
Reconfiguration Problems for Graph Coloring,
Homomorphism, and Constraint Satisfaction

著者 Hatanaka Tatsuhiko
学位授与機関 Tohoku University
学位授与番号 11301甲第18762号
URL http://hdl.handle.net/10097/00127350

Reconfiguration Problems for Graph Coloring,

Homomorphism, and Constraint Satisfaction

by

Tatsuhiko Hatanaka

Submitted to

Department of System Information Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information Science)

Graduate School of Information Sciences

Tohoku University, Japan

2019

i

Acknowledgements

First of all, I would like to express my deep gratitude for my supervisor Professor

Xiao Zhou. He gave me a really large amount of worthful advices and suggestions,

and offered a very comfortable place that made my life of research so pleasant.

Without his continual help and encouragement, this thesis would not be completed.

I am really grateful to my thesis advisor, Associate Professor Takehiro Ito. He also

helped me on the presentations and on the writing style of my papers, and gave me

a lot of opportunities to build up my career as a researcher. Without his numerous

number of helpful discussions and supports, this thesis would not be completed.

I would also like to show my special thanks to the other members of my graduate

committee, Professor Takeshi Tokuyama and Professor Ayumi Shinohara, for their

insightful suggestions and comments.

Furthermore, I would also like to thank Assistant Professor Akira Suzuki for his

many suggestions and guidance, and for many things. All of his useful suggestions

on my research and his kind help in everyday life have been invaluable to me.

Finally, I would like to acknowledge with sincere thanks the all-out cooperation

and services rendered by the members of Algorithm Theory Laboratory for many

things.

ii

Abstract

Since the 2000s, the framework of (combinatorial) reconfiguration has been exten-

sively studied in the field of theoretical computer science. This framework models

several “dynamic” situations where we wish to find a step-by-step transformation

between two feasible solutions of a combinatorial search problem such that all in-

termediate solutions are also feasible and each step respects a fixed reconfiguration

rule. This reconfiguration framework has been applied to several well-studied com-

binatorial search problems. In this thesis, we mainly study the reconfiguration

problem for the well-known constraint satisfaction problem (CSP), which is a gener-

alization of several combinatorial search problems including graph coloring, Boolean

satisfiability, graph homomorphism and so on. In CSP, we are asked to find an as-

signment of values to given variables so as to satisfy all of given constraints. In the

reconfiguration problem for CSP, we are given an instance of CSP together with its

two satisfying assignments, and asked to determine whether one assignment can be

transformed into the other by changing a single variable assignment at a time, while

always remaining satisfying assignment. We also study several special cases of the

problem, especially the reconfiguration problems for graph coloring, graph homo-

morphism, and their list variants. In this thesis, we study these problems from the

viewpoints of polynomial-time solvability and parameterized complexity, and give

several interesting boundaries of tractable and intractable cases.

iii

Contents

Chapter 1 Introduction 1

1.1 Combinatorial reconfiguration . 1

1.2 Applications . 3

1.2.1 Dynamic transformation of system configurations 3

1.2.2 Feedback to search problems 3

1.3 Problems studied in this thesis . 4

1.4 Known and related results . 6

1.5 Our contribution . 8

1.5.1 Polynomial-time solvability 9

1.5.2 Parameterized complexity . 10

1.6 Organization of this thesis . 13

Chapter 2 Preliminaries 14

2.1 Basic graph-theoretical terminologies 14

2.1.1 Graphs and subgraphs . 14

2.1.2 Hypergraphs, primal graphs and subhypergraphs 16

2.1.3 Paths, cycles and connectivities 17

2.1.4 Operations on graphs . 17

2.1.5 Breadth-first search . 18

2.1.6 Graph isomorphism . 19

2.1.7 Independent sets, vertex covers and cliques 19

2.2 Graph paremeters and graph classes 20

2.2.1 Forests and trees . 20

iv

2.2.2 Pathwidth . 21

2.2.3 Modules and modular-width 22

2.2.4 Other graph classes . 26

2.3 Algorithm-theoretical terminologies 27

2.3.1 Problems and reductions . 27

2.3.2 PSPACE . 27

2.3.3 Parameterized complexity . 27

2.4 Problems dealt with in this thesis . 29

2.4.1 Mappings . 29

2.4.2 Graph colorings and homomorphisms 30

2.4.3 Constraint satisfiability reconfiguration 31

2.4.4 Other definitions and observations 33

Part I Polynomial-Time Solvability 35

Chapter 3 Coloring Reconfiguration 36

3.1 Defenitions and observations . 36

3.2 PSPACE-completeness on chordal graphs 37

3.2.1 First step of the reduction . 37

3.2.2 Reduction . 39

3.2.3 Correctness of the reduction 40

3.3 Polynomial-time solvable cases . 40

3.3.1 q-trees . 41

3.3.2 Split graphs . 43

3.3.3 Trivially perfect graphs . 44

Chapter 4 List Coloring Reconfiguration 49

4.1 PSPACE-completeness . 49

v

4.2 A polynomial-time algorithm for graphs with pathwidth one 50

4.2.1 Idea and definitions . 53

4.2.2 Algorithm . 56

4.2.3 Correctness of the algorithm 59

4.2.4 Running time . 65

Chapter 5 List Homomorphism Reconfiguration 69

5.1 PSPACE-completeness on paths . 69

5.2 A polynomial-time algorithm . 71

Chapter 6 Binary Constraint Satisfiability Reconfiguration 73

6.1 PSPACE-completeness . 73

6.2 A polynomial-time algorithm . 74

Part II Parameterized Complexity 76

Chapter 7 Homomorphism Reconfiguration and List Coloring Re-

configuration 77

7.1 Homomorphism reconfiguration . 77

7.2 List coloring reconfiguration . 78

7.2.1 Construction . 79

7.2.2 Correctness of the reduction 81

Chapter 8 List Homomorphism Reconfiguration 84

8.1 Reduction rule . 84

8.2 Modified reduction rule . 88

8.3 Kernelization . 91

8.3.1 Sufficient condition for identical subgraphs 92

8.3.2 Kernelization algorithm . 93

vi

8.3.3 Size of the kernelized instance 95

Chapter 9 Constraint Satisfiability Reconfiguration 98

9.1 Graphs with bounded tree-depth . 98

9.1.1 Definitions . 98

9.1.2 Kernelization . 99

9.2 Graphs with small vertex cover . 103

9.2.1 Proof of Theorem 9.2 . 103

9.2.2 Proof of Theorem 9.3 . 107

9.2.3 Discussions . 111

9.3 Extension of the algorithm for binary BCSR 113

9.3.1 Implication graphs . 114

9.3.2 Preprocessing . 116

9.3.3 Properity of the partition . 117

9.3.4 Discussion . 118

9.4 ETH-based lower bound . 118

Chapter 10 Conclusions 122

Bibliography 125

List of papers 133

vii

List of Figures

1.1 The 15-puzzle. Each placement of blocks is feasible and only one

block is slid in each step. 2

1.2 A transformation of 4-colorings. A vertex which is recolored from the

previous 4-coloring is depicted by a thick circle. 3

1.3 An example of constraints which represent allowed assignments to the

vertices in CSP (left and right of the figure) and a mapping which

satisfies all constraints (middle of the figure). 5

1.4 (a) Relationships between problems. Each dotted line between P

(lower) and Q (upper) means that P is a special case of Q. (b) Re-

lationships between graph parameters. cw, mw, tw, pw, td, vc, bw

and n are the cliquewidth, the modular-width, the treewidth, the

pathwidth, the tree-depth, the size of a minimum vertex cover, the

bandwidth and the number of vertices of a graph, respectively. Each

arrow α → β means that α is stronger than β, that is, if α is bounded

by a constant then β is also bounded by some constant. 7

1.5 Known and our results for CR with respect to graph classes. Each

arrow A → B represents that the graph class B is a subclass of the

graph class A. 10

1.6 Known and our results for LCR with respect to graph classes. Each

arrow A → B represents that the graph class B is a subclass of the

graph class A. 10

viii

2.1 (a) A graph G with six vertices and nine edges, and (b) a subgraph

G′ of G induced by a vertex set V ′ = {v2, v3, v4, v5}. 15

2.2 A hypergraph G and the subhypergraph G[{v2, v3, v4}] induced by

{v2, v3, v4}. 16

2.3 (a) A graph G, (b) the contraction of {v2, v3} ⊆ V (G), and (c) the

complement of G. 18

2.4 An example of the breadth-first search of th graph in Figure 2.1(a). . 18

2.5 Two isomorphic graphs. 19

2.6 Two isomorphic hypergraphs G and G′ under the bijections ϕ and π. 19

2.7 (a) A rooted tree with the root v1, and (b) the rooted subtree with

the root v4. 20

2.8 A spanning tree of the graph in Figure 2.1(a). 21

2.9 (a) A graph G, and (b) its path decomposition. In (b), each graph

surrounded by dotted box is the graph induced each subset. 22

2.10 Examples of (a) a module and (b) a prime. 22

2.11 An example of substitution operation. 23

2.12 (a) A substitution tree T for (b) a graph G. 23

2.13 An example of the replacement described in the proof of Proposition 2.1. 25

2.14 A graph G, a graph H whose vertex set is {1, 2, 3, 4}, and a homo-

morphism from f from G to H. 30

2.15 (a) An instance I = (G, {1, 2, 3}, C) of constraint satisfiability,

and (b) the solution graph S (I). 33

3.1 Example for frozen vertices: The upper three vertices are frozen on fs

and ft because they form a clique of size three, and their lists contain

only three colors in total. 37

3.2 Graph H. 38

ix

3.3 (a) A graph H ′, a list L and an L-coloring gs, and (b) a constructed

graph G and k-coloring fs. 39

3.4 An example of a split graph, whose vertex set can be partitioned into

a clique VQ and an independent set VI 43

3.5 (a) A trivially perfect graph, and (b) its corresponding cotree. 44

4.1 A caterpillar G and its vertex ordering, where the subgraph sur-

rounded by a dotted rectangle corresponds to G8. 50

4.2 (a) A graph G and a list L, and (b) the reconfiguration graph RL
G. . . 52

4.3 (a) A caterpillar G = G4, (b) the reconfiguration graph R4 consisting

of all L-colorings of G, and (c) the encoding graph H4 of Rs
4 consisting

of two e-nodes x and y, where each L-coloring in (b) is represented as

the sequence of colors assigned to the vertices in G from left to right. 55

4.4 The graph Gi for (a) vi ∈ VL and (b) vi ∈ VS. 57

4.5 Application of our algorithm to the instance depicted in (a)–(c). In

(d)–(h), coli(x) ∈ L(sp(i)) is attached to each e-node x, and the e-

nodes x with inii(x) = 1 and tari(x) = 1 have the labels “ini” and

“tar,” respectively. Furthermore, in (e), (f) and (h), the small graph

contained in each e-node x of Hi represents the subgraph of Hi−1

induced by EN(x). 58

4.6 The path P with n vertices. 68

5.1 (a) A directed graph R and (b) the edge set Ep between Lp and Lp+1. 70

7.1 (a) An instance H of independent set, and (b) the

graph G and the list L. The set Vfor contains ver-

tices of (i, j; p, q)-forbidding gadgets for all (i, j) ∈

{(1, 2), (1, 3), (2, 3)} and all (p, q) ∈ {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5),

(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2)}; thus |Vfor| = 39. . . 79

x

8.1 An example of two subhypergraphs H1 and H2 of G which satisfies

the conditions (1) and (2). We draw each hyperedge of size two as

a solid line, and omit the bijection π : E(H ′
1) → E(H ′

2) since it is

uniquely defined from ϕ : V (H ′
1) → V (H ′

2). If A and C satisfy the

conditions (3) and (4), H1 and H2 are identical. 85

8.2 An example of an application of our algorithm. We first focus on x8,

which is a parallel node whose children are already kernelized, and

find that M1(x1) = M1(x2) holds. Therefore, we delete CG(x1) from

the input graph. Then, x8 has only one child, and hence we contract

the edge x8x9 in order to maintain being a PMD-tree. We next focus

on x11 and find that M2(x9) = M2(x10) holds. We thus remove

CG(x10) from the current graph and fixing a PMD-tree. Then, the

algorithm terminates because we have processed all parallel nodes. . . 94

9.1 A graph G and a tree-depth decomposition T of G with the root v1. . 99

9.2 (a) An instance J = (G, {0, 1}, C) and (b) the implication graph

IMP(J) for J . 115

1

Chapter 1 Introduction

1.1 Combinatorial reconfiguration

Since the 2000s, the framework of (combinatorial) reconfiguration [34] has been

extensively studied in the field of theoretical computer science. (See surveys [38, 50,

33].) This framework models several “dynamic” situations where we wish to find a

step-by-step transformation between two feasible states such that all intermediate

states are also feasible and each step respects a fixed reconfiguration rule. For

example, sliding block puzzles [32] such as the 15-puzzle (see Figure 1.1) can be

captured in this framework; the feasible states are placements of rectangle blocks in

a rectangle frame without an overlap, and a reconfiguration rule is sliding exactly

one block to an empty cell at a time. As another example, consider the situation

where frequency channels are assigned to base stations so that no interference occurs.

Assume now that the current feasible assignment must be transformed (e.g., to use a

newly found better assignment or to satisfy new side constraints), while maintaining

the feasibility (so that the users receive service even during the transformation). This

problem can also be modeled in the reconfiguration framework; the feasible states

are feasible frequency assignments, and a reconfiguration rule may be reassigning a

frequency channel of a single base station.

Generally, a (combinatorial) reconfiguration problem can be considered as a prob-

lem asking the reachability of two vertices in a solution graph (also called a reconfig-

uration graph) defined as follows. The vertex set of a solution graph corresponds to

the set of feasible states and the edge set represents a reconfiguration rule. The set of

2 Chapter 1 Introduction

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 1.1: The 15-puzzle. Each placement of blocks is feasible and only one block

is slid in each step.

feasible states may often be defined as a set of feasible solutions for an instance of a

(combinatorial) search problem. Indeed, several reconfiguration problems based on

search problems are studied well, such as Boolean satisfiability reconfigu-

ration [26, 44, 47], shortest path reconfiguration [3, 40], independent set

reconfiguration [5, 21, 32, 41, 42], vertex cover reconfiguration [37, 48],

dominating set reconfiguration [28, 30].

As a concrete example of such reconfiguration problems, we here introduce the

(vertex) coloring reconfiguration problem [4, 7, 17, 60], which is one of the

most well-studied reconfiguration problems. (See Figure 1.2 for example.) Let

G = (V,E) be a graph and let C be a set of k colors. A k-coloring (or simply

a vertex coloring) of G is a mapping f : V → C such that f(v) ̸= f(w) holds for

every edge vw ∈ E. In coloring reconfiguration, the vertex set of a solution

graph is the set of all k-colorings of G, and two vertices f and f ′ are adjacent in the

solution graph if f ′ is obtained from f by changing the color assignment on a single

vertex, and vice versa. Then, for a given graph G, a color set C of size k, and two

k-colorings fs and ft of G, the problem asks whether there exists a walk between

fs and ft in the solution graph for G and C; such a walk is called a reconfiguration

sequence.

