we analyze the characterizations of the input and output for

constructing the deep learning architectures to improve the traffic control performance.

The DBAs are utilized to predict the next nodes and a corresponding path construction

strategy is proposed in this chapter. To run the intelligent routing strategy efficiently, we

consider the GPU accelerated router architecture and give detailed analysis of the packet

processing steps. Simulations also evaluate the improvement in terms of the computation

efficiency and network performance.

Chapter 4 proposes an online learning based routing strategy for the considered Soft-

ware Defined Communication System (SDCS). Since the traffic pattern in some network

keeps varying, the trained deep learning architecture are not fit for the changed surround-

ing. Also, it is impossible to collect enough training data to cover all the potential traffic

patterns for supervised learning. To tackle this problem, we consider collecting the real-

time traffic trace to perodically retrain the utilized CNNs periodically. Then, we conduct

the simulations to evaluate the performance.

Chapter 5 studies the deep learning based routing algorithms for dynamic network

topology. To address the limitations that most of the adopted deep learning architectures

are related to the network topology, we attempt to utilize the deep reinforcement learning

method to learn the routing policy beyond the network shape. We consider the Value

Iteration Architecture (VIA) to predict the next node with the network topology and the

Origin-Destination (OD) information as the input. The HCP is utilized to run the pro-

posed intelligent routing method. We evaluate the network and computation performance

through simulations.

Chapter 6 finally concludes the thesis. The network performance improvement

brought by the deep learning technique is summarized in this chapter.

9

Chapter 2

Overview of Deep Learning and

Traffic Control

2.1 Introduction

As we mentioned in the Chapter 1, the global networks are confronted by increasing

traffic overhead and growing complexity. Since it has been illustrated the superiority

over human beings in complex activities, such as the games, image classification, and

speech recognition, the technology of deep learning is promising to alleviate the traffic

overhead. Before discussing the proposed deep learning based traffic control strategies,

it is necessary to introduce some preliminaries of this new technique. We will study

the mainly concerned calculations as well as the three training manners. After that,

several commonly utilized deep learning architectures are discussed, of which the related

applications in the networking field are explained to evaluate the advantages of deep

learning in performance optimization. Since our purpose is to address the traffic control

challenge, we will also survey the traditional strategies in different layers. Then, we

analyze the research contents of adopting the emerging AI technology to alleviate the

traffic challenge in current networks.

2.2 Overview of Deep Learning Technologies

As one of the most important and basic machine learning architecture, neural networks are

one of the most beautiful programming paradigm ever invented to solve complex problems

via data analysis. However, this method has not aroused so much attention compared

with other machine learning strategies [38], such as Support Vector Machine (SVM) [39],

for more than 20 years. Unitl 2006, a Canadian research team improved the training

method, which significantly increased the prediction accuracy of neural networks [17].

10

Chapter 2: Overview of Deep Learning and Traffic Control

Input Layer

Output Layer

Traffic

Patterns

Packet

Loss

Link

Failure

Security

time#
in

b
o
u
n

d
 p

ac
k
et

s
t t+ t+3

t+2

Source
Destination

DestinationSource

#
in

b
o

u
n

d
 p

ac
k
et

s

timet+4 t+6t+5

Next Node

Whole Path

Traffic Prediction

Initialization

Forward Propagation

Fine-tuning

Backward Propagation

𝑋

𝑌
𝑤

Figure 2.1: The architecture of deep neural networks.

Therefore, it became practical to deploy a large scale of neural networks, referred as deep

learning, resulting in the high efficiency in solving complex problems. Fig. 2.1 shows

the architecture of deep neural networks, which can be regarded as the most basic deep

learning structure [40]. It can be found that it is composed by the input layer, the output

layer, and multiple hidden layers. Each layer consists of several units, and each unit is

connected to all the units in the adjacent layers through weighted links. If we input some

values to the first layer, we can obtain the output through the layer-by-layer propagation

of the deep neural networks. The meaning of the output is defined according to our

purpose, which can be the values of some predictable parameters, or binary values for

classification purpose, or the possibilities of different policies. And the output values are

not only dependent on the input layer, but also impacted by the weighted links and the

hidden layers. Therefore, we can conclude that the deep neural network represents the

relationship between the input and output and the architecture is re-configurable through

adjusting the weighted links and hidden layers.

To adopt the deep neural network for definite problems, we first need to characterize

the input and output according to our considered scenario and purpose. For example,

if the deep learning is utilized to judge whether the network will be congested or not in

the next time interval, then the input can be current network traffic patterns, while the

output can consist of binary units, of which 1 represents yes and 0 denotes not. Since

the characterizations of input and output as shown in Fig. 2.1 impact on the prediction

accuracy as well as the design of other layers, it is one of the most important steps for the

application of deep learning [41]. As we mentioned in the last paragraph, the architecture

of the deep neural network represents the relationship between the input and output, how

to adjust the weighted links and hidden layers is vitally critical for the final performance.

Moreover, beneficial from the widely meaningful research from the academia and industry,

11

Chapter 2: Overview of Deep Learning and Traffic Control

Hidden
Layers

Output
Layer

Input
Layer

(a) Deep Belief Architecture (DBA)

Input
Convolution ConvolutionPooling

Fully
connected

Fully
connected

Ouptut
Prediction

Pooling

(c) Convolutional Neural Network (CNN)

Neural
networks

x0

h0

Neural
networks

x1

h1

Neural
networks

x2

h2

Neural
networks

xt

ht

…

(b) Long Short-Term Memory architecture (LSTM)

Figure 2.2: The commonly utilized deep learning architectures.

scholars have constructed various deep learning architectures, such as the DBA, LSTM,

and CNN as shown in Fig. 2.2, to address different scenarios and problems. Since a

suitable deep learning architecture can improve the prediction accuracy and reduce the

computation overhead, it also needs to be carefully considered when applying this new

technique. Furthermore, similar to other machine learning methods, the deep learning

architectures can be trained with the manners of supervised/unsupervised/reinforcement

learning with different data formats [42]. And the three training manners can be adopted

for different purposes. For example, the unsupervised learning is usually adopted for

classification, while the supervised learning can be applied to predict the values of some

parameters. This section will be expanded from these aspects.

2.2.1 Preliminaries of Deep Learning

Before applying the deep learning technique in our research, we need to know how it

works. Since the calculation process varies from architectures, we focus on the most

common steps. We still choose the deep neural network as shown in 2.1 as an example. For

describing the computations more clearly, we choose two adjacent layers, the (l − 1)th and

l th layers as an example. And l th has n(l) units, denoted as U (l) = {ui |i = 1 , 2 , · · · , n(l)}.
Therefore, for the first layer, X = U (1), while Y = U (L) for the final output layer, if we

assume the deep neural network has L layers. For each two adjacent layers, the units

satisfy the following relationship [40]:

u
(l)
j = f(

i=n(l−1)∑
i=1

u
(l−1)
i w

(l)
ij + b

(l)
j), (2.1)

12

Chapter 2: Overview of Deep Learning and Traffic Control

where w
(l)
ij represents the weight of the link connecting the units u

(l−1)
i and u

(l)
j . b

(l)
j is

the bias of unit u
(l)
j . f (x) is the activation function. It can be found that to get the

values of units in lth layer, we usually utilize a transfer function to activate the sum of

the weighted units in the (l − 1)th layer. And the most popular activation functions are

given as follows [43]:

Sigmoid : f(x) =
1

1 + exp(−x)
, (2.2)

Tanh : f(x) =
1− exp(−2x)

1 + exp(−2x)
, (2.3)

ReLu : f(x) = max(0, x). (2.4)

It can be found that if we know the values of input layer and initialize the weights

and biases, we can calculate the units layer by layer, of which the process is usually called

the forward propagation as shown in Fig 2.1. Here, note that the methods to initialize

the values of weights and biases can be referred to [44]. After obtaining the predicted

output denoted as Y
′

(Y
′
= U (L)), we can define a loss function to measure how good a

prediction model is and the function can be minimized to optimize the prediction. And

for the given input X, since the value of the loss function is related to the weights and

biases, it can be denoted as C(W,B), where W and B are the weight matrix and bias

matrix, respectively. The process to minimize the value of the loss function is termed the

training. A most commonly used method of finding the minimum point of C(W,B) is

”gradient descent”. Moreover, to define a loss function depends on a number of factors,

such as the presence of outliers, choice of machine learning algorithm, time efficiency of

gradient descent, ease of finding the derivatives and confidence of prediction [45]. We can

utilize the supervised learning as an example to define the loss function. As we mentioned

earlier, the training data of the supervised learning is labeled, denoted as (X, Y). And

the purpose of training in supervised learning manner is to adjust the weights and biases

to minimize the distance between the predicted output Y
′

and given output Y . Then,

the loss function for the supervised learning can be denoted as below:

C(W,B) =

∑i=N
i=1 (Yi − Y

′
i)2

N
. (2.5)

N denotes the number of training data.

To minimize C(W,B), we apply the gradient descent method to adjust the values of

weights and biases. We use Equations 2.6 and 2.7 to explain the key ideas.

w
(l)
ij := w

(l)
ij − η

∂C(W,B)

∂w
(l)
ij

, (2.6)

13

Chapter 2: Overview of Deep Learning and Traffic Control

b
(l)
j := b

(l)
j − η

∂C(W,B)

∂b
(l)
j

, (2.7)

where η is the learning rate which can be adjusted to balance the convergence speed and

prediction accuracy. Be repeatedly applying the update rule, we can hopefully find a

minimum value of the cost function. However, since C(W,B) is a complex function of

the weights and biases, the problem is how to calculate the values of ∂C(W,B)

∂w
(l)
ij

and ∂C(W,B)

∂b
(l)
j

.

To solve this problem, we need to analyze the propagation process of the errors in the

deep neural networks. We utilize δ to denote the error, then we can obtain the following

equation [46].

δ
(l)
j =

∂C

∂z
(l)
j

, (2.8)

where z
(l)
j represents the unit’s value before activation in the deep neural networks and

can be calculated according to the following equation:

z
(l)
j =

nl−1∑
i=1

w
(l)
ij u

(l−1)
i + b

(l)
j . (2.9)

According to chain rule described in Equation 2.9, we can rewrite the Equation 2.8 as

below:

δ
(l)
i =

∂C

∂z
(l)
i

=
∑
j

∂C

∂z
(l+1)
j

∂z
(l+1)
j

∂u
(l)
i

∂u
(l)
i

∂z
(l)
i

=
∑
j

δ
(l+1)
j w

(l+1)
ij f

′
(z

(l)
i), (2.10)

From Equation 2.10, it can be found that the error can be calculated from the back

layer to the front layer, which is usually call the back propagation as shown in Fig. 2.1.

After obtaining the unit error of each layer, we can deduce the partial differential values

of weights and biases as shown in Equation 2.11 and 2.12.

∂C

∂w
(l)
ij

=
∂C

∂z
(l)
j

∂z
(l)
j

∂w
(l)
ij

= δ
(l)
j

∂(w
(l)
ij u

(l−1)
i + b

(l)
j)

∂w
(l)
ij

= u
(l−1)
i δ

(l)
j (2.11)

∂C

∂b
(l)
j

=
∂C

∂z
(l)
j

∂z
(l)
j

∂b
(l)
j

= δ
(l)
j

∂(w
(l)
ij a

(l−1)
i + b

(l)
j)

∂b
(l)
j

= δ
(l)
j (2.12)

The training process can be conducted by using Equations 2.11 and 2.12 to repeatedly

update the weights and biases according to Equations 2.6 and 2.7 till the value of cost

function converges. In this way, we can optimize the prediction accuracy of the deep

neural networks.

14

Chapter 2: Overview of Deep Learning and Traffic Control

2.2.2 Two Commonly Utilized Deep Learning Architectures

As we mentioned earlier, researchers have developed various deep learning architectures

for different application scenarios. As we cannot cover every architecture in this paper,

we concentrate on two widely applied structures which will be utilized in our proposals:

DBA and CNN.

… …

… …

… …

… …

… …

… …

RBM1

RBML-2

RBM2

… … …

Input layer
𝑋

Output layer

𝑌

Hidden layers

(a) Considered L-layers DBA.

… …

… …

bias unit

visible layer

𝑉

𝑎𝑖

hidden layer

𝐻

𝑤𝑖𝑗
𝑏𝑗

unit j in the hidden layer, ℎ𝑗

unit i in the visible layer, 𝑣𝑖

(b) RBM

… …

… …

… …

visible layer

hidden layer

𝐻

𝑉 Output Layer 𝑌

bias

unit j in the hidden layer, ℎ𝑗

unit i, 𝑣𝑖

unit k in the

output layer, 𝑦𝑘

𝑎𝑖
𝑐𝑘

𝑏𝑗𝑤𝑘𝑗
𝑤𝑖j

(c) Last RBM.

Figure 2.3: Considered model of the proposed deep learning system.

2.2.2.1 Deep Belief Architecture

The DBA is one of the most commonly utilized deep learning models as shown in Fig. 2.3a.

As shown in the figure, we assume the DBA consists of L layers, the input layer, X, the

output layer, Y , and the (L − 2) hidden layers. And the DBA can be also seen as a

stack of (L − 2) Restricted Boltzmann Machines (RBMs) and a logistic regression layer

as the top layer [18]. The structure of each RBM is shown in Fig. 2.3b. It can be seen

that each RBM consists of two layers, the visible layer, V , and the hidden layer, H. The

units in the two layers are connected through weighted links while those in the same

layer are not connected. It should be noted that a weighted bias is given to each unit

in both layers. The term wij denotes the weight of the link connecting the unit i in the

15

Chapter 2: Overview of Deep Learning and Traffic Control

visible layer and the unit j in the hidden layer. Also, ai and bj represent the bias of unit

i in the visible layer and that of unit j in the hidden layer, respectively. The learned

units’ activated values in the hidden layer are used as the “visible data” for the upper

RBM in the DBA. As we mentioned in Sec. 2.2, researchers made great breakthrough in

training the deep learning architectures. And according to the research work [18], the

deep learning training process consists of two steps: the Greedy Layer-Wise training to

initialize the structure and the backward propagation process to fine-tune the structure.

For a DBA, the initial process is to train every RBM which is an unsupervised learning

process for the reason that an RBM is an undirected graphical model where the units in

the visible layer are connected to stochastic hidden units using symmetrically weighted

connections as depicted in Fig. 2.3b [18]. While training an RBM, sets of unlabeled data

are given to the visible layer, and the values of the weights and biases are repeatedly

adjusted until the hidden layer can reconstruct the visible layer. Therefore, the hidden

layer after training can be seen as the abstract features of the visible layer. Training

an RBM is the process to minimize the reconstruction error with the hidden layer. To

mathematically model the training process, we use a log-likelihood function of the visible

layer given as follows. Then, the training process is to update the values of weights and

biases to maximize the value of the log-likelihood function.

l(Θ, A) =
N∑
t=1

log p(V (t)), (2.13)

where Θ denotes the vector consisting of all the values of the weights and biases of the

hidden layer. Θ can be written as Θ = (W,B). W and B represent the vectors consisting

of all the weights, wij, and biases of the hidden units, bj, respectively. If we use θ to

denote the unit in Θ, then θ can be any w or b. A consists of the biases of the visible

units, ai. N denotes the number of training data. V (t) is the tth training data, probability

of which is p(V (t)).

To maximize l(Θ, a), we can use the gradient descent of l(Θ, A) to adjust W , A, and

B, which can be described as in Equations 2.14 and 2.15.

θi := θi + η
∂l(Θ, a)

∂θi
, (2.14)

ai := ai + η
∂l(Θ, a)

∂ai
, (2.15)

where η is the learning rate in deep learning.

To calculate the value of p(V) (representing any p(V (t))), we need to model the RBM

as an energy model since the RBM is a particular form of log-linear Markov Random Field

(MRF) [25]. The energy function, E(V,H), and the joint probability function, p(V,H),

16

Chapter 2: Overview of Deep Learning and Traffic Control

are defined as follows.

E(V,H) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

hjwijvi (2.16)

p(V,H) =
e−E(V,H)∑

V

∑
H e
−E(V,H)

(2.17)

where vi and hj are the unit i in the visible layer and the unit j in the hidden layer

shown in Fig. 2.3b, respectively. Also, the relationship between p(V) and p(V,H) can be

expressed as follows.

p(V) =
∑
H

p(V,H) (2.18)

We can use Equations 2.13 to 2.18 to obtain the values of θ [18]. However, the

complexity of the calculation of
∑

V

∑
H in Equation 2.17 is 2nV +nH , which is extremely

high (nV and nH represent the dimensions of vectors V and H, respectively). Another

problem is that to calculate Equation 2.17, it is necessary but impossible to consider all

the possible values of V and H instead of only the obtained training data. To solve these

problems, Hinton et al. proposed the Contrastive Divergence (CD) method [47]. The

main idea of CD is to use the Gibbs Sampling method to sample the values of V and H

to approximate the real values since the conditional distribution probability of one layer

(while the value of the other layer is given), e.g., p(V |H; Θ, A), can be calculated. The

detailed procedures of CD is given in the Appendix 6 [47]. As the value of every unit is

independent on the other units in the same layer, when one layer is fixed, the conditional

distribution probability of the other layer can be calculated as follows,

p(V |H; Θ, A) =
∏
i

p(vi|H; Θ, A), (2.19)

p(H|V ; Θ, A) =
∏
j

p(hj|V ; Θ, A), (2.20)

where p(V |H; Θ, A) and p(H|V ; Θ, A) are the conditional probability of V given H and

the conditional probability of H given V , respectively. p(vi|H; Θ, A) is the conditional

probability distribution of unit i in the visible layer when the hidden layer is fixed. Also,

p(hj|V ; Θ, A) is the conditional probability distribution of the unit j in the hidden layer

when the visible layer is fixed.

If the values of the units in the visible layer and the hidden layer are all binary, then

17

Chapter 2: Overview of Deep Learning and Traffic Control

p(vi = 1|H; Θ, A) and p(hj = 1|V ; Θ, A) are given as follows.

p(vi = 1|H; Θ, A) = f(
∑
j

wijhj + ai) (2.21)

p(hj = 1|V ; Θ, A) = f(
∑
i

wijvi + bj) (2.22)

where f(x) represents the activation activation function.

Since the values of the DBA’s input units representing the numbers of inbound packets

are continuous and affected by many factors, we use the Gaussian probability distribution

to model the traffic patterns [48]. Therefore, for RBM1 in our proposed DBA, Equa-

tion 2.16 and Equation 2.21 should be revised as follows.

E(V,H) = −
∑
i

(vi − ai)2

2σ2
i

−
∑
j

bjhj −
∑
i

∑
j

vi
σi
hjwij, (2.23)

p(vi|H; Θ, A) = N(ai + σi
∑
j

hjwij, σ
2
i), (2.24)

where σi is the value of the variance for the unit vi. N(ai + σi
∑

j hjwij, σ
2
i) denotes the

Gaussian distribution with mean (ai + σi
∑

j hjwij) and variance σi.

The forward propagation follows the above-mentioned equations for the DBA. How-

ever, if the DBA is trained with the supervised learning manner, since the output layer has

a given label, the last RBM, RBML−2, consists of three layers as shown in Fig. 2.3c [49].

Therefore, the visible layer of RBML−2 consists of not only RBML−3’s hidden layer but

also the output layer of the DBA, Y . And its hidden layer is the top hidden layer of the

DBA. The structure of RBML−2 is shown in Fig. 2.3c and its energy function is expressed

as follows. To keep consistent with the other RBMs, we use V and H to denote RBML−3’s

hidden layer and the top hidden layer, respectively.

E(V,H, Y) = −
∑
i

aivi −
∑
j

bjhj −
∑
k

ckyk −
∑
i

∑
j

hjwijvi −
∑
j

∑
k

hjwkjyk,

(2.25)

where Y represents the vector in the output layer. ck is the bias of the unit yk. wkj

represents the weight of the link connecting the units hj and yk.

As the units in V and Y are independent on each other, the conditional distribution

18

Chapter 2: Overview of Deep Learning and Traffic Control

of the concatenated vector consisting of V and Y is,

p(V, Y |H; Θ, A) = p(V |H; Θ, A)p(y|H; Θ, A)

=
∏
i

p(vi|H; Θ, A)
∏
k

p(yk|H; Θ, A)
(2.26)

We use the method mentioned above to train each RBM. The value of the visible

layer of the first RBM is X in the given training data. And after training each RBM,

the learned activated value of its hidden layer is used as the “data” for the next RBM in

the DBA. Here, it can be found that we train one hidden layer of the DBA at one time

via training an RBM. In this way, the DBA gets initialized and the value of Θ is nearly

optimum. Then the method of backward propagation described in Sec. 2.2.1 is utilized

to fine-tune the DBA.

2.2.2.2 Convolutional Neural Networks

CNNs have achieved the most wide applications in many fields, to name a few, pattern

recognition, image processing, video analysis, and natural language processing [17]. As

shown in Fig. 2.2c, a CNN is composed of several convolutional layers, pooling layers, and

fully connected layers [50]. Different from the Deep Neural Network (DNN), the units in

the convolutional layer are just connected to part of the units in next layer, which can

significantly reduce the number of parameters. The pooling operation is usually located

in-between two successive convolutional layers. In the pooling operation, the result of the

convolution operation is sampled to progressively reduce the feature size [51].

Fig. 2.2c depicts the structure of a CNN, which mainly consists of three parts: convolu-

tional layers, pooling layers, and fully connected layers. For the purpose of classification, a

softmax regression process is usually conducted on the output of the last fully connected

layer to get the final output [52, 53]. In the remainder of this section, we will give a

detailed introduction on the mathematical formulation of each of these layers.

To describe the calculations more clearly, we consider two layers labeled as the (l − 1)th

and lth layers as an example to explain every operation. The input and output of the

convolution and pooling operations are usually represented by a three dimensional matrix,

while those of the fully connected layers and softmax operation are denoted as vectors.

Moreover, as an activation operation exists in most layers of the CNNs, we adopt Z and

U to denote the values of each layer before and after activation, respectively.

For the convolution operation, it is reasonable to assume that the dimension of U (l1−1)

(also Z(l1−1)) is P ×Q×R. Since the CNNs are usually utilized in the image recognition

field, we can consider the three dimensions of the input matrix to denote an image’s height,

width, and depth, denoted by P,Q,R, respectively [52]. For instance, in the application

19

Chapter 2: Overview of Deep Learning and Traffic Control

a1 b1 c1

d1 e1 f1

g1 h1 i1

1
2

3

a1 b1 c1

d1 e1 f1

g1 h1 i1

a2 b2 c2

d2 e2 f2

g2 h2 i2

a3 b3 c3

d3 e3 f3

g3 h3 i3

expand

A1 B1

C1 D1

∗ ∗∗∗

A1 B1

C1 D1

A2 B2

C2 D2

A3 B3

C3 D3

∑(Aiai+Bibi

+Cidi+Diei)

∑(Aibi+Bici

+Ciei+Difi)

∑(Aidi+Biei

+Cigi+Dihi)

∑(Aiei+Bifi

+Cihi+Dii1)

A2a2+B2b2+

C2d2+D2e2)

A2b2+B2c2+

C2e2+D2f2

A2d2+B2e2+

C2g2+D2h2

A2e2+B2f2+

C2h2+D2i2

A1a1+B1b1+

C1d1+D1e1

A1b1+B1c1+

C1e1+D1f1

A1d1+B1e1+

C1g1+D1h1

A1e1+B1f1+

C1h1+D1i1

A3a3+B3b3+

C3d3+D3e3

A3b3+B3c3+

C3e3+D3f3

A3d3+B3e3+

C3g3+D3h3

A3e3+B3f3+

C3h3+D3i3

expand

+ +=

2 31

Figure 2.4: The process of convolution between two three-dimensional matrices.

of image classification, researchers usually use a 28×28×3 matrix to denote a picture, in

which 28 is the number of pixels in every edge and 3 is the number of basic color channels

which are R, G, and B, respectively. As the purpose of the convolution operation is to

extract the distinguished features of the input, the parameters (weights and biases) of the

convolution operation consist of a set of learnable filters, each of which can be denoted

by a P
′ × Q′ × R matrix as the depth of each filter should be the same as that of the

input volume. Every filter is small spatially, but extends through the full depth of the

input volume. During the forward pass, each filter slides across the width and height of

the input volume and a convolution operation is conducted between the filter and the

area of the input volume covered by the filter which is shown in Fig. 2.4. The convolution

result of the input volume and each filter is named as a feature map. If we use W (l1) to

denote the filters and the kth filter is represented by W
(l1)
k , the obtained feature map by

the convolution operation can be shown as follows.

z
(l1)
i,j,k = (Z(l1−1) ∗W (l1)

k)(i, j) + w
(l1)
bk

=
R∑
r=1

P
′∑

p=1

Q
′∑

q=1

wp,q,ru
(l−1)
i+p,j+q,r + w

(l1)
bk ,

(2.27)

a
(l1)
i,j,k = f(u

(l1)
i,j,k), (2.28)

where f(·) is the activation function and u
(l1)
i,j,k is the activated value of the unit in the ith

20

Chapter 2: Overview of Deep Learning and Traffic Control

row and jth column of the feature map. Therefore, z
(l1)
i,j,k is the value before activation.

w
(l1)
bk denotes the bias of the kth filter and is usually a single numeric value. u

(l1−1)
i+p,j+q,d is the

activated value of unit in the (i+p)th row and (j+q)th column. The most commonly used

activation function is the Rectified Linear Unit (ReLU) function given in Equation 2.4.