1.2 Applications 3

2

1

4

3

2

3

4

3

2

3

1

3

2

3

1

4

Figure 1.2: A transformation of 4-colorings. A vertex which is recolored from the

previous 4-coloring is depicted by a thick circle.

1.2 Applications

The framework of reconfiguration has many applications as the “feasibility” is

preserved during the transformation.

1.2.1 Dynamic transformation of system configurations

Recall the transformation of frequency assignments, which we presented in the

beginning of the chapter. Actually, this problem can be modeled by coloring

reconfiguration if we consider each base station as a vertex, and each frequency

channel as a color, and joining each pair of two base stations which have the high

potential of interference. Notice that a frequency assignment without interference

corresponds to a k-coloring, and reassigning a frequency channel on a single base

station corresponds to changing the color assignment on a single vertex. Similar

situations may occur when we wish to dynamically transform a configuration of

a system into another one while maintaining the feasibility. Another example is

power supply reconfiguration [34], which models the switching of the power

supply routing between power stations and customers. Thus, the reconfiguration

framework can be applied to several practical issues.

1.2.2 Feedback to search problems

We here note that a research on a reconfiguration problem may provide us a

deeper understanding of the “solution space” of the corresponding search problem,

since we deal not only with the existence of solutions but also with the relationship

4 Chapter 1 Introduction

between them. Thus, sometimes it brings a good feedback to the search problem.

For example, Wrochna [12] gave another (much shorter) proof of the theorem that

any graph without a cycle of length dividable by three has a 3-coloring, which was

originally proved by Chen and Saito [18] in 1994, using ideas provided to solve 3-

coloring reconfiguration [17]. Roughly speaking, the proof uses the fact that

the reconfiguration preserves the feasibility.

1.3 Problems studied in this thesis

In this thesis, we mainly study (list) coloring reconfiguration, (list)

homomorphism reconfiguration, and constraint satisfiability recon-

figuration from the viewpoints of polynomial-time solvability and parameterized

complexity. The formal definitions of the problems will be given in Chapter 2, but

we here briefly introduce them.

List coloring reconfiguration is a generalization of coloring reconfig-

uration where we are given a list of allowed colors for each vertex as an additional

input and feasible solutions are k-colorings which respect all lists. (List) homo-

morphism reconfiguration is a generalization of (list) coloring reconfig-

uration defined as follows. In addition to a color set, we are also given a set of pairs

of colors which can be assigned to adjacent vertices in G. This is represented by a

graph H which has C as the vertex set and the set of pairs as the edge set, called an

underlying graph.1 Then, feasible solutions are k-colorings which respect the edge

set H (and all lists). We note that (List) homomorphism reconfiguration is

equivalent to (list) coloring reconfiguration when an underlying graph H

is a complete graph.

Constraint satisfiability reconfiguration is the reconfiguration problem

1 In this thesis, we only consider simple undirected underlying graphs unless otherwise
stated, although loops and/or directed edges are often allowed in the literature of graph
homomorphisms.

1.3 Problems studied in this thesis 5

2

v1

3

v2

1

v3

3

v4

X1 X2

Constraint of
X1 = {v1, v2, v3}

v1 v2 v3

1 2 3

2 3 1

3 1 2

Constraint of
X2 = {v2, v3, v4}

v2 v3 v4

3 1 3

3 1 1

1 3 1

1 3 3

Figure 1.3: An example of constraints which represent allowed assignments to the

vertices in CSP (left and right of the figure) and a mapping which satisfies all

constraints (middle of the figure).

for well-known constraint satisfaction problem (CSP, for short), which is a general-

ization of several combinatorial problems including vertex coloring, Boolean satisfi-

ability, graph homomorphism and so on. In this thesis, we formulate them by means

of hypergraphs. Let G = (V,E) be a hypergraph. Let D be a set, called a domain;

each element of D is called a value and we always denote by k the size of a domain.

In CSP, each hyperedge X ∈ E has a constraint which represents the values allowed

to be assigned to the vertices in X at the same time, and we wish to find a mapping

f : V → D which satisfies the constraints of all hyperedges in G. (See Figure 1.3

for an example.) For example, in the case of vertex coloring, we can see that every

hyperedge consists of two vertices, and has the common constraint that any two

different colors can be assigned to the two vertices in the hyperedge at the same

time. In constraint satisfiability reconfiguration, feasible solutions are

mappings satisfying all constraints, and the reconfiguration rule is changing a value

of a single vertex at a time. Boolean constraint satisfiability is the special

case of constraint satisfiability where |D| = 2. For an integer r ≥ 1, r-ary

constraint satisfiability is the special case of constraint satisfiability

where all hyperedges have size at most r.

As we will discuss in Chapter 2, constraint satisfiability reconfigura-

6 Chapter 1 Introduction

tion includes several reconfiguration problems as special cases such as Boolean

constraint satisfiability reconfiguration, r-ary constraint satisfia-

bility reconfiguration, (list) homomorphism reconfiguration, (list)

coloring reconfiguration. In the remainder of the thesis, we use the following

abbreviations:

• CSR for constraint satisfiability reconfiguration;

• BCSR for Boolean constraint satisfiability reconfiguration;

• r-CSR for r-ary constraint satisfiability reconfiguration for each

integer r ≥ 1;

• (L)HR for (list) homomorphism reconfiguration; and

• (L)CR for (list) coloring reconfiguration.

Relationships between problems are illustrated in Figure 1.4(a).

1.4 Known and related results

There are many literatures which study special cases of CSR (including (L)CR

and (L)HR) and their shortest variants. In the shortest variant, we are given an

instance with an integer ℓ ≥ 0, and asked whether there exists a reconfiguration

sequence of length at most ℓ. We here state only the results from the viewpoint of

the computational complexity.

One of the most well-studied special cases of CSR is BCSR [6, 14, 26, 43, 44,

47, 57]. Gopalan et al. [26] gave a computational dichotomy for BCSR with re-

spect to a set S of logical relations which can be used to define each constraint:

the problem is PSPACE-complete or in P for each fixed S. In addition, Cardinal

et al. [14] showed that the problem remains PSPACE-complete even if S is equiva-

lent to monotone Not-All-Equal 3-SAT (i.e., each constraint is a set of surjections)

1.4 Known and related results 7

CSR

BCSR3-CSR

2-CSR

LHR

LCR HR

CR

(a)

cw

mw tw

pw

bw

td

vc

n

(b)

Figure 1.4: (a) Relationships between problems. Each dotted line between P (lower)

and Q (upper) means that P is a special case of Q. (b) Relationships between graph

parameters. cw, mw, tw, pw, td, vc, bw and n are the cliquewidth, the modular-

width, the treewidth, the pathwidth, the tree-depth, the size of a minimum vertex

cover, the bandwidth and the number of vertices of a graph, respectively. Each

arrow α → β means that α is stronger than β, that is, if α is bounded by a constant

then β is also bounded by some constant.

and a “variable-clause incidence graph” is planar. For the shortest variant, a com-

putational trichotomy is known: Mouawad et al. [47] proved that the problem is

PSPACE-complete, NP-complete or in P for each fixed S. Bonsma et al. [6] proved

that the shortest variant is W [2]-hard when parameterized by ℓ even if S is equiva-

lent to Horn SAT.

Another well-studied spacial case is CR [1, 2, 4, 6, 7, 8, 15, 16, 17, 23, 24, 27,

39, 51, 52, 60]. This problem is PSPACE-complete for k ≥ 4 and bipartite planar

graphs [4] but in P for k ≤ 3 [17]. The second tractability result is extended to

the shortest variant [39], and even can be applied to LCR. Moreover, it is known

that the problem remains PSPACE-complete even if k is a fixed constant for line

graphs (for any fixed k ≥ 5) [52] and for bounded bandwidth graphs [60]. On the

other hand, there exists a polynomial-time algorithm for (k − 2)-connected chordal

8 Chapter 1 Introduction

graphs [7]. For the shortest variant parameterized by ℓ, some intractability results

are known; it is W [1]-hard [6] and does not admit a polynomial kernelization when

k is fixed unless the polynomial hierarchy collapses [39]. As a generalization of CR,

LCR is also studied [36, 52, 60]. The problem is PSPACE-complete even for graphs

with pathwidth two and constant bandwidth and some constant k [60] and for line

graphs and any fixed k ≥ 4 [52].

HR is also well-studied as a generalization of CR. Several literatures investigated

HR from the viewpoint of graph classes in which a given graph G or an underlying

graph H lies [11, 10, 12, 13, 59, 60]. Brewster et al. [12] gave a dichotomy for a

special case of HR in which H is a (p, q)-circular clique; it is PSPACE-complete if

p/q ≥ 4 but is in P otherwise. We note that this result generalizes the complexity

of CR with respect to k, since a complete graph Kk with k vertices is a (k, 1)-

circular clique. It is also known that the problem is PSPACE-complete even if (a)

H is an odd wheel [10] or (b) H is some fixed graph and G is a cycle [60]. On the

other hand, it can be solved in polynomial time if G is a tree [60] or H contains no

cycles of length four [59]. Furthermore, a fixed-parameter algorithm is known when

parameterized by k + td [60]; note that it can be easily extended for LHR.

Finally, we refer to the shortest variant of CSR. Bonsma et al. [6] gave a fixed-

parameter algorithm for the shortest variant parameterized by k + r + ℓ, where r

is the maximum size of a hyperedge. This implies that shortest variants of BCSR

and 2-CSR are fixed-parameter tractable when parameterized by r + ℓ and k + ℓ,

respectively. They also showed that the problem is intractable in general if at least

one of {k, r, ℓ} is excluded from the parameter.

1.5 Our contribution

In this thesis, we investigate the complexity of CSR and its spacial cases, espe-

cially 3-CSR, 2-CSR, (L)HR and (L)CR, from the viewpoints of polynomial-time

1.5 Our contribution 9

Table 1.1: Computational complexities with respect to the size k of a domain.

k ≥ 4 k = 3 k = 2

CSR PSPACE-c. PSPACE-c. PSPACE-c.

3-CSR PSPACE-c. PSPACE-c. PSPACE-c. [26]

2-CSR PSPACE-c. PSPACE-c. [Thm. 6.1] P [Thm. 6.2]

LHR PSPACE-c. P [Thm. 5.2] P

LCR PSPACE-c. P [17] P

HR PSPACE-c. P [59] P

CR PSPACE-c. [4] P P

solvability and parameterized complexity, and give several interesting boundaries of

tractable and intractable cases.

1.5.1 Polynomial-time solvability

We first classify the complexity of the problems for each fixed size k of a domain;

we note that k corresponds to the number of colors in (L)CR and (L)HR. Together

with known results, our results give interesting boundaries of (in)tractability as

summarized in Table 1.1. In particular, our results unravel the boundaries with

respect to k for 2-CSR and LHR. The other interesting contrast we show is the

boundary between 2-CSR and LHR for k = 3.

In order to give more detailed analyses, we also focus on the structure of an input

(hyper)graph and explore the structures which make the problems hard. We first an-

alyze the complexities of CR and (L)CR from the viewpoint of graph classes. (See

Figures 1.5 and 1.6.) In particular, the PSPACE-completeness of LCR for chordal

graphs answers the open question posed by Bonsma and Paulusma [7]. Moreover,

we show the boundary of the complexity of LCR with respect to pathwidth; we give

a polynomial-time algorithm for graphs with pathwidth one, while it is PSPACE-

complete for graphs with pathwidth two [60]. We next investigate the complexity

for graphs with pathwidth one or two of more ganeral problems, that is, (L)HR,

2-CSR, 3-CSR and CSR. (See Table 1.2.)

10 Chapter 1 Introduction

PSPACE-complete

[Thm. 3.1] [4] [4]

[Thm. 3.3]

[Thm. 3.5]

[Thm. 3.6]

[Thm. 3.7]

Open

P

chordal

interval
q-tree

trivially perfect

split

tree

series-parallel

planar

2-degenerate

3-degenerate

Figure 1.5: Known and our results for CR with respect to graph classes. Each arrow

A → B represents that the graph class B is a subclass of the graph class A.

[60]

PSPACE-

complete

[4] [4]

[Thm. 3.2]

[Thm. 4.2]

[Thm. 4.1]

P

chordal

interval

threshold

trivially perfect

split

pathwidth two

pathwidth one

planar

cograph

2-degenerate

Figure 1.6: Known and our results for LCR with respect to graph classes. Each

arrow A → B represents that the graph class B is a subclass of the graph class A.

1.5.2 Parameterized complexity

As we stated in Section 1.4, most fixed-parameter algorithms (other than the one

in [60]) known for CSR and its special cases take the length ℓ of a reconfiguration

sequence as a part of the parameter. If we consider somewhat practical situations

(e.g., the transformation of frequency assignments), it may be reasonable enough to

wish to find a short reconfiguration sequence and thus assume a small ℓ. On the

other hand, when the reconfigurability matters, this is not the case, since the short-

1.5 Our contribution 11

Table 1.2: Computational complexity for graphs with pathwidth at most two.

pw = 2 pw = 1

CSR PSPACE-c. PSPACE-c.

3-CSR PSPACE-c. PSPACE-c.

2-CSR PSPACE-c. PSPACE-c.

LHR PSPACE-c. PSPACE-c. [Thm. 5.1]

LCR PSPACE-c. [60] P [Thm. 4.2]

HR PSPACE-c. [60] P [60]

CR P [Thm. 3.3] P

est reconfiguration sequence can be arbitrarily large and even superpolynomial [4].

Therefore, we investigate the parameterized complexity for several parameters which

do not contain ℓ.

One may come up with the size k of a domain as such natural parameter. How-

ever, the problems are PSPACE-complete even if k is fixed even for several restricted

classes, and hence fixed-parameter algorithms parameterized k never exist under

P ̸= PSPACE. Thus, as other natural parameters, we consider several graph pa-

rameters such as the cliquewidth cw, the modular-width mw, the treewidth tw, the

pathwidth pw, the tree-depth td, the size vc of a minimum vertex cover, the band-

width bw, and the number n of vertices; we again define each graph parameter of a

hypergraph as that of its primal graph. The relationships between graph parameters

are summarized in Figure 1.4(b); note that tractability (resp., intractability) result

propagates downward (resp., upward).

We first show that HR parameterized by the number of vertices and LCR param-

eterized by the size of a minimum vertex cover are both W [1]-hard. These imply that

fixed-parameter algorithms are unlikely to exist for almost all graph parameters in

Figure 1.4. Therefore, we take as parameters k plus several graph parameters, and

summarize the known and our results in Table 1.3. We note that a fixed-parameter

tractability of CSR parameterized by k + vc can be obtained as a corollary of The-

orem 9.1. However, Theorem 9.3 gives a faster algorithm and Theorem 9.2 gives an

12 Chapter 1 Introduction

Table 1.3: Parameterized complexity with respect to k plus graph parameters.

Parameter k + mw k + td k + vc k + bw

CSR PSPACE-c. FPT FPT PSPACE-c.

[Thm. 9.1] [Thms. 9.2, 9.3]

3-CSR PSPACE-c. FPT FPT PSPACE-c.

2-CSR PSPACE-c. FPT FPT PSPACE-c.

[Cor. 6.1]

LHR FPT [Thm. 8.1] FPT FPT PSPACE-c.

LCR FPT FPT FPT PSPACE-c.

HR FPT FPT [60] FPT PSPACE-c.

CR FPT FPT FPT PSPACE-c. [60]

Table 1.4: Parameterized complexity with respect to k and the number nb of non-

Boolean vertices.

Parameter k + nb nb

CSR PSPACE-c. PSPACE-c.

3-CSR PSPACE-c. [26] PSPACE-c.

2-CSR FPT [Thm. 9.5] W [1]-hard but XP [Thm. 9.5]

LHR FPT W [1]-hard but XP

LCR FPT W [1]-hard but XP

HR FPT W [1]-hard [Cor. 7.1] but XP

CR FPT FPT [Pro. 9.3]

algorithm for the shortest variant.

We next consider another parameter which is not graph-structural, that is, the

number nb of “non-Boolean vertices”, in order to extend the analysis for k = 2

presented in the previous section. Roughly speaking, nb reflects how an instance is

close to that of BCSR. The parameterized complexity regarding nb is summarized

in Table 1.4. We note that k = 2 implies that nb = 0, and hence the algorithm

given in Theorem 9.5 generalizes Theorem 6.2. Therefore, this result gives a more

detailed boundary of the complexity of 2-CSR between k = 3 and k = 2.

Finally, we prove that 2-CSR cannot be solved in time O∗((k + n)o(k+n)) under

the exponential time hypothesis (ETH). This lower bound matches the running time

shown in Theorems 2.1, 9.3 and 9.5, respectively.

1.6 Organization of this thesis 13

1.6 Organization of this thesis

The main part of this thesis consists of two parts; each part is divided into chapters

according to the target problem.

In Part I, we investigate the polynomial-time solvability. In Chapters 3 and

4, we study CR and LCR, respectively, from the viewpoint of graph classes. In

Chapter 5, we show the PSPACE-completeness of LHR for graphs with pathwidth

one and give a polynomial-time algorithm for k = 3. In Chapter 6, we show the

PSPACE-completeness of 2-CSR for k = 3 and give a polynomial-time algorithm

for k = 2.

In Part II, we investigate the parameterized complexity. In Chapter 7, we show

two W [1]-hardness results for HR and LCR. In Chapter 8, we give a fixed-parameter

algorithm for LHR parametrized by k+mw. In Chapter 9, we give fixed-parameter

algorithms for CSR parametrized by k + td, k + vc, and k + nb, and give an ETH-

based lower bound.

Finally, in Chapter 10, we conclude this thesis.

14 Chapter 2 Preliminaries

Chapter 2 Preliminaries

In this chapter, we formally present basic and standard terminologies and notations

which will be used in this thesis. Definitions which are not presented in this chapter

will be introduced as needed. We start, in Sections 2.1 through 2.2, by giving

some definitions of standard graph-theoretical terminologies used throughout the

remainder of this thesis. In Section 2.3, we next introduce some terminologies from

algorithm theory. Finally, in Section 2.4, we then formally define the problems dealt

with in this thesis and introduce some concepts.

2.1 Basic graph-theoretical terminologies

In this section, we introduce the most basic graph-theoretical terminologies.

2.1.1 Graphs and subgraphs

A graph G is an ordered pair (V,E) which consists of a finite set V of vertices

(or nodes) and a finite set E ⊆ V × V of edges, where each edge in E is an pair of

vertices in V . We sometimes denote by V (G) and E(G) the vertex set and the edge

set of G, respectively. A graph G is simple if E(G) contains no edge e = vv. A graph

G = (V,E) is undirected if vw ∈ E if and only if wv ∈ E; and directed otherwise.

For an undirected graph, we identify vw and wv. For a directed graph, we sometimes

denote vw = v → w. In this thesis, we consider a simple undirected graph unless

otherwise stated. For example, Figure 2.1(a) illustrates a (simple undirected) graph

G with the vertex set V = {v1, v2, . . . , v6} and the edge set E = {e1, e2, . . . , e9},

2.1 Basic graph-theoretical terminologies 15

v1

e1e4

e8

e6
e2

e7

e5
e3e9

v2v6

v5 v3

v4

e8

e6
e5

v2

v5 v3

v4

(a) (b)

Figure 2.1: (a) A graph G with six vertices and nine edges, and (b) a subgraph G′

of G induced by a vertex set V ′ = {v2, v3, v4, v5}.

where each vertex is drawn as a circle together with its index and each edge is

drawn as a line joining two circles (vertices) together with its index. If e = vw is

an edge, then we say that e joins v and w; e is incident to v and w; v and w are

adjacent (by the edge e;) and w is a neighbor of v. In the graph in Figure 2.1(a),

for example, e3 joins v1 and v5; e7 is incident to v2 and v6; v1 and v2 are adjacent

by e1; and v3 is a neighbor of v4. The neighborhood N(G, v) of a vertex v is a set

of all neighbors of v, that is, N(G, v) = {w ∈ V (G) | vw ∈ E(G)}. For a vertex

subset V ′ ⊆ V (G), we denote N(G, V ′) :=
∪

v∈V ′ N(G, v) \ V ′. The degree d(G, v)

of a vertex v is the size (the cardinality) of the neighborhood N(G, v) of v. In the

graph in Figure 2.1(a), N(G, v6) = {v1, v2, v5} and hence d(G, v6) = 3.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V and

E ′ ⊆ E; we denote G′ ⊆ G and say that G contains G′. If E ′ is equal to the set of all

the edges of G that join vertices in V ′, that is, E ′ = {vw ∈ E | v, w ∈ V ′ ∧ v ̸= w},

then G′ is called the subgraph induced by V ′ or simply called the induced subgraph;

we denote G′ = G[V ′]. Figure 2.1(b) depicts a subgraph G′ of G in Figure 2.1(a)

induced by a vertex set V ′ = {v2, v3, v4, v5}. For an induced subgraph G′ = (V ′, E ′)

of G, we denote G \ V ′ = G[V \ V ′].

16 Chapter 2 Preliminaries

v1 v2

v3 v4

G

X1

X2X3

v2

v3 v4

G[{v2, v3, v4}]

Figure 2.2: A hypergraph G and the subhypergraph G[{v2, v3, v4}] induced by

{v2, v3, v4}.

2.1.2 Hypergraphs, primal graphs and subhypergraphs

A hypergraph G is a pair (V,E), where V is a set of vertices and E is a family

of non-empty vertex subsets, called hyperedges. We sometimes denote by V (G) and

E(G) the vertex set and the hyperedge set of G, respectively. A hypergraph G

is r-uniform if every hyperedge consists of exactly r (≥ 1) vertices. Any simple

undirected graph can be considered as a 2-uniform hypergraph and a hyperedge of

size exactly two is simply called an edge. An edge {v, w} is sometimes denoted by

vw or wv for notational convenience.

Let G be a hypergraph. The primal graph P(G) of G is a graph such that

V (P(G)) = V (G) and two distinct vertices are connected by an edge if they are

contained in the same hyperedge of G. We denote N(G, v) := N(P(G), v) for any

vertex v ∈ V , and N(G, V ′) := N(P(G), V ′) for any vertex subset V ′; we say that

v is adjacent to w if w ∈ N(G, v). For a vertex subset V ′ ⊆ V (G), we define the

subhypergraph of G induced by V ′ as the hypergraph G′ such that V (G′) = V ′ and

E(G′) = {X ∩V ′ : X ∈ E(G), X ∩V ′ ̸= ∅}. We denote by G[V ′] the subhypergraph

of G induced by V ′ for any vertex subset V ′. We sometimes call a hypergraph G′

an induced subhypergraph (of G) if G[V ′] = G′ for some vertex subset V ′ ⊆ V (G).

(See Figure 2.2.) We use the notation G \ V ′ to denote G[V (G) \ V ′].

2.1 Basic graph-theoretical terminologies 17

2.1.3 Paths, cycles and connectivities

Let G = (V,E) be a graph. A walk from a vertex v to a vertex w is a sequence W =

⟨v0 = v, v1, . . . , vℓ = w⟩ of vertices such that vi−1vi ∈ E for every i ∈ {1, 2, . . . , ℓ}.

The length of W is ℓ. If the vertices v1, v2, · · · , vℓ are distinct, then the walk W is

called a path. A path or walk is closed if v0 = vℓ. A closed path with length at least

one is called a cycle. In the graph in Figure 2.1(a), ⟨v1, v2, v6, v1, v4⟩ is a walk but

not a path, ⟨v2, v6, v5, v1⟩ is a path but not a cycle, and ⟨v2, v3, v4, v2⟩ is a cycle. The

distance dist(v, w) between v and w is the length of a shortest path between v and

w. In the graph in Figure 2.1(a), dist(v3, v5) = 3 since ⟨v3, v4, v1, v5⟩ is a shortest

path between v3 and v5.

A graph G is connected if there is a path between v and w for any two distinct

vertices v and w in G. A graph G is disconnected if it is not connected. The graph in

Figure 2.1(a) is connected while the graph in Figure 2.1(b) is disconnected. Unless

otherwise stated, we consider only simple connected undirected graphs. An induced

subgraph G′ of G is called a connected component if there is no connected subgraph

G′′ such that G′ ⊆ G′′. In Figure 2.1(b), the subgraphs induced by {v2, v3, v4} and

{v5} are the connected components. Similarly, a hypergraph G is connected (resp.,

disconnected) if P(G) is connected (resp., disconnected).

2.1.4 Operations on graphs

In this section, we introduce some operations on graphs which construct a new

graph. Let G = (V,E) be a graph. For a vertex subset X ⊆ V which induces a

connected subgraph, the contraction of X is obtaining a graph G′ = (V ′, E ′) from G

by deleting all edges of G[X] and replacing all vertices in X with a new vertex x so

that x is adjacent all neighbors of each vertex in X. Formally, V ′ := (V \X) ∪ {x}

and E ′ := {ϕ(v)ϕ(w) | vw ∈ E \E(G[X])}, where ϕ is a mapping from V to V ′ such

that ϕ(v) = x if v ∈ X, and ϕ(v) = v otherwise. The complement G of G is a graph

18 Chapter 2 Preliminaries

v1

e1e4

e8

e6
e2

e7

e5
e3e9

v2v6

v5 v3

v4

(a)

v1

v6

v5

x

v4

(b)

v1

v2v6

v5 v3

v4

(c)

Figure 2.3: (a) A graph G, (b) the contraction of {v2, v3} ⊆ V (G), and (c) the

complement of G.

v1

v2v6

v5 v3

v4

key: v5

v1

v2v6

v5 v3

v4

key: v6

v1

v2v6

v5 v3

v4

key: v2

Figure 2.4: An example of the breadth-first search of th graph in Figure 2.1(a).

obtained from G by reversing the adjacencies between all pairs of distinct vertices.

Formally, G = (V,E) such that E = {vw | v, w ∈ V ∧ v ̸= w} \ E.

2.1.5 Breadth-first search

The breadth-first search of a graph G = (V,E) is an algorithm searching vertices

of G as follows. It starts with some vertex v ∈ V and lets v the “key” vertex.

Then it recursively visits all unvisited neighbors of the key vertex, and selects an

arbitrary vertex which has been visited and has a unvisited neighbor as a new key.

This algorithm runs in time O(|V | + |E|) [19]. Figure 2.1 shows an example of the

breadth-first search starting with v5, where the visited vertices are depicted as black

circles in each step.

2.1 Basic graph-theoretical terminologies 19

v
1

v
2

v
6

v
5

v
3

v
4

u
1

u
2

u
6

u
5

u
3

u
4

Figure 2.5: Two isomorphic graphs.

v1 v2

v3 v4

G

X1

X2X3

φ(v1) φ(v3) φ(v4) φ(v2)

G′

π(X1)

π(X2)π(X3)

Figure 2.6: Two isomorphic hypergraphs G and G′ under the bijections ϕ and π.

2.1.6 Graph isomorphism

Two graphs G1 and G2 are isomorphic if there exists a bijective function ϕ :

V (G1) → V (G2), that is, vw ∈ E(G1) if and only if ϕ(v)ϕ(w) ∈ E(G2). Figure 2.5

shows an example of two isomorphic graphs, where the bijective function maps vi

to ui for each i ∈ {1, 2, 3, 4, 5, 6}.

Two hypergraphs G and G′ are isomorphic if there exist two bijections ϕ : V (G) →

V (G′) and π : E(G) → E(G′) such that π(X) = {ϕ(v1), ϕ(v2), . . . , ϕ(vr)} ∈ E(G′)

holds for each hyperedge X = {v1, v2, . . . , vr} ∈ E(G). (See Figure 2.6.) Notice

that a bijection π between two hyperedge sets is uniquely determined by a bijection

ϕ between two vertex sets.

2.1.7 Independent sets, vertex covers and cliques

Let G = (V,E) be a graph. An independent set is a vertex subset V ′ of V such

that every pair of two distinct vertices v and w in V ′ is not adjacent. A vertex

20 Chapter 2 Preliminaries

v1

(a) (b)

v4 v4v3

v7v6 v7v6

v9v8

v5

v2

Figure 2.7: (a) A rooted tree with the root v1, and (b) the rooted subtree with the

root v4.

cover is a vertex subset V ′ of V such that V \ V ′ is an independent set. We denote

by vc(G) the size of a minimum vertex cover of G. A clique is a vertex subset V ′

of V such that every pair of two distinct vertices v and w in V ′ is adjacent. We

denote by ω(G) the maximum clique size of G. In the graph G in Figure 2.1(a),

{v3, v5} is a maximum independent set, {v1, v2, v4, v6} is a minimum vertex cover,

and {v1, v2, v6} is a maximum clique, and hence vc(G) = 4 and ω(G) = 3.

2.2 Graph paremeters and graph classes

2.2.1 Forests and trees

A forest is a graph which contains no cycle. A tree is a connected forest. A path

is a tree which has at most two leaves.

A rooted tree T is a tree in which one of the vertices is distinguished from the

others. The distinguished vertex is called the root of the tree. A rooted tree is

usually drawn so that the root is located at the top, as illustrated in Figure 2.7(a)

where v1 is the root. For each edge vw ∈ E(T) such that dist(r, v) + 1 = dist(r, w),

we say that v is the parent of w and w is a child of v. For example, in the rooted

tree in Figure 2.7(a), v4 is the parent of v6 and v7; and v6 and v7 are children of

2.2 Graph paremeters and graph classes 21

v4. A vertex v in a tree is called a leaf if it has no child. Otherwise, v is a called

an internal node. For each vertex v ∈ V (T), the rooted subtree Tv with the root

v is a connected component of T ′ = (V (T), E(T) \ {e}) which contains v, where e

joins v and v’s parent. Figure 2.7(b) depicts the rooted subtree of the rooted tree

in Figure 2.7(a) with the root v4. A full binary tree T is a rooted tree such that for

each vertex v ∈ V (T), the number of children of v is either two or zero.