After the convolution operation, the convolutional layer consists of several feature

maps. Since the convolution operation between the input volume and each filter results

in a feature map, the number of feature maps is equal to that of filters. Moreover, the size

of each feature map is dependent on the following factors: the sizes of the input volume

and each filter, the stride of each slide, and the number of zero-padding columns or rows.

If we use s and t to represent the number of zero-padding and the value of each slide, then

the width and height of the feature are as in Equations 2.29 and 2.30. Here, it should

be noted that the advantages of zero-padding are two-fold, namely, to sufficiently extract

the features located in the edge of the input volume, and make the height and width of

each feature map to be integers.

w
(l1)
fm = (P − P ′ + 2s)/t+ 1, (2.29)

h
(l1)
fm = (Q−Q′ + 2s)/t+ 1. (2.30)

To progressively reduce the spatial size of the representation to reduce the amount

of parameters and computation, it is common to periodically insert a pooling layer in-

between the successive convolutional layers. The pooling layer is the result of the down-

sampling of the convolutionle layer. To make the pooling operation learnable, we usually

add two scalar parameters and the mathematical expression is shown in Equation 2.31.

Z(l2) = β(l2)down(U (l2−1)) + b(l2), (2.31)

U (l2) = f(Z(l2)), (2.32)

where β(l2) and b(l2) denote the learnable parameters of the pooling operation. Z(l2) and

U (l2) denote the values of output matrix of the pooling layer before and after activation,

respectively. down represents the operation of downsampling. There are many types of

downsampling methods, among which the most popular one is the max pooling, which

just keeps the maximum activation value in every square region of the (l2 − 1)th layer. In

this way, the height and width of the pooling layer are just half of those of the (l2 − 1)th

layer while their depths are the same.

After several convolutional layers and pooling layers, the size of the input volume can

be significantly reduced. Then, the final pooling layer is connected to the fully connected

21

Chapter 2: Overview of Deep Learning and Traffic Control

layer, in which every unit is connected to all units in the previous layer. If we assume the

(l3 − 1)th and lth3 layers are the pooling layer and fully connected layer, respectively, the

units in these two layers satisfy the following relationship.

z
(l3)
i =

∑
j

u
(l3−1)
j w

(l3)
ij + b

(l3)
i , (2.33)

u
(l3)
i = f(z

(l3)
i), (2.34)

where z
(l3)
i and u

(l3)
i are the values of unit i in the lth3 layer before and after activation,

respectively. As mentioned earlier, the 3-dimensional matrix in the pooling layer needs

to be spread into a vector when connected to a fully connected layer. Then, u
(l3−1)
j is the

activated value of unit j in the vector. w
(l3)
ij is the weight of the connection between unit

i in the lth3 layer and unit j in the (l3 − 1)th layer. b
(l3)
i is the bias of unit i in the lth3

layer. If there are multiple fully connected layers, the relationship between any two fully

connected layers also satisfies Equations 2.33 and 2.34.

As the CNN is usually used for classification, if we assume that there are t kinds of

different results, then we can use a vector consisting of t binary values to represent the

result [53]. And in the vector, only one unit must have the value of 1, the order of which

represents the result. Therefore, a softmax regression process is necessary to be conducted

on the final fully connected layer. The first step of softmax regression is to convert the

values of units in the fully connected layer into possibilities of the results according to

Equation 2.35. Then if pi is maximum, we can label unit i in the output layer as 1 while

each of the other units is labeled as 0. We can adopt y to denote the order of the unit,

which is labeled 1, meaning that the result of the CNN is y.

pi(x) =
ezi∑
j e

zj
, (2.35)

where pi is the possibility of the appearance of result i. And zi is the value of unit i in

the final fully connected layer.

If the CNN is trained in a supervised manner, the purpose of the training is to maximize

the possibility of training data, which can be expressed as a loss function as shown in

Eq. (2.36) [52].

C(W,B) = − 1

N
(
N∑
i=1

k∑
j=1

1{y = j} log pi(xi)), (2.36)

where W and B represent the weights and biases of the CNN. N is the number of training

data. xi is the ith input training data. Here, 1{·} is the indicator function and its values

satisfy that 1{a true statement} = 1 and 1{a false statement} = 0 .

22

Chapter 2: Overview of Deep Learning and Traffic Control

Table 2.1: Comparison of three training methodologies.

Methodology Definition Purpose

Supervised
learning

The machine learning task of inferring
a function from an already available
labeled training dataset usually
specified by human operators.

Approximating the function
between the given input
and output.

Unsupervised
learning

The machine learning task of inferring
a function to describe hidden
structure from ”unlabeled” data.

Clustering the given input
to different groups according
to their distribution.

Reinforcement
learning

The machine learning concerned with how
software agents ought to take actions
in an environment so as to maximize
some notion of cumulative reward.

Exploring and exploiting
solutions with a specific
objective.

2.2.3 Different Training Manners

After discussing the two commonly utilized deep learning architectures: DBA and CNN,

we introduce the training methods in this part. As one of the machine learning methods,

deep learning also has three training manners as shown in Table 2.1: supervised learning,

unsupervised learning, and reinforcement learning.

Supervised learning, as shown in Table 2.1, is a kind of machine learning task of learn-

ing a function to map an input to an output based on the given input-output examples.

Therefore, the training data should consist of the input X and corresponding labels, Y .

And the goal of training is to predict Y as accurately as possible. Supervised learning is

usually adopted for linear regression or classification. For linear regression, it attempts

to model the relationship between X and Y by fitting a linear equation to observed data

and the output Y is continuous numerical value. And the classification is the problem

of assigning new observations to the class to which they most likely belong, based on a

classification model built from labeled training data. Therefore, the classification is to

predict a discrete label Y .

Different from the supervised learning method, the unsupervised learning is a kind of

machine learning method that learns from the data that have not been labeled, classified,

or categorized. Therefore, no correct answer exists in the input data for the unsupervised

learning. The goal for unsupervised learning is to model the underlying structure or

distribution in the data in order to learn more about the data. According to the purpose,

the unsupervised learning tasks can be further divided into clustering and association.

The clustering problem is where you want to group the input data according to their

inherent distributions, while the association is to discover the rules that describe large

portions of your data.

Alongside supervised learning and unsupervised learning, reinforcement learning is

23

Chapter 2: Overview of Deep Learning and Traffic Control

Table 2.2: Existing networking research based on deep learning

Purpose Strategy Architecture Training manner
Network prediction Traffic prediction CNN or LSTM Supervised learning

Resource allocation
Cache allocation Deep Q-network Reinforcement learning
Channel assignment DBA & CNN Supervised learning

Security Anomaly detection LSTM Unsupervised learning

considered as one of the three machine learning paradigms. It is concerned with how

software agents ought to take actions in an environment so as to maximize some notion

of cumulative reward as shown in Table 2.1. The reinforcement learning differs from

the supervised learning in that the correct input/output pairs need not to be presented.

Moreover, the agent focuses on the final cumulative rewards, meaning that the suboptimal

actions need not to be explicitly corrected. Furthermore, at every step, the software

agent has two options: take the action most of the time which generates the maximum

reward or occasionally explore a new action even though it is walking away from known

reward. Therefore, the reinforcement learning is involved in finding a balance between

the exploration (of uncharted territory) and exploitation (of current knowledge).

2.2.4 Survey of Deep Learning Based Networking

According to our introduction on the various deep learning architectures and three train-

ing manners, it can be easily found that this technique is very flexible to be utilized in

different scenarios. The significant performance improvement generated by the break-

through further increases the perspectives of adopting deep learning to solve complex

problems. Networking researchers have also attempted to consider this technique to opti-

mize the performance as shown in Table 2.2. In this part, we will give some introductions

about the related research of deep learning based networking.

2.2.4.1 Network Parameter Prediction

As deep learning is efficient in prediction, it is the first idea to adopt this technique to

forecast the network parameters. If we can get the predicted values of some parameters,

we can adjust the network management in advance to optimize the performance. For

instance, if we can predict how the topology of the mobile network changes, the channel

resource can be prepared in advance for the new connections. Since the traffic flow is the

most direct sign of the network condition, it has aroused the most attention of researchers

to predict the network traffic with the deep learning technique [54, 55]. Authors of [54]

considers the traffic data of the citywide cellular networks as images. Then, the CNNs can

be utilized to extract the spatial and temporal dependence of cell traffic. Experimental

24

Chapter 2: Overview of Deep Learning and Traffic Control

results show that the prediction performance in terms of root mean square error can be

significantly improved compared with conventional machine learning methods. J. Zhao

et al. utilizes the LSTM to model the spatio-temporal features of network traffic and

proposed a linear regression model to predict the traffic flow [55]. Simulation results

evaluate the performance of their proposal. It can be found that the network traffic

can be predicted with different deep learning architectures. Moreover, compared with

conventional method, the deep learning technique has much higher prediction accuracy.

2.2.4.2 Intelligent Resource Allocation

Resource allocation is an important factor which directly impacts on the network per-

formance. In current practical networks, the network resource allocation is usually con-

cerned with two types of resource: the communication resource including channels and

bandwidth, and the computation resource consisting of the processing power and memory.

The authors of [56] discussed the balance between two conflicting factors: the network

cost and users’ Mean Opinion Score (MOS) to improve the network Quality of Experience

(QoE). In this paper, authors utilized the deep reinforcement learning technique to change

the cache location of content. Specifically, the network states which consist of the trans-

mission rates and cache condition are utilized as the input of the deep Q-networks [57].

Then, the agent can choose the best action according to the output Q-values of different

actions. Simulation results demonstrate the agent can find the best decision to maximize

the proposed reward function after trial and error. As we mentioned above, the traf-

fic prediction is usually conducted for many network management tasks. Our previous

work [8] proposed a deep learning based partially overlapped channel assignment strategy

for the IoT network. In the proposal, the DBA and CNN are jointly utilized to predict

the suitable channel assignment for each link according to the traffic patterns. Since the

input considers the properties of the IoT traffic, the prediction accuracy is much higher

than conventional methods, which leads to the performance improvement of channel as-

signment.

2.2.4.3 Smart Anomaly Detection

The IoT has been regarded as one of the paradigms of next generation network future

IoT network. Since the IoT traffic is concerned with users’ data, it is critically important

to increase the security and privacy level of corresponding network services. In existing

ground networks, deep learning has also been studied for improving the network security

level. In [58], the authors proposed a deep learning based approach to detect anomalous

network activity. In the paper, the DNN is adopted to extract the features of users’

activities from the system logs. Then, the feature vectors are input to the LSTM as

25

Chapter 2: Overview of Deep Learning and Traffic Control

shown in Fig. 2.2b to measure the anomaly score. Since the users’ activities are often

unpredictable over seconds to hours, authors in this paper utilized an online unsupervised

training fashion, by which the models can adapt to the changing patterns in the data.

Simulation results show that the proposed strategy has a very high accuracy rate and can

significantly reduce the analyst workloads.

2.3 Overview of Traffic Control

Besides the preliminary knowledge of deep learning, we also need to discuss the basis of

traffic control before conducting the related research. We will introduce the conventional

traffic control strategies in different layers. The main concept and the corresponding

shortcoming will be analyzed. To improve the traffic control performance, the deep learn-

ing based traffic control is proposed in this section. We mainly discuss what we should

study if adopting this technique for traffic control.

2.3.1 Traditional Traffic Control Strategies

Since the network was constructed, the global traffic overhead has been increasing over

forty years. To avoid the network congestion and reduce the end-to-end delay, the industry

and academia have devoted various endeavors focusing on different layers [26, 59, 60, 61].

Among these traffic control strategies, the most efficient and obvious manner is to de-

ploy the new generation of infrastructures with more computation and communication

capacities [26]. Following the Moore’s Law, the network hardware including the routers,

switches, and data centers, has experienced the changes of several generations. Another

example which impacts our life more clearly is the development of cellular communica-

tions. As the most commonly used communication form which is developing towards its

fifth generation, the transmission speed has been increased to 1Gbps in nearly 40 years [3].

And compared with the first generation which can only provide the wireless voice service,

current 4G technique can offer users fluent Internet services, such as the high-definition

mobile TV, gaming, and IP telephony [62]. Moreover, the emerging 5G technology will

meet the needs of new use-cases such as the IoT and autonomous vehicles [4]. It can be

found that the development of hardware can meet the traffic demand of new services.

However, the evolution of the physical layer usually has a long cycle and extreme high

expense. To address this problem, researchers have also proposed many strategies from

different layers to alleviate the network congestion. In following paragraphs, we will in-

troduce some existing strategies in the data link layer, network layer, and transport layer.

26

Chapter 2: Overview of Deep Learning and Traffic Control

Network

provisioning

Traffic-aware

routing

Admission

control

Traffic

throttling

Load

shedding

Slower

(Preventative)

Faster

(Reactive)

Figure 2.5: The timescales of approaches to congestion control.

2.3.1.1 Data Link Layer

In the data link layer, the design of traffic control is to consider what to do with a sender

that systematically wants to transmit frames faster than the receiver can accept them. A

common situation in practical networks is when a smartphone requests a service from a

far more powerful server. Even if the transmission is error free, the smartphone may not

be able to handle the packets sent by the server in time and then lose some. The com-

mon strategies to solve this problem can be divided into two groups: the feedback-based

schemes and rate-based schemes [63]. In the first one, the feedback-based traffic control,

the receiver sends back to the sender some information which can be the permission of

more frames or some transmission rules. And the sender sends the frames according to

the feedback. This principle rule is followed by various feed-back based traffic control

schemes. In the rate-based schemes, the protocol has a built-in mechanism which limits

the rate at which the senders may transmit data without utilizing the feedback from the

receiver. In existing networks, the rate-based traffic control strategies are regarded as

part of the transport layer [63].

2.3.1.2 Network Layer

Besides the data link layer, the network layer also shares the responsibility of traffic

congestion avoidance. Since the congestion happens within the network, the network layer

directly experiences the performance deterioration. In the network layer, various strategies

have been proposed to alleviate and balance the traffic overhead. These strategies consist

of network provisioning, traffic-aware routing, admission control, traffic throttling, and

load shedding, which are applied on different time scales to either avoid the congestion

or react to it once it happens as shown in Fig. 2.5. For each method, some simple

explanations are given in the following paragraph.

The method of network provision is to consider some extra resource including routers

and switches as backup for dynamical assignment when necessary [63]. Even though this

method can effectively alleviate the congestion, it needs to be prepared before constructing

the network. The second method, traffic-aware routing is to optimize the path design for

traffic balance [64]. It can be fulfilled via different manners, such as splitting traffic across

multiple paths [65], choosing the traffic overhead as the link weight [64], or predicting the

traffic changes to avoid the heavily used link [66]. Furthermore, once traffic congestion

27

Chapter 2: Overview of Deep Learning and Traffic Control

Table 2.3: Some congestion control protocols in the transport layer.

Protocol Signal Precise
XCP Rate to use Yes
TCP with ECN Congestion warning No
FAST TCP End-to-end delay Yes

Compound TCP
Packet loss and
end-to-end delay

Yes

CUBIC TCP Packet loss No
TCP Packet loss No

occurs, the admission control and load shedding methods can be applied. And these

two methods have similar ideas, one is to refuse new connections [59] while the other

one is to drop some traffic [67]. The traffic throttling is similar to the feedback-based

scheme in the data link layer, by which the senders also adopt the feedback to adjust

their transmissions [68]. These methods have been widely considered in current practical

networks.

2.3.1.3 Transport Layer

Since the congestion is ultimately caused by the traffic sent into the network from the

transport layer, the traffic control is also the responsibility of this layer. In current

practical networks, various strategies have been adopted to control the traffic in the

transport layer. And these strategies can be divided into two groups: bandwidth allocation

and regulating the sending rate [63]. The first one is usually fulfilled by running an efficient

allocation algorithm to find a good bandwidth assignment to the transport entities that

are using the network. And the fairness as well as the network delay and throughput are

also considered in the algorithm. In the second group, similar to the feedback-based traffic

control schemes in the data link layer, the traffic control protocols utilize some metrics as

congestion signals. And once the sender judges that the congestion occurs, it slows down

the packet sending rate. How much to slow down can be set a definite value or decided

according to the values of the considered congestion signal. Table 2.3 gives several TCP

traffic control schemes [69, 70, 71].

2.3.2 Research on Deep Learning Based Traffic Control

After introducing the existing traffic control strategies, we can clearly find that it is the

common responsibility of data link layer, network layer, and the transport layer to avoid

the network congestion. And these strategies can be conducted at different layers to

improve the traffic control performance. However, as the global networks become increas-

ingly complex, the existing strategies need to be improved to fit for the new scenarios. For

28

Chapter 2: Overview of Deep Learning and Traffic Control

example, the performance of traffic aware routing method depends the accuracy of the

traffic prediction. Considering the growing heterogeneity of current networks, we need to

adopt more efficient traffic prediction technique. Moreover, the rate-based traffic control

schemes should also take into account the different service requirements. To start our

research, we first focus on the network layer and adopt the deep learning technique for

the routing design to alleviate the traffic overhead. Then, the following aspects need to

be studied.

2.3.2.1 Network Scenarios and Problem Analysis

As we mentioned earlier, there exist different network scenarios offering various services.

It is not realistic to propose only one algorithm utilizing the deep learning technique for

improving traffic control for all the networks. Therefore, we need to focus on definite

network scenarios and analyze their characteristics, which can impact on our following

problem formulation and the deep learning structure construction [24]. For example, for

the fiber network, the link information may be neglected due to the large bandwidth. On

the other hand, as the D2D networks have dynamic links with limited bandwidth, the

link information must be considered in our research.

2.3.2.2 Deep Learning Structure Construction

After analyzing the considered problems for definite scenarios, we can study the construc-

tion of deep learning architectures [24]. Firstly, we can characterize the input and output

of the deep learning architecture according to our purpose. Since we want to improve

the path design method for the purpose of traffic control, the traffic pattern and the

next node can be taken as the input and output, respectively. This is because the traffic

pattern is the most direct sign of the network situation. Moreover, if we consider the

dynamic networks, then the network topology as well as the node information should be

considered. The characterizations of the input and output should be firstly considered

based on our purpose as shown in Fig. 2.1. Then, we can utilize the input and output to

choose a suitable deep learning architecture. For example, the DBA can be chosen if the

input is a vector, while the CNN needs to be considered for the matrix input. Moreover,

if we want to utilize the deep learning to predict a sequence, the LSTM may be the best

structure.

2.3.2.3 Network Performance Analysis

As our goal is to apply the deep learning for traffic control, we need to consider the

simulation or experiment to analyze the performance of our proposal. Since the simulation

is more efficient and adjustable than the experiment, we conduct simulations to evaluate

29

Chapter 2: Overview of Deep Learning and Traffic Control

the performance. And in the simulation, we utilize the network throughput, average

delay, and packet loss rate as the metrics to measure the traffic control performance. To

illustrate the improvement more clearly, we utilize some conventional routing methods as

the benchmark, such as the Open Shortest Path First (OSPF) protocol [72].

2.3.2.4 Computation Analysis and Proposal Deployment

As deep learning is concerned with massive matrix computations, it generates more com-

putation overhead compared with conventional methods. Also, since the prediction ac-

curacy significantly affects the network performance, to improve the training accuracy is

very important for the traffic control. Therefore, in our research, besides the deep learning

structure construction, we also need to optimize the considered architectures and training

methods. The computation complexity should be studied to analyze the practical deploy-

ment [73]. This is because the conventional hardware based communication infrastructure

is not suitable to execute the deep learning based proposals [9]. Therefore, we need to

consider the suitable hardware platform to efficiently run the proposed strategies.

2.4 Summary

In this chapter, we introduce the preliminary knowledge of deep learning including the

propagation process, two deep learning architectures, and three training manners. More-

over, the survey on current deep learning based networking research evaluates the per-

spectives of this emerging AI technique. To adopt the deep learning for more efficient

traffic control, we analyze the existing strategies in different layers. These strategies have

been widely applied in practical networks. However, as the global networks have been

growing complex, existing traffic control strategies also need to be improved. Therefore,

we consider the deep learning technique and give some introductions about what we need

to study if adopting deep learning for traffic control.

30

Chapter 3

Deep Learning Based Routing

Algorithm for Core Networks

Running on GPU Accelerate SDRs

3.1 Introduction

To adopt the deep learning technique for improving the traffic control, we first need to

choose a network scenario in this chapter. Since the routing is concerned with packet

forwarding in the Internet, we choose the static backbone network as our considered

scenario. As we mentioned in Chapter 1, the proprietary hardware architectures lack

the flexibility for the potential update of management strategies. To apply the state-of-

the-art software driven routing algorithms developed for different network services, it is

necessary to improve the programmability of the core routers. Moreover, since the deep

learning technique is concerned with massive matrix computations, we consider the GPU-

accelerated SDRs as the routing architecture. Specifically, we adopt the collected data

comprising inbound traffic patterns and corresponding subsequent nodes (i.e., routers)

to train the DBAs in a supervised manner. Then, the trained DBAs [18] can compute

the subsequent nodes (i.e., routers) with the traffic patterns of the edge routers as the

input. And the deep learning related training and running operations are executed by

the GPU-accelerated SDRs. Furthermore, the packet forwarding operations as well as the

processing work are cooperatively conducted by the GPUs and CPUs.

The remainder of the chapter is structured as follows. And in Sec. 3.2, we delineate our

proposed DBA structure for routing and how it works in the GPU-accelerated SDR. Then,

we introduce the three phases of the deep learning based routing strategy in Sec. 3.3 and

Sec. 3.4 analyzes the complexity of our proposal and compares the theoretical time cost

for a GPU and a CPU. The network performance evaluation of our proposal is presented

31

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

R1

R6

R13

R9

R5

R4
R3R2

R15 R16

R11
R10 R12

R7 R8

R14

Chosen Path

Edge Router

Inner Router

Link

Lgends

Hardware

Software

Reconstruct DL3,16 with WM3,16

Next node: R7

Reconstruct DL7,16 with WM7,16

Next node: R11

Reconstruct DL11,16 with WM11,16

Next node: R15

Reconstruct DL15,16 with WM15,16

Next node: R16

Dest Path

… …

R16 R3R7R11R15R16

Figure 3.1: Considered system model and problem statement.

in Sec. 3.5. Finally, Sec. 3.6 concludes the article.

3.2 Design of Deep Learning based Routing Strategy

In this section, we introduce how to design the deep learning structure to construct the

routing table on a GPU-accelerated SDR. First, we present the detailed characterization

of the input and output of the deep learning structure, then we describe our chosen

architecture, DBA. Next, how the proposed routing table construction method works on

a GPU-accelerated SDR is discussed.

3.2.1 Input and Output Design

Our considered core network system model is depicted in Fig. 3.1 comprising a number of

wired backbone routers. It is worth noting that a wireless backbone network may also be

considered. In the considered network, the edge routers are assumed to be connected to

different types of networks such as cellular networks, Wireless Mesh Networks (WMNs),

and so forth. The data packets generated from the latter networks arrive at the edge

routers and are destined for other edge routers for delivery. On the other hand, the inner

routers are just responsible for forwarding the packets to the appropriate edge routers.

Traditionally, each router periodically forwards the signaling packets to other routers to

inform the values of delay or some other metrics of its links to its neighbors. Then, every

router can utilize the information to compute the next nodes for sending data packets to

the destination routers. This method works well in most cases since every router can make

the best decision according to the obtained information of all the network links. However,

when some routers in the network are congested because of the overwhelming traffic

demand, conventional methods to compute the next nodes suffer from slow convergence.

32

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

Traffic

Pattern

Deep Learning

System

Routing

Path
Output

Input

(a) Characterized in-
put and output.

R1

R2

time

N
u

m
b

er
 o

f

in
b

o
u

n
d

 p
ac

k
et

s

N
u
m

b
er

 o
f

in
b
o
u
n
d
 p

ac
k
et

s

t t+Δt

Δt

time

t+2Δt t+3Δt

t t+Δt t+2Δt t+3Δt

Δt

(b) Considering traffic
patterns at each router
as input.

Figure 3.2: Considered input and output design.

At the same time, the periodical signaling exchange aggravates the traffic congestion.

Furthermore, the traditional routing methods are unable to deal with scenarios where

the network environment continues to become more complex, which requires the network

operators to consider various unrelated parameters to determine the routing rules. As

the deep learning method has been applied to many complex activities to automatically

explore the relationships among various inputs, we attempt to adopt deep learning for

routing in the remainder of this section.