A spanning tree of a graph G = (V,E) is a subgraph of G which is a tree and

contains all vertices of G. Figure 2.8 shows a spanning tree of the graph in Figure

2.1(a).

v
1

e
1

e
2

e
5

e
3e

9

v
2

v
6

v
5

v
3

v
4

Figure 2.8: A spanning tree of the graph in Figure 2.1(a).

2.2.2 Pathwidth

We now define the notion of pathwidth [55]. A path-decomposition of a graph G

is a sequence of subsets Xi, 1 ≤ i ≤ m, of vertices in G such that

(1)
∪

iXi = V (G);

(2) for each vw ∈ E(G), there is at least one subset Xi with v, w ∈ Xi; and

(3) for any three indices p, q, r such that p ≤ q ≤ r, Xp ∩Xr ⊆ Xq.

The width of a path-decomposition is defined as maxi |Xi| − 1, and the pathwidth

pw(G) of G is the minimum t such that G has a path-decomposition of width

t. For example, Figure 2.9(b) illustrates a path-decomposition of a graph G in

22 Chapter 2 Preliminaries

G[X1] G[X2] G[X3] G[X4] G[X5]

(a) G

(b)

v3 v4

v2

v1

v1

v3 v4

v2

v5

v2 v5

v7 v8

v6

v7 v8

v6v5

v7

v6

v9

v8

v6

v9

Figure 2.9: (a) A graph G, and (b) its path decomposition. In (b), each graph

surrounded by dotted box is the graph induced each subset.

v1

v2

v5

v4

v3

v6

v7

v8

v10

v9

v11

(a) (b)

Figure 2.10: Examples of (a) a module and (b) a prime.

Figure 2.9(a); the width of this path-decomposition is three. Indeed, the path-

decomposition in Figure 2.9(b) has minimum width, and hence the pathwidth of G

is three.

2.2.3 Modules and modular-width

A module of a graph G = (V,E) is a vertex subset M ⊆ V such that N(G, v)\M =

N(G,w) \M for every two vertices v and w in M . In other words, the module M

is a set of vertices whose neighborhoods in G \ M are the same. For example,

the graph in Figure 2.10(a) has a module M = {v3, v4} for which N(G, v3) \M =

2.2 Graph paremeters and graph classes 23

u1 u2

Q

u3 u4

v5

v4

v3

v6

v1

G1
G = Sub(Q ,{G1 , G2 , G3 , G4})

G2

G3

G4

v2

v1

v2

v5

v4

v3

v6

v7

v8

v10

v9

v11

v7

v8

v10

v9

v11

Figure 2.11: An example of substitution operation.

v7

v8

v10

v9

v11

v1

x1 x2

x3 x4

x5

x6

x8 x9 x10 x11x7

x12 x14

x15

x16

x13

v2

v5

v4

v3

v6

12

1

2

11

5

3

4

7 9

8

14 6 15

CG (x12)

CG (x14)

(b) G = CG (T)(a) T

CG (x13)

CG (x15)

10

11

Figure 2.12: (a) A substitution tree T for (b) a graph G.

N(G, v4)\M = {v1, v2, v6} holds. Note that the vertex set V of G, the set consisting

of only a single vertex, and the empty set ∅ are all modules of G; they are called

trivial. A graph G is a prime if all of its modules are trivial; for an example, see

Figure 2.10(b).

We now introduce the notion of modular decomposition, which was first pre-

sented by Gallai in 1967 as a graph decomposition technique [25]. For a survey, see,

e.g., [29].

We first define the substitution operation, which constructs one graph from more

than one graphs. Let Q be a graph, called a quotient graph, consisting of p (≥ 2)

nodes u1, u2, . . . , up, and let F = {G1, G2, . . . , Gp} be a family of vertex-disjoint

24 Chapter 2 Preliminaries

graphs such that Gi corresponds to ui for every i ∈ {1, 2, . . . , p}. The Q-substitution

of F , denoted by Sub(Q,F), is the graph which is obtained by taking a union of all

graphs in F and then connecting every pair of vertices v ∈ V (Gi) and w ∈ V (Gj)

by an edge if and only if ui and uj are adjacent in Q. That is, the vertex set of

Sub(Q,F) is
∪
{V (Gi) : Gi ∈ F}, and the edge set of Sub(Q,F) is the union of∪

{E(Gi) : Gi ∈ F} and {vw : v ∈ V (Gi), w ∈ V (Gj), uiuj ∈ E(Q)}. (See Fig-

ure 2.11 as an example.)

A substitution tree is a rooted tree T such that each non-leaf node x ∈ V (T) is

associated with a quotient graph Q(x) and has |V (Q(x))| child nodes; and each leaf

node is associated with a single vertex. For each node x ∈ V (T), we can recursively

define the corresponding graph CG(x) as follows: If x is a leaf, CG(x) consists of the

associated single vertex. Otherwise, let y1, y2, . . . , yp be p = |V (Q(x))| children of x,

then CG(x) = Sub(Q(x), {CG(y1),CG(y2), . . . ,CG(yp)}). For the root r of T , CG(r)

is called the corresponding graph of T , and we denote CG(T) := CG(r). We say that

T is a substitution tree for a graph G if CG(T) = G, and refer to a node in T in

order to distinguish it from a vertex in G. Figure 2.12(a) illustrates a substitution

tree for the graph G in Figure 2.12(b); each leaf xi, i ∈ {1, 2, . . . , 11}, corresponds

to the subgraph of G consisting of a single vertex vi. We note that the vertex set

V (CG(x)) of each corresponding graph CG(x), x ∈ V (T), forms a module of CG(T).

A modular decomposition tree T (an MD-tree for short) for a graph G is a substi-

tution tree for G which satisfies the following three conditions:

• Each node x ∈ V (T) applies to one of the following three types:

– a series node, whose quotient graph Q(x) is a complete graph;

– a parallel node, whose quotient graph Q(x) is an edge-less graph; and

– a prime node, whose quotient graph Q(x) is a prime with at least four

vertices.

2.2 Graph paremeters and graph classes 25

 y2 y3 y4 y1 y2 y3 y4 y1

x1

x2

x3

x

Figure 2.13: An example of the replacement described in the proof of Proposition 2.1.

• No edge in T connects two series nodes.

• No edge in T connects two parallel nodes.

It is known that any graph G has a unique MD-tree with O(|V (G)|) nodes, and it

can be computed in time O(|V (G)|+ |E(G)|) [58]. We denote by MD(G) the unique

MD-tree for a graph G. The modular-width mw(G) of a graph G is the maximum

number of children of a prime node in its MD-tree MD(G); we define mw(G) = 0 if

MD(G) has no prime node. The substitution tree T in Figure 2.12(a) is indeed the

MD-tree for the graph G in Figure 2.12(b), and hence mw(G) = 4; note that only

x16 is a prime node in T .

We now define a variant of MD-trees, which will make our proofs and analyses

simpler. A pseudo modular decomposition tree T (a PMD-tree for short) for a graph

G is a substitution tree for G which satisfies the following two conditions:

• Each node x ∈ V (T) applies to one of the following three types:

– a 2-join node, whose quotient graph Q(x) is a complete graph with exactly

two vertices;

– a parallel node, whose quotient graph Q(x) is an edge-less graph; and

26 Chapter 2 Preliminaries

– a prime node, whose quotient graph Q(x) is a prime with at least four

vertices.

• No edge in T connects two parallel nodes.

Proposition 2.1 For any graph G, there exists a PMD-tree T with O(|V (G)|) nodes

such that each prime node x ∈ V (T) has at most mw(G) children, and it can be

constructed in linear time.

Proof. Recall that an MD-tree MD(G) for a graph G can be constructed in linear

time. Given an MD-tree MD(G) for a graph G, we construct a PMD-tree T such that

CG(T) = CG(MD(G)) as follows. For each series node x of MD(G) having m (≥ 3)

children y1, y2, . . . , ym, we replace it with a binary tree consisting of 2m − 1 nodes

x1, x2, . . . , xm−1 and y1, y2, . . . , ym such that xi has two children yi and xi+1 for each

i ∈ {1, 2, . . . ,m−2} and xm−1 has two children ym−1 and ym. (See Figure 2.13 as an

example.) A quotient graph Q(xi) of each new node xi is defined as a complete graph

with exactly two vertices. Then, T is a PMD-tree for G, it has at most O(|V (G)|)

nodes, and each prime node x ∈ V (T) has at most mw(G) children. Moreover, this

process can be done in linear time since the MD-tree has O(|V (G)|) nodes. 2

We denote by PMD(G) a PMD-tree for G such that each prime node x ∈ V (T)

has at most mw(G) children. The pseudo modular-width pmw(G) of a graph G is

the maximum number of children of a non-parallel node in its PMD-tree; we define

pmw(G) = 0 if MD(G) has only a parallel node, that is, G has no edge.1

A graph G is a cograph if mw(G) = 0.

2.2.4 Other graph classes

Let G = (V,E) be a graph. G is bipartite if the vertex set V can be partitioned

into two independent sets. G is split if the vertex set V can be partitioned into a

1The pseudo modular-width itself is sometimes regarded as the modular-width of a
graph.

2.3 Algorithm-theoretical terminologies 27

clique and an independent set. G is threshold if there exist a real number s and a

mapping ω : V → R such that xy ∈ E if and only if ω(x) + ω(y) ≥ s [9], where R

is the set of all real numbers. Equivalently, G is threshold if G is a cograph and a

split graph. G is planar if it can be drawn in a plane without crossing edges. G is

complete if ω(G) = |V |. We denote by Kn the complete graph with n vertices.

2.3 Algorithm-theoretical terminologies

In this section, we introduce several algorithm-theoretical terminologies.

2.3.1 Problems and reductions

A problem is a language (i.e., a set of strings) P ⊆ Σ∗, where Σ = {0, 1}. Each

string x in Σ∗ is called an instance. An instance x is a yes-instance of a problem P

if x ∈ P , and x is a no-instance of P otherwise.

Let P ,P ′ ⊆ Σ∗ be two problems. A reduction from P ′ to P is an algorithm which

compute an instance x ∈ Σ∗ for any given instance y ∈ Σ∗ such that x ∈ P if and

only if y ∈ P ′. If a reduction runs in polynomial time, it is called a polynoimal-time

reduction.

2.3.2 PSPACE

PSPACE is the class of all problems which can be solved in polynomial-space.

A problem P is PSPACE-hard if for every problem P ′ in PSPACE, there exists a

polynomial-time reduction from P ′ to P . A problem P is PSPACE-complete if it is

in PSPACE and is PSPACE-hard.

2.3.3 Parameterized complexity

In this section, we introduce some terminologies in parameterized complexity the-

ory [22, 49].

28 Chapter 2 Preliminaries

A parameterized problem is a language P ⊆ Σ∗ × N, where Σ = {0, 1} and N is

the set of all natural numbers. Each string (x, p) in Σ∗ × N is called an instance,

and the second component p is called the parameter of the problem. An instance

(x, p) is a yes-instance of a problem P if (x, p) ∈ P , and (x, p) is a no-instance of P

otherwise.

Let P be a parameterized problem. A fixed-parameter algorithm for P is an

algorithm which determines whether (x, p) ∈ P or not in time O(g(p) · |(x, p)|c) for

any instance (x, p), where g is some computable function depending only on the

parameter p, and c is some constant. A parameterized problem P is fixed-parameter

tractable if there exists a fixed-parameter algorithm for P . FPT is the class of all

fixed-parameter tractable parametrized problems. Sometimes, an algorithm running

in time O(g(p)·|(x, p)|c) for any instance (x, p) ∈ P is called an FPT-time algorithm.

Let P ,P ′ ⊆ Σ∗×N be two parametrized problems. A parametrized reduction from

P ′ to P is an FPT-time algorithm which computes an instance (x, p) ∈ Σ∗ × N for

any given instance (y, q) ∈ Σ∗×N such that q ≤ h(p) for some computable function

h, and x ∈ P if and only if y ∈ P ′. W [1] is the class of all parameterized problems

from which there is a parametrized reduction to the weighted 3-SAT problem. A

parameterized problem P is W [1]-hard if for every parameterized problem P ′ in

W [1], there exists a polynomial-time reduction from P ′ to P .

Finally, we introduce the notion of kernelization, which is a technique for devel-

oping a fixed-parameter algorithm.

Let P be a parameterized problem. A kernelization for P is an algorithm which

runs in time polynomial in the size of the input instance (x, p) and compute an

instance (x′, p′) such that

• p′ ≤ p;

• |x| ≤ h(p) for some computable function h depending only on the parameter

p; and

2.4 Problems dealt with in this thesis 29

• (x, p) ∈ P if and only if (x′, p′) ∈ P .

The instance (x′, p′) computed by this algorithm is called the kernel of (x, p). Then

we have the following proposition.

Proposition 2.2 Let P be a parameterized problem. Assume that P can be solved

in T (|x|, p) for any instance (x, p) ∈ P and there exists a kernelization for P. Then,

there exists a fixed-parameter algorithm for P.

Proof. Consider the following algorithm: we first run a kernelization for an instance

(x, p) and then solve a kernel (x′, p′) in time T (|x′|, p′). This is indeed a fixed-

parameter algorithm for P because |x′| and p′ depend only on p. 2

In this thesis, we allow a kernelization to run in FPT time, and call such a relaxed

kernelization a kernelization. Notice that Proposition 2.2 holds even for this relaxed

kernelization.

2.4 Problems dealt with in this thesis

In this section, we give a formal definition of the problems dealt with in this thesis.

2.4.1 Mappings

Since all of our problems are based on mappings, we first introduce several con-

cepts regarding mappings. Let A and B be any sets. We denote by BA the set of all

mappings from A to B, because we can identify a mapping ϕ : A → B with a vec-

tor (ϕ(a1), ϕ(a2), . . . , ϕ(a|A|)) ∈ B|A|, where A = {a1, a2, . . . , a|A|}. Let ϕ, ϕ′ ∈ BA

be two mappings. We define the difference dif(f, f ′) between f and f ′ as the set

{a ∈ A | f(a) ̸= f ′(a)}. For any subset A′ of A, we denote by ϕ|A′ the restriction of

ϕ on A′; that is, ϕ|A′ is a mapping in BA′
such that ϕ|A′(a) = ϕ(a) for any a ∈ A′.

Let ϕ ∈ BA and ϕ′ ∈ BA′
be two mappings from the different sets A and A′ Then,

ϕ and ϕ′ are compatible if ϕ|A∩A′′ = ϕ′|A∩A′′ holds.

30 Chapter 2 Preliminaries

v1 v2 v3

v4 v5 v6

G

1

2

3 4

H

3 2 1

4 3 2

f

Figure 2.14: A graph G, a graph H whose vertex set is {1, 2, 3, 4}, and a homomor-

phism from f from G to H.

2.4.2 Graph colorings and homomorphisms

Let G = (V,E) be a graph and let C be a set of k colors. Assume that each

vertex v ∈ V has a list L(v) ⊆ C (of v); we sometimes call a mapping L : V → 2C

itself a list. A k-coloring f : V → C of G is called an L-coloring (or a list coloring)

if f(v) ∈ L(v) holds for every vertex v ∈ V . We note that an L-coloring is also

a k-coloring if L(v) = C holds for every vertex v ∈ V . Let H be a graph whose

vertex set is C. A mapping f : V → C of G is called a homomorphism from G to

H if f(v)f(w) ∈ E(H) holds for every edge vw ∈ E. Moreover, f is also called an

L-homomorphism (or a list homomorphism) from G to H if f(v) ∈ L(v) holds for

every vertex v ∈ V . A graph H is called an underlying graph. Notice that a (list)

homomorphism is equivalent to a (list) coloring if an underlying graph is a complete

graph. As we mentioned in the footnote 1 in the previous chapter, we only consider

in this thesis simple undirected underlying graphs unless otherwise stated.

Let G, H and L be a graph, a simple underlying graph and a list L : V (G) → 2V (H),

respectively We then have the following observation.

Observation 2.1 If there exists an L-homomorphism from G to H, then ω(G) ≤

|V (H)| holds.

2.4 Problems dealt with in this thesis 31

2.4.3 Constraint satisfiability reconfiguration

In this subsection, we formally define CSP and its reconfiguration variant by

means of hypergraphs.

Let G = (V,E) be a hypergraph. Let D be a set, called a domain; each element

of D is called a value and we always denote by k the size (cardinality) of a domain.

In CSP, each hyperedge X ∈ E has a set C(X) ⊆ DX ; we call C(X) a constraint

of X. If C(X) = DX , it is called a trivial constraint. An arity of a constraint

C(X) of X is exactly |X|, and we call C(X) an r-ary constraint, where r = |X|.

We define the constraint C(G) of G as the union of all constraints of hyperedges,

that is, C(G) =
∪

X∈E(G) C(X). For a vertex v ∈ V (G), a list L(v) of v is the set

{i ∈ D : ∃g ∈ C(G), g(v) = i}. For a hyperedge X ∈ E, we say that a mapping

f ∈ DV satisfies a constraint of X if f |X ∈ C(X) holds. f is a solution if it satisfies

all constraints.

An instance of constraint satisfiability is a triple (G,D, C) consisting of

a hypergraph G, a domain D, and a constraint assignment C to hyperedges over

D. Then, the problem asks whether there exists a solution or not. Constraint

satisfiability includes many combinatorial problems as its special cases as follows.

• Boolean constraint satisfiability is the special case of constraint

satisfiability where |D| = 2.

• For an integer r ≥ 1, r-ary constraint satisfiability is the special case

of constraint satisfiability where all constraints are of arity at most r,

that is, all hyperedges have size at most r.

• List homomorphism is the special case of 2-ary constraint satisfia-

bility where there exists a simple underlying graph H such that the solution

set is exactly the set of all L-homomorphisms from G to H. That is, G is

a 2-uniform hypergraph (i.e., a graph) and C(vw) = E(H) ∩ (L(v) × L(w))

32 Chapter 2 Preliminaries

holds for every edge vw ∈ E(G); in other words, C(vw) is the set of all list

homomorphisms from the edge vw to H.

• Homomorphism is the special case of list homomorphism where L(v) = D

holds for every vertex v ∈ V (G).

• (List) coloring is the special case of (list) homomorphism where an

underlying graph H is complete, that is, C(vw) is a set of all injective mappings

from {v, w} to D (which respect the lists of v and w).

We here note that there exist at least two ways of expressing a constraint C of each

hyperedge X ∈ E(G). The first is assuming an oracle which determines whether a

given mapping f : X → D satisfies C(X) or not. The second is explicitly giving a set

of all mappings from X to D which satisfies C(X). However, we can transform an

instance of the first form into one of the second form in time O∗(kr), where r be the

maximum arity of constraints. This transformation can be done in FPT time with

respect to k+ r and even in polynomial time if r is a constant. Because we will only

consider problems in which r is a constant or k + r is bounded by the parameter,

we assume that an instance is of the second form in this thesis.

We next define a reconfiguration variant of constraint satisfiability, that is,

constraint satisfiability reconfiguration. Let I = (G,D, C) is an instance

of CSR. We now define the solution graph S (I) for I as follows. (See Figure 2.15.)

V (S (I)) is the set of all solutions for I, and two solutions f and f ′ are connected

by an edge if and only if |dif(f, f ′)| = 1. A walk in S (I) is called a reconfiguration

sequence. Two solutions f and f ′ are reconfigurable if and only if there exists a

reconfiguration sequence between them.

An instance of constraint satisfiability reconfiguration (CSR for short)

is a 5-tuple (G,D, C, fs, ft), where (G,D, C) is an instance of constraint satis-

fiability, and fs and ft are two solutions to (G,D, C), called initial and target

2.4 Problems dealt with in this thesis 33

v1 v2 v3 v4

X1 X2

C(X1)

v1 v2 v3

1 1 1

2 1 1

3 1 1

1 1 2

3 3 3

C(X2)

v3 v4

1 2

2 1

3 1

3 2

(a)

1 1 1 2

2 1 1 2 3 1 1 2

1 1 2 1

3 3 3 1 3 3 3 2

f1

f2 f3

f4

f5 f6

(b)

Figure 2.15: (a) An instance I = (G, {1, 2, 3}, C) of constraint satisfiability,

and (b) the solution graph S (I).

solutions, respectively. Then, the problem asks whether fs and ft are reconfigurable

or not. Similarly, for each special case P of constraint satisfiability, we define

“P reconfiguration” as a special case of CSR where (G,D, C) forms an instance

of P. (Recall the abbreviations for the problems introduced in the previous chapter

and see Figure 1.4(a) for relationships between them.)

2.4.4 Other definitions and observations

Let (G,D, C) be an instance of constraint satisfiability. A Boolean vertex

is a vertex v ∈ V (G) with |L(v)| ≤ 2, and a non-Boolean vertex is a vertex v ∈ V (G)

with |L(v)| > 2. Let X and X ′ be hyperedges in E(G) such that |X| = |X ′|. For

a bijection ϕ : X → X ′, we denote by C[ϕ](X) the set {g ◦ ϕ−1 : g ∈ C(X)} ⊆ DX′

of mappings from X ′ to D, where ◦ means the composition of mappings. Intu-

itively, C[ϕ](X) is a “translation” of C(X) into a constraint of X ′ via a bijection

ϕ. For example, assume that C({v1, v2, v3}) contains a mapping g = (1, 2, 3). If

a bijection ϕ : {v1, v2, v3} → {u1, u2, u3} maps v1, v2, v3 to u2, u1, u3, respectively,

34 Chapter 2 Preliminaries

then C[ϕ]({v1, v2, v3}) contains a mapping g′ : {u1, u2, u3} → {1, 2, 3} such that

(g′(u1), g
′(u2), g

′(u3)) = (g◦ϕ−1(u1), g◦ϕ−1(u2), g◦ϕ−1(u3)) = (g(v2), g(v1), g(v3)) =

(2, 1, 3).

Let (G,D, C) be an instance of 2-constraint satisfiability. Without loss of

generality, we assume that G is connected, |V (G)| ≥ 2, and D = {0, 1}. Moreover,

we can assume that G is 2-uniform as follows. If G contains a size-one hyperedge

{v}, there must exist a size-two hyperedge (i.e., an edge) vw ∈ E(G) from the

assumption. Then, we remove {v} from E(G) and replace C(vw) with the set of all

solutions satisfying C({v}) and C(vw). Note that this modification does not change

the set of solutions and the primal graph.

We finally see that there exists the following straightforward exact algorithm.

Theorem 2.1 CSR can be solved in time O∗(kO(n)), and hence CSR is fixed-

parameter tractable when parameterized by k + n and in XP when parameterized

by n, where n is the number of vertices of a given hypergraph.

Proof. Our algorithm explicitly construct the solution graph and then check the

connectivity between two given solutions. The solution graph has at most kn vertices

and can be constructed in time O∗(kO(n)). The connectivity can be checked in

time polynomial in the size of the solution graph by a simple breadth-first search.

Therefore, our algorithm runs in time O∗(kO(n)). 2

Part I

Polynomial-Time Solvability

36 Chapter 3 Coloring Reconfiguration

Chapter 3 Coloring

Reconfiguration

In this chapter, we study the complexity of CR from the viewpoint of graph classes.

3.1 Defenitions and observations

We first introduce another expression of instances of (L)CR. Notice that an

instance of coloring (resp., list coloring) can be uniquely determined by a

graph, and the number of colors (resp., a list). Therefore, we sometimes express an

instance of CR by a 4-tuple (G, k, fs, ft), consisting of a graph G, the number k of

colors, and two k-colorings fs and ft. Similarly, we sometimes express an instance of

LCR by a 4-tuple (G,L, fs, ft), consisting of a graph G, a list L, and two L-colorings

fs and ft. Furthermore, for an integer c ≥ 1, we define c-CR as a special case of

CR where k ≤ c. We express an instance of c-CR by a triple (G, fs, ft).

We next define the notion of “frozen vertices” [4, 60]. Let f be an L-coloring of a

graph G with a list L. A vertex v ∈ V (G) is said to be frozen on f if f ′(v) = f(v)

holds for every L-coloring f ′ of G which is reconfigurable from f . Therefore, v

cannot be recolored in any reconfiguration sequence. Thus, (G,L, fs, ft) is a no-

instance of LCR if fs(v) ̸= ft(v) holds for at least one frozen vertex v on fs or ft.

By the definition, a frozen vertex v on an L-coloring f stays frozen on any L-coloring

which is reconfigurable from f . Generally speaking, it is not easy to characterize

such frozen vertices for a given L-coloring. However, there is a simple sufficient

condition for which a vertex is frozen, as follows. (See Figure 3.1 as an example of

Observation 3.1.)

3.2 PSPACE-completeness on chordal graphs 37

fs ft

{c1 , c2 , c3}

{c1 , c3 , c4} {c1 , c2 , c4}

{c2 , c3}

{c1 , c2}

c2 c3

c1

c4c3

c2 c3

c1

c2c4

G , L

Figure 3.1: Example for frozen vertices: The upper three vertices are frozen on fs
and ft because they form a clique of size three, and their lists contain only three

colors in total.

Observation 3.1 Let G be a graph with a list L, and assume that G contains a

clique VQ of size q. If |
∪

v∈VQ
L(v)| = q, then all vertices v ∈ VQ are frozen on any

L-coloring of G.

3.2 PSPACE-completeness on chordal graphs

A graph is chordal if it contains no induced cycle of length at least four. In this

section, we prove the following theorem.

Theorem 3.1 There exists a fixed constant k′ such that k-CR is PSPACE-complete

for chordal graphs and every k ≥ k′.

It is known that k-CR belongs to PSPACE [4]. Therefore, as a proof of Theo-

rem 3.1, we show that there exists a fixed constant k′ such that k-CR is PSPACE-

hard for chordal graphs and any k ≥ k′, by giving a polynomial-time reduction from

LCR [60].

3.2.1 First step of the reduction

Wrochna [60, Theorem 4.3] proved that there exist two constants a and b such

that LCR remains PSPACE-complete even when an input instance (H,L, gs, gt)

satisfies the following four conditions (a)–(d) (see also Fig. 3.2):

38 Chapter 3 Coloring Reconfiguration

x
1

y
1

1

y
1

2

y
1

b

x
2

y
2

1

y
2

2

y
2

b

x
3

xn

Figure 3.2: Graph H.

(a) H = (X ∪ Y,E) is a bipartite graph whose bipartition is X and Y such that

• X = {x1, x2, . . . , x|X|};

• Y = {yji : 1 ≤ i ≤ |X| − 1, 1 ≤ j ≤ a}; and

• E = {xiy
j
i , yjixi+1 : 1 ≤ i ≤ |X| − 1, 1 ≤ j ≤ a};

(b) the list L(v) of each vertex v ∈ V (H) is a subset of the color set C1 ∪ C2 such

that C1 ∩ C2 = ∅ and |C1| = |C2| = b;

(c) L(xi) = C1 if i is odd, L(xi) = C2 otherwise; and

(d) L(y) ⊆ C1 ∪ C2 for all y ∈ Y .

The graph H above can be modified to an interval graph (and hence a chordal

graph) H ′ by adding an edge xixi+1 for each i ∈ {1, 2, . . . , |X| − 1}. This modifica-

tion does not affect the existence and the reconfigurability of L-colorings, because

any two vertices xi and xi+1 joined by the new edge have disjoint lists C1 and C2. We

note in passing that this modification gives the following theorem. For an integer

d ≥ 0, a graph G is d-degenerate if every subgraph G′ of G has at least one vertex v

such that deg(G′, v) ≤ d. Note that the interval graph H ′ is 2-degenerate, because

each vertex in Y is of degree two in H ′.

Theorem 3.2 LCR is PSPACE-complete for 2-degenerate interval graphs.

3.2 PSPACE-completeness on chordal graphs 39

(a) H , L, gs (b) G, fs’

{c1 , c2 , c3}

{c3 , c4}

{c2 , c3}{c1 , c4}

c1
c1

c2

c4 c3

c1 c2

c4c4 c3

c3

c1 c2

c4 c3

c1 c2

c4 c3

c2

Figure 3.3: (a) A graph H ′, a list L and an L-coloring gs, and (b) a constructed

graph G and k-coloring fs.

3.2.2 Reduction

We then construct an instance (G, fs, ft) of k-CR from the instance (H ′, L, gs, gt)

above of LCR, as follows.

Let k′ = |C1 ∪ C2| = |
∪

u∈V (H′) L(u)| = 2b and let k be any integer at least k′.

For each vertex u ∈ V (H ′), we introduce a complete graph Wu of k vertices, which

is called a frozen clique gadget. (See Figure 7.1 as an example, where k = 4.) The

vertices in Wu are labeled as wu
1 , w

u
2 , . . . , w

u
k , and each vertex wu

i corresponds to the

color ci for each i ∈ {1, 2, . . . , k}. We denote by W the set of all vertices in frozen

clique gadgets, that is, W =
∪

u∈V (H′) V (Wu).

We next add an edge between u ∈ V (H ′) and wu
i ∈ V (Wu) if L(u) does not

contain color ci. The constructed graph G is chordal, because the addition of frozen

clique gadgets does not produce any induced cycle of length at least four.

Finally, we define fs and ft, as follows:

fs(v) =

{
ci if v = wu

i ∈ V (Wu) for some u ∈ V (H ′);

gs(v) otherwise,

and

ft(v) =

{
ci if v = wu

i ∈ V (Wu) for some u ∈ V (H ′);

gt(v) otherwise.

40 Chapter 3 Coloring Reconfiguration

Therefore, we have fs(v) = ft(v) for all vertices v ∈ W . From the construction, we

note that both fs and ft are proper k-colorings of G.

This completes our construction of the corresponding instance (G, fs, ft) of k-CR.

This construction can be done in polynomial time.