Since the traffic pattern observed at each router is a direct indication of the traffic

situation of that router, we adopt traffic patterns as the input of our deep learning model.

As mentioned in Sec. 3.1, the deep learning structure is utilized to compute the routing

path. Therefore, we choose the routing path as the output of the model. Accordingly,

Fig. 3.2a demonstrates that the traffic pattern is served as the input to the deep learning

structure and processed for the routing path decision as the output. Then, the key

challenge is to characterize the input and output of the deep learning structure. In order

to characterize the input, we use the traffic pattern at each router that may be defined

as the number of inbound packets of the router during each time interval as shown in

Fig. 3.2b. If we assume that the time interval to count the inbound packets is ∆t seconds,

then for each router, we can adopt the number of inbound packets in each time interval

during the last β∆t (β is a positive integer) seconds as its traffic pattern. Therefore, by

assuming that a network comprises of N routers, we can use a matrix of β rows and N

columns to represent the traffic patterns of all the routers in the network and input the

values of βN elements in the matrix to the input layer of the deep learning structure. Note

that the value of β should not be too large as the traffic patterns long time ago make

no difference for current network analysis. Furthermore, if the value of β is too large,

the deep learning structure suffers from high complexity and low efficiency. Here, in our

33

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

proposed deep learning structure, the simulation results demonstrate that it is accurate

enough to set the value of β to 1. As a result, the input of the deep learning structure

can be seen as a N dimensional vector, whose ith element is the ith router’s traffic pattern

during the last ∆t seconds. Next, we need to design the output layer. For the purpose

of routing, the deep learning structure needs to output the routing path. Consequently,

the output layer can be designed to give the whole path like the centralized routing or

only the next node similar to the distributed routing strategy. The latter is chosen in our

proposal due to its lower complexity and higher tolerance. For a network consisting of N

routers, we use a vector consisting of N binary elements to represent the output. In the

vector, only a single element has the value of 1, the order of which represents the next

node. This means that if the ith element in the N dimensional vector is 1, then the ith

router in the considered network is chosen as the next node. In summary, we can use two

N dimensional vectors, X and Y , to represent the input and output of the deep learning

structure and an example of X and Y is given as follows:

X = (tp1, tp2, ..., tpN−1, tpN), (3.1)

Y = (0, 1, ..., 0, 0), (3.2)

where tpi represents the traffic pattern of the router i which is measured by the number of

inbound packets in last time interval. Furthermore, in vector Y , we can find that y2 = 1,

which implies that the router 2 is chosen as the next node. Due to the binary value of Y ,

the deep learning structure is a logistic regression model, which we need to design next.

3.2.2 Deep Learning Structure Design

We utilize the DBA described in Sec. 2.3a as our considered deep learning architectures.

Since our purpose of supervised training is to minimize the difference between the output

of the DBA (denoted by hΘ(X)) and the labeled output Y , we use the cross-entropy cost

function to measure their difference given in Equation 3.3 [74].

C(Θ) = − 1

m

m∑
t=1

(Y (t) log (hΘ(X(t))) + (1− Y (t)) log (1− hΘ(X(t)))) +
λ

2

L∑
l=2

nl∑
j=1

nl−1∑
i=1

(w
(l)
ij)2.

(3.3)

Here, (X(t), Y (t)) is the tth training data. hΘ(X(t)) denotes the output of the DBA when

the parameter of the DBA is Θ and the input is X(t). On the right side of the equation, we

can find C(Θ) consists of two parts. The first part represents the difference between the

34

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

Instruction

Cache

Shared

Memory

L1 Cache

Streaming Multiprocessor n

Instruction

Cache

Shared

Memory

L1 Cache

Streaming Multiprocessor 2

Instruction

Cache

Shared

Memory

L1 Cache

Streaming Multiprocessor 1

G
lo

b
al M

em
o

ry

L
2

 C
ach

e

CPU

Host Memory

NIC

GPU

Streaming Processor (SP)

12

4

6

8

9
7

3

5

Instruction

Cache

Shared

Memory

L1 Cache

Streaming Multiprocessor 0

Figure 3.3: The architecture of GPUs and steps of how packets are passed in the GPU-
accelerated SDR.

output of DBA and the labeled output, and its value is 0 when Y (t) = hΘ(X(t)) = 0 or 1

for all t, otherwise, bigger than 0. The second part is used to keep the training process

from overfitting.

The fine-tuning algorithm works effectively since the value of Θ gets well-initialized

through the Greedy Layer-Wise training method instead of being randomly set. After fine-

tuning the DBA, we can obtain the optimal values of the parameter Θ(W,B). The value

of A is not trained in the backward propagation step since it does not belong to the final

DBA and is just useful in the training of every RBM. In the remainder of the section, we

demonstrate how the proposed deep learning structure can be used in a GPU-accelerated

SDR.

3.2.3 Considered Router Architecture

In this section, we give a short introduction to the GPU architecture and the procedures

of the proposed deep learning based routing strategy working on a general PC platform,

which can be regarded as our considered SDR.

As shown in Fig. 3.3, a GPU consists of the global memory, L2 cache, and several

Streaming Multiprocessors (SMs), each of which is composed of many Streaming Proces-

sors (SPs) [14]. Since a GPU has many computing cores, it launches tens of thousands of

threads concurrently when receiving a workload, and each thread runs the same program

but on the different set of data. Therefore, the GPU computing is considered as a Single

Instruction Multiple Data (SIMD) programming model which is very suitable for running

the deep learning.

As mentioned in Sec. 3.1, the reported line rate of the GPU accelerated SDR based

on a common PC has reached as high as 40 Gbps, in this chapter, we choose a general

PC-based SDR to construct the routing tables and execute our deep learning based rout-

35

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

ing algorithm. Fig. 3.3 shows the steps of how the packets are passed through the related

four parts in the architecture of the considered SDR, i.e., a GPU, a CPU, Network Inter-

face Cards (NICs), and the main memory. For running the deep learning based routing

algorithm, every SDR needs to be initialized in the training phase, during which, SDRs in

the network do not need to process any packet and just utilize their GPUs to train their

DBAs and record the final values of the parameters of their DBAs. After the training

phase, all the routers in the network need to send the parameters’ values of their DBAs to

all the edge routers. Therefore, every edge router can use the parameters to restore any

DBA for building the whole path to any destination router in the running phase, while

the inner routers just forward the packets according to the path. As shown in Fig. 3.3, we

have given the main architecture of the GPU-accelerated SDR and the labels according

to the orders the packets are transferred in the SDR. We can find that (1) packets enter-

ing the NIC are copied to the host memory through the Direct Memory Access (DMA).

During the whole process, (2) the CPU copies some packets from the main memory to fill

its buffer. (3) Then software running on the CPU analyzes these packets and takes some

necessary processes like error checking, lifetime reducing, and so on. Moreover, the CPU

takes different processes for different types of packets. (4) For data packets, the CPU

extracts the headers and sends them to the global memory of the GPU, while the CPU

sends the whole signaling packets to the GPU’s memory. Note that the CPU needs to

buffer the headers of data packets and signaling packets until reaching a given size, and

then sends the batch of headers or packets to the GPU instead of dispatching them one

by one. Since the GPU can process hundreds of packets in parallel, the batch-processing

can improve the throughput, while its adverse effect on latency has been proved to be

negligible [27]. (5) After obtaining headers and packets from the CPU, it should be noted

that GPUs of edge routers and inner routers execute different packet processing. Software

running on the GPUs of the edge routers uses the traffic patterns carried by the signaling

packets as the input of the restored DBAs. Then, the DBAs can output the next nodes,

with which the GPUs of the edge routers can build the whole paths for data packets and

attach the corresponding paths to the received headers. Additionally, the GPUs also need

to send the next node information of each packet to the CPUs. On the other hand, the

GPUs of the inner routers do not need to compute the paths for the packets and just read

the paths in the packets’ headers and send the results to the CPUs. Additionally, each

GPU processes these headers in parallel and fills them in the buffer. Then, the CPU (6)

copies back the processed data packets’ headers from the GPU and (7) copies the packets

back to the main memory. Meanwhile, (8) the CPU instructs the NIC where to forward

the batch, after which, (9) the NIC fetches the packets from the main memory through

another DMA. Furthermore, the processes of copying packets to and from the GPU can

be deleted since we can take advantage of the mapped memory of the GPU and the CPU,

36

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

by which the latency can be further reduced.

In this section, we provided our considered system model, deep learning structure,

and explained how the GPU-based SDR can exploit the deep learning structure. In

the following section, we present the steps of our proposed deep learning based routing

algorithm.

3.3 The Procedures of the Proposed Deep Learning

based Routing Strategy

In this section, we focus on the procedures of utilizing the DBAs to compute the next nodes

for building the routing paths in the considered core network in Fig. 3.1. The procedures

can be divided into three steps, i.e., initialization, training, and running phases. The

details of the three phases are provided below.

3.3.1 Initialization Phase

In the initialization phase, we need to obtain the data to train our proposed DBAs. As

described in Sec. 3.2, we adopt the supervised learning to train our proposed DBA systems.

Therefore, the goal of the initialization phase is to obtain the labeled data which consist

of the input vector and the corresponding output vector. As explained in the earlier

section, the input vector should be the traffic patterns of the routers in the considered

core network. The output vector should indicate the next node corresponding to the given

traffic patterns. To gain this kind of training data, we can approach a number of available

dataset sources, such as the Center for Applied Internet Data Analysis (CAIDA) [75],

and extract the traffic information and relevant routing paths. Another way is to run

the traditional routing protocols in our considered network, and record the number of

inbound packets of every router and their routing tables.

3.3.2 Training Phase

In the training phase, we use the obtained data to train our designed DBAs. The training

process consists of two steps: initializing each DBA with the Greedy Layer-Wise training

method and fine-tuning the parameters Θ(W,B) with the backward propagation method.

After the training phase, we can obtain the values of Θ(W,B).

As described in Sec. 3.2.1, the output of a DBA is a vector representing the next

node, which means that it needs several DBAs to build a whole path. Assuming that

only one router in the network trains and runs all the DBAs and produces all the paths

in the network just like the centralized control strategy in the network, the quantity of

37

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

Algorithm 1 Supervised Train DBA
Input: (X, Y) = {(X(t), Y (t))|t = 1, ...,m}, ηCD, ηbp, L (number of layers), n =
(n1, ..., nL) (the numbers of units in each layer)
Output: Θ

1: for i = 1, ..., L− 2 do
2: TrainRBM(U (i), ηCD, ni, ni+1)
3: end for
4: Fine-tuneDBA((X, Y),Θ, ηbp)
5: return Θ

computation for the router will be extremely high. Also, such a central router requires a lot

of time and resource to compute all the paths, leading to increased delay and unguaranteed

accuracy. To reduce the computation requirement on routers and also increase the learning

accuracy, we fragment the task of training into several parts and distribute them to

every router in the target core/backbone network. This means that every router in the

considered network needs to train several DBAs, each of which computes the next node

from itself to a destination router. The number of DBAs a router needs to train depends

on the number of its destination routers. Let N and I denote the total number of routers

and the number of inner routers, respectively. Consequently, the number of destination

nodes for each inner router is (N−I), whilst every edge router has (N−I−1) destination

nodes since the source and destination routers cannot be the same. Therefore, every inner

router needs to train (N−I) DBAs, while all edge routers need to train (N−I−1) DBAs.

For describing the training phase more clearly, we focus on the training procedures of

only one DBA, which is also applicable to the other DBAs in our proposal. The main

procedures of training a DBA are given in Algorithm 1. The inputs of the training phases

are the training data (X, Y) as well as the parameters of the DBA, L and n, and the

learning rate, ηCD and ηbp. As shown in Algorithm 1, the training phase mainly consists

of two steps: the loop of the Greedy Layer-Wise training to train each RBM as shown in

Steps 1 to 3 and the following backward propagation process to fine-tune the weights of

links between the layers shown in Step 4. Through the Greedy Layer-Wise training, the

DBA is initialized with the values of Θ(W,B) nearly reaching the global optimum. Then

the backward propagation algorithm is used to fine-tune the whole structure to minimize

the value of the cost function. The adjusting process does not stop until the cost function

is not more than a given value or the number of times reaches an upper bound. Once the

backward propagation is finished, the value of Θ(W,B) of each DBA is recorded.

As mentioned earlier, every edge router needs to train (N − I − 1) DBAs while each

inner router needs to train (N−I) DBAs, which means that every edge router can obtain

Θ of (N − I − 1) DBAs and each inner router can get Θ of (N − I) DBAs. Then, every

edge router needs to send its Θ of (N − I − 1) DBAs to other (N − I − 1) edge routers.

38

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

Also, every inner router needs to send its Θ of (N − I) DBAs to all the edge routers.

Therefore, each edge router obtains Θ of all the DBAs of all the routers in the network,

and the number of sets of Θ is (N − I)(N − 1). Let DBAij represent the DBA in Router

i for the destination Router j and Θij is its parameter. Since edge routers obtain Θ of

all the DBAs in the network, they can construct the corresponding DBAij with Θij. It

should be noted that i 6= j.

3.3.3 Running Phase

In the running phase, all the routers in the network need to record their numbers of

inbound packets as traffic patterns periodically and send them to the edge routers. Then,

every edge router can input the traffic patterns to its DBAs to obtain the next nodes

to other edge routers. Also, since every edge router obtains the parameters Θ of other

routers’ DBAs, it can construct any DBA in the network and compute the next node from

any router to any destination edge router. Therefore, every edge router can utilize the next

node information to construct the whole paths from itself to all the other edge routers.

The algorithm is shown in Algorithm 2. Here, we use an array of N elements, T P [N], to

save the numbers of inbound packets of N routers in the network to represent the traffic

patterns, and Θ[N − I][N − 1] to save the parameters of all the DBAs in the network.

Another array ER[N − I] is used to save the sequence numbers of the edge routers in

the network since they are not continuous. In the real network situation, ER[N − I] is

used to save the IP addresses of all the destination routers. After running Algorithm 2,

each edge router can obtain the outputs of DBAs to construct the paths to (N − I − 1)

edge routers. We can use a matrix, NR[N][N − I − 1] to save the results of these DBAs

that can be used to build the whole paths to all the other edge routers. Table 3.1 is the

routing table built in router R3, and Fig. 3.1 shows an example of the process of building

the whole path from R3 to R16.

Table 3.1: Routing Table Built in R3.

Dest Path
R1 R3 → R2 → R1

R2 R3 → R2

... ...
R12 R3 → R7 → R11 → R12

... ...
R16 R3 → R7 → R11 → R15 → R16

39

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

Algorithm 2 Running Phase
Input: T P [N], Θ[N − I][N − 1], ER[N − I], sr (the source router).
Output: NR[N][N − I − 1]

1: D ← ER[N − I]− sr
2: while D 6= ∅ do
3: d ∈D
4: s← sr
5: repeat
6: Θ

′ ← Θ[s][d]
7: nr ← run DBA with Θ

′
and T P [N]

8: NR[s][d]← nr
9: s← nr

10: until nr = d
11: D ← D − d
12: end whilereturn NR[N][N − I − 1]

4

5

6

2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

14 16 18 20

N
u

m
b

er
 o

f
la

y
er

s

M
ea

n
 S

q
u
ar

e
E

rr
o

r
(1

0
-2

)

Number of units in every layer

Figure 3.4: Mean Square Errors (MSEs) of different DBAs.

3.4 Computation Performance Analysis

In this section, we analyze the algorithm complexity and the time cost to run the proposed

deep learning based routing strategy on the considered SDR. Our analysis mainly focuses

on the numerical analysis of the algorithm complexity in the training phase and running

phase via calculating how many times of addition operations +, subtraction operations −,

multiplication operations ×, division operations ÷, square root operations
√

, exponenti-

ation operations ex, and negation operations. To express clearly, the time cost of every

kind of operations is denoted by ADD, SUB, MUL, DIV, SQRT, EXP, and NEG. Then,

we evaluate and compare the time cost to run the two phases on a GPU and a CPU.

40

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

Algorithm 3 TrainRBM(V, ηCD, nv, nh)
Input: V (V = {V (t)|t = 1, ...,m}. For RBM1, V = X. For RBML−2, V is the activated
output of RBML−3 and Y . For other RBMs, V of RBMi is the activated output of
RBMi−1), nv, nh, ηCD.
Output: W = {wij|i = 1, ..., nv, j = 1, ..., nh}, A = {ai|i = 1, ..., nv}, B = {bj|j =
1, ..., nh}.

1: for i = 1, ..., nv, j = 1, ..., nh do
2: ∆ai = 0,∆bj = 0,∆wij = 0,
3: ai = log pi

1−pi , bj = 0, wij ∼ N(0, 0.012).
4: end for
5: repeat
6: for t = 1, ...,m do
7: for j = 1, ..., nh do
8: compute p(hj = 1|V) = 1/(1 + e−(bj+

∑nv
i=1 wijvi))

9: sample hj from p(hj = 1|V)
10: end for
11: for i = 1, ..., nv do

12: compute p(v
′
i = 1|H) = 1/(1 + e−(ai+

∑nh
j=1 wijhj))

13: sample v
′
i from p(v

′
i = 1|H)

14: end for
15: for i = 1, ..., nv, j = 1, ..., nh do
16: ∆wij ← ∆wij + p(hj = 1|V)vi − p(hj = 1|V ′)v′i
17: ∆ai ← ∆ai + vi − v

′
i

18: ∆bj ← ∆bj + p(hj = 1|V)− p(hj = 1|V ′)
19: end for
20: end for
21: for i = 1, ..., nv, j = 1, ..., nh do
22: wij ← wij + ηCD∆wij/m
23: ai ← ai + ηCD∆ai/m
24: bj ← bj + ηCD∆bj/m
25: end for
26: until iter = r1

27: return W,A,B

3.4.1 DBA Precision Analysis

Since the number of routers in the network shown in Fig. 3.1 is 16, for each DBA, the

numbers of units in the input and output layers are both 16. In our simulation, the

number of the training data is 100,000. To determine the number of hidden layers and

number of units in each hidden layer for each DBA, we train different DBAs. The Mean

Square Error (MSE) measuring the prediction error rate of a DBA is given in Fig. 3.4.

It can be noticed that the DBAs consisting of 4 layers and 16 or 18 units in each layer

have the minimum MSE values. Considering more units in the hidden layers mean more

complexity, we choose the DBA which has 2 hidden layers and 16 units in each hidden

41

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

layer.

To elucidate the input and output of our proposed deep learning system model, please

refer to Table 3.2. This table gives the error rates of five structures in a network with 16

routers. The first row represents the centralized routing control. The input is the traffic

pattern in the last time-interval of 16 routers while the output gives the whole paths

between any two edge routers in the network. We can find that the number of units in

the output layer is more than 30,000, the structure of which becomes extremely complex

resulting in significantly poor accuracy. The structures shown in the following two rows

are both using one deep learning system to output a whole path. The main difference

between them is as follows. The second structure uses a 16× 16 matrix to show the path

and the elements in the matrix have binary values. On the other hand, the third structure

outputs a vector in which the values of some elements represent the routers chosen in the

path. We can find that the error rates of the second and third structures are as high as

70% and 45%, respectively. If we choose the next node as the output indicated in the

final two rows, we can find that the error rates are just 5%. These two structures use

our proposed input and output model, and the fourth structure uses the traffic pattern

of only 1 time-interval while the final structure uses three time-intervals’ traffic patterns

as the input. The output layers in the two structures both consist of 16 units and output

a 16 dimensional vector, of which only one element has the value of 1 representing the

next router in the path. Even though the two structures have the same performance, the

final structure is much more complex than the fourth one because of more units in the

input layer. Therefore, the fourth structure we choose has the lowest error rate and the

simplest structure compared with other strategies.

3.4.2 Complexity Analysis of the Training Phase

The main process of the training phase consists of training each RBM and fine-tuning the

whole DBA as shown in Algorithm 1. The training algorithm of each RBM is shown in

Algorithm 3 which is an unsupervised training process. Suppose that the numbers of units

Table 3.2: Effect of different input and output characterization strategies on the network
control accuracy for N=16.

Number of Number of The whole path Error
input nodes output nodes or next node rate

16 33792 Path -
16 256 Path 70%
16 16 Path 45%
16 16 Next node 5%
48 16 Next node 5%

42

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

in the visible layer and the hidden layer are nv and nh, respectively. The number of training

sets is m. First, from Step 1 to Step 4 in Algorithm 3, we need to initialize W,A,B and

∆W,∆A,∆B. Then, we repeatedly utilize all training examples to update the values of

∆wij,∆ai,∆bj with the method named CD for adjusting W,A,B [47]. As shown in Step 7

to Step 19, the CD method mainly consists of two periods. The first period is to adopt the

method of Gibbs Sampling to get a sample value of hj and v
′
i according to their conditional

probability distributions shown in Step 7 to Step 14. Second, the obtained sample value

of v
′
i is used to update ∆wij,∆ai,∆bj according to Step 15 to Step 19. Therefore, the

values of ∆wij,∆ai, and ∆bj can be utilized to update wij, ai, and bj which has been

shown in Step 21 to Step 25. The whole training process is repeated r1 times which takes

r1((3m+1)nvnh+3mnv+(2m+1)nh)ADD+r1(mnvnh+(m+1)nv+mnh)SUB+r1((4m+

6)nvnh + nv + nh)MUL+r1(2nvnh + (m+ 1)nv +mnh)DIV+r1nvnh(EXP+NEG+SQRT).

Since the visible layer of the first RBM satisfies the Gaussian Distribution as mentioned

in Sec. 3.2.2, for training the first RBM, we need to calculate σi and (ai + σi
∑

j hjwij)

denoting the standard deviation and the mean value of unit i, respectively. This step

requires 2N(m − 1) ADD, Nm SUB, Nm MUL, 2N DIV, and N SQRT operations.

It should also be noted that when training the first RBM, the conditional probability

distribution of the visible layer should be revised to Equation 2.24. The difference of the

time cost of the first RBM from other RBMs is negligible.

After finishing the complexity analysis of the first step, we turn to the second step

which adopts the stochastic gradient descent of the cost function defined in Equation 3.3 to

fine-tune the values of the weights and biases. The detailed procedures of the second step

are shown in Algorithm 4 which mainly consists of four operations: forward propagation

(Step 3 to Step 8), backward propagation (Step 9 to Step 16), updating the values of

W,B (Step 17 to Step 24), and calculating the cost function (Step 26 to Step 37). As

shown in the forward propagation from Step 3 to Step 8, the weighted value, z
(l)
j , and the

activated value, u
(l)
j , of every unit in each layer are calculated. The activation function

chosen here is the sigmoid function, then u
(l)
j = 1/(1 + e−z

(l)
j). Consequently, we can get

the error of the last layer, δ
(L)
i , which is defined as the difference between the activated

values of the last layer and the labeled output as shown in Step 10. As the units’ values

in the last layer are the results of which the units’ values in the first layer propagate layer

by layer, the error of the last layer is caused by the errors of previous layers. Step 12

to Step 16 show how to utilize the error of the lth layer, δ
(l)
i , to calculate the error of

the (l − 1)th layer, δ
(l−1)
i , according to the relationship between the two layers, which

is a backward propagation process. Then, the error of each layer, δ
(l)
i , can be adopted

to update the values of W,B according to Steps 17 to 24. After obtaining the updated

values of W,B, we can re-calculate the value of the cost function, C, the procedures for

which is shown from Step 26 to 37. Then, it can be confirmed whether a new iteration

43

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

Algorithm 4 Fine-Tune the DBA((X, Y),W,B, ηbp)

Input: (X(t), Y (t)), W = (W (2), ...,W (L−1)), W (l) = {w(l)
ij |i = 1, ..., nl−1, j = 1, ..., nl},

B = (B(2), ..., B(L)), B(l) = (b
(l)
1 , ..., b

(l)
nl), ηbp.

Output: W,B.

1: repeat
2: for t = 1, ...,m do
3: for j = 1, ..., n1 do
4: initialize the units, z

(1)
j , of the input layer with x

(t)
j

5: end for
6: for all l ∈ {2, ..., L} and j ∈ {1, ..., nl} do

7: z
(l)
j =

∑nl−1

i=1 w
(l)
ij u

(l−1)
i + b

(l)
j and u

(l)
j = 1/(1 + e−z

(l)
j)

8: end for
9: for i = 1, ..., nL do

10: δ
(L)
i = u

(L)
i − y

(t)
i

11: end for
12: for l = L− 1, ..., 2 do
13: for i = 1, ..., nl do
14: δ

(l)
i =

∑nl+1

j=1 w
(l+1)
ij δ

(l+1)
j u

(l)
i (1− u(l)

i)
15: end for
16: end for
17: for l = 2, ..., L do
18: for j = 1, ..., nl do
19: b

(l)
j ← b

(l)
j − ηbpδ

(l)
j

20: for i = 1, ..., nl−1 do

21: w
(l)
ij ← w

(l)
ij − ηbp(δ

(l)
i u

(l−1)
i + λw

(l)
ij)

22: end for
23: end for
24: end for
25: end for
26: for t = 1, ...,m do
27: for all l ∈ {2, ..., L} and j ∈ {1, ..., nl} do

28: z
(l)
j =

∑nl−1

i=1 w
(l)
ij u

(l−1)
i + b

(l)
j and u

(l)
j = 1/(1 + e−z

(l)
j)

29: end for
30: for j = 1, ..., nL do
31: C1 ← C1 − (y

(t)
j log u

(L)
j + (1− y(t)

j) log (1− u(L)
j))

32: end for
33: end for
34: for l = 2, ..., L, j = 1, ..., nl, i = 1, ..., nl−1 do

35: C2 ← C2 + (w
(l)
ij)2

36: end for
37: C = 1

m
C1 + λ

2
C2

38: until convergence
39: return W,B

44

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600 700 800 900 1000

L
o
g

-T
im

e
C

o
st

 o
f

T
ra

in
in

g
 P

h
as

e

Number of routers

GPU
CPU

Figure 3.5: The time cost of training phase on the chosen GPU and CPU-based SDRs.

should be executed according to the value of C. If we assume that the algorithm iterates

r2 times, the total time cost is r2((4m + 1)
∑L

l=2 nlnl−1 −mn1n2 + m(
∑L

l=2 nl + 2nL) +

1)ADD+r2m(2
∑L

l=2 nlnl−1−n1n2+
∑L

l=2 nl+4nL)SUB+r2((8m+1)
∑L

l=2 nlnl−1−mn1n2+

m
∑L

l=2 nl + 2mnL + 1)MUL+r2(2
∑L

l=2 nl + 2)DIV.

After obtaining the number of different operands for training every DBA, we can

theoretically analyze the time cost of utilizing a GPU (the Nvidia Titan X Pascal) or a

price-comparable CPU (Intel i7-6900K) to execute the calculation. The GPU, Titan X,

has 28 SMs, each of which can run 128 times of 32-bit float point arithmetic calculation

in a clock cycle. The CPU, Intel i7-6900K, has 8 cores and 16 threads. The latencies for

different arithmetic operands that we choose are 3, 5, and 15 clock cycles for ADD/SUB,

MUL, and DIV operations, respectively [76]. Since the numbers of the EXP, SQRT, and

NEG operands are much fewer than those of other operands, it is reasonable to neglect

the time cost of these operands, EXP, SQRT, and NEG. The number of training samples

is 100,000 (m = 100, 000) and the values of r1 and r2 are both assumed to be 10,000.

Then, we can calculate the values of the time cost of the algorithm running on the GPU

and the CPU as shown in Fig. 3.5. It can be found the logarithm value of the time cost

of the GPU-based SDR is more than 2 smaller than that of the CPU-based one. This

indicates that the GPU-based SDR, for training the proposed deep learning architectures,

achieves more than 100 times faster performance than that of the CPU-based SDR. Even

though the time cost of the GPU-based SDR is more than 1,000 seconds when the number

of routers is 1,000, the training phase of the SDR can be operated offline to avoid network

performance degradation.

3.4.3 Complexity Analysis of the Running Phase

In this section, we analyze the time cost of the proposed routing strategy in the running

phase. As we mentioned above, the training phase can be regarded as the initialization pe-

45

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 100 200 300 400 500 600 700 800 900 1000

L
o
g
-T

im
e

C
o
st

 o
f

R
u
n
n
in

g
 P

h
as

e

Number of routers

GPU
CPU

Figure 3.6: The time cost of running phase on the chosen GPU and CPU-based SDRs.

riod of the SDR. Consequently, the SDR mainly works in the running phase. The detailed

procedures of the running phase is a feedforward propagation which can be regarded as

the same as Steps 3 to 8 in Algorithm 4. As mentioned earlier in Sec. 3.3.3, the running

phase is only executed in the edge routers and every edge router only constructs the paths

from itself to all the other edge routers. Therefore, in the running phase, every edge router

just needs to run the DBAs which compute the next nodes that exist in its paths. It is

necessary to assume the average number of nodes in one path to be A due to the uncer-

tainty about the number of routers in one path. Consequently, every edge router needs

to run (N − I − 1)A DBAs. Therefore, the time cost for every edge router to construct

its paths is (N − I − 1)A
∑L

l=2 nl(nl−1 + 1)ADD+(N − I − 1)A
∑L

l=2 nlnl−1MUL+(N −
I − 1)A

∑L
l=2 nl(DIV+EXP+NEG).

Then, we can calculate the values of the time cost of the running phase on the chosen

GPU and CPU-based SDRs as demonstrated in Fig. 3.6. The value of A is set to 0.2N .

Since the logarithm value of the time cost of the GPU is about 2 smaller than that of

the CPU, it is about 100 times faster to use the GPU than running the algorithm with

the CPU-based SDR. We can find that when the number of routers is less than 400, the

time cost of the GPU is less than 1 millisecond while that of the CPU is more than 100

milliseconds. This demonstrates that the proposed deep learning based routing strategy

runs very fast in the GPU-accelerated SDR.

In addition to the complexity analysis, in the following section, we further present

a simulation-based network performance evaluation of our proposed deep learning based

routing technique on a backbone network constructed with commodity routers.

46

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

3.5 Network Performance Evaluation

This section evaluates the effectiveness of our proposed deep learning based routing strat-

egy in terms of network performance. In order to accommodate our characterization of

the input and output, C++/WILL-API [41] is utilized since it provides the library of

DBAs, which is not available in other simulators such as Caffe and Microsoft Cognitive

Toolkit [77]. Therefore, we use C++/WILL-API as the simulation framework. In the

simulation, all routers’ computations are conducted on a workstation with a six-core i7

3.3 Ghz processor and 16 GB RAM. As the computations of all routers in our considered

network are outsourced to a single machine, it is reasonable to restrict the simulation

to a small size network. Therefore, we consider a medium size wired backbone network

as shown in Fig. 3.1 rather than a full-scale core network topology. It is worth noting

that this scale of simulation is sufficient enough to demonstrate that the proposed deep

learning based routing strategy outperforms the conventional routing strategies such as

OSPF. As described in Sec. 3.2.1, only the edge routers generate data packets and these

packets are destined for the edge routers, while the inner routers just forward the data

packets. On the other hand, all the routers can generate signaling packets. In addition,

the signaling packets consist of the traffic patterns and are destined for the edge routers in

our proposal, while all the routers flood signaling packets to exchange the routing tables

in the OSPF protocol. The sizes of the data packets and the signaling packets are set

to 1 kb. The link capacity is set to 20 Gbps. Here, we assume that every router has an

unlimited buffer. As mentioned earlier, we need to use supervised training of our DBAs,

the training data should consist of the traffic data and the subsequent nodes. However,

most realistic traffic traces offered by the public website [75] consist of a mix of routing

protocols, which are difficult to use for supervised training. Moreover, as the goal of this

chapter is to evaluate the performance of applying deep learning into routing, it is rea-

sonable to choose an existing routing protocol as the benchmark in the simulation. Since

the practical traffic data come from the networks using mixed routing protocols, if we use

the data to train our deep learning architectures, it is unfair to compare the performance

of the proposed routing strategy with our considered benchmark routing protocol. There-

fore, in our simulation, we first run the OSPF protocol to build the routing table in the

considered network and record the traffic patterns and the corresponding paths. There-

fore, we can utilize the recorded traffic patterns and corresponding paths to construct the

labeled data for training the DBAs in the training phase.

In this section, we first evaluate the precision of our DBAs for the given core network,

before which we decide the number of hidden layers and the number of units required in

each hidden layer. We also give a comparison of different characterization strategies of

inputs and outputs, and demonstrate that our proposal has the highest precision and the

47

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

lowest complexity. Then, the network performance with our proposed routing strategy is

compared with that of OSPF from three aspects, i.e., the signaling overhead, the network

throughput, and the average delay per hop.

 20

 40

 60

 80

 100

 120

 140

 1.44 1.536 1.632 1.728 1.824 1.92 2.016 2.112 2.208

#
S

ig
n
al

in
g
 (

1
0

6
)

Packet Generating Rate (Gbps)

OSPF
Deep Learning

(a) Comparison of signaling overhead for the conven-
tional OSPF and the proposed deep learning system.

 1.2
 1.3
 1.4
 1.5
 1.6

 1.7
 1.8
 1.9

 2
 2.1

 1.44 1.536 1.632 1.728 1.824 1.92 2.016 2.112 2.208

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Packet Generating Rate (Gbps)

OSPF
Deep Learning

(b) Comparison of aggregate throughput for the con-
ventional OSPF and the proposed deep learning sys-
tem.

 100

 200

 300

 400

 500

 600

 700

 800

 1.5168 1.5264 1.536 1.5456 1.5552 1.5648 1.5744

A
v
er

ag
e

D
el

ay
 p

er
 H

o
p
 (

m
s)

Packet Generating Rate (Gbps)

OSPF
Deep Learning

(c) Comparison of average delay per hop for the conven-
tional OSPF and the proposed deep learning system.

Figure 3.7: Comparison of network performance under different network loads in our
proposal and the bencmark method (OSPF) in terms of signaling overhead, throughput,
and average delay per hop.

In the running phase, we choose OSPF as a benchmark method to compare the pro-

48

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

0

20

40

60

80

100

120

140

260 250 240
#

S
ig

n
al

in
g

 O
v

er
h
ea

d
(1

0
6
)

Signaling Interval (ms)

OSPF

Deep Learning

(a) Comparison of signaling overhead for the con-
ventional OSPF and the proposed deep learning
system.

1.315

1.32

1.325

1.33

1.335

1.34

260 250 240

T
h

ro
u

g
h

p
u
t

(G
b

p
s)

Signaling Interval (ms)

OSPF

Deep Learning

(b) Comparison of aggregate throughput for the
conventional OSPF and the proposed deep learn-
ing system.

0

100

200

300

400

500

600

700

260 250 240

A
v

er
ag

e
D

el
ay

 p
er

 H
o

p
 (

m
s)

Signaling Interval (ms)

OSPF

Deep Learning

(c) Comparison of average delay per hop for the
conventional OSPF and the proposed deep learning
system.

Figure 3.8: Comparison of network performance under different signaling intervals in our
proposal and the bencmark method (OSPF) in terms of signaling overhead, throughput,
and average delay per hop.

posed deep learning based routing strategy. To compare the performance under various

network loads, we change the data generating rate and record the values of network sig-

49

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

naling overhead, throughput, and average delay per hop. The signaling interval is fixed

at 0.25 second. Fig. 3.7a and Fig. 3.7b compare the numbers of successfully transferred

signaling packets and the network throughput with two routing strategies when the data

generating rate changes from 1.44 Gbps to 2.208 Gbps. Fig. 3.7c compares the variation

of average delay per hop under two scenarios when the data generating rate increases

from 1.5168 Gbps to 1.5744 Gbps. In Fig. 3.7a, we can find the number of successfully

transferred signaling packets in our proposal remains nearly unchanged, which is nor-

mal since the signaling interval and the simulation time are both fixed. However, in the

network using the conventional OSPF protocol, the number of successfully transferred

signaling packets gradually decreases when the data generating rate is more than 1.536

Gbps, which can be explained by the traffic congestion and the following increasing loss

of some signaling packets. It can be noticed that the number of signaling packets in the

conventional case is much higher than the number in our proposal. This happens because

in our proposal, every router only needs to send the signaling packets to the edge routers

for computing the routing paths while in OSPF every router needs to flood the signaling

packets to all the other routers in the network. The difference in the quantities of signaling

packets affects the network throughput and the average delay per hop. Fig. 3.7b demon-

strates that the throughput of our proposal linearly increases with the data generating

rate. However, in the network using OSPF, the throughput increases linearly before the

data generating rate reaches 1.536 Gbps, and after that, the throughput increases rather

slowly. The difference of performance in the two routing strategies is more clearly shown

in Fig. 3.7c which demonstrates the changes of the average delay per hop with the increas-

ing network overhead. It can be observed that the average delay per hop under the two

scenarios is nearly the same when the data generating rate is below 1.5456 Gbps due to

the fact that the DBAs in our proposal are trained with the data from OSPF. Therefore,

it can be concluded that the training of our DBAs is successful since it can give the same

output as OSPF. However, the average delay per hop in OSPF increases after the data

generating rate exceeds 1.5456 Gbps, while that of our proposal still remains unaffected.

This can be explained by the occurrence of traffic congestion, when the data generating

rate is above 1.5456 Gbps in the network with OSPF, leads to the decreasing throughput

and increasing average delay per hop. On the contrary, for the shown data generating

rates, the proposed routing strategy based on deep learning achieves much lower signaling

overhead and avoids the traffic congestion issue.

After the analysis of network performance with various data generating rates, we

further analyze and compare the effects of different signaling overheads on network per-

formance using the two different routing strategies. Here, we fix the data generating rate

at 1.536 Gbps and change the signaling interval from 260 ms to 240 ms. Figs. 3.8 show

the result consisting of the signaling overheads, throughput, and average delay per hop for

50

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

the two cases when the signaling intervals are 260 ms, 250 ms, and 240 ms, respectively.

In Fig. 3.8a, we can find that the signaling overheads in our proposal are much lower

than those in the case with OSPF. In Figs. 3.8b and 3.8c, we can clearly see the effects

of signaling overheads on the performance of the two cases. In Fig. 3.8b, the throughput

of our proposal remains nearly unchanged when the signaling interval is different. On the

other hand, the throughput of OSPF, when the signaling interval is 240 ms, is much lower

than that when the signaling interval is 260 ms or 250 ms. Thus, it may be inferred that

the traffic congestion happens for the network using OSPF when the signaling interval

is 240 ms. This is further demonstrated by the result in Fig. 3.8c which shows that the

average delay per hop of OSPF, when the signaling interval is 240 ms, is nearly twice

longer than that when the signaling interval is 260 ms or 250 ms. Moreover, we can find

that when the signaling interval is 260 ms or 250 ms, the average delay per hop of OSPF

is nearly the same as that of our proposal.

Through comparing the performance in the network using OSPF and our proposed

routing strategy based on deep learning, we can find that our proposed deep learning based

routing strategy has much lower signaling overhead, leading to better traffic control. The

reason for the lower signaling overhead in our proposal is that only the edge routers

instead of all routers require signaling packets since the edge routers can use the trained

DBAs to build the whole paths and the inner routers do not need the signaling packets to

compute the next nodes. However, in the network with OSPF, the edge routers cannot

utilize current weights’ values of all links to build the practical whole paths as the paths

computed through OSPF are only suitable for current network states. But during the

packets’ transmission, the network traffic is changing and then the decided paths become

unsuitable. On the other hand, for the routing strategy based on deep learning, the

DBAs can find the complex relationship between the current traffic patterns and the real

paths if we utilize the traffic patterns and real paths to train them. Therefore, the edge

routers can utilize the trained DBAs to build the whole paths with only current network

information.

3.6 Summary

In this chapter, we explored current SDR architectures and envisioned that deep learning,

which has recently emerged as a promising machine learning technique, can be used to

compute the routing paths instead of the conventional routing protocol. This can substan-

tially improve the backbone network traffic control. Considering current GPU-accelerated

SDRs enable the massively parallel computing, we proposed a supervised deep learning

system to utilize the traffic patterns to compute the paths directly, different from the con-

ventional rule-based routing. The simulation result shows that the proposed deep learning

51

Chapter 3: Deep Learning Based Routing Algorithm for Core Networks
Running on GPU Accelerate SDRs

based routing strategy outperforms the conventional OSPF in terms of the network packet

transmission throughput and average delay per hop since our proposal has much lower

signaling overhead. This demonstrated that the shift of routing computation from the

traditional rule-based strategy to deep learning can improve the backbone network control

substantially. In addition, the complexity of our proposed routing strategy was analyzed

to evaluate that the GPU-accelerated SDR is much more efficient to run the proposed

algorithms than the CPU-based SDR.

52

Chapter 4

Online Learning Based Routing

Strategy for Software Defined

Communication Systems

4.1 Introduction

In last chapter, the supervised learning based routing strategy is proposed to tackle the

increasing traffic overhead in the backbone networks. Since the labeled data impact on the

performance of the considered deep learning architectures, it is a critical step to collect the

training data. However, in many scenarios, it is very difficult to collect enough satisfying

labeled data, for which the heterogeneous network is a good example.

As we know, for some heterogeneous networks, various kinds of communication tech-

nologies, e.g. FiWi, D2D, and 5G, are utilized to meet users’ requirements in different

scenarios [78, 79, 80]. Since these networks have various infrastructures and topology,

to solve the difficulty in managing all these networks, researchers considered the SDN

technology [33, 81]. As we mentioned in Chapter 1, the structures of routers and switches

in the SDN scenarios get significantly simplified and unified due to the separation of com-

plicated network logic. Similar to the cloud-based computing applications, the controllers

conduct all the computation tasks for the switches [13]. Therefore, the utilized controller

in SDN is usually composed by various computation platforms. To fit for the new network

scenario as well as the improved computation capacity in SDN, the network algorithms

should have been updated or redesigned. However, the packet forwarding algorithms in

current Software Defined Communication Systems (SDCSs) [82] still follow the conven-

tional manner [28]. Since the paths are computed according to fixed rules, when similar

traffic patterns happen, the controller chooses the same paths even the decision has been

previously proved wrong, which leads to unnecessary network performance deterioration.

53

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

S1

S2

S3

S4

S5

S6

S7

S9

Destined for

S8

(S8, S5)
(S5, channel 6)

Routing
Channel

assignment

SDN central controller

Applications

S8

wireless links

Legend

chosen paths

Figure 4.1: The considered structure of SDCS.

This means that the current routing protocols lack the intelligence to learn from previous

experiences. On the other hand, if we consider the deep learning based routing strategy

similar to that in Chapter 3, it is still difficult to obtain the satisfied performance. This

is because the data planes in the SDCSs consist of various communication technologies,

different from the backbone networks. Therefore, the traffic patterns in the data plane

are more complex and varying fast. Also, the bursty traffic is very common in the data

plane. Therefore, even the considered architecture is trained with massive data, it can-

not predict the paths accurately since the network surrounding may have changed. To

solve this problem, in this chapter, we propose an online learning based routing strategy

which periodically trains the considered architecture with real-time traffic patterns. The

proposal consists of two steps: the initial phase and running phase. In the initial phase,

the controller runs the conventional routing protocol while the switches record the traffic

trace, which is utilized by the controller to initialize the utilized CNNs. Then, in the

running phase, the CNNs are adopted in the controller to choose paths. Furthermore, to

adapt the trained CNNs to the changing traffic patterns as well as reduce the training

computation overhead, in the running phase, the switches keep recording the traffic trace

for periodically retraining the CNNs in the controller.

The remainder of the chapter is organized as follows. Sec. 4.2 describes the problems

in the routing strategies for current SDCSs, and then discusses our proposal to overcome

the problems. The detailed procedures of our proposal are presented in Sec. 4.3. Sec. 4.4

analyzes the time and space complexity for the controller and switches in our proposal. We

evaluate the network performance of our proposal in Sec. 4.5. Finally, Sec. 4.6 summarizes

this chapter.

54

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

0

20

40

60

80

100

0 200 400 600 800 1000
Time (s)

P
ac

k
et

 G
en

er
at

io
n

 R
at

e
(M

b
/s

)

(a) The traffic patterns of switches S1, S2, and S3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

P
ac

k
et

 L
o

ss
 R

at
e

Time (s)

(b) The network packet loss rate.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

D
el

ay
 (

m
s)

Time (s)

(c) The network delay.

Figure 4.2: An illustrative example: when switches S1, S2, and S3 choose S5 as the next
node to destination S8, S5 will be the bottleneck, which means that traffic congestion will
easily happen to S5.

4.2 Problem Statement and Model Design

With the increasing number of users and rapidly changing network environment, global

networks are confronted by many challenges. To meet the future network requirement,

SDN has been regarded as the next generation network paradigm since the separation of

complex control logic and data forwarding significantly simplifies and unifies the structures

of the switches. Moreover, the well-defined programmable interface increases the network

flexibility. However, current packet forwarding algorithms still follow conventional fixed-

55

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

5 16 … 20

8 15 … 6

… … … …

14 3 … 34

10 31 … 65

22 54 … 34

… … … …

14 22 … 33
Switch

Packet Generation

Rate

Metric type

T
im

e
In

te
rv

al
s Remaining

Buffer Size

Figure 4.3: The input of the CNN in our proposal.

rule-based routing protocols, e.g., minimum or maximum metric values, resulting in the

same decision when similar traffic patterns occur, even though the decision has been

proved wrong. To describe this more clearly, we can take the data plane as shown in

Fig. 4.1 as an example. Here, it is reasonable to assume that some switches, S1, S2,

and S3, in the data plane, generate packets destined for the switch S8. And the central

controller chooses the best paths which have the minimum hop numbers. According to

the network topology, it is easily understood that the central controller chooses S5 as the

next node for source switches, S1, S2, and S3, to send packets to S8. Therefore, when

three source switches send packets to S8 along with their shortest paths concurrently,

the joint router of these paths, S5, easily becomes the network bottleneck, leading to the

degradation of network performance [83]. Even though the congestion can be alleviated

after the switches inform the controller about the congestion and the controller updates

the paths for S1, S2, and S3, this situation can happen again while similar traffic patterns

appear. Seriously, when source switches S1, S2, and S3 have burst traffic patterns as

shown in Fig. 4.2a and all these packets are destined for S8, the joint switch S5 becomes

congested and the network performance in terms of the packet loss rate and average packet

delay deteriorates repeatedly as shown in Figs. 4.2b and 4.2c.

The reason behind this phenomenon is because of the fixed rule based routing strategy

which lacks the ability of self-reconfiguration. According to the conventional routing

algorithm, the controller always chooses S5 as the next node for S1, S2, and S3 since

these paths have the minimum hop numbers, despite of the fact that this decision has

been proved wrong many times. If the router can adjust its configuration according to

the previous experience, the joint node can be easily avoided. However, conventional

proprietary hardware based router architecture does not allow the reconfiguration of the

routing rules without redesigning the hardware architecture. Furthermore, to increase

the adaptation of the routing strategies is concerned with more complex algorithms. On

the other hand, the central controller equipped with a large computation capacity in the

SDCSs can act as the platform to run the improved routing algorithms.

In this chapter, we consider utilizing deep learning to improve the routing strategy as

56

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

the deep learning technique is promising in the future communication network manage-

ment. To design a deep learning based routing protocol, the first step is to choose the

suitable deep learning structure and define its input and output. Since our goal is to man-

age multiple paths to avoid the traffic congestion, we can choose the most direct sign of

the traffic situation, the traffic pattern, as the input. We can merge the values of different

features of the traffic pattern into a three dimensional matrix as shown in Fig. 4.3. And

the three dimensions represent the router ID, the time interval, and different features of

traffic patterns, respectively. If we use TP to denote the input matrix, then the value

of unit, tpijk denotes the value of switch Si’s feature k at the jth time interval. The size

of the router ID dimension depends on the number of considered switches, while that of

the time dimension is decided by many factors, such as the network size, the required

accuracy rate, and so on. The number of chosen time intervals should be reasonable since

traffic patterns of too few time intervals leads to low prediction accuracy and too many

time intervals cause high computation burden. The number of traffic pattern features

is concerned with our purpose. As the deep learning architectures in our proposal are

utilized for routing, we choose the packet generation rates and the switches’ remaining

buffer sizes as our considered features. Considering the input design, suppose the whole

network as an image and different traffic pattern features as the different color channels

of the image. Therefore, it is reasonable to choose the CNN shown in Fig. 2.2c as the

deep learning structure due to its wide applications to process the images. For the output

design, since there are several paths for each OD pair in our proposal, the chosen paths

in every round can be regarded as a paths combination, which consists of one path for

each OD pair. Then, each CNN can represent one paths combination and the output of

the CNN should indicate whether the paths combination will be congested or not. In our

proposal, we can use a two dimensional vector to denote the output. We can set (1 , 0)

as the notation of congestion and use (0 , 1) to denote that the paths combination will

not be congested in the next round. Moreover, if the trained CNN outputs results of (0,

0) or (1, 1), it means that the training is not effective. Therefore, we can make some

adjustment of the architecture or accumulate more training data. Since the output layer

consists of the binary units, we consider the softmax regression method in the final output

layer. The cost function is the same as Equation 2.36. To adapt to the changing traffic

patterns, we consider the online training manner which means the adopted CNNs will be

periodically trained with the real-time traffic patterns. Therefore, the CNNs can adjust

its parameters through the training with new traffic trace.