3.2.3 Correctness of the reduction

We note that all vertices in W are frozen on both fs and ft, because each frozen

clique gadget Wu is a clique in G of size |V (Wu)| = k. Therefore, we can recolor

vertices only in V (H ′) = V (G) \W . In addition, we can use colors only in L(u) for

each vertex u ∈ V (H ′); recall the construction with noting that fs(v) = ft(v) for

all vertices v ∈ W . Thus, (H ′, L, gs, gt) is a yes-instance of LCR if and only if the

corresponding instance (G, fs, ft) of k-CR is a yes-instance.

This completes our proof of Theorem 3.1.

3.3 Polynomial-time solvable cases

In this section, we demonstrate that CR can be solved in polynomial time for

some graph classes, even when the number k of colors is a part of input.

We start with noting the polynomial-time solvability for 2-degenerate graphs,

which can be obtained straightforwardly by combining two known results. The class

of 2-degenerate graphs properly contains graphs with treewidth at most two, and

hence trees, cacti, outerplanar graphs, and series-parallel graphs. We note that one

can check in linear time if a given graph is 2-degenerate [45].

Theorem 3.3 CR can be solved in O(n2) time for 2-degenerate graphs, where n is

the number of vertices in an input graph.

Proof. Let (G, k, fs, ft) be an instance for CR. Bonsma and Cereceda [4, Theo-

rem 11] proved that it is a yes-instance if G is d-degenerate and k ≥ d+2. Therefore,

3.3 Polynomial-time solvable cases 41

for 2-degenerate graphs, the answer is always yes if k ≥ 2 + 2 = 4. On the other

hand, Cereceda et al. [17, Theorem 1] gave an O(nm)-time algorithm to solve CR

for any graph G if k ≤ 3, where n and m are the numbers of vertices and edges in G,

respectively. For a 2-degenerate graph G, we have m < 2n and hence the theorem

follows. 2

In contrast to the polynomial-time solvability for 2-degenerate graphs even when

k is a part of input, the reduction given by Bonsma and Cereceda [4, Theorem 3]

indeed shows the following theorem.

Theorem 3.4 ([4]) 4-CR is PSPACE-complete for 3-degenerate planar graphs.

3.3.1 q-trees

In Subsections 3.3.1–3.3.3, we consider subclasses of chordal graphs such as q-trees

with any integer q ≥ 11, split graphs, and trivially perfect graphs. The following

sufficient condition for yes-instances on chordal graphs will play an important role

in those subsections.

Lemma 3.1 ([2, Theorems 2 and 6]) Let (G, k, fs, ft) be an instance of CR

such that G is a chordal graph. If ω(G) ≤ k − 1, then it is a yes-instance. Further-

more, there is a reconfiguration sequence between fs and ft whose length is at most

2|V (G)|2.

In this subsection, we consider q-trees. For an integer q ≥ 1, a q-tree is recursively

defined, as follows:

(1) a complete graph consisting of q vertices is a q-tree; and

(2) if G′ is a q-tree and Q ⊆ V (G′) is a clique of size q, then the graph G such

that V (G) = V (G′)∪{v} and E(G) = E(G′)∪{vw : w ∈ Q} is a q-tree, where

v is a new vertex.

1We note that q-trees are usually called k-trees, but we denote by k the number of
colors in this thesis:.

42 Chapter 3 Coloring Reconfiguration

Notice that a q-tree has at least q vertices. From the definition, we have the following

proposition.

Proposition 3.1 Let G be a q-tree. Then,

(i) ω(G) = q if |V (G)| = q, and ω(G) = q + 1 otherwise; and

(ii) every vertex of G is contained in a maximum clique of G.

We are now ready to give our result, as follows.

Theorem 3.5 For any integer q ≥ 1, CR can be solved in linear time for q-trees.

Furthermore, if (G, k, fs, ft) is a yes-instance, there is a reconfiguration sequence

whose length is at most 2|V (G)|2.

Proof. We give such a linear-time algorithm for q-trees. Let I = (G, k, fs, ft) be a

given instance of CR such that G is a q-tree. We first compute the value of ω(G)

by Proposition 3.1, which can be done in linear time.

Consider the case where ω(G) ≤ k− 1. Since G is a q-tree and hence is a chordal

graph, Lemma 3.1 implies that I is a yes-instance and there is a reconfiguration

sequence whose length is at most 2|V (G)|2.

On the other hand, consider the remaining case, that is, ω(G) = k holds by

Observation 2.1. In this case, Proposition 3.1 and Observation 3.1 imply that every

vertex in G is frozen on both fs and ft. Therefore, I is a yes-instance if and only if

fs = ft; this can be checked in linear time. 2

We note that the quadratic upper bound on the length of a reconfiguration se-

quence given in Theorem 3.5 is asymptotically tight. More precisely, Bonamy et

al. [2] gave an infinite family of yes-instances (G, k, fs, ft) such that G is a q-tree

and the shortest length of a reconfiguration sequence is Ω(|V (G)|2) for each integer

q ≥ 1.

3.3 Polynomial-time solvable cases 43

VQVI

Figure 3.4: An example of a split graph, whose vertex set can be partitioned into a

clique VQ and an independent set VI .

3.3.2 Split graphs

In this subsection, we consider split graphs. Recall that a graph is split if its

vertex set can be partitioned into a clique and an independent set. (See Figure 3.4

as an example.)

Theorem 3.6 CR can be solved in linear time for split graphs. Furthermore, if

(G, k, fs, ft) is a yes-instance, there is a reconfiguration sequence whose length is at

most 2|V (G)|2.

Proof. We give such a linear-time algorithm for split graphs. Let I = (G, k, fs, ft)

be a given instance of CR such that G is split. We first obtain a partition of V (G)

into a clique VQ and an independent set VI such that VQ has the maximum size

ω(G). Such a partition can be obtained in linear time [31]. By Observation 2.1, we

have |VQ| = ω(G) ≤ k. Therefore, there are two cases to consider.

Case 1: |VQ| < k.

In this case, |VQ| = ω(G) ≤ k − 1 holds. Since G is split and hence is a chordal

graph, Lemma 3.1 implies that I is a yes-instance and there is a reconfiguration

sequence whose length is at most 2|V (G)|2.

Case 2: |VQ| = k.

44 Chapter 3 Coloring Reconfiguration

v1

v1 v2

v3 v4

v5 v6

v7

v2

v3 v6

v4

v7

v5

(a) (b)

Figure 3.5: (a) A trivially perfect graph, and (b) its corresponding cotree.

In this case, every vertex in VQ is frozen on both fs and ft. Thus, I is a no-

instance if there exists a vertex u ∈ VQ such that fs(u) ̸= ft(u). Otherwise, because

VI is an independent set and both fs and ft are proper k-colorings of G, we can

directly recolor each vertex w ∈ VI from fs(w) to ft(w); which implies that I is a

yes-instance and the length of a reconfiguration sequence is at most |VI | ≤ 2|V (G)|2.

We finally estimate the running time of our algorithm. We can obtain desired

subsets VQ and VI in linear time [31]. Then, the algorithm simply checks if |VQ| < k,

and if fs(u) = ft(u) holds for every vertex u ∈ VQ. Therefore, our algorithm runs in

linear time. 2

3.3.3 Trivially perfect graphs

In this subsection, we consider trivially perfect graphs. The class of trivially

perfect graphs has many characterizations. We here give its recursive definition.

For two vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), their union G1∪G2

is the graph such that V (G1 ∪ G2) = V1 ∪ V2 and E(G1 ∪ G2) = E1 ∪ E2, while

their join G1 ∨G2 is the graph such that V (G1 ∨G2) = V1 ∪ V2 and E(G1 ∨G2) =

E1 ∪ E2 ∪ {vw : v ∈ V1, w ∈ V2}. Then, a trivially perfect graph can be recursively

3.3 Polynomial-time solvable cases 45

defined, as follows:

(1) a graph consisting of a single vertex is a trivially perfect graph;

(2) if G1 and G2 are trivially perfect graphs, then their union G1∪G2 is a trivially

perfect graph; and

(3) if G1 and G2 are trivially perfect graphs such that G2 consists of a single vertex

u, then their join G1 ∨G2 is a trivially perfect graph.

Notice that, by the join operation (3) above, the single vertex u in G2 becomes a

universal vertex in G1 ∨G2.

Theorem 3.7 CR can be solved in linear time for trivially perfect graphs. Fur-

thermore, if (G, k, fs, ft) is a yes-instance, there is a reconfiguration sequence whose

length is at most 2|V (G)|2.

Proof. We give such a linear-time algorithm for trivially perfect graphs. Since any

trivially perfect graph G is a cograph, we can represent G by a binary tree, called

a cotree, which can be naturally obtained from the recursive definition of trivially

perfect graphs (see Figure 3.5 as an example): a cotree T = (VT , ET) of a trivially

perfect graph G is a binary tree such that each leaf of T corresponds to a single

vertex in G, and each internal node of T has exactly two children and is labeled with

either union ∪ or join ∨; notice that, for each join node in T , one of the two children

must be a leaf of T . Such a cotree of G can be constructed in linear time [46]. Each

node i ∈ VT corresponds to a subgraph Gi of G which is induced by all vertices

corresponding to the leaves of T that are the descendants of i in T . Clearly, G0 = G

for the root 0 of T .

We note that the maximum clique sizes ω(Gi) for all i ∈ VT can be computed in

linear time, by a bottom-up computation according to the cotree T , as follows:

ω(Gi) = 1

46 Chapter 3 Coloring Reconfiguration

if i is a leaf of T ;

ω(Gi) = max{ω(Gx), ω(Gy)}

if i is a union node with children x and y; and

ω(Gi) = ω(Gx) + 1

if i is a join node with children x and y such that y is a leaf of T . Therefore,

we assume without loss of generality that we are given a trivially perfect graph G

together with its cotree T = (VT , ET) such that the maximum clique size ω(Gi) is

associated to each node i ∈ VT .

Let I = (G, k, fs, ft) be a given instance of CR such that G is a trivially perfect

graph. For each node i ∈ VT and a k-coloring f of G, we denote by f i the k-coloring

of the subgraph Gi such that f i(v) = f(v) holds for every v ∈ V (Gi). We propose

the following algorithm to solve the problem, and will prove its correctness.

Input: An instance I = (G, k, fs, ft) of CR such that G is a trivially perfect

graph

Output: yes/no as the answer to I

Step 1. If |V (G)| = 1 or ω(G) < k, then return yes.

Step 2. In this step, G has more than one vertex, and hence the root of the cotree

T is either a union node or a join node. Let x and y be two children of

the root of T . Then, we execute either (a) or (b):

Case (a): The root is a union node.

Return yes if both (Gx, k, f
x
s , f

x
t) and (Gy, k, f

y
s , f

y
t) are yes-

instances; otherwise return no.

Case (b): The root is a join node.

Assume that Gy consists of a single vertex u. Return no

if fs(u) ̸= ft(u); otherwise return the answer to (Gx, k −

1, fx
s , f

x
t).

3.3 Polynomial-time solvable cases 47

We first verify the correctness of Step 1. If |V (G)| = 1, then we can directly recolor

the vertex w in G from fs(w) to ft(w); thus, I is a yes-instance. If ω(G) < k, then

Lemma 3.1 yields that I is a yes-instance because G is a trivially perfect graph and

hence is a chordal graph. Thus, Step 1 correctly returns yes.

We then verify the correctness of Step 2(a). This step is executed when the root of

T is a union node. Then, there is no edge between Gx and Gy. Therefore, it suffices

to solve each of (Gx, k, f
x
s , f

x
t) and (Gy, k, f

y
s , f

y
t), and combine their answers. Thus,

Step 2(a) works correctly.

We finally verify the correctness of Step 2(b). This step is executed when the root

of T is a join node. In addition, ω(G) = k holds because we execute this step after

Step 1. Since u ∈ V (Gy) becomes a universal vertex in G = Gx∨Gy, it is contained in

any maximum clique in G. Since ω(G) = k holds, u is frozen on both fs and ft. Thus,

I is a no-instance if fs(u) ̸= ft(u) holds. On the other hand, if fs(u) = ft(u) holds,

then no vertex in V (G) \ {u} can use the color fs(u) = ft(u) in any reconfiguration

sequence, because u is a universal vertex in G and is frozen on both fs and ft.

Therefore, (G, k, fs, ft) is a yes-instance if and only if (Gx, k − 1, fx
s , f

x
t) is a yes-

instance. Thus, Step 2(b) works correctly.

Although the algorithm above is written as a recursive function, it can be im-

plemented so as to run in linear time, as follows: we first traverse the cotree T of

a given (whole) trivially perfect graph G from the root to leaves, and assign the

sub-instance to each node i ∈ VT ; we then solve the sub-instances from leaves to the

root of T by combining their children’s answers.

Finally, we show that there is a reconfiguration sequence whose length is at most

2|V (G)|2 for a yes-instance (G, k, fs, ft), by the induction on |V (G)|. If |V (G)| = 1,

then the claim clearly holds. Otherwise we consider the following three cases accord-

ing to the steps of our algorithm. If the algorithm returns yes in Step 1, Lemma 3.1

guarantees the existence of such a reconfiguration sequence. If the algorithm returns

48 Chapter 3 Coloring Reconfiguration

yes in Step 2(a), Ix = (Gx, k, f
x
s , f

x
t) and Iy = (Gy, k, f

y
s , f

y
t) are both yes-instances.

Then, by the induction hypothesis, both Ix and Iy admit reconfiguration sequences

whose lengths are at most 2|V (Gx)|2 and 2|V (Gy)|2, respectively. By combining

these two reconfiguration sequences serially, we obtain a reconfiguration sequence

for I whose length is at most 2|V (Gx)|2 + 2|V (Gy)|2 ≤ 2|V (G)|2. Finally, if the

algorithm returns yes in Step 2(b), Ix = (Gx, k, f
x
s , f

x
t) is a yes-instance; and hence

there is a reconfiguration sequence for Ix whose length is at most 2|V (Gx)|2 by the

induction hypothesis. This implies that there is a reconfiguration sequence for I

whose length is at most 2|V (Gx)|2 ≤ 2|V (G)|2.

This completes our proof of Theorem 3.7. 2

49

Chapter 4 List Coloring

Reconfiguration

In this chapter, we study the complexity of LCR.

4.1 PSPACE-completeness

In this section, we show the following theorem.

Theorem 4.1 LCR is PSPACE-complete even for threshold graphs.

Proof. Let I = (H,L, gs, gt) be an instance of LCR which satisfies the conditions

(a)-(d) in Section 3.2.1. Our goal is to transform I into another instance in which a

graph is threshold, without changing the reconfigurability. By introducing new color

sets C3, C4, . . . , C|X| and replacing colors in the lists and the given two L-colorings,

we can first obtain an equivalent instance (H,L′, g′s, g
′
t) which satisfies the following

two conditions:

• for each xi ∈ X, L′(xi) = Ci holds, where C1, C2, . . . , C|X| are pairwise disjoint;

• for each yji ∈ Y , L′(yi) ⊆ Ci ∪ Ci+1 holds.