57

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

4.3 Procedures of Our Proposal

After introducing our strategy to the problems, in this part, we describe the detailed

procedures. Our proposal can be divided into two phases: initial phase and running

phase. In the initial phase, we construct a CNN for each paths combination and run the

conventional routing protocols to obtain some data to train these CNNs before utilizing the

CNNs to choose the paths combination in the running phase. As mentioned previously, the

CNNs will be periodically retrained for learning the new network experiences. Therefore,

besides the routine path update with CNNs, the running phase consists of two periodically

conducted process: data collection and CNN retraining. Here, it should be noted that

the cycle time of the three process is decided according to the performance. To describe

the three process more clearly, we utilize δ, tu and tr to denote the cycle time of recording

traffic patterns, updating paths, and retraining CNNs, respectively. And they should

satisfy some relationships which can be assumed that tr = n1tu and tu = n2δ (n1 and n2

are both integers). The detailed procedures are shown in Fig. 4.4, and Algs. 5, 6 and 7

present the pseudocodes of our proposal. In the following, we will introduce the two

phases according to the figure and algorithms.

4.3.1 Initial Phase

Since the purpose of initial phase is to obtain some data to train the CNNs for the

considered paths combinations, the initial phase consists of two process: utilizing the

conventional routing protocols to forward packets and recording the traffic trace, and

training the CNNs. We explain the two process in details one by one.

Firstly, the switches execute a neighbor discovery process and send the neighbor in-

formation to the central controller. Then the central controller builds a global view of the

whole network, including the positions of the switches and their interfaces. Therefore, as

shown in Step 6 in Algorithm 5, the controller can run the conventional routing protocols

according to the network topology to choose the best path for every OD pair in each path

update cycle. Then, the controller generates the packet forwarding rules and installs the

rules on corresponding switches. Consequently, the switches in the data plane can forward

the packets according to the installed rules. Once some link is congested and some switch

becomes inaccessible, the neighbor switch can upload the information to the controller

for updating the path.

Apart from the packet forwarding process, the controller also needs to construct and

train CNNs for choosing the network paths combinations. The procedures consist of two

steps. The first step happens at the very beginning when the controller first gets the

global view of the whole network and the weight values of all links as shown in Step 1

in Algorithm 5. With the information, the controller can compute multiple paths for

58

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

every OD pair according to some predefined requirements, for example, the maximum

weight value should not exceed two times of the minimum weight value. Here, we can

use a vector consisting of n units to save a path in a network made up of n switches, and

utilize a m× n matrix to save the m paths for an OD pair in a descending priority order

defined by the paths’ metric values. It should be noted that m is the maximum path

number among all OD pairs and zeros should be padded in the matrix if the path number

is smaller than m for some OD pairs. We can use Pi ,j and pk
i ,j to denote the paths matrix

for source switch i and destination switch j and the k th path, respectively. The controller

can choose one path from each path matrix to construct a paths combination. And all

the paths combinations can be saved in a three-dimensional matrix represented by C in

a descending priority order. In this matrix, the value of its unit ci ,j ,k denotes the path

order for ODij in the k th paths combination.

Algorithm 5 Initial Phase
Input: network topology.
Output: CNNs.

1: The controller generates the global view of the whole network according to the network
topology, compute the paths combination matrix C with graph theory;

2: for each paths combination c··k in C do
3: Controller creates a CNN, CNN··k
4: end for
5: for each path update interval tu do
6: The controller computes the best paths and generates the forwarding rules, and

then installs the rules on corresponding switches
7: for each traffic patterns recording interval δ do
8: Every switch forwards packets according to the installed rules, records the

traffic patterns, and calculates the delay for each received packet.
9: Every switch calculates the delay of the paths destined for itself, sends the

traffic pattern and path delay values to the controller.
10: end for
11: The controller constructs the input traffic patterns of the CNN, TP .
12: if the delay for any path of ODij , di ,j > threshold then
13: y = (1, 0)
14: else
15: y = (0, 1)
16: end if
17: The controller can generate a set of data (TP ,Y) for current paths combination

c··k
18: Every switch conducts a signaling process, sends the link weight to the controller;
19: end for
20: Controller trains all the CNNs with the obtained training data

After obtaining all the paths combinations, the controller constructs the CNNs as

shown from Steps 2 to 4 in Algorithm 5. Here, we can use CNN··k to denote the CNN for

59

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

paths combination c··k . Since the CNNs will be utilized for routing in the running phase,

we need to get some data to train our CNNs in the initial phase. As mentioned previously,

in every δ, each switch records its traffic patterns including the traffic generation rate and

the remaining buffer size as shown in Step 8 in Algorithm 5. To judge whether the path is

congested or not, every switch also needs to calculate and record the delay when receiving

packets destined for itself. Therefore, in each tu, every switch can calculate the delay

values for the paths destined for itself. Then, all the switches upload the information

including the traffic patterns and delay values to the controller according to Step 9. With

these data, the controller can form a matrix TP representing the traffic patterns of all

switches, which will be used as the input of the deep CNNs. Also, after numerous cycles

running the conventional routing protocols, the controller can obtain multiple sets of

delay values for each paths combination in C with different traffic patterns. Therefore,

for each paths combination, the central controller can judge whether it is congested or

not according to some pre-defined standard, for example, the threshold of the congestion

can be two times of the minimum delay value. As shown in Steps 12 to 16, if the delay of

any chosen path pij exceeds the threshold, it means the chosen paths combination c··k is

congested, we can get one set of training data for CNN··k : the input is the traffic patterns

in previous update interval and the output is (1 , 0), as we can only use the traffic patterns

in last tu to decide the paths in next tu.

4.3.2 Running Phase

After getting initialized, the CNNs will be applied for routing in the running phase to

replace the traditional routing protocols. Moreover, since we utilize a real-time learning

strategy as mentioned in Sec. 4.2, the CNNs in our proposal will be periodically retrained

with real-time data. Therefore, this phase can consist of three parts as shown in Fig. 4.4:

data collection, routing judgement, retraining CNNs, which will be discussed next.

4.3.2.1 Data Collection

Besides forwarding packets all the time, as shown in Steps 10 to 13 in Algorithm 6,

every switch in the data plane keeps collecting the data of traffic patterns in each δ

as the input of CNNs. The switches also calculate and record the delay values when

receiving packets. And during each update interval tu, every switch uploads these data

to the central controller, and the central controller addresses the data and utilizes for two

purposes. First, the traffic patterns in the previous path update interval are adopted as

the input of CNNs to choose the path for next tu . Second, the controller utilizes the traffic

patterns and delay values for retraining the CNNs in next tr. For example, if the delay

of paths combination c··k exceeds the threshold when the traffic pattern is TP , then the

60

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

Algorithm 6 Using CNNs to Choose Paths Combination during Each tu
Input: CNNs
Output: (x, y) (x represents the traffic patterns, TP , y denotes the labels of each paths
combination)

1: for p = 1, ..., n1 do
2: for each paths combination c··k do
3: Controller conducts a forward propagation

process by inputting TP to CNN··k and output Y .
4: if Y is (0, 1) then
5: The paths combination c··k is chosen.
6: end if
7: break
8: end for
9: Controller uses the chosen paths combination to generate the rules and installs

the rules on the corresponding switches
10: for each traffic patterns recording interval δ do
11: Every switch forwards packets according to the installed rules, records the

traffic patterns, and calculates the delay for each received packet.
12: Every switch calculates the delay of the paths destined for itself, sends the

traffic pattern and path delay values to the controller.
13: end for
14: The controller constructs the input traffic patterns

of the CNN, TP .
15: if the delay for any path of ODij , di ,j > threshold then
16: Y = (1, 0)
17: else
18: Y = (0, 1)
19: end if
20: The controller can generate a set of data (TP ,Y)

for current paths combination c··k
21: end for

controller gets one set of data for retraining CNN··k , and the input and output are TP

and (1 , 0), respectively.

4.3.2.2 Routing Judgement

Since it receives the traffic patterns from all the switches during the whole packet for-

warding process, the controller can organize the traffic patterns in the form of CNN’s

input as explained in Sec. 4.2. Therefore, at the beginning of the kth update interval, tu,

the traffic pattern data of (k − 1)th update interval are utilized as the input to CNNs to

determine whether the paths combination will lead to congestion or not. As the paths

combinations are saved in the descending priority order, the controller will judge these

paths combinations one by one. As shown from Step 2 to Step 8 in Algorithm 6, the

61

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

Algorithm 7 Retraining the CNNs
Input: (X, Y) (X represents the traffic patterns, TP , Y denotes the labels of each paths
combination)
Output: Updated CNNs

1: for each paths combination c··k do
2: Controller trains CNN··k with its training data (X, Y)
3: end for

…
…

…
…

𝛿

※The packet forwarding and data recording are simultaneously

conducted in the switches during the whole running phase.

Data collection;

Routing judgement

Data collection;

Routing judgement

Retraining the CNNs

Data collection;

Routing judgement

…

Data collection;

Routing judgement

Retraining the CNNs

……

𝑡𝑢

𝑡𝑟

∆𝑡𝑟

Use the updated

CNNs for routing

judgement until

next retraining is

finished

𝑡

※

Figure 4.4: The process in the running phase.

judgement process for each paths combination can be fulfilled by conducting a forward

propagation of the corresponding CNN with the traffic patterns as the input. The detailed

computation process has been introduced in Sec.2.2.2.2. As shown in Steps 4 to 7, if the

result of CNN··k is (0 , 1), which means the paths combination c··k will not be congested,

then the controller chooses the paths combination for routing in the next tu and the re-

maining paths combinations will not be considered since they have lower priorities. It

should be noted that the computation for judging each paths combination is simple and

the time cost is negligible compared to δ. In this chapter, we do not consider the delay

caused by the judgement process.

4.3.2.3 Retraining Phase

As mentioned in the previous section, in our proposal, the routing strategy keeps learning

from the experiences, which is fulfilled by periodically updating the weight matrices with

the newly generated traffic trace during the packet forwarding process shown in Algo-

rithm 7. The retraining of the CNNs in the initial phase is nearly the same as that in the

62

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

Table 4.1: The parameters of the considered CNN structure

input layer conv1 conv2 fc1 fc2 output layer

width 3
width 3 width 3

#node 100 #node 15 #node 2height 3 height 3
channel 2 channel 2

height 10

stride 1 stride 1

active relu active relu active softmax
padding
width

1
padding
width

1

padding
height

1
padding
height

1

channel 2
#filter 20 #filter 30

initialize xavier initialize xavier initialize xavieractive relu active relu
initialize xavier initialize xavier

initial phase. And compared with the training in this phase, the retraining is based on

the previous training, which means that the weights of every CNN have reasonable values

and the training has less iterations. To more clearly explain the two training process in

these two phases, we can think that in the initial phase, the CNNs are trained to get

the basic knowledge about how to choose the paths combination, while in the running

phase, the CNNs are trained to update and strengthen their knowledge. As the retraining

is a time-consuming process, here, we can assume that the time cost for the retraining

process is ∆tr. Then, as shown in Fig. 4.4, before the retraining process is finished, the

controller still utilizes the CNNs before retraining to judge the paths combinations while

the updated CNNs can be adopted once the retraining process is finished.

4.4 Complexity Analysis

In this section, we make some analysis about the time and space complexity of our pro-

posal. As we mentioned earlier, in our proposal, the switches record their traffic patterns

and the delay values of different paths, which are sent to the controller for the training

and running of the considered CNNs in the controller. Since all the training and running

tasks are conducted by the controller, most of the computation and storage costs happen

in the controller. We first focus on the controller part and then the switches.

In the controller, the deep learning related computations cost most of the resource.

The values of computation and storage costs depend on the architectures of the CNN,

which can be only decided by trial and error. Therefore, we focus on the time and

space complexity analysis. According to the analysis in [9], the computation overhead

of training and running one CNN at a time is dependent on the number of nodes in its

input layer. Specifically, if n denotes the number of switches in the network and each

path update interval equals k traffic pattern recording intervals, the input layer of each

CNN consists of kn units. Then the time complexity can be denoted as O(k2n2). As

63

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

k is usually negligible compared with n in our considered SDCS, the time complexity

can be simplified as O(n2). The traditional shortest path strategies, such as the Dijkstra

algorithm, also have a time complexity not less than O(n2). Therefore, the computation

cost of training one CNN with one set of data is comparable to conventional algorithms.

The most computation-consuming part of training a deep learning architecture is that

massive data need to be adopted to repeat and iterate the training. However, in our

considered proposal, we consider the real-time training manner, meaning that each time,

we just use a few sets of accumulated data to retrain several CNNs. Compared with the

traditional method which trains all the CNNs one time, the increase of computation cost

is still limited. This analysis is also applicable to the storage cost. Therefore, the space

complexity to save the recorded traffic patterns and delay values is O(kn) ≈ O(n).

Compared with the training process, to run the deep learning based proposal, it costs

much less computation and storage resource since we just need to utilize one set of traffic

pattern to conduct the forward propagation of several CNNs. And this process has no

iteration or repetition. Therefore, the time and space complexity are just O(n2) and O(n),

respectively.

In our proposal, the switches have the same operations during the training and running

periods, meaning the same computation and storage costs. Moreover, the switches do

not need to conduct any deep learning related computations and are just responsible

for recording their own traffic patterns and delay values of the paths from the source

nodes to themselves. Therefore, we just need to analyze the storage complexity, which

is O(k + n) ≈ O(n). Thus, it can be found that the storage cost for the switches is

reasonable.

According to the above analysis, we can find that the deep learning technique is related

to more computation and storage costs compared with traditional strategy. However, our

considered online training manner can not only increase the self-adaptation of the CNNs

to the traffic changes, but also significantly alleviate the costs for the controller. Therefore,

in the chapter, we consider the controller consisting of the CPU and GPU pools, which

can accelerate the computation process.

4.5 Performance Evaluation

This section evaluates our proposal in terms of network performance through the simu-

lation based on C++ [9]. Since all the computation is conducted on a workstation with

Intel Core i7-6900K CPU, 64GB RAM, and Nvidia Geforce TitanX GPU, it is reasonable

to restrict the simulation to a small size network. Therefore, we consider a scenario of

3× 3 wireless heterogeneous network as the data plane and a PC as the central controller

which has been shown in Fig. 4.1. We consider that the controller manages the switches

64

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200

P
ac

k
et

s
L

o
ss

 R
at

e
(%

)

Time (s)

before training after training

Packet Loss Rate

(a) The packet loss in the considered SDCS

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 200 400 600 800 1000 1200

A
v
er

ag
e

P
ac

k
et

 D
el

ay
 (

m
s)

Time (s)

before training after training

Average Packet Delay

(b) The average packet delay in the considered
SDCS

Figure 4.5: The network performance before and after training.

0 20 40 60 80

300

600

900

1200

Packet Loss Rate (%)

T
im

e
(s

)

Our Proposal OSPF

(a) The packet loss in the considered SDCS

0 20 40 60 80

300

600

900

1200

Average Packet Delay (ms)

T
im

e
(s

)

Our Proposal OSPF

(b) The average packet delay in the considered
SDCS

Figure 4.6: The network performance comparison between the conventional routing pro-
tocol and our proposal in terms of packet loss rate and average packet delay.

in the form of out of the band. Therefore, independent connections between the central

controller and the switches should be established for the transmission of control messages.

And the congestion in the data plane does not affect the transmission of control messages.

It is worthwhile to note that this scale of simulation is sufficient enough to demonstrate

that our proposal outperforms conventional routing protocols such as IS-IS, OSPF, and

RIP. In this network, the switches S1, S2 and S3 generate packets destined for S8. In order

to increase the spectral efficiency, we consider a WLAN system that simultaneously uses

multiple bands such as 2.4GHz and 5GHz [84, 85]. The link bandwidth and the buffer

size of each switch are set to 480Mbps and 10MB, respectively. In our simulation, the

sizes of each data packet and signaling packet are 1kb and 512b, respectively. The time

slot (δ) in the simulation is 1s and the path updating interval (tu) consists of only 1 time

slot while the retraining time interval (tr) consists of 100 time slots.

In our simulation, the structure of CNN after training and the parameters have been

shown in Table 4.1. We can find that each CNN consists of 2 convolutional layers (denoted

65

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

0

2

4

6

8

10

12

14

16

18

20

N
et

w
o

rk
 T

h
ro

u
g

h
p
u

t
(M

b
p

s)
OSPF Our Proposal

Figure 4.7: The throughput comparison in the considered SDCS.

as conv1 and conv2, respectively) and 2 fully connected layers (represented as fc1 and

fc2 , respectively) as well as the input and output layers. Since the size of the input layer

is limited because of the considered network size, the pooling layer is not necessary in

our CNNs. In the input layer, we adopt the packet generation rate and remaining buffer

size of each switch as two channels of the CNN. In each channel, every switch records the

data in last 10 updating intervals. In conv1, we have 20 filters while conv2 has 30 filters,

and the size of each filter is 3 × 3. The padding parameter and the step size are both

1. The two fully connected layers consist of 100 nodes and 15 nodes, respectively. We

consider Xavier initialization [86] to set the initial values of all weights and biases. The

accuracy rate of this CNN structure after training reaches 98.7%, which is sufficient for

our proposal.

In the first simulation, we compare the network performance before and after utilizing

our deep learning-based proposal. The packet generation process in three source switches

satisfies the Poisson distribution. And the whole simulation lasts about 1,200s while the

initial phase and running phase both share half of the simulation. The average packet gen-

eration rate is 180Mbps. In the initial phase, the central controller runs the conventional

routing protocols to generate data for training the CNNs. Then, the CNNs are adopted in

the controller to choose the paths combinations in the running phase. Figs. 4.5a and 4.5b

show the network performance in terms of packet loss rate and average packet delay. In

the two figures, we can find a significant decrease after the application of trained CNNs

into routing, meaning that our proposed CNNs learn to avoid the congested paths from

previous experiences. Moreover, the values of packet loss rate and average packet delay

are still decreasing until reaching the lower bound. This indicates that our proposed

CNNs are retrained periodically to learn the new experience, which helps to increase its

knowledge on routing and improve the SDCS performance.

To compare our proposal with conventional routing protocols, we consider the network

traffic patterns generated by the switches S1, S2 and S3 are similar to Fig. 4.2a. We

consider the OSPF algorithm as a benchmark method. And in the simulation utilizing

66

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

0

10

20

30

40

50

60

70

80

160 280 400

P
ac

k
et

 L
o

ss
 R

at
e

(%
)

Packet Generation Rate (Mb/s)

OSPF

Our Proposal

(a) Comparison of packet loss rate for
OSPF and the proposed deep learning sys-
tem.

0

20

40

60

80

100

120

140

40 160 280 400

A
v

er
ag

e
P

ac
k

et
 D

el
ay

 (
m

s)

Packet Generation Rate (Mb/s)

OSPF

Our Proposal

(b) Comparison of average packet delay for
OSPF and the proposed deep learning sys-
tem.

0

100

200

300

400

500

600

700

40 160 280 400

T
h

ro
u

g
h

p
u
t

(M
b

p
s)

Packet Generation Rate (Mb/s)

OSPF

Our Proposal

(c) Comparison of aggregate throughput
for OSPF and the proposed deep learning
system.

Figure 4.8: Comparison of SDCS performance under different packet generation rates in
our proposal and the bencmark methods (OSPF) in terms of packet loss rate, average
packet delay, and throughput.

our proposal, the initial phase lasts a short time to get a few data for training the CNNs.

To increase the complexity, the start time, cycle time, and the amplitudes of the traffic

pattern curves are randomly set for the three switches. Figs. 4.6a and 4.6b compare

our proposal and conventional routing protocols in terms of the packet loss rate and

the average packet delay. From both results, we can find that the performance of our

proposal and OSPF are nearly the same at t = 300s , which means that the CNNs have

acquired the knowledge on routing after a few times of training. After that, the accuracy

of CNNs in our proposal gets continuously improved through the periodical retraining.

Therefore, the performance of our protocol outperforms the conventional routing protocol

in terms of both the packet loss rate and average packet delay after t = 300s . Moreover,

our proposal keeps improving the network performance while the performance of OSPF

remains nearly unchanged. This happens because the periodical retraining increases the

CNNs’ knowledge for better routing while the conventional routing protocol is based

on fixed rules. To further compare our proposal with the conventional routing protocol,

67

Chapter 4: Online Learning Based Routing Strategy for Software
Defined Communication Systems

Fig. 4.7 demonstrates the network throughput of our proposal and OSPF. It can be noticed

that the network throughput of our proposal is nearly twice than that of OSPF, which

can further demonstrate the advantages of our proposal over the conventional routing

protocol.

In order to further evaluate the performance of our proposal under varying network

environments, we conduct the simulations with the increasing packet generation rate of

every source switch from 40Mbps to 400Mbps and compare the packet loss rate, average

packet delay, and network throughput of our proposal and conventional routing protocols

(OSPF) as shown in Fig. 4.8. It should be noted that the packet loss rates with the two

routing strategies are both 0 when the packet generation rate is 40Mbps. In Fig. 4.8a,

it can be clearly found that the network running the conventional routing algorithm gets

congested when the packet generation rate is just above 160Mbps while our proposal can

still successfully transfer all the packets when the packet generation rate is 160Mbps.

When the packet generation rate is 280Mbps and 400Mbps, the SDCS using our proposal

also gets congested which can be explained by the switches’ limited buffer size and link

bandwidth. On the other hand, the result can still demonstrate that compared with the

conventional routing protocol, the proposed CNNs can make the better routing decision

for alleviating the traffic congestion.

4.6 Summary

SDN has been viewed as the paradigm of next generation network due to its flexibility

and conciseness. However, current SDN structure mainly utilizes conventional routing

protocols which are based on fixed rules and lacks the intelligence to learn from previ-

ous experiences. This can lead to the repetition of wrong decisions when similar traffic

patterns happen. The inaccurate path decision results in the network congestion, which

leads to further performance deterioration. In this chapter, we propose a deep learning

based routing strategy which utilizes CNNs to choose the paths combinations according

to the network traffic trace in an online fashion. This strategy can not only better choose

the paths combinations according to previous network trace, but also keeps improving its

performance through continually learning from previous experience. Analysis shows that

our proposal can avoid the congested paths and balance the network traffic, resulting in

the significant improvement of packet loss rate and average packet delay in the SDCS.

Thus, it can be concluded that our proposal outperforms conventional routing protocols

in SDCSs.

68

Chapter 5

Value Iteration based Deep Learning

Architecture for Routing in Dynamic

Networks

5.1 Introduction

The above two chapters propose two deep learning based routing strategy for the back-

bone network and heterogeneous network. And it can be clearly found that the deep

learning can significantly improve the traffic control performance for these static net-

works. However, there exist various dynamic scenarios in practical networks, which have

changing topology. Therefore, the proposed deep learning architectures in Chapters 3

and 4 cannot be utilized to predict the paths for the dynamic networks, since they only

consider the node information instead of the whole topology. In this chapter, we propose

a deep reinforcement learning based strategy which utilizes the Value Iteration Architec-

tures (VIAs) to make the routing decisions. Different from the proposals in Chapters 3

and 4, the input of the adopted VIA in this chapter contains the information of the whole

network graph including the nodes and links instead of only the nodes’ traffic patterns.

Through training with data from various networks, the considered VIAs can learn the

routing policy for networks of the same sizes. Even when the network links change, the

trained VIA can still predict the paths with a high accuracy rate, which is different from

our previous proposal focusing on static networks [9]. Moreover, we consider the deep

reinforcement learning manner to train the VIA, overcoming the difficulties in obtaining

the labeled data. To adopt the proposal, we analyze the time complexity and consider the

HCP as the computation platform. We also analyze the computation consumption and

the running time cost in different deployment manners. To illustrate the performance of

our VIA based Deep Learning (VIADL) proposal in networks with changing adjacency

69

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

12

2
1

4

3

6

7

5

8

9

0

13

16

15

11

10

18

17

19

14

Source switch

Source router

Destination
router

HCP
controller

Controlled
area

Figure 5.1: The considered network topology.

matrix, we choose the existing supervised learning based method as the benchmark, and

make a comparison considering the link failures.

The remainder of this chapter is structured as follows. Sec. 5.2 explains the problem

studied in this chapter. Sec. 5.3 introduces some basic knowledge about the Markov De-

cision Process (MDP), the value iteration method, and the CNNs. Sec. 5.4 discusses our

proposed deep reinforcement learning based strategy as well as the VIAs. The complexity

analysis of our proposal is conducted in Sec. 5.5. Sec. 5.6 evaluates the performance of

our proposal. In this section, we firstly analyze how to deploy our proposal. According to

the characteristics of our proposed intelligent routing strategy, we compare the training

computation consumption and the running time cost for networks with different percent-

ages of centralized controlled switches. Then, we analyze the network performance of our

proposal as well as the supervised learning based method in the network scenarios when

some links fail. Sec. 5.7 summarizes the whole chapter.

5.2 Problem Formulation

As we mentioned above, the deep learning based traffic control strategies in Chapters 3

and 4 are based on the node information to predict the paths. Therefore, the characterized

input of most utilized deep learning architectures is just the information of network nodes.

For instance, the DBAs utilized in Chapter 3 adopt the traffic patterns of all nodes and

next node as the input and output, respectively. After being supervised trained with

massive labeled data, the parameters of the DBAs can represent the relationship between

the traffic and next nodes. Then, the trained DBAs can efficiently predict the traffic

pattern for static networks. However, once the connections among network nodes change,

the prediction accuracy of the trained DBA deteriorates sharply since the network links

70

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

Interconnection Network

Dynamic Random Access Memory

Recommendation
System

Routing

Link Scheduling

Network Topology
Management

…

Networking

Content Distribution

Storage Services

…

Non-networking

Various
Applications

Heterogeneous
Computing Platform

Other
computing
resources

CPU CPU CPU GPUGPU GPU

CPU pool GPU pool

Figure 5.2: The Heterogeneous Computing Platform (HCP) and the applications built on
it.

also affect the traffic pattern [87]. One way to recovery the prediction accuracy is to retrain

the DBA with labeled data from the new network scenarios, which leads to significant

delay and computation overhead. However, the training data cannot cover all network

scenarios in various shapes, which means that the DBA needs to be retrained once the

network adjacency matrix changes. Furthermore, since the input layer of the adopted deep

learning architectures in most proposals depends on the network size, once the network

size changes, these architectures need to be reconstructed to fit the new scenarios [88].

If we analyze the problem mentioned above, we can find several limitations in the

strategies described in Chapters 3 and 4. Firstly, the network dynamics consist of too

many cases to be covered by labeled data. Therefore, other training manners should

be considered such as the deep reinforcement learning which spares some probabilities

to explore the unvisited cases [20, 89, 90]. Secondly, the common usage to analyze the

network problem is to consider a network as a graph, G, which consists of vertex V and

edges E , G = (V , E) [91]. And the values of different metrics of V and E are deeply related

to each other. Therefore, it is inaccurate to just consider the node information or the

link information to make predictions and decisions in networks with changing topologies.

For example, the existing SP algorithms such as the Dijkstra Algorithm all consider the

adjacency matrix (representing how the nodes are connected) as well as the link weights

to decide the paths [9]. Another limitation is that the input layer of the adopted deep

learning architecture is dependent on the network size, meaning that new deep learning

architectures are necessary for the networks in different sizes.

71

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

Considering current deep learning architecture cannot have dynamic configurations,

in this chapter, we just focus on the dynamic networks with fixed sizes. To predict the

paths in networks with changing links, we propose a deep reinforcement learning based

strategy which considers the node information as well as the adjacency matrix. In the

strategy, we assume there exists an agent in responsible of finding the best path between

every source node vs and every destination node vd in the network. Fig. 5.1 shows the

considered network topology which is from Internet Topology Zoo [92]. It should be noted

that we make some slight revisions on the topology named ”Electric Lightwave” to make

it more clear. As the MDP model is usually adopted to solve the reinforcement learning

problem, we regard the process of the agent moving from the source node to destination

node as an MDP [89]. The considered MDP model consists of several elements: the

environment e denoting the network, a set of states s ∈ S representing the positions of

the agent, a set of actions a ∈ A meaning moving to one neighbor node, the reward r

resulting from the action [89], and the transition probabilities Ps′ ,s,a representing the

probability of moving to next state s
′

from current state s when taking action a. As we

know, the network routing for graph G = (V , E) is an NP-hard problem which needs to

combine multiple vertexes in a weighted graph to a path p∗ with the minimum weights

as shown in Equation 5.1 [87, 93].

p∗ = {v0v1 ...vn |vk ∈ V , k = 1 ...n,min
k=n−1∑
k=0

wvkvk+1
}, (5.1)

where wvkvk+1
is the weight value of the link between vertexes vk and vk+1 . n + 1 is the

assumed total number of nodes in the chosen path. Since every step, after taking action

meaning moving to one of the neighbor nodes, the agent can receive an instantaneous

reward. In the deep reinforcement learning model, the routing is regarded as the process

of the agent moving from the source node to the destination node for maximizing the

total rewards. The total reward can be shown as in Equation 5.2 [74].

total reward = r1 + r2 + · · ·+ rn, (5.2)

where we assume that rk (k = 1 ...n) is the reward at the k th step. Since the agent takes

actions according to the expected reward from the environment which is still affected by

many factors, it is common to use a discount factor γ (0 ≤ γ ≤ 1) to weight the rewards

at different steps. The total discounted reward, R, is as follows [74],

R =
n∑
k=1

γk−1rk. (5.3)

Then, if we assume the reward is linearly proportional to the distance between the

72

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

current node and the destination, then rk can be calculated according to Equation 5.4.

rk =

−ρ‖nk − nd‖, nk! = nd

rd, nk = nd
(5.4)

where nk is the node at the kth step and nd is the destination node. ‖nk − nd‖ is the

distance between the nodes nk and nd. ρ is a positive weight. rd is the reward when the

destination is arrived at and its value is a positive constant.

The routing design is finally modeled as the MDP which could be solved with the

reinforcement learning method. Another problem worthy of note is how to deploy these

deep learning based methods in networks [9, 73]. As the deep learning consumes more

computing resources than conventional methods, if we want to apply the intelligent rout-

ing strategies, it is necessary to redesign the network hardware architectures or adopt

the existing high computing platforms in the network. Moreover, the time complexity of

the intelligent strategies should be minimized to speedy the algorithm convergence and

reduce the computation delay. Besides the intelligent routing, an increasing number of

network services and other network management algorithms utilize the technique of deep

learning. It is impossible to deploy separate computing platforms for every application,

which also means a waste of resource. Since the deployment manner affects the com-

putation performance as well as the network performance, it is necessary to analyze the

best way to deploy the deep learning based models. To address this problem, we adopt

the SDN technology introduced in Chapter 4. Then, the deep learning based proposal is

conducted by the controller consisting of various computing resources including the CPU,

GPU, and some other hardware. For the controller part, we consider that the HCPs as

shown in Fig. 5.2 conduct the computation of routing, link scheduling, and other network

management works. Thus, the flexibility of network management can get significantly

improved since the upgrade of some management methods can be fulfilled by updating

the corresponding applications [29, 94]. Moreover, to further improve the usage of the

computing resources, many non-networking based services can be also conducted by the

HCPs, such as the content distribution, storage services, as well as the recommendation

systems [95].

5.3 Preliminaries

5.3.1 Markov Decision Process (MDP)

MDP is usually utilized to model the reinforcement learning. In our considered model,

the agent needs to choose the next node for the destination at the current position. As

73

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

we know, at each step, the number of actions the agent can take is equal to the number of

nodes connected to the current position. And choosing different neighbors, the agent can

obtain various rewards from the environment. The goal of the MDP is to find the best

way to maximize the accumulated rewards R as in Equation 5.3 [96]. The way by which

the agent acts is termed as a policy π, which maps the state to action. And the value of

π(s , a) denotes the possibility of taking action a in the state s . In the deep reinforcement

learning, we usually adopt the value function V π(s) to describe expected reward value

of the state s and it is equal to the expected accumulated reward for the agent starting

from s and following policy π as shown in Equation 5.5.

V π(s) = Eπ[
n∑
k=1

γkr(sk, ak)|s0 = s], (5.5)

where sk and ak represent the state and action at the kth step, respectively.

For the convenience to deduce the value function, it is common to define a state-action

value function Qπ(s , a) to describe the expected return when starting from the state s ,

taking action a, and following the policy π as shown in Equation 5.6. The relation-

ships between the value function V π(s) and the state-action value function Qπ(s , a) are

described in Equations 5.7 and 5.8.

Qπ(s) = E [Rk |sk = s , ak = a], (5.6)

V π(s) =
∑
a

π(s , a)Qπ(s , a), (5.7)

Qπ(s , a) =
∑
s′∈S

Ps′ ,s,a(Ra
ss′

+ γV π(s
′
)), (5.8)

where Ra
ss′

is the immediate reward after taking action a, transmitting from the state s to

s
′
. Since there is usually one path which is better than or equal to other paths, therefore,

the routing path construction process is to find the optimal policy π∗, which returns the

maximum rewards V ∗(s).

π∗ = argmaxπV π(s). (5.9)

According to Equation 5.7, if we know the optimal Q∗(s , a), the optimal policy can

also be extracted by choosing action a that maximizes Q∗(s , a) in the state s .

π∗(s) = argmaxaQ∗(s , a). (5.10)

74

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

Algorithm 8 Value Iteration

Input: K is the number of maximum iterations, θ is a threshold, θ> 0
Output: π∗(s): the optimal policy

1: Initialize V0 (s) to arbitrary values
2: repeat
3: k ← k + 1
4: for each state s do
5: for all a ∈ A do
6: Q(s , a)←

∑
s′∈S Ps′ ,s,a(R

a
ss′

+ γV π(s
′
))

7: end for
8: Vk(s)← maxaQ(s , a)
9: end for

10: until k > K or ∀s |Vk(s)− Vk−1 (s)| < θ
11: for each state s do
12: π∗(s) = argmaxaQ(s , a)
13: end for

5.3.2 Value Iteration

The methods to search the optimal policy in the reinforcement learning consist of the ran-

dom policy search, genetic algorithms, policy iteration, value iteration, and Q-learning.

Since the action space for network routing problem is very large, the random search

method does not work well. And genetic algorithms cannot guarantee an optimal pol-

icy [97]. In this chapter, we consider the value iteration method which computes the

optimal state value function by iteratively improving the estimate of V π(s) [96].

According to the relationship between V π(s) and Qπ(s , a) as shown in Equations 5.7

and 5.8, if the transition probabilities Ps′ ,s,a and the immediate reward of every step

are known, the optimal value can be obtained through repeatedly updating the values

of Q(s , a) and V (s) until convergence, which is named ”value iteration”. As shown in

Algorithm 8, we firstly initialize V0 (s) to an arbitrary value as in Step 1. Then, in every

state, we calculate the value of Q(s , a) for all actions and assign the maximum Q(s , a) to

V (s). We repeat Steps 4-9 until the maximum number of iterations have finished or the

difference of Vk(s) in two adjacent iterations is less than a given threshold. Finally, we

record the actions which result in maximum values of Q(s , a) at all states to construct

the optimal policy π∗ [97, 98].

5.4 Design of the Deep Reinforcement Learning Based

Routing Strategy

In this part, we discuss the proposed deep reinforcement learning based routing algorithm

and the deployment of the proposed routing strategy. The utilized deep learning archi-

75

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

Convolution
Pooling

𝑃 𝑎 =

𝑓𝑃 𝐺;𝑊𝑃 𝑎

Network
information

Next
switch/router

Iterate K times

Q 𝑠, 𝑎
𝑉 𝑠

Source
Information

Destination
information

Figure 5.3: The proposed Value Iteration Architecture (VIA).

tecture is the VIA which utilizes the CNN to model the value iteration process. And we

adopt the episodic Q-learning algorithm to train the VIA [96].

As mentioned in Sec. 5.3.1, the key component of an MDP is the transition matrix P ,

which can be modeled as a graph convolution operator and parameterized by the graph

based kernel function [96]. Then, the goal of training the VIA is to learn the policy of

routing for networks in different shapes. The main part of the VIA is the value iteration

module shown in Fig. 5.3 which iteratively operates the graph convolution and max-

pooling, imitating the value iteration process. We consider the network topology as an

undirected, weighted graph G = (V , E). And the number of nodes in the network is Nr.

The input of the VIA consists of the graph information, the source, and destination. The

graph information contains the coordinates of the nodes which is depicted as X ∈ RNr×2

and the link weights represented by a Nr × Nr dimensional matrix Aw. The source and

destination nodes are encoded as a one-sparse vector consisting of Nr binary elements,

respectively. As shown in Fig. 5.3, the transition matrix can be obtained through the

graph convolution operation which is depicted in Equation 5.11. The channel number of

the convolution operation is equal to the number of actions.

P (a) = fP (a)(G;WP (a)), (5.11)

where P (a) is the convolution operator in the ath channel. And WP(a) is the weight

matrix of the graph convolution operation. G denotes the graph information. After the

convolution steps, the values of all actions can be obtained according to Equation 5.8,

after which the max pooling step is operated and the action which maximizes the value

V (s) is chosen. The value iteration process is modeled by iteratively conducting the

convolution and maxpooling steps.

The training of the VIA is based on the episodic Q-learning algorithm which can be

referred to [99]. When we input a start node v0, the agent takes the ε-greedy strategy,

which means that the probability to choose the neighbor which returns the maximum

reward is (1 − ε) while ε probability to randomly choose one neighbor node. If the

76

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

Algorithm 9 VIA-based Packet Forwarding Algorithm Implemented in the HCP

1: The HCP trains the VIA with the training data using the Episodic Q-learning method;
. Training phase

2: for each path update round do . Running phase
3: Switches and routers send the hello messages to neighbors. And routers upload

the neighbor and link information to the HCP;
4: for every source-destination pair do
5: The HCP utilizes the information from switches to construct the input of the

VIA;
6: The HCP adopts the VIA to predict the path;
7: The HCP generates the packet forwarding rules for the source switch;
8: end for
9: The HCP installs the generated packet forwarding rules in corresponding switches;

10: The switches forward the packets according to the installed rules.
11: end for

destination node is reached or the predefined threshold is reached, the episodes terminate.

The training is based on trial and error experience and the backpropagation process

updates all the training parameters. Since the goal of VIA is to predict the paths for any

network, the training data consist of the information of networks in different topologies

with Nr nodes. Different from existing supervised learning or other deep learning methods,

the proposed VIA is to learn the path construction policy which can be applied to any

source-destination pair. Therefore, the training of the VIA can be conducted only one time

and utilized for all nodes in the network. Moreover, once the network links change, the

trained VIA can still be adopted for path prediction without retraining. As the training

data consists of the information of various networks, the training process is conducted

offline through the CPU. On the other hand, the running process is fulfilled through the

forward propagation of the VIA, which needs the network real-time information as the

input. Therefore, the VIA is periodically utilized to compute the paths for the switches.

As the training and running process of VIA consumes more computing resources in-

cluding the CPU, GPU, and Dynamic Random Access Memory (DRAM), compared with

conventional routing protocols, in this chapter, we attempt to utilize the HCP shown in

Fig. 5.2 to conduct the training and running of VIA in our proposal. More specifically,

we consider a centralized control manner and the HCP acts as the controller. The routers

governed by the HCP are replaced by switches. The HCP keeps a global view of the

network and generates the forwarding rules for the switches, while the switches are just

responsible for the packet forwarding [29]. At first, the HCP allocates the CPU, GPU,

and DRAM to train the VIA before the VIA is utilized for routing as shown in Step 1 in

Algorithm 9. Since this process does not need the real-time network information, it is only

concerned with the HCP controller. After that, the running phase begins. Similar to the

SDN, the switches need to periodically find their neighbors and send the information to

77

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

Algorithm 10 VIA-based Packet Forwarding Algorithm Implemented in Every Router

1: The router trains the VIA with the training data using the Episodic Q-learning
method; . Training phase

2: for each path update round do . Running phase
3: Switches and routers send the hello messages to neighbors. The NIC sends the

headers of signaling packets to the CPUs;
4: for every destination node do
5: The CPUs utilize the information contained in the headers of the signaling

packets to construct the input of the VIA;

6: The GPUs adopt the VIA to predict the next node;
7: end for
8: The CPUs construct the routing table according the prediction results;
9: The router transfers the packets according to the routing table.

10: end for

the HCP controller as shown in Step 3. Then, the HCP allocates some CPU resources to

address the information uploaded by the switches and construct the input of the VIA as

in Step 5. After that, the HCP adopts the trained VIA to predict the paths for every pair

of source and destination nodes as shown in Fig. 5.1, which costs much less computing

resources compared with the training process. The computation in this step is fulfilled

by the GPUs in the HCP. After computing the paths, the HCP generates the packet for-

warding rules for switches and installs the rules in corresponding switches shown in Steps

7 and 9. And the switches can forward the packets according to the rules. It can be found

that the functions of switches get significantly simplified since the computation work is

transferred to the HCP. Moreover, the network management algorithms as well as other

network services are installed in the HCP as applications and share the same computing

resources. Any upgrade can be fulfilled by updating the corresponding applications, which

greatly improve the network flexibility. It can be found that the considered network is

similar to the SDN which is the next network paradigm [29]. However, the controller in

the conventional SDN is just responsible of computing the packet forwarding strategy.

Thus, the considered network in our proposal can be regarded as an extended SDN where

the HCP acts as the computing platform for more applications. On the other hand, the

switches in our considered network are the same as those in the practical SDN switches.

As mentioned above, the VIA can be trained only once and utilized for predicting

the paths for any node. The centralized control manner utilizing the HCP to conduct

all the routing computation can minimize the consumption. However, since the cost to

replace all the routers with switches is too high, in this chapter, we consider the network

as shown in Fig. 5.1 where part of the routers are replaced with switches and controlled

by the HCP. For the routers, we consider the GPU accelerated SDRs proposed in our

previous work [9] to train and run the VIA for routing. It should be noticed that as the

78

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 100 200 300 400 500 600 700 800 900 1000

L
o
g
-T

im
e

C
o
st

 o
f

T
ra

in
in

g
 P

h
as

e

Number of switches

Training cost for single GPU HCP
Training cost for multiple GPUs HCP

Figure 5.4: The log time cost of training VIA with the single GPU HCP and the multiple
GPUs HCP.

proposal in this chapter is different from the strategy in [9], the practical implementation

is slightly different. As shown in Step 1 in Algorithm 10, as the same as the centralized

control, the training process can be still conducted in an offline manner, which is fulfilled

by every GPU accelerated SDR, independently. In the running phase, the NIC in every

router sends the headers of the signaling packets to the CPUs as shown in Step 3. Then,

the CPUs construct the input matrix of the VIA (Step 5) and the GPUs predict the next

node for every destination (Step 6). After that, the routing table can be constructed and

the router can transfer the packets according to the routing table.

5.5 Complexity Analysis From the HCP Perspective

After introducing the VIA based routing strategy in Sec. 5.4, in this section, we make some

analysis about the time complexity of our proposal. The analysis is based on the number

of arithmetical operands as well as the computing resources of HCPs in the network. We

first study the time complexity of the training phase and running phase, then the time

cost to train and run the VIA with the HCP is discussed.

First, we consider the time cost of the training phase. The training phase can be

divided into two parts: the forward propagation and backward propagation which has

been explained in Sec. 2.2.1. Since these two parts have the same time complexities

which are both quadratic to the number of units in the input layer and following layers,

we just analyze the forward propagation process in this chapter. As in deep reinforcement

learning, the number of epochs is related to many factors, such as the parameters of the

optimizers, the choice of the loss function, as well as the training data, the values of these

parameters are usually obtained by trial and error. Therefore, we just assume that the

values of these parameters have been already set. And the time complexity considered

here is mainly concerned with the MDP as well as the value iteration process, which is still

reasonable since the proposed VIA is constructed to model the value iteration process.

79

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 200 300 400 500 600 700 800 900 1000

L
o
g
-T

im
e

C
o
st

 o
f

R
u
n
n
in

g
 P

h
as

e

Number of switches

Running cost for single GPU HCP
Running cost for multiple GPUs HCP

Figure 5.5: The log time cost of running VIA with the single GPU HCP and the multiple
GPUs HCP.

Here, we use m and n to denote ‖A‖ and ‖S‖, respectively. As Step 6 in Algorithm 8

needs to consider all states, the time complexity is O(n). Thus, the time complexity of

one iteration consisting of Steps 4 to 9 is O(mn2). Considering the number of iterations,

the time complexity of Algorithm 8 is O(Kmn2) where K is the number of iterations, of

which the maximum value satisfies the following relationship [100, 101],

K ∗ ≤ B + log 1/ε+ log 1/(1 − γ) + 1

1 − γ
, (5.12)

where K ∗ is the minimum number of iterations. B is the maximum number of bits required

to denote any component of the transition matrix P or the cost of every step. ε is the

probability to choose the best action in Step 1 in Algorithm 9. In our proposal, all these

parameters are constants and assumed to have ideal values. Therefore, we can conclude

that the time complexity of the training phase is O(mn2).

After the training process, the trained VIA is utilized to predict the paths for every

source node in the network. As in the running phase, the HCP just conducts the forward

propagation process to predict the next node for all source nodes, the HCP can calculate

the state-value function as shown in Steps 5 to 7 in Algorithm 8 for all states and then

chooses the actions which maximize the values of Q(s , a), which means the value iteration

can be conducted only once. Therefore, the time complexity of the running phase is

O(mn2).

Then we consider the time cost to train and run the VIA on the HCPs. As both the

training and running process of VIA are concerned with massive matrix computations, it

is reasonable to consider the GPUs as the main computation hardware of our proposal.

The CPUs are still utilized for some work such as the task scheduling. We assume the

number of GPUs adopted to train the VIA is ng , then the time cost follows the following

equation,

tcomp∝
O(mn2)

ng

= O(
mn2

ng

), (5.13)

80

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

where tcomp represents the time cost to undertake the computation of training and running

of VIAs. In above equation, the value of m is related to the maximum node degree

of the considered network and n is related to the number of nodes in the considered

network. Therefore, 1 ≤ m ≤ n − 1 , where m = n − 1 for the network with the star

topology [102] which usually exists in access networks. In our considered network, we

consider that the maximum number of interfaces of every switch/router is a constant.

Thus, the training/running time satisfies tcomp ∝
O(n2)

ng

. Moreover, the value of ng is

equal to the number of adopted GPUs for computation. If only one GPU is available for

the computation task of training and running, then the time cost is O(n2). On the other

hand, if we assume that the number of assigned GPUs is linearly proportional to the

number of switches governed by the HCP (ng ∝ n), the time complexity can be reduced

to O(n) and the time cost satisfies tcomp ∝ O(n).

According to the above analysis, we conduct the simulation to record the time cost of

training and running the VIA with single GPU (the Nvidia Titan X Pascal) for a network

with 20 switches. Then, we can theoretically calculate the time cost for networks with

100 to 1000 switches as shown in Figs. 5.4 and 5.5. In Fig. 5.4, we can find that using

multiple GPUs to train the VIA can significantly reduce the time cost. And the advantage

of multiple GPUs over single GPU can be enlarged with the increase of network topology.

Even though the training of the VIA is a time-consuming process according to Fig. 5.4,

it can be conducted offline and does not affect the network performance. In Fig. 5.5, we

can find the similar enlarging advantage of running the VIA with multiple GPUs over

that with single GPU for the increasing network topology. On the other hand, since the

running phase is conducted periodically during the packet forwarding process, too long

time cost leads to the delay of path update. Therefore, the practical number of switches

governed by the HCP should be decided with the network parameters and performance

requirement considered. It should be also noted that the unit for the time cost before the

logarithm arithmetic is second and the base of the logarithm arithmetic is 10.

5.6 Performance Evaluation

After introducing the proposed VIA, in this section, we analyze the performance of our

proposal through simulation based on python and tensorflow [103]. The network topology

is shown in Fig. 5.1. Since the simulation platform is a workstation with Intel Core i7-

6900K CPU, 64GB RAM, and Nvidia Geforce Titan X GPU, it is reasonable to choose only

two nodes, 14 and 19, as the destinations in the simulation, which can still demonstrate

the advantages of our proposed proof-of-concept. The link bandwidth is 100Mb/s while

the buffer size of all the nodes is set to 12.5MB. The sizes of the data packet and signaling

81

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

0

5

10

15

20

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Centralized Controlled Switches

Tr
ai

n
in

g
C

o
m

p
u

ta
ti

o
n

C
o

n
su

m
p

ti
o

n

Figure 5.6: Training computation consumption of networks with different percentages of
centralized controlled switches.

packet are both set to 1kb. Different from our previous work [9], the considered network

in this chapter has no inner nodes or edge nodes and all nodes except the destination

nodes act as the data packet sources. And the data packet generation process follows the

poisson distribution with an average value of 1.

To clearly illustrate the performance, we choose the supervised learning method as

the benchmark and the DBA as the deep learning architecture. The input and output of

the DBAs are the traffic pattern and next node, respectively. As all the nodes except the

destination nodes generate the data packets, the input of DBAs is the traffic patterns of all

nodes instead of just edge nodes in our previous work [41]. Since every DBA just predicts

the next node, to construct the whole paths, we need multiple DBAs in the supervised

learning method. More specifically, in our considered network as shown in Fig. 5.1, every

destination node needs to train and run one DBA for predicting the next node for the

other destination node, while all the other nodes need to train and run 2 DBAs for the

two destinations. The labeled training data for the supervised learning method come from

the networks running the Open Shortest Path First (OSPF) protocol in the considered

network. After training, each DBA consists of 5 layers and 20 units in every layer. The

activation function for Layers 2 to 4 is the ReLU function, while that of the output layer

is the softmax function [103]. The loss function is the cross entropy function [103]. To

train the DBAs to minimize the loss, we choose the Adam optimizer [103]. The training

data size is 10,000, while every training batch consists of 20 sets of data.