We then add edges to obtain a threshold graph as follows. Let E ′ = E(H)∪ (X2)∪

(X × Y), and let H ′ = (V (H), E ′). Observe that the lists of two endpoints of every

added edge vw ∈ E ′ \E(H) have no common colors, and hence this transformation

does not affect the existence of L-colorings. Moreover, H ′ is threshold; set the

threshold s = 1, and the mapping ω(x) = 1 for each x ∈ X and ω(y) = 0 for each

y ∈ Y . Thus, this completes the proof. 2

50 Chapter 4 List Coloring Reconfiguration

v
1

v
2

v
3

v
5
v
6

v
8

v
9

v
4

v
7

v
10

G
8

Figure 4.1: A caterpillar G and its vertex ordering, where the subgraph surrounded

by a dotted rectangle corresponds to G8.

Recall that any threshold graph is also a split graph, and observe that the graph

H ′ constructed in the above proof is indeed a |X|-tree and a trivially perfect graph.

Therefore, Theorems 3.5, 3.6 and 3.7 in the previous chapter is unlikely to be ex-

tended to LCR. On the other hand, as we will show in Part II, LCR becomes

tractable for threshold graphs (i.e., split cographs) when parameterized by k.

4.2 A polynomial-time algorithm for graphs with

pathwidth one

In contrast to the PSPACE-completeness of LCR for graphs with pathwidth

two [60], we give a polynomial-time algorithm for graphs with pathwidth one.

Theorem 4.2 LCR can be solved in polynomial time for graphs with pathwidth one.

As a proof of Theorem 4.2, we give such an algorithm. Since every connected

graph of pathwidth one is a caterpillar [53], it suffices to develop a polynomial-time

algorithm for caterpillars.

A caterpillar G is a tree whose vertex set V (G) can be partitioned into two subset

VS and VL such that G[VS] forms a path and each vertex in VL is adjacent with exactly

one vertex in VS. We may assume without loss of generality that the two endpoints

of the path G[VS] are of degree one in G. (See v1 and v10 in Figure 4.1.) We call

each vertex in VS a spine vertex of G, and each vertex in VL a leaf of G.

4.2 A polynomial-time algorithm for graphs with pathwidth one 51

We assume that all vertices in G are ordered as v1, v2, . . . , vn by the breadth-

first search starting with the endpoint (degree-1 vertex) of the path G[VS] with the

priority to leaves; that is, when we visit a spine vertex v, we first visit all leaves of

v and then visit the unvisited spine vertex. (See Figure 4.1 for example.) For each

index i ∈ {1, 2, . . . , n}, we let Vi = {v1, v2, . . . , vi} and Gi = G[Vi]. Then, clearly

Gn = G. For each index i ∈ {1, 2, . . . , n}, let sp(i) be the latest spine vertex in

Vi, that is, sp(i) = vi if vi is a spine vertex, otherwise sp(i) is the unique neighbor

of vi. Then, vi is adjacent with only the spine vertex sp(i − 1) in Gi for each

i ∈ {2, 3, . . . , n}.

We first define the reconfiguration graph RL
G for a graph G with a list L, which

is essentially equivalent to the solution graph, as follows. (See Figure 4.2 for an

example.) The vertex set of RL
G is the set of all L-colorings of G. We call each

vertex of RL
G a node in order to distinguish it from a vertex of G. Then, two nodes

(i.e., L-colorings of G) f and f ′ of RL
G are joined by an (undirected) edge if and only

if dif(f, f ′) contains exactly one vertex v ∈ V , that is, f ′ can be obtained from f by

changing the color assignment of a single vertex v.

We next prove that the size of each list can be restricted without loss of generality.

Note that the following lemma holds for any graph.

Lemma 4.1 For an instance (G′, L′, f ′
s, f

′
t), one can obtain another instance

(G,L, fs, ft) in polynomial time such that 2 ≤ |L(v)| ≤ d(G, v) + 1 for each ver-

tex v ∈ V (G), and (G′, L′, f ′
s, f

′
t) is a yes-instance if and only if (G,L, fs, ft) is a

yes-instance.

Proof. If |L(v)| = 1 for a vertex v ∈ V (G′), then any L-coloring of G′ assigns the

same color c ∈ L(v) to v. Therefore, c is never assigned to any neighbor u of v. We

can thus delete v from G′ and set L(u) := L(u) \ {c} for all neighbors u of v in G′.

Clearly, this modification does not affect the reconfigurability (i.e., the existence or

non-existence of a path in the reconfiguration graph).

52 Chapter 4 List Coloring Reconfiguration

{c1 , c2 , c3}{c1 , c2}

c1 c2 c1c2 c3

c1 c2 c1c4 c3

c1 c2 c4c2 c3

c1 c2 c4c4 c3

c2 c1 c4c4 c2

c2 c3 c4c4 c2

c1 c3 c4c4 c2

c2 c3 c1c4 c2

c1 c3 c1c4 c2

c2 c1 c4c4 c3

{c2 , c3}{c2 , c4}

{c1 , c4}

f1 f2

f5 f6f3 f4

f9 f10f7 f8

(a) G , L

L(b) RG

Figure 4.2: (a) A graph G and a list L, and (b) the reconfiguration graph RL
G.

If |L(v)| ≥ d(G, v) + 2 for a vertex v ∈ V (G′), we simply delete v from G′ without

any modification of lists; let G be the resulting graph. Let f be any L-coloring of G,

and consider a recoloring step for a neighbor u of v from the current color c = f(u)

to another color c′. We claim that this recoloring step can be simulated in G′, as

follows. If c′ is not assigned to v in G′, we can directly recolor u from c to c′. Thus,

suppose that c′ is assigned to v in G′. Then, since |L(v)| ≥ d(G, v) + 2, there is

at least one color c∗ ∈ L(v) which is not c′ and is not assigned to any of d(G, v)

neighbors of v. Therefore, we first recolor v from c′ to c∗, and then recolor u from

c to c′. In this way, any recoloring step in G can be simulated in G′, and hence the

modification does not affect the reconfigurability.

Thus, we can obtain an instance such that 2 ≤ |L(v)| ≤ d(G, v) + 1 holds for each

vertex v without affecting the reconfigurability. Clearly, the modified instance can

be constructed in polynomial time. 2

Therefore, in the remainder of this chapter, we assume that G is a (connected)

caterpillar and 2 ≤ |L(v)| ≤ d(G, v) + 1 holds for every vertex v ∈ V (G). In

4.2 A polynomial-time algorithm for graphs with pathwidth one 53

particular, |L(v)| = 2 for every leaf v of G.

4.2.1 Idea and definitions

The main idea of our algorithm is to extend techniques developed for short-

est path reconfiguration [3], and apply them to LCR for caterpillars. Our

algorithm employs a dynamic programming method based on the vertex ordering

v1, v2, . . . , vn of G.

For each i ∈ {1, 2, . . . , n}, let RL
Gi

be the reconfiguration graph for the subgraph Gi

and the list L. Then, RL
Gi

contains all L-colorings of Gi as its nodes. Our algorithm

efficiently constructs RL
Gi

for each i = 1, 2, . . . , n, in this order. However, of course,

the number of nodes in RL
Gi

cannot be bounded by a polynomial in the input size

in general. We thus use the property that the vertex vi+1 (will be added to Gi) is

adjacent with only the spine vertex sp(i) in Gi+1; and we “encode” the reconfigura-

tion graph RL
Gi

into a polynomial sized graph, while keeping the information of (1)

the color assigned to sp(i) and (2) the connectivity of nodes in RL
Gi

.

Before explaining the encoding methods, we first note that it suffices to focus on

only one connected component in RL
Gi

which contains the restriction of fs, where the

restriction of an L-coloring f of a graph G to a subgraph G′ is an L-coloring g of G′

such that g(v) = f(v) holds for all vertices v ∈ V (G′). For notational convenience,

we denote by f [Vi] the restriction of an L-coloring f of a caterpillar G to its subgraph

Gi = (Vi, Ei), that is, f [Vi] = f |Vi
. Then, we have the following lemma.

Lemma 4.2 Let g be an L-coloring of Gi such that fs[Vi] and g are contained in

the same connected component in RL
Gi
. Then, for each j ∈ {1, 2, . . . , i − 1}, fs[Vj]

and g[Vj] are contained in the same connected component in RL
Gj
.

Proof. Assume that fs[Vi] and g are contained in the same connected component

in RL
Gi

. Then, there exists a path in RL
Gi

between fs[Vi] and g. We contract all edges

54 Chapter 4 List Coloring Reconfiguration

in the path that correspond to recoloring vertices in Vi \ Vj. Since each edge in the

resulting path corresponds to recoloring only one vertex in Vj, the resulting path

must be contained as a path in RL
Gj

between fs[Vj] and g[Vj]. Therefore fs[Vj] and

g[Vj] are contained in the same connected component in RL
Gj

, and hence the lemma

follows. 2

From now on, we thus focus on only the connected component of RL
Gi

which

contains fs[Vi]. Since the list is fixed to be L in the remainder of this section,

we simply denote by Ri the reconfiguration graph RL
Gi

, and by Rs
i the connected

component of Ri = RL
Gi

containing fs[Vi].

Encoding graph

We now partition the nodes of Rs
i into several subsets with respect to (1) the color

assigned to sp(i), and (2) the connectivity of nodes in Rs
i . For two nodes g and g′ of Rs

i

with g(sp(i)) = g′(sp(i)), we write g ∼sp(i) g
′ if Rs

i has a path ⟨g1, g2, . . . , gℓ⟩ such that

g1 = g, gℓ = g′, and gj(sp(i)) = g(sp(i)) = g′(sp(i)) holds for every j ∈ {1, 2, . . . , ℓ},

that is, g can be reconfigured into g′ without recoloring the vertex sp(i). Since the

adjacency relation on L-colorings is symmetric (i.e., Ri is an undirected graph), it

is easy to see that ∼sp(i) is an equivalence relation. Thus, the node set of Rs
i can

be uniquely partitioned by the relation ∼sp(i). We denote by Gs
i the partition of the

node set of Rs
i into equivalence classes with respect to ∼sp(i).

We finally define our dynamic programming table. For each subgraph Gi,

i ∈ {1, 2, . . . , n}, our algorithm keeps track of four pieces of information

(Hi, coli, inii, tari), defined as follows.

• The encoding graph Hi of Rs
i : This graph Hi can be obtained from Rs

i by

contracting each node set in Gs
i into a single node. (See Figure 4.3 as an

example.) We will refer to an e-node of Hi in order to distinguish it from a

4.2 A polynomial-time algorithm for graphs with pathwidth one 55

R
4

R
4

0

v1 v2 v3 sp(4) = v4

c1 c2

c2

c3

c1 c2 c3

c4 c1

c1

c2

c2

c3

c3

c1c2 c3

c4 c1c2 c2 c4

c2 c2 c4c3 c2 c4

{c1 , c2} {c2 , c3}{c1 , c2 , c3} {c2 , c4}

(a) G , L

(b) R
4

(c) H
4

fs

ini
4
(x) = 1

ft

tar
4
(x) = 0

col
4
(x) = c

4

ini
4
(y) = 0

tar
4
(y) = 1

col
4
(y) = c

2

x

y

Figure 4.3: (a) A caterpillar G = G4, (b) the reconfiguration graph R4 consisting of

all L-colorings of G, and (c) the encoding graph H4 of Rs
4 consisting of two e-nodes x

and y, where each L-coloring in (b) is represented as the sequence of colors assigned

to the vertices in G from left to right.

node of Rs
i . (Thus, each node refers to an L-coloring of Gi, and each e-node

refers to a set of L-colorings of Gi.) For each e-node x ∈ V (Hi), we denote by

Φi(x) the set of all nodes in Rs
i that were contracted into x. (Note that we do

not compute Φi(x), but use it only for definitions and proofs.)

• The color coli(x) ∈ L(sp(i)) for each e-node x ∈ V (Hi): This color coli(x) is

assigned to sp(i) in common by the nodes (i.e., L-colorings of Gi) in Φi(x).

• The label inii(x) ∈ {0, 1} for each e-node x ∈ V (Hi): inii(x) = 1 if fs[Vi] ∈

Φi(x), otherwise inii(x) = 0.

• The label tari(x) ∈ {0, 1} for each e-node x ∈ V (Hi): tari(x) = 1 if ft[Vi] ∈

Φi(x), otherwise tari(x) = 0.

To prove Theorem 4.2, we give a polynomial-time algorithm which computes

(Hi, coli, inii, tari) for each subgraph Gi, i ∈ {1, 2, . . . , n}, by means of dynamic

programming. Then, the problem can be solved as in the following lemma.

56 Chapter 4 List Coloring Reconfiguration

Lemma 4.3 (G,L, fs, ft) is a yes-instance if and only if the encoding graph Hn

contains a node x such that tarn(x) = 1.

Proof. Since Hn contains a node x such that tarn(x) = 1, we have ft[Vn] = ft ∈

Φn(x). Recall that Hn is the encoding graph of Rs
n which contains the L-coloring fs

of G as a node. Since Φn(x) ⊆ V (Rs
n), the lemma follows. 2

4.2.2 Algorithm

As the initialization, we first consider the case where i = 1, that is, we compute

(H1, col1, ini1, tar1). (See Figure 4.5(d) as an example.) Note that G1 consists of a

single vertex v1, and recall that v1 is a spine vertex of degree one. By Lemma 4.1

we have |L(v1)| = 2. Therefore, the reconfiguration graph R1 is a complete graph

on |L(v1)| = 2 nodes such that each node corresponds to an L-coloring of G1 which

assigns a distinct color to the vertex sp(1) = v1. Since R1 is complete and contains

the node fs[V1], we have Rs
1 = R1. Furthermore, H1 = Rs

1 since all nodes in Rs
1 assign

distinct colors in L(v1) to sp(1) = v1. Then, for each e-node x of H1 corresponding

to the set of a single L-coloring g of G1, we set

col1(x) = g(v1);

ini1(x) =

{
1 if g(v1) = fs(v1),

0 otherwise;

and

tar1(x) =

{
1 if g(v1) = ft(v1),

0 otherwise.

For i ≥ 2, suppose that we have already computed (Hi−1, coli−1, inii−1, tari−1).

Then, we compute (Hi, coli, inii, tari), as follows.

Case (A): vi is a leaf in VL. (See Figs. 4.4(a) and 4.5(g).)

4.2 A polynomial-time algorithm for graphs with pathwidth one 57

viGi-1

sp(i-1) = sp(i)

v
i
= sp(i)

Gi-1

sp(i-1)

(a) (b)

Figure 4.4: The graph Gi for (a) vi ∈ VL and (b) vi ∈ VS.

By Lemma 4.1 we have |L(vi)| = 2 in this case; let L(vi) = {c1, c2}. Recall that vi

is adjacent with only the spine vertex sp(i−1) in Gi. Furthermore, sp(i) = sp(i−1)

in this case.