For the VIA, the input consists of the coordinates of all nodes, the adjacency matrix,

the link weights, as well as the source and destination nodes. The iteration number K

of the VIA is 30. The value of the reward discount γ is 0.99. The value of ε in Step 1

in Algorithm 9 is 0.95. The training consists of 200 epochs. The training data consist of

1000 different network topologies with 20 nodes. In this section, we first study the best

way to deploy the proposal. Since it is not realistic to utilize switches to replace all the

routers in the network with extremely high cost, we consider the deployment of switches

82

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

0

50

100

150

200

250

300

350

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
u

n
n

in
g

Ti
m

e
C

o
st

 (
m

s)

Percentage of Centralized Controlled Switches

Figure 5.7: Running time cost for networks with different percentages of centralized
controlled switches.

step by step. Then, we compare the training computation consumption and the time cost

of our proposal in networks with different percentages of switches. To demonstrate the

advantage of our proposal in dynamic networks, we also assume some links failures in the

considered network and analyze the performance of our proposal and supervised learning

method in terms of the network throughput, the packet successful transfer rate, and the

average delay per hop. We also compare the path prediction accuracy rates of two deep

learning architectures.

5.6.1 Deployment Analysis

In Sec. 5.4, we consider utilizing the HCP to control the switches in a centralized manner.

For the routers not governed by the HCP, they compute the next nodes all by themselves.

Therefore, with different percentages of switches, the computation consumption of the

VIA based routing varies. In this chapter, we analyze the number of switches counts

from 0 to 100% with an interval of 10% among all nodes in the network. In the example

shown in Fig. 5.1, the controller trains and runs the VIAs to predict the paths for the

network area controlled by the HCP. For the routers in the network, they train and run

the same VIAs all by themselves. Therefore, for the networks with different percentages

of switches, in the training period, the total number of the conducted training process is

various. As each training process trains the same structured VIAs, it needs nearly the

same number of training data. Therefore, the total computing resource consumption is

linearly proportional to the number of trained VIAs. If we use CR to denote the total

training computation consumption of the network, then CR = f (x) where x represents

the percentage of switches in the network. We can assume that CR = 1 in the network

where all routers are replaced with switches (x = 100 %), then the training computation

83

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

Normal Case 1 Case 2 Case 3
0.9

0.92

0.94

0.96

0.98

1

1.02

Pa
th

 P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

DBA Proposal

(a) Path Prediction Accuracy Rate.

Normal Case 1 Case 2 Case 3
130

132

134

136

138

140

142

144

146

148

N
et

w
o

rk
 T

h
ro

u
gh

p
u

t
(M

b
p

s) DBA Proposal

(b) Considered Network Throughput.

Normal Case 1 Case 2 Case 3
0.9

0.92

0.94

0.96

0.98

1

1.02

Su
cc

es
sf

u
l T

ra
n

sf
er

 R
at

e DBA Proposal

(c) Packet Successful Transfer Rate.

-1

1

3

5

7

9

A
ve

ra
ge

 D
el

ay
 p

er
 H

o
p

 (
m

s) DBA Proposal

Normal Case 1 Case 2 Case 3

(d) Average Delay per Hop.

Figure 5.8: Considered network performance for different cases.

consumption of networks with different percentages of switches can be described as follows,

CR(x) =
f (x)

f (100 %)
. (5.14)

Fig. 5.6 gives the computation consumption for networks with different percentages of

centralized controlled switches. It can be found that the computation consumption keeps

a nearly linear downward tendency with the increase of centralized controlled switches.

Fig. 5.7 shows the time cost for running the networks with different numbers of switches.

The time cost also keeps a downward tendency. This can be explained that the running

time cost consists of not only the computation cost which is linear to the number of path

prediction tasks, but also the preprocessing of the input data which happens only once for

one VIA. Therefore, even though the prediction tasks for networks with different numbers

of switches are the same, the network with more switches has less data preprocessing

tasks. According to the analysis and results, we can conclude that despite of the high

cost, the centralized control manner of our VIADL based routing method can minimize

the computation overhead.

84

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

5.6.2 Performance with Link Failures

In this part, we utilize the trained DBA and VIA to predict the paths for the considered

network when some links fail. We assume the link failures happen before the packet

transmission process begins. The failed links are randomly chosen, while the failed links

for the network running DBA and VIA are kept the same for fairness. Here, we restrict

that the failed links are distributed in the whole network instead of being concentrated

on one single router/switch which can easily lead to congestion for the node. Also, the

failed links do not cause any isolated island in the network. In the simulation, we consider

four cases: the normal case with no failed links, Case 1: one failed link between Switch

14 and Router 16, Case 2: another failed link between Switches 7 and 9 on the basis of

Case 1, Case 3: on the basis of Case 2, the link between Switches 6 and 8 fails. The

packet generation rate of the considered network is 144Mbps. The performance is shown

in Fig. 5.8.

In Fig. 5.8a, it can be easily found that the accuracy rates for both strategies in the

normal case are 1, which means that the trained DBA and VIA can predict the shortest

paths with no error. However, when links fail, the accuracy rate of DBA drops significantly

while our proposal can still predict the paths accurately. The reasons for the difference are

multi-fold. Firstly, the input of our deep learning structure VIA contains the network link

information which is denoted as the adjacency matrix, while that of the DBA is just the

traffic information of the network nodes. Therefore, when predicting the paths, the VIA

chooses the next nodes just from the neighbor nodes. On the other hand, the potential

output of the DBA still contains all the nodes. Secondly, the training data of our proposal

are from various networks, whilst those of the DBA can be only from the fixed network.

Therefore, we can conclude that our proposed VIA are suitable for different networks with

a fixed number of nodes. However, the trained DBA can be only utilized for the networks

where the training data is generated. It should be noted that the accuracy rates of Case

2 and Case 3 are nearly the same, which can be explained that the link between Switches

6 and 8 is not utilized even in normal case.

Due to the decreased path prediction accuracy of DBA, the network performance

significantly deteriorates as shown in Figs. 5.8b, 5.8c, 5.8d. More specifically, the network

throughput drops from about 144Mbps to 133Mbps and the packet successful transfer rate

decreases to about 92%. On the other hand, our proposal can transfer all the packets to

the destinations in time, which can also demonstrate that the network is not congested.

In the simulation, we consider that the packets are saved in the buffer if the router cannot

find the accurate next nodes for the packets. Therefore, the average delay per hop for the

DBA increases dramatically when some links fail in the network. It can be considered

that the network running DBA is congested in Cases 1, 2, and 3. Consequently, we can

conclude that compared with the DBA, our proposal can tolerate the network link failures

85

Chapter 5: Value Iteration based Deep Learning Architecture for
Routing in Dynamic Networks

and predict the paths with high accuracy rate.

5.7 Summary

Since most of current networks are not static and the topology changes are very common

due to the node joining or leaving, link or node failures, and so on. Existing deep learning

based routing strategies build the intelligent architectures based on the node or link

information due to its simplicity to characterize. However, since most of the proposed deep

learning architectures are deeply related to the considered network topology, existing node

or link information based deep learning strategies can be only adopted in static networks.

In this chapter, we propose a deep reinforcement learning based routing strategy which

considers the network node information as well as the adjacency matrix. The proposed

VIA can repeatedly choose the next node until the destination is reached. Simulation

results evaluate the stable performance of VIA when links fail in the network. Compared

with the existing supervised learning method, our proposal can build the paths with

high accuracy even the link failures exist, leading to stable network throughput, packet

successful transfer rate, and packet delay per hop. To adopt the proposed VIADL based

routing algorithm, we consider the HCP as the computation platform and utilize the

GPUs to train and run the VIA. Analysis of the time complexity shows that the time

cost can be significantly reduced with the multiple GPUs. In this chapter, we also study

the deployment of the proposal. We mainly consider the HCP to govern part of the

network nodes and conduct the computation tasks for the governed switches. The analysis

demonstrates the decreasing computation consumption and running time cost when the

percentage of switches increases. Since the proposed VIA can still be adopted for networks

with the same sizes, our future research will study the intelligent routing strategy for

networks with dynamic sizes. As the input layer of the deep learning architecture is

dependent on the network size and there is no dynamic deep learning architectures, the

proposed VIADL method can only be adopted for networks with fixed number of nodes.

86

Chapter 6

Conclusion

With the development of deep learning and the computation hardware, the AI technique

has been regarded as one of most important technologies to improve users’ experience.

Inspired by the flexibility and accuracy of deep learning, researchers have made many

attempts to adopt this technology to optimize the network performance. To alleviate

the increasing traffic overhead, this dissertation considers the deep learning technique to

predict the routing paths. Since the deep learning technique consists of so many archi-

tectures and three training manners, this dissertation discusses the architecture design

for different network scenarios, especially about the characterization of input and output.

Moreover, we also analyze the computation overhead of the deep learning based packet

transmission strategies and propose novel computation platforms to conduct the algo-

rithms. Even though the deep learning technique concerns more computation overhead

compared with conventional routing algorithms, the considered platforms and proposed

deployment manners can significantly reduce the computation time. Furthermore, in this

dissertation, we focus on not only the static core networks, but also the dynamic net-

works considering link failures. The performance evaluation demonstrates that proposed

deep learning architectures can address the challenges caused by potential link failures.

Precisely, our contributions are listed as follows:

1. In Chapter 2, we introduce preliminary knowledge about the training of deep

learning, several commonly utilized deep learning architectures and the three training

manners. The existing research about the network performance optimization with deep

learning is also surveyed in this chapter. After that, we also study the traditional traffic

control strategies. It can be clearly found that the traffic control can be cooperatively

conducted by different layers. To begin our research, this dissertation focuses on the

routing design with deep learning to improve the traffic control performance.

2. In Chapter 3, a deep learning based packet transmission strategy is proposed to

improve the traffic control performance of static core networks. In this proposal, the

DBA architecture is utilized to predict the next node with the traffic pattern of every

87

Chapter 6: Conclusion

Table 6.1: Comparison of the three deep learning based strategies.

Chapters Chapter 3 Chapter 4 Chapter 5

Network scenario Static core network
Static heterogeneous
network

Dynamic network

Control manner Distributed control Centralized control Centralized control
Platform SDR Computing server HCP
Architecture DBA CNN VIA

Input #inbound packets
#inbound packets
buffer size

Node coordinates
adjacency matrix

Output Next node Path combination Next node
Learning manner Supervised learning Online learning Reinforcement learning

node as the input. To expedite the computation of the intelligent protocol, the GPU

accelerated SDR is considered. And the numerical analysis illustrates that the GPU

resource can significantly reduce the time consumption. Moreover, the simulation results

demonstrate that the proposed deep learning based routing can achieve much better

network performance compared with conventional routing protocols.

3. In Chapter 4, an online learning based routing strategy is proposed for the SDCS.

In the proposal, the switches in the data plane keep recording the traffic trace and send it

to the controller. Then, the controller periodically updates the trained CNNs. It can be

clearly found that the accuracy of the deep learning architectures is continuously improved

after repeated training process. Moreover, the CNNs get adaptive to the changing traffic

patterns due to the periodical training with newly collected traffic trace. Additionally,

the simulation analysis demonstrates the advantages of the online learning method and

the intelligent routing method is illustrated to outperform the conventional strategy in

terms of network performance.

4. In Chapter 5, we discuss the deep learning based packet forwarding for dynamic

networks. According to our descriptions in above chapters, it can be easily found that

the deep learning architecture design is related to the network topology. To fit the topol-

ogy changes, we propose a value iteration based deep learning architecture to compute

the paths. The considered reinforcement training manner enables the VIA to learn the

routing policy independent on the network topology. Therefore, once given the network

scenario, the trained VIA can be utilized to predict the paths directly. Moreover, this

chapter discusses the time complexity of the proposal. Besides the network performance

improvement, the proposed HCP can accelerate the execution of the proposal and the

considered deployment manner can further reduce the computation overhead.

Table 6.1 further gives a comparison of the proposed three strategies in Chapters 3, 4,

and 5. It can be clearly found that the three proposals are adopted by different network

scenarios. The supervised based routing strategy is efficient for the considered static

88

Chapter 6: Conclusion

backbone network, while the online learning based method can effectively address the

challenges of the changing traffic pattern. Moreover, for the dynamic networks, the deep

learning architectures should learn the routing policy beyond the definite the network

topology. Then, the reinforcement learning should be selected to meet this goal. Since

the three proposals have different complexity, we consider three different platforms to

conduct the related computations. Moreover, the control manner is not only dependent

on the network scenario, but also related to the deep learning computations. For example,

in Chapter 3, since each trained DBA can be only adopted for one source-destination pair,

the distributed control is chosen. On the other hand, the considered VIA in Chapter 5 can

predict the path for any source-destination pair. Then, the centralized control manner is

adopted to alleviate the computation consumption and reduce the cost of the network.

Additionally, as the CNNs in Chapter 4 are utilized to predict the path combination, the

centralized control is the only method for this strategy. In conclusion, it can be clearly

found that the deep learning technique can be utilized to efficiently tackle the challenges of

globally increasing traffic. The various deep learning architectures and different training

manners significantly increase the flexibility, leading to great potential to be applied

in practical network deployment. To further improve the network performance, more

meaningful research can be conducted in the future.

89

Appendix

Method to Adjust the Weights and Biases of RBMs

As introduced in Chapter 2.3a, the initialization of a DBA is fulfilled by training each

RBM. And for each RBM, the values of its weights and biases can be updated according

to Equations 2.14 and 2.15. In this part, we will give more details about how to calculate

the values of ∂l(Θ,A)
∂θ

and ∂l(Θ,A)
∂ai

. According to Equations 2.13 and 2.17, the following

equations can be obtained.

∂l(Θ, A)

∂θ
=
∂
∑

V log e−E(V,H)

∂θ
− ∂

∑
V

∑
H log e−E(V,H)

∂θ

=
1∑

H e
−E(V,H)

∂
∑

H e
−E(V,H)

∂θ
− 1∑

V

∑
H e
−E(V,H)

∂
∑

V

∑
H e
−E(V,H)

∂θ

=

∑
H e
−E(V,H)(−∂E(V,H)

∂θ
)∑

H e
−E(V,H)

−
∑

V,H e
−E(V,H)(−∂E(V,H)

∂θ
)∑

V,H e
−E(V,H)

.

(6.1)

As p(V,H) = e−E(V,H)∑
V,H e−E(V,H) and p(H|V) = e−E(V,H)∑

H e−E(V,H) , Equation 6.1 can be further

written as below:

∂l(Θ, a)

∂θ
=

∑
H

(p(H|V)(−∂E(V,H)

∂θ
))−

∑
V,H

(p(V,H)(−∂E(V,H)

∂θ
))

= Ep(H|V)(−
∂E(V,H)

∂θ
)− Ep(V,H)(−

∂E(V,H)

∂θ
).

(6.2)

90

Chapter 6: Conclusion

Then, we can use wij and bj to substitute θ, we can get Equations 6.3 and 6.4.

∂l(Θ, A)

∂wij
=

∑
H e
−E(V,H)(−∂E(V,H)

∂wij
)∑

H e
−E(V,H)

−
∑

V,H e
−E(V,H)(−∂E(V,H)

∂wij
)∑

V,H e
−E(V,H)

=
∑
H

(p(H|V)(−∂E(V,H)

∂wij
))−

∑
V,H

(p(V,H)(−∂E(V,H)

∂wij
))

=
∑
H

p(H|V)hjvi −
∑
V,H

p(V,H)hjvi

=
∑
H

p(H|V)hjvi −
∑
V

∑
H

p(V,H)hjvi

=
∑
H

p(H|V)hjvi −
∑
V

∑
H

p(V)p(H|V)hjvi

=
∑
H

p(H|V)hjvi −
∑
V

p(V)
∑
H

p(H|V)hjvi

=
∑
H

p(H|V)hjvi −
∑
V

p(V)vi
∑
H

p(H|V)hj.

(6.3)

∂l(Θ, A)

∂bj
=

∑
H

(p(H|V)(−∂E(V,H)

∂bj
))−

∑
V,H

(p(V,H)(−∂E(V,H)

∂bj
))

=
∑
H

p(H|V)hj −
∑
V,H

p(V,H)hj

=
∑
H

p(H|V)hj −
∑
V

∑
H

p(H|V)p(V)hj

=
∑
H

p(H|V)hj −
∑
V

p(V)
∑
H

p(H|V)hj.

(6.4)

As the units in the hidden layer are binary, we can get the following equation,∑
H

p(H|V)hj =
∑
hj=0

p(H|V)hj +
∑
hj=1

p(H|V)hj

=
∑
hj=1

p(H|V)

= p(hj = 1|V).

(6.5)

Therefore, Equations 6.3 and 6.4 can be transferred as following:

∂l(Θ, A)

∂wij
= vip(hj = 1|V)−

∑
V

p(V)p(hj = 1|V)vi, (6.6)

∂l(Θ, A)

∂bj
= p(hj = 1|V)−

∑
V

p(V)p(hj = 1|V). (6.7)

91

Chapter 6: Conclusion

We can use the same method to calculate ∂l(Θ,A)
ai

according to the following equation.

∂l(Θ, A)

∂ai
=

∑
H

(p(H|V)(−∂E(V,H)

∂ai
))−

∑
V,H

(p(V,H)(−∂E(V,H)

∂ai
))

=
∑
H

p(H|V)vi −
∑
V,H

p(V,H)vi

=
∑
H

p(H|V)vi −
∑
V

∑
H

p(H|V)p(V)vi

=
∑
H

p(H|V)vi −
∑
V

p(V)
∑
H

p(H|V)vi

= vi −
∑
V

p(V)vi.

(6.8)

As it is impossible to know all the values of V in Equations 6.6, 6.7, and 6.8, it is

a practical way to utilize the Markov sampling method to get a set of samples from the

training data. We assume the set has l samples, then we utilize the sample set to calculate

the values of ∂l(Θ,A)
wij

, ∂l(Θ,A)
ai

, and ∂l(Θ,A)
bj

as follows:

∂l(Θ, A)

∂wij
= vip(hj = 1|V)− 1

l

l∑
k=1

p(hj = 1|Vk)vki, (6.9)

∂l(Θ, A)

∂ai
= vi −

1

l

l∑
k=1

vki, (6.10)

∂l(Θ, A)

∂bj
= vip(hj = 1|V)− 1

l

l∑
k=1

p(hj = 1|Vk). (6.11)

Therefore, we can utilize Equations 6.9, 6.10, and 6.11 to update the values of wij, ai,

and bj according to the Equations 2.6, 2.15, and 2.7 in Sec. 2.3a.

92

Bibliography

[1] J. Liu, H. Guo, Z. M. Fadlullah, and N. Kato, “Energy Consumption Minimiza-
tion for FiWi Enhanced LTE-A HetNets with UE Connection Constraint,” IEEE
Communications Magazine, vol. 54, no. 11, pp. 56–62, Nov. 2016.

[2] J. Liu, H. Nishiyama, N. Kato, and J. Guo, “On the Outage Probability of
Device-to-Device-Communication-Enabled Multichannel Cellular Networks: An
RSS-Threshold-Based Perspective,” IEEE Journal on Selected Areas in Commu-
nications, vol. 34, no. 1, pp. 163–175, Jan. 2016.

[3] X. Ge, S. Tu, G. Mao, C. Wang, and T. Han, “5G Ultra-Dense Cellular Networks,”
IEEE Wireless Communications, vol. 23, no. 1, pp. 72–79, Feb. 2016.

[4] “5G.” [Online]. Available: https://en.wikipedia.org/wiki/5G

[5] “3G.” [Online]. Available: https://en.wikipedia.org/wiki/3G

[6] G. H. Sim, S. Klos, A. Asadi, A. Klein, and M. Hollick, “An Online Context-
Aware Machine Learning Algorithm for 5G mmWave Vehicular Communications,”
IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2487–2500, Dec. 2018.

[7] J. Ni, X. Lin, and X. S. Shen, “Efficient and Secure Service-Oriented Authentication
Supporting Network Slicing for 5G-Enabled IoT,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 644–657, Mar. 2018.

[8] F. Tang, B. Mao, Z. M. Fadlullah, and N. Kato, “On a Novel Deep-Learning-
Based Intelligent Partially Overlapping Channel Assignment in SDN-IoT,” IEEE
Communications Magazine, vol. 56, no. 9, pp. 80–86, Sep. 2018.

[9] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani, “Routing or Computing? The Paradigm Shift Towards Intelligent Computer
Network Packet Transmission Based on Deep Learning,” IEEE Transactions on
Computers, vol. 66, no. 11, pp. 1946–1960, Nov. 2017.

[10] “Cisco Visual Networking Index: Forecast and Trends, 20172022.” [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html

[11] S. Das, G. Parulkar, and N. McKeown, “Rethinking IP Core Networks,” IEEE/OSA
Journal of Optical Communications and Networking, vol. 5, no. 12, pp. 1431–1442,
Dec. 2013.

93

https://en.wikipedia.org/wiki/5G
https://en.wikipedia.org/wiki/3G
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

Bibliography

[12] H. Huang, S. Guo, P. Li, B. Ye, and I. Stojmenovic, “Joint Optimization of Rule
Placement and Traffic Engineering for QoS Provisioning in Software Defined Net-
work,” IEEE Transactions on Computers, vol. 64, no. 12, pp. 3488–3499, Dec. 2015.

[13] C. Chuang, Y. Yu, A. Pang, H. Tseng, and H. Lin, “Efficient Multicast Delivery for
Data Redundancy Minimization Over Wireless Data Centers,” IEEE Transactions
on Emerging Topics in Computing, vol. 4, no. 2, pp. 225–241, Apr. 2016.

[14] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-accelerated Soft-
ware Router,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 195–206,
Aug. 2010.

[15] “Shortest Path Problem.” [Online]. Available: https://en.wikipedia.org/wiki/
Shortest path problem

[16] C. Mercer and T. Macaulay, “How tech giants are investing in artificial
intelligence.” [Online]. Available: https://www.techworld.com/picture-gallery/
data/tech-giants-investing-in-artificial-intelligence-3629737/

[17] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep Learning,” Nature, vol. 521, no.
7553, pp. 436–444, May 2015.

[18] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep
Belief Nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, Jul. 2006.

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the Game of Go with
Deep Neural Networks and Tree Search,” Nature, vol. 529, pp. 484–489, Jan 2016.

[20] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Driess-
che, T. Graepel, and D. Hassabis, “Mastering the Game of Go without Human
Knowledge,” Nature, vol. 550, pp. 354–359, Oct. 2017.

[21] M. Bakator and D. Radosav, “Deep Learning and Medical Diagnosis: A Review of
Literature,” Multimodal Technologies and Interaction, vol. 2, no. 3, 2018. [Online].
Available: http://www.mdpi.com/2414-4088/2/3/47

[22] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik, J. Terwilliger,
J. Kindelsberger, L. Ding, S. Seaman, H. Abraham, A. Mehler, A. Sipperley,
A. Pettinato, B. Seppelt, L. Angell, B. Mehler, and B. Reimer, “MIT Autonomous
Vehicle Technology Study: Large-Scale Deep Learning Based Analysis of Driver
Behavior and Interaction with Automation,” CoRR, Aug. 2017. [Online]. Available:
http://arxiv.org/abs/1711.06976

[23] H. Nguyen, L. Kieu, T. Wen, and C. Cai, “Deep Learning Methods in Transportation
Domain: A Review,” IET Intelligent Transport Systems, vol. 12, no. 9, pp. 998–
1004, Oct. 2018.

94

https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://www.techworld.com/picture-gallery/data/tech-giants-investing-in-artificial-intelligence-3629737/
https://www.techworld.com/picture-gallery/data/tech-giants-investing-in-artificial-intelligence-3629737/
http://www.mdpi.com/2414-4088/2/3/47
http://arxiv.org/abs/1711.06976

Bibliography

[24] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani,
“State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomor-
rows Intelligent Network Traffic Control Systems,” IEEE Communications Surveys
Tutorials, vol. 19, no. 4, pp. 2432–2455, Fourthquarter 2017.

[25] Y. LeCun and M. Ranzato, “Deep Learning Tutorial,” in Tutorials in International
Conference on Machine Learning ICML, Atlanta, Georgia, USA, 2013.

[26] J. Aweya, “IP Router Architectures: An Overview,” International Journal of Com-
munication Systems, vol. 14, no. 5, pp. 447–475, 2001.

[27] M. Mukerjee, D. Naylor, and B. Vavala, “Packet Processing on
the GPU,” Computer Science Department, Carnegie Mellon Univer-
sity, Tech. Rep. [Online]. Available: https://pdfs.semanticscholar.org/28ae/
4b5d2aabe691c5b801525e4f2b187771cf19.pdf

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[29] H. Huang, P. Li, S. Guo, and W. Zhuang, “Software-Defined Wireless Mesh Net-
works: Architecture and Traffic Orchestration,” IEEE Network, vol. 29, no. 4, pp.
24–30, Jul. 2015.

[30] J. Chen, Y. Ma, H. Kuo, C. Yang, and W. Hung, “Software-Defined Network Vir-
tualization Platform for Enterprise Network Resource Management,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 4, no. 2, pp. 179–186, Apr. 2016.

[31] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of
the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[32] K. Wang, Y. Wang, D. Zeng, and S. Guo, “An SDN-based Architecture for Next-
Generation Wireless Networks,” IEEE Wireless Communications, vol. 24, no. 1, pp.
25–31, Feb. 2017.

[33] I. T. Haque and N. Abu-Ghazaleh, “Wireless Software Defined Networking: A Sur-
vey and Taxonomy,” IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp.
2713–2737, Fourthquarter 2016.

[34] B. Mao, F. Tang, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue, and K. Mizutani,
“A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method
for Software Defined Wireless Networks,” IEEE Wireless Communications, vol. 25,
no. 4, pp. 74–81, Aug. 2018.

[35] X. Meng and V. Chaudhary, “A High-Performance Heterogeneous Computing Plat-
form for Biological Sequence Analysis,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 21, no. 9, pp. 1267–1280, Sep. 2010.

95

https://pdfs.semanticscholar.org/28ae/4b5d2aabe691c5b801525e4f2b187771cf19.pdf
https://pdfs.semanticscholar.org/28ae/4b5d2aabe691c5b801525e4f2b187771cf19.pdf

Bibliography

[36] Z. Baker, T. Bhattacharya, M. Dunham, P. Graham, R. Gupta, J. Inman, A. Klein,
G. Kunde, A. McPherson, M. Stettler et al., “The PetaFlops Router: Harnessing
FPGAs and Accelerators for High Performance Computing,” Links, vol. 12, no. 4,
pp. 16–18, Jan. 2009.

[37] K. Krewell, “Whats the Difference Between a CPU and a
GPU?” [Online]. Available: https://blogs.nvidia.com/blog/2009/12/16/
whats-the-difference-between-a-cpu-and-a-gpu/

[38] “Machine Learning.” [Online]. Available: https://en.wikipedia.org/wiki/Machine
learning

[39] L. Wang, Support Vector Machines: Theory and Applications. Berlin, Heidelberg:
Springer-Verlag, 2005.

[40] “A Beginner’s Guide to Neural Networks and Deep Learning.” [Online]. Available:
https://skymind.ai/wiki/neural-network

[41] N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and K. Mizutani,
“The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal,
Challenges, and Future Perspective,” IEEE Wireless Communications, vol. 24,
no. 3, pp. 146–153, Jun. 2017.

[42] “Machine Learning Concept: Learning Approaches.” [Online]. Available:
http://numahub.com/articles/machine-learning-concept-learning-approaches

[43] “Fundamentals of Deep Learning Activation Functions and When to Use
Them?” [Online]. Available: https://www.analyticsvidhya.com/blog/2017/10/
fundamentals-deep-learning-activation-functions-when-to-use-them/

[44] S. K. Kumar, “On Weight Initialization in Deep Neural Networks,” arXiv, Aug.
2017. [Online]. Available: http://arxiv.org/abs/1704.08863

[45] “5 Regression Loss Functions All Machine Learners
Should Know.” [Online]. Available: https://heartbeat.fritz.ai/
5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

[46] “How the backpropagation algorithm works.” [Online]. Available: http:
//neuralnetworksanddeeplearning.com/chap2.html

[47] G. E. Hinton, “Training Products of Experts by Minimizing Contrastive Diver-
gence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, Aug. 2002.

[48] G. Hinton, “A Practical Guide to Training Restricted Boltzmann Machines,” 2010.
[Online]. Available: https://www.cs.toronto.edu/∼hinton/absps/guideTR.pdf

[49] H. Goh, N. Thome, M. Cord, and J.-H. Lim, “Top-down Regularization of Deep
Belief Networks,” in Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’13, USA, 2013, pp. 1878–
1886.

96

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://skymind.ai/wiki/neural-network
http://numahub.com/articles/machine-learning-concept-learning-approaches
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
http://arxiv.org/abs/1704.08863
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

Bibliography

[50] Y. LeCun and Y. Bengio, “The Handbook of Brain Theory and Neural Networks.”
Cambridge, MA, USA: MIT Press, 1998, ch. Convolutional Networks for Images,
Speech, and Time Series, pp. 255–258.

[51] A. Deshpande, “A Beginner’s Guide To Understanding Convolutional Neural
Networks Part 2.” [Online]. Available: https://adeshpande3.github.io/A-Beginner%
27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/

[52] “Convolutional Neural Network.” [Online]. Available: http://ufldl.stanford.edu/
tutorial/supervised/ConvolutionalNeuralNetwork/

[53] “Softmax Regression.” [Online]. Available: http://ufldl.stanford.edu/tutorial/
supervised/SoftmaxRegression/

[54] C. Zhang, H. Zhang, D. Yuan, and M. Zhang, “Citywide Cellular Traffic Prediction
Based on Densely Connected Convolutional Neural Networks,” IEEE Communica-
tions Letters, vol. 22, no. 8, pp. 1656–1659, Aug. 2018.

[55] J. Zhao, H. Qu, J. Zhao, and D. Jiang, “Towards Traffic Matrix Prediction with
LSTM Recurrent Neural Networks,” Electronics Letters, vol. 54, no. 9, pp. 566–568,
May 2018.

[56] X. He, K. Wang, H. Huang, T. Miyazaki, Y. Wang, and S. Guo, “Green Resource
Allocation based on Deep Reinforcement Learning in Content-Centric IoT,” IEEE
Transactions on Emerging Topics in Computing, pp. 1–1, 2018.

[57] “An introduction to Deep Q-Learning: lets play
Doom.” [Online]. Available: https://medium.freecodecamp.org/
an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8

[58] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep
Learning for Unsupervised Insider Threat Detection in Structured Cybersecurity
Data Streams,” arXiv, vol. abs/1710.00811, 2017. [Online]. Available: http:
//arxiv.org/abs/1710.00811

[59] I. Rubin, “Access-control Disciplines for Multi-access Communication Channels:
Reservation and TDMA schemes,” IEEE Transactions on Information Theory,
vol. 25, no. 5, pp. 516–536, Sep. 1979.

[60] E. Soltanmohammadi, K. Ghavami, and M. Naraghi-Pour, “A Survey of Traffic
Issues in Machine-to-Machine Communications over LTE,” IEEE Internet of Things
Journal, vol. 3, no. 6, pp. 865–884, Dec. 2016.

[61] J. Huang, H. Wang, Y. Qian, and C. Wang, “Priority-Based Traffic Scheduling
and Utility Optimization for Cognitive Radio Communication Infrastructure-Based
Smart Grid,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 78–86, Mar.
2013.

[62] “4G.” [Online]. Available: https://en.wikipedia.org/wiki/4G

[63] A. Tanenbaum, Computer Networks, 4th ed. Prentice Hall Professional Technical
Reference, 2002.

97

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
https://medium.freecodecamp.org/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8
https://medium.freecodecamp.org/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8
http://arxiv.org/abs/1710.00811
http://arxiv.org/abs/1710.00811
https://en.wikipedia.org/wiki/4G

Bibliography

[64] F. Ren, T. He, S. K. Das, and C. Lin, “Traffic-Aware Dynamic Routing to Alle-
viate Congestion in Wireless Sensor Networks,” IEEE Transactions on Parallel &
Distributed Systems, vol. 22, no. 9, pp. 1585–1599, Jan. 2011.

[65] Y. Jia, I. Nikolaidis, and P. Gburzynski, “Multiple Path Routing in Networks with
Inaccurate Link State Information,” in IEEE International Conference on Commu-
nications, Finland, Jun. 2001, pp. 2583–2587.

[66] T. Liebig, N. Piatkowski, C. Bockermann, and K. Morik, “Dynamic Route Planning
with Real-time Traffic Predictions,” Inf. Syst., vol. 64, no. C, pp. 258–265, Mar.
2017.

[67] X. H. Chen, “Adaptive Traffic-load Shedding and Its Capacity Gain in CDMA
Cellular Systems,” IEE Proceedings - Communications, vol. 142, no. 3, pp. 186–
192, Jun. 1995.

[68] D. K. Y. Yau, J. C. S. Lui, F. Liang, and Y. Yam, “Defending Against Dis-
tributed Denial-of-Service Attacks with Max-min Fair Server-centric Router Throt-
tles,” IEEE/ACM Transactions on Networking, vol. 13, no. 1, pp. 29–42, Feb 2005.

[69] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation, Architecture,
Algorithms, Performance,” IEEE/ACM Transactions on Networking, vol. 14, no. 6,
pp. 1246–1259, Dec. 2006.

[70] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant.” [Online]. Available: https://www.cs.princeton.edu/courses/archive/
fall16/cos561/papers/Cubic08.pdf

[71] S. R. Pokhrel and C. Williamson, “Modeling Compound TCP Over WiFi for IoT,”
IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 864–878, Apr. 2018.

[72] “Open Shortest Path First.” [Online]. Available: https://en.wikipedia.org/wiki/
Open Shortest Path First

[73] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for the Internet
of Things with Edge Computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, Jan.
2018.

[74] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org

[75] “CAIDA.” [Online]. Available: www.caida.org/home/

[76] A. Fog, Instruction Tables. Technological University of Denmark, 2018.

[77] “Comparison of Deep Learning Software.” [Online]. Available: https://en.
wikipedia.org/wiki/Comparison of deep learning software

[78] J. Liu, S. Zhang, N. Kato, H. Ujikawa, and K. Suzuki, “Device-to-Device Communi-
cations for Enhancing Quality of Experience in Software Defined Multi-tier LTE-A
Networks,” IEEE Network, vol. 29, no. 4, pp. 46–52, Jul. 2015.

98

https://www.cs.princeton.edu/courses/archive/fall16/cos561/papers/Cubic08.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos561/papers/Cubic08.pdf
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
http://www.deeplearningbook.org
www.caida.org/home/
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

Bibliography

[79] H. Guo, J. Liu, Z. M. Fadlullah, and N. Kato, “On Minimizing Energy Consumption
in FiWi Enhanced LTE-A HetNets,” IEEE Transactions on Emerging Topics in
Computing, vol. 6, no. 4, pp. 579–591, Oct. 2018.

[80] L. Qiang, J. Li, and C. Touati, “A User Centered Multi-Objective Handoff Scheme
for Hybrid 5G Environments,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 5, no. 3, pp. 380–390, Jul. 2017.

[81] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research Challenges for
Traffic Engineering in Software Defined Networks,” IEEE Network, vol. 30, no. 3,
pp. 52–58, May 2016.

[82] H. Hu, H. Chen, P. Mueller, R. Q. Hu, and Y. Rui, “Software Defined Wireless
Networks (SDWN): Part 1 [Guest Editorial],” IEEE Communications Magazine,
vol. 53, no. 11, pp. 108–109, Nov. 2015.

[83] Y. Xiao, K. Thulasiraman, G. Xue, and M. Yadav, “QoS Routing Under Multiple
Additive Constraints: A Generalization of the LARAC Algorithm,” IEEE Transac-
tions on Emerging Topics in Computing, vol. 4, no. 2, pp. 242–251, Apr. 2016.

[84] N. Egashira, K. Yano, S. Tsukamoto, J. Webber, and T. Kumagai, “Low Latency
Relay Processing Scheme for WLAN Systems Employing Multiband Simultaneous
Transmission,” in 2017 IEEE Wireless Communications and Networking Conference
(WCNC), USA, Mar. 2017, pp. 1–6.

[85] Z. M. Fadlullah, Y. Kawamoto, H. Nishiyama, N. Kato, N. Egashira, K. Yano, and
T. Kumagai, “Multi-Hop Wireless Transmission in Multi-Band WLAN Systems:
Proposal and Future Perspective,” IEEE Wireless Communications, pp. 1–6, 2018.

[86] “Understanding Xavier Initialization in Deep Neural Net-
works.” [Online]. Available: https://prateekvjoshi.com/2016/03/29/
understanding-xavier-initialization-in-deep-neural-networks/

[87] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning Combinatorial
Optimization Algorithms over Graphs,” CoRR, vol. abs/1704.01665, 2017. [Online].
Available: http://arxiv.org/abs/1704.01665

[88] L. Nie, D. Jiang, L. Guo, S. Yu, and H. Song, “Traffic Matrix Prediction and
Estimation Based on Deep Learning for Data Center Networks,” in 2016 IEEE
Globecom Workshops (GC Wkshps), Dec. 2016, pp. 1–6.

[89] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cambridge,
MA, USA: MIT Press, 1998.

[90] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang, “Experience-
Driven Networking: A Deep Reinforcement Learning based Approach,” CoRR, vol.
abs/1801.05757, 2018.

[91] M. Hu, J. Luo, Y. Wang, and B. Veeravalli, “Adaptive Scheduling of Task Graphs
with Dynamic Resilience,” IEEE Transactions on Computers, vol. 66, no. 1, pp.
17–23, Jan. 2017.

99

https://prateekvjoshi.com/2016/03/29/understanding-xavier-initialization-in-deep-neural-networks/
https://prateekvjoshi.com/2016/03/29/understanding-xavier-initialization-in-deep-neural-networks/
http://arxiv.org/abs/1704.01665

Bibliography

[92] “Internet Topology Zoo.” [Online]. Available: http://www.topology-zoo.org/
dataset.html

[93] “NP-hardness.” [Online]. Available: https://en.wikipedia.org/wiki/NP-hardness

[94] J. Liu, Y. Shi, L. Zhao, Y. Cao, W. Sun, and N. Kato, “Joint Placement of Con-
trollers and Gateways in SDN-Enabled 5G-Satellite Integrated Network,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 2, pp. 221–232, Feb.
2018.

[95] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, Mar. 2002.

[96] A. Tamar, Y. WU, G. Thomas, S. Levine, and P. Abbeel, “Value Iteration Net-
works,” in Advances in Neural Information Processing Systems 29, Barcelona,
Spain, 2016, pp. 2154–2162.

[97] M. Alzantot, “Deep Reinforcement Learning Demysitifed (Episode 2)-Policy Itera-
tion, Value Iteration and Q-learning.”

[98] “Value Iteration.” [Online]. Available: http://artint.info/html/ArtInt 227.html

[99] A. Ito, “Application of Episodic Q-Learning to a Multi-agent Cooperative Task,”
in PRICAI 2002: Trends in Artificial Intelligence, Berlin, Heidelberg, 2002, pp.
188–197.

[100] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the Complexity of Solving
Markov Decision Problems,” in Proceedings of the Eleventh Conference on Uncer-
tainty in Artificial Intelligence, ser. UAI’95, Montral, Qu, Canada, 1995, pp. 394–
402.

[101] C. Papadimitriou and J. N. Tsitsiklis, “The Complexity of Markov Decision Pro-
cesses,” Math. Oper. Res., vol. 12, no. 3, pp. 441–450, Aug. 1987.

[102] “Star Network.” [Online]. Available: https://en.wikipedia.org/wiki/Star network

[103] “Tensorflow.” [Online]. Available: https://www.tensorflow.org/

100

http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
https://en.wikipedia.org/wiki/NP-hardness
http://artint.info/html/ArtInt_227.html
https://en.wikipedia.org/wiki/Star_network
https://www.tensorflow.org/

Publications

Journals

[1] Zubair Md. Fadlullah, Bomin Mao, Fengxiao Tang, and Nei Kato, ”Value Iter-
ation Architecture based Deep Learning for Intelligent Routing Exploiting Hetero-
geneous Computing Platforms,” IEEE Transactions on Computers, Accepted, doi:
10.1109/TC.2018.287448.

[2] Nei Kato, Zubair Md. Fadlullah, Fengxiao Tang, Bomin Mao, Shigenori Tani,
Atsushi Okamura, and Jiajia Liu, ”Optimizing Space-Air-Ground Integrated Net-
works by Artificial Intelligence,” IEEE Wireless Communications Magazine (WCM),
Accepted, DOI: 10.1109/MWC.2018.1800365.

[3] Fengxiao Tang, Zubair Md. Fadlullah, Bomin Mao, Nei Kato, Fumie Ono, and
Ryu Miura, ”On A Novel Adaptive UAV-Mounted Cloudlet-Aided Recommendation
System for LBSNs,” IEEE Transactions on Emerging Topics in Computing, In press,
DOI: 10.1109/TETC.2018.2792051.

[4] Fengxiao Tang, Zubair Md. Fadlullah, Bomin Mao, and Nei Kato, ”An Intelligent
Traffic Load Prediction Based Adaptive Channel Assignment Algorithm in SDN-
IoT: A Deep Learning Approach,” IEEE Internet of Things Journal, vol. 5, no. 6,
pp. 5141 - 5154, Dec. 2018.

[5] Zubair Md. Fadlullah, Fengxiao Tang, Bomin Mao, Jiajia Liu, Nei kato, ”On
Intelligent Trafic Control For Large Scale Heterogeneous Networks: A Value Matrix
Based Deep Learning Approach,” IEEE Communication Letter, vol. 22, no. 12, pp.
2479-2482, Dec. 2018.

[6] Yibo Zhou, Zubair Md. Fadlullah, Bomin Mao and Nei Kato, ”A Deep Learning
Based Radio Resource Assignment Technique for 5G Ultra Dense Networks,” IEEE
Network Magazine, vol. 32, no. 6, pp. 28 - 34, Nov. 2018.

[7] Fengxiao Tang, Bomin Mao, Zubair Md. Fadlullah, and Nei Kato, ”On a Novel
Deep Learning Based Intelligent Partially Overlapping Channel Assignment in SDN-
IoT,” IEEE Communications Magazine, vol. 56, no. 9, pp. 80-86, Sep. 2018.

[8] Bomin Mao, Fengxiao Tang, Zubair Md. Fadlullah, Nei Kato, Osamu Akashi,
Takeru Inoue, and Kimihiro Mizutani, ”A Novel Non-supervised Deep Learning
Based Network Traffic Control Method for Software Defined Wireless Networks,”
IEEE Wireless Communications Magazine, vol. 25, no. 4, pp. 74-81, Aug. 2018.

101

Publications

[9] Fengxiao Tang, Bomin Mao, Zubair Md. Fadlullah, Nei Kato, Osamu Akashi,
Takeru Inoue, and Kimihiro Mizutani, ”On Removing Routing Protocol from Future
Wireless Networks: A Real-time Deep Learning Approach for Intelligent Traffic
Control, ” IEEE Wirelesss Magazine (WCM), vol. 25, no. 1, pp. 154-160, Feb.
2018.

[10] Bomin Mao, Zubair Md. Fadlullah, Fengxiao Tang, Nei Kato, Osamu Akashi,
Takeru Inoue, and Kimihiro Mizutani, ”Routing or Computing? The Paradigm
Shift Towards Intelligent Computer Network Packet Transmission Based on Deep
Learning,” IEEE Transactions on Computers, vol. 66, no. 11, pp. 1946-1960, Nov.
2017.

[11] Zubair Md. Fadlullah, Fengxiao Tang, Bomin Mao, Nei Kato, Osamu Akashi,
Takeru Inoue, and Kimihiro Mizutani, ”State-of-the-Art Deep Learning: Evolving
Machine Intelligence Toward Tomorrows Intelligent Network Traffic Control Sys-
tems,” IEEE Communications Surveys and Tutorials, vol. 19, no. 4, pp. 2432-2455,
May 2017.

[12] Nei Kato, Zubair Md. Fadlullah, Bomin Mao, Fengxiao Tang, Osamu Akashi,
Takeru Inoue, and Kimihiro Mizutani, ”The Deep Learning Vision for Heterogeneous
Network Traffic Control Proposal, Challenges, and Future Perspective ,” IEEE
Wireless Communications, vol. 24, no. 3, pp. 146-153, Dec. 2016.

Refereed Conference Papers

[13] Bomin Mao, Zubair Md. Fadlullah, Fengxiao Tang, Nei Kato, Osamu Akashi,
Takeru Inoue, and Kimihiro Mizutani, ”A Tensor Based Deep Learning Technique
for Intelligent Packet Routing,” IEEE Global Communications Conference (GLOBE-
COM 2017), Singapore, Dec. 2017. Best Paper Award.

[14] Fengxiao Tang, Bomin Mao, Zubair Md. Fadlullah, and Nei Kato, ”Deep Spa-
tiotemporal Partially Overlapping Channel Allocation: Joint CNN and Activity
Vector Approach,” IEEE Global Communications Conference (GLOBECOM 2018),
Abu Dhabi, UAE, Dec. 2018.

[15] Fengxiao Tang, Bomin Mao, Zubair Md. Fadlullah, and Nei Kato, ”On Extracting
the Spatial-Temporal Features of Network Traffic Patterns: A Tensor Based Deep
Learning Model,” to appear, IEEE International Conference on Network Infrastruc-
ture and Digital Content (IC-NIDC18), Guiyang, China, Aug. 2018.

102

2019/2/7 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Optimizing Space-Air-Ground

Integrated Networks by Artificial
Intelligence

Author: Nei Kato
Publication: IEEE Wireless Communications

Magazine
Publisher: IEEE
Date: Dec 31, 1969
Copyright © 1969, IEEE

LOGINLOGIN

If you're a
copyright.com user,
you can login to
RightsLink using your
copyright.com
credentials.
Already a RightsLink
user or want to learn
more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011
IEEE.

 2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.

 3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication]

 2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
on-line.

 3) In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and
Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

javascript:goHome()
javascript:createAccount();
javascript:openHelp();
javascript:doCasLogin();
javascript:openHelp('/Help/CreateAccount/create_account_learnmore.htm');
javascript:void(0)
javascript:goHome();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/content/cc3/en_US/tools/footer/privacypolicy.html
javascript:paymentTerms();
mailto:customercare@copyright.com

2019/2/7 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: A Tensor Based Deep Learning

Technique for Intelligent Packet
Routing

Conference
Proceedings:

GLOBECOM 2017 - 2017 IEEE
Global Communications
Conference

Author: Bomin Mao
Publisher: IEEE
Date: Dec. 2017
Copyright © 2017, IEEE

LOGINLOGIN

If you're a
copyright.com user,
you can login to
RightsLink using your
copyright.com
credentials.
Already a RightsLink
user or want to learn
more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011
IEEE.

 2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.

 3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication]

 2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
on-line.

 3) In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and
Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

javascript:goHome()
javascript:createAccount();
javascript:openHelp();
javascript:doCasLogin();
javascript:openHelp('/Help/CreateAccount/create_account_learnmore.htm');
javascript:void(0)
javascript:goHome();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/content/cc3/en_US/tools/footer/privacypolicy.html
javascript:paymentTerms();
mailto:customercare@copyright.com

	thesis-new
	Abstract
	Acknowledgments
	Introduction
	Background
	Breakthrough of Deep Learning
	Development of Hardware Computation Capacities
	Purpose of Research
	Summary and Organization of the Thesis

	Overview of Deep Learning and Traffic Control
	Introduction
	Overview of Deep Learning Technologies
	Preliminaries of Deep Learning
	Two Commonly Utilized Deep Learning Architectures
	Deep Belief Architecture
	Convolutional Neural Networks

	Different Training Manners
	Survey of Deep Learning Based Networking
	Network Parameter Prediction
	Intelligent Resource Allocation
	Smart Anomaly Detection

	Overview of Traffic Control
	Traditional Traffic Control Strategies
	Data Link Layer
	Network Layer
	Transport Layer

	Research on Deep Learning Based Traffic Control
	Network Scenarios and Problem Analysis
	Deep Learning Structure Construction
	Network Performance Analysis
	Computation Analysis and Proposal Deployment

	Summary

	Deep Learning Based Routing Algorithm for Core Networks Running on GPU Accelerate SDRs
	Introduction
	Design of Deep Learning based Routing Strategy
	Input and Output Design
	Deep Learning Structure Design
	Considered Router Architecture

	The Procedures of the Proposed Deep Learning based Routing Strategy
	Initialization Phase
	Training Phase
	Running Phase

	Computation Performance Analysis
	DBA Precision Analysis
	Complexity Analysis of the Training Phase
	Complexity Analysis of the Running Phase

	Network Performance Evaluation
	Summary

	Online Learning Based Routing Strategy for Software Defined Communication Systems
	Introduction
	Problem Statement and Model Design
	Procedures of Our Proposal
	Initial Phase
	Running Phase
	Data Collection
	Routing Judgement
	Retraining Phase

	Complexity Analysis
	Performance Evaluation
	Summary

	Value Iteration based Deep Learning Architecture for Routing in Dynamic Networks
	Introduction
	Problem Formulation
	Preliminaries
	Markov Decision Process (MDP)
	Value Iteration

	Design of the Deep Reinforcement Learning Based Routing Strategy
	Complexity Analysis From the HCP Perspective
	Performance Evaluation
	Deployment Analysis
	Performance with Link Failures

	Summary

	Conclusion
	Appendix
	Method to Adjust the Weights and Biases of RBMs

	Bibliography
	Publications

	tc1-copyright
	tc2-copyright
	WCM4-copyright
	WCM3-copyright
	GC1-copyright