Let Hc1
i−1 be the subgraph of Hi−1 obtained by deleting all e-nodes y in Hi−1 with

coli−1(y) = c1. Then, Hc1
i−1 encodes all nodes of Rs

i−1 that do not assign the color

c1 to sp(i − 1). Thus, we can extend each L-coloring h of Gi−1 encoded in Hc1
i−1 to

an L-coloring g of Gi such that g(vi) = c1 and g(v) = h(v) for all vertices v ∈ Vi−1.

Similarly, let Hc2
i−1 be the subgraph of Hi−1 obtained by deleting all e-nodes z in

Hi−1 with coli−1(z) = c2.

We define an encoding graph Ĥ ′
i as V (Ĥ ′

i) = V (Hc1
i−1) ∪ V (Hc2

i−1) and E(Ĥ ′
i) =

E(Hc1
i−1) ∪ E(Hc2

i−1). In other words, Ĥ ′
i can be obtained from Hi−1 by deleting all

edges yz ∈ E(Hi−1) such that coli−1(y) = c1 and coli−1(z) = c2. Let Ĥi be the

connected component of Ĥ ′
i that contains the e-node x such that inii−1(x) = 1. For

each e-node x in Ĥi, let ĉoli(x) = coli−1(x), ̂inii(x) = inii−1(x) and t̂ari(x) = tari−1(x).

Then, we have the following lemma, whose proof will be given in Section 4.2.3.

Lemma 4.4 For a leaf vi ∈ VL, (Hi, coli, inii, tari) = (Ĥi, ĉoli, ̂inii, t̂ari).
Case (B): vi is a spine vertex in VS. (See Figs. 4.4(b) and 4.5(e), (f), (h).)

In this case, notice that sp(i) = vi in Gi, and hence we need to update coli

according to the color assigned to vi.

We first define an encoding graph Ĥ ′
i, as follows. For a color c ∈ L(vi), let Hc

i−1 be

the subgraph of Hi−1 obtained by deleting all e-nodes y in Hi−1 with coli−1(y) = c.

58 Chapter 4 List Coloring Reconfiguration

c4 c2

c2

c3 c4 c3 c4

c1

c2 c4

v1 v2

v4

v3 v5

(b) fs [V5
] (c) ft [V5

]

{c2 , c3 , c4}{c3 , c4}

{c1 , c2}

{c1 , c2 , c3} {c2 , c3, c4}

(a) G
5
 , L

c3 c3

c3c1

c2

c2

c4

c2

tar

ini
ini

tar

H5

^ ’ H5 H5

^
H5= =H4

^ ’

H4

^
H4=

Case (A) Case (B)

c3

c3

c3

c1

c2

c2 c2

ini
ini tar

tar

tar ini

c4

c4

H2

^ ’ H2

^
H2= = H3

^ ’ H3

^
H3= =(d) H1

Case (B) Case (B)

(e) (f)

(g) (h)

sp(2) = v2 sp(3) = v3

sp(4) = v3 sp(5) = v5

Figure 4.5: Application of our algorithm to the instance depicted in (a)–(c). In (d)–

(h), coli(x) ∈ L(sp(i)) is attached to each e-node x, and the e-nodes x with inii(x) = 1

and tari(x) = 1 have the labels “ini” and “tar,” respectively. Furthermore, in (e), (f)

and (h), the small graph contained in each e-node x of Hi represents the subgraph

of Hi−1 induced by EN(x).

For each connected component in Hc
i−1, we introduce a new e-node x to Ĥ ′

i such

that ĉoli(x) = c; we denote by EN(x) the set of all e-nodes in Hc
i−1 that correspond

to x. We apply this operation to all colors in L(vi). We then add edges to Ĥ ′
i: two

e-nodes x and y in Ĥ ′
i are joined by an edge if and only if EN(x) ∩ EN(y) ≠ ∅.

We now define ̂inii(x) and t̂ari(x) for each e-node x in Ĥ ′
i, as follows:

̂inii(x) =


1 if ĉoli(x) = fs(vi) and

EN(x) contains an e-node z

with inii−1(z) = 1;

0 otherwise,

4.2 A polynomial-time algorithm for graphs with pathwidth one 59

and

t̂ari(x) =


1 if ĉoli(x) = ft(vi) and

EN(x) contains an e-node z

with tari−1(z) = 1;

0 otherwise.

Let Ĥi be the connected component of Ĥ ′
i that contains the e-node x such that̂inii(x) = 1. Then, we have the following lemma, whose proof will be given in

Section 4.2.3.

Lemma 4.5 For a spine vertex vi ∈ VS, (Hi, coli, inii, tari) = (Ĥi, ĉoli, ̂inii, t̂ari).
4.2.3 Correctness of the algorithm

To prove the correctness of our algorithm in Section 4.2.2, it suffices to prove

Lemmas 4.4 and 4.5.

We first introduce some notation. For i ≥ 2, let h be any node (i.e., an L-coloring

of Gi−1) in the reconfiguration graph Ri−1. Recall that the vertex vi is adjacent with

only the spine vertex sp(i − 1) in Gi. Let c be any color in L(vi) \ {h(sp(i − 1))}.

Then, we say that h can be extended by c to an L-coloring g of Gi such that g(vi) = c

and g(v) = h(v) for all vertices v ∈ Vi−1; we simply denote such an extension by

h + c = g. Note that g is a node in Ri.

For any e-node y in the encoding graph Hi−1 of Rs
i−1, recall that Φi−1(y) is the set

of all nodes in Rs
i−1 that were contracted into y. For a color c ∈ L(vi) \ {coli−1(y)},

let

Φi−1(y) ⊕ c = {h + c : h ∈ Φi−1(y)},

that is, Φi−1(y) ⊕ c is the set of nodes in Ri that are extended by c from nodes in

Φi−1(y)
(
⊆ V (Rs

i−1)
)
.

Proof of Lemma 4.4

Suppose that we have already computed (Hi−1, coli−1, inii−1, tari−1) for i ≥ 2, and

assume that vi ∈ VL and L(vi) = {c1, c2}.

60 Chapter 4 List Coloring Reconfiguration

We first prove that V (Hi) ⊆ V (Ĥ ′
i) holds, as in the following lemma.

Lemma 4.6 Let x be any e-node in Hi. Then, there exists an e-node x̂ in V (Ĥ ′
i) =

V (Hc1
i−1) ∪ V (Hc2

i−1) such that

∪{
Φi−1(x̂) ⊕ c : c ∈ L(vi) \ {coli−1(x̂)}

}
= Φi(x).

Proof. Let g be any node in Φi(x) ⊆ V (Rs
i). Then, by Lemma 4.2 the node

g[Vi−1] is contained in Rs
i−1, and hence there exists an e-node x̂ in Hi−1 such that

g[Vi−1] ∈ Φi−1(x̂). Notice that, since L(vi) = {c1, c2}, we have V (Hc1
i−1)∪V (Hc2

i−1) =

V (Hi−1). Thus, the e-node x̂ is contained in Ĥ ′
i, too. Therefore, we will prove that∪{

Φi−1(x̂) ⊕ c : c ∈ L(vi) \ {coli−1(x̂)}
}

= Φi(x) for this e-node x̂.

Let g′ be any node in Φi(x). Then, g ∼sp(i) g′, and hence Rs
i contains a path

⟨g1, g2, . . . , gℓ⟩ such that g1 = g, gℓ = g′ and gj(sp(i)) = g(sp(i)) = g′(sp(i)) for

all j ∈ {1, 2, . . . , ℓ}. Thus, we can obtain a path ⟨g1[Vi−1], g2[Vi−1], . . . , gℓ[Vi−1]⟩ in

which the spine vertex sp(i) always receives the same color g(sp(i)) = g′(sp(i));

note that gj[Vi−1] = gj+1[Vi−1] may hold if vi is recolored, but we can simply drop

gj+1[Vi−1] in such a case. Since sp(i) = sp(i − 1) for the case where vi ∈ VL,

we have g[Vi−1] ∼sp(i−1) g′[Vi−1]. Therefore, g′[Vi−1] ∈ Φi−1(x̂). Since coli−1(x̂)

represents the color assigned to sp(i) = sp(i − 1) and vi is adjacent with sp(i − 1)

in Gi, the color g′(vi) is clearly contained in L(vi) \ {coli−1(x̂)}. We thus have

g′[Vi−1] + g′(vi) = g′ ∈
∪{

Φi−1(x̂) ⊕ c : c ∈ L(vi) \ {coli−1(x̂)}
}

.

Let g′′ be any node in
∪{

Φi−1(x̂) ⊕ c : c ∈ L(vi) \ {coli−1(x̂)}
}

such that g′′ =

h + c for some node h in Φi−1(x̂) and c ∈ L(vi) \ {coli−1(x̂)}. Since h ∈ Φi−1(x̂)

and g[Vi−1] ∈ Φi−1(x̂), we have g[Vi−1] ∼sp(i−1) h and hence Rs
i−1 contains a path

⟨h1, h2, . . . , hℓ⟩ such that h1 = g[Vi−1], gℓ = h and hj(sp(i− 1)) = h(sp(i− 1)) for all

j ∈ {1, 2, . . . , ℓ}. Since sp(i) = sp(i−1) and g(vi) ∈ L(vi)\{coli−1(x̂)}, the sequence

⟨h1 + g(vi), h2 + g(vi), . . . , hℓ + g(vi)⟩ is a path in Rs
i . If g(vi) ̸= c, we add one more

adjacent node hℓ + c to the last. Since h1 + g(vi) = g and hℓ + c = g′′, we thus have

4.2 A polynomial-time algorithm for graphs with pathwidth one 61

g ∼sp(i) g
′′ and hence g′′ ∈ Φi(x). 2

By Lemma 4.6 we identify each e-node x in Hi with the corresponding e-node x̂

in Ĥ ′
i. We then prove the following lemma.

Lemma 4.7 Let x and y be two e-nodes in Hi, and let x̂ and ŷ be two e-nodes in

Ĥ ′
i corresponding to x and y, respectively. Then, x̂ŷ ∈ E(Ĥ ′

i) = E(Hc1
i−1) ∪E(Hc2

i−1)

if and only if xy ∈ E(Hi).

Proof. We first prove the only-if direction. Suppose that x̂ŷ ∈ E(Hc1
i−1); it is

symmetric for the other case where x̂ŷ ∈ E(Hc2
i−1). Then, there exist two adjacent

nodes hx ∈ Φi−1(x̂) and hy ∈ Φi−1(ŷ) such that hx(sp(i−1)) ̸= c1 and hy(sp(i−1)) ̸=

c1. Therefore, by Lemma 4.6 we have hx + c1 ∈ Φi(x) and hy + c1 ∈ Φi(y). Note

that, since x̂ ̸= ŷ, we know that only the spine vertex sp(i− 1) = sp(i) is recolored

between hx and hy. Thus, hx + c1 and hy + c1 are adjacent in Rs
i , and hence we have

xy ∈ E(Hi).

We then prove the if direction. Since xy ∈ E(Hi), there exist two adjacent

nodes gx ∈ Φi(x) and gy ∈ Φi(y) in Rs
i . Since x ̸= y, only the spine vertex sp(i)

is recolored between gx and gy, and hence gx(vi) = gy(vi). Therefore, gx[Vi−1]

and gy[Vi−1] are adjacent. We assume that c1 = gx(vi) = gy(vi) without loss of

generality. Then, since vi and sp(i) are adjacent, gx(sp(i)) ̸= c1 and gy(sp(i)) ̸= c1.

By Lemma 4.6 we have gx ∈
∪{

Φi−1(x̂) ⊕ c : c ∈ L(vi) \ {coli−1(x̂)}
}

; this implies

that gx[Vi−1] ∈ Φi−1(x̂). Similarly, gy[Vi−1] ∈ Φi−1(ŷ). Since gx[Vi−1] and gy[Vi−1]

are adjacent, x̂ŷ ∈ E(Hi−1). Furthermore, since coli−1(x̂) ̸= c1 and coli−1(ŷ) ̸= c1,

we have x̂ŷ ∈ E(Hc1
i−1). Therefore, x̂ŷ ∈ E(Hc1

i−1) ⊆ E(Ĥ ′
i). 2

We now prove the following lemma.

Lemma 4.8 Ĥi = Hi.

Proof. Recall that Hi consists of a single connected component which contains

the e-node z such that fs[Vi] ∈ Φi(z). Consider the set of all e-nodes x̂ in Ĥ ′
i that

62 Chapter 4 List Coloring Reconfiguration

correspond to the e-nodes x in Hi. By Lemma 4.7 the e-node set forms a connected

subgraph of a single connected component in Ĥ ′
i. Furthermore, by Lemma 4.6 the

component in Ĥ ′
i contains the e-node ẑ such that fs[Vi] ∈ Φi(ẑ); by the construction,

ẑ is contained in Ĥi. We thus have V (Hi) ⊆ V (Ĥi).

Therefore, to show Hi = Ĥi, by Lemma 4.7 it suffices to prove that there exists

no edge xŷ ∈ E(Ĥi) which joins two e-nodes x ∈ V (Hi) and ŷ ∈ V (Ĥi) \ V (Hi).

Suppose for a contradiction that there exists such an edge xŷ ∈ E(Ĥi). By the

construction, xŷ ∈ E(Hc1
i−1) ∪ E(Hc2

i−1); we may assume that xŷ ∈ E(Hc1
i−1) without

loss of generality. Then, there exist two adjacent nodes hx ∈ Φi−1(x) and hŷ ∈

Φi−1(ŷ) such that hx(sp(i − 1)) ̸= c1 and hŷ(sp(i − 1)) ̸= c1. Therefore hx and hŷ

can be extended by c1, and hx + c1 ∈ Φi(x) and hŷ + c1 ∈ Φi(ŷ) are adjacent in

Rs
i . By Lemma 4.6 we then have ŷ ∈ V (Hi); this contradicts the assumption that

ŷ ∈ V (Ĥi) \ V (Hi). 2

Finally, we show the following lemma.

Lemma 4.9 ĉoli = coli, ̂inii = inii and t̂ari = tari.

Proof. Recall that sp(i) = sp(i−1) if vi ∈ VL. Then, the lemma follows immediately

from Lemma 4.6. 2

This completes the proof of Lemma 4.4.

Proof of Lemma 4.5

Suppose that we have already computed (Hi−1, coli−1, inii−1, tari−1) for i ≥ 2, and

assume that vi ∈ VS.

We first prove that V (Hi) ⊆ V (Ĥ ′
i) holds, as in the following lemma.

Lemma 4.10 Let x be any e-node in Hi with coli(x) = c. Then, there exists exactly

one connected component H in Hc
i−1 such that∪

{Φi−1(y) ⊕ c : y ∈ V (H)} = Φi(x).

4.2 A polynomial-time algorithm for graphs with pathwidth one 63

Proof. Let g be any node in Φi(x) ⊆ V (Rs
i). Then, by Lemma 4.2 the node g[Vi−1]

is contained in Rs
i−1, and hence there exists an e-node z in Hi−1 such that g[Vi−1] ∈

Φi−1(z). Since sp(i) ̸= sp(i− 1) and sp(i) is adjacent with sp(i− 1), the assumption

coli(x) = c implies that g(sp(i)) = c and hence g(sp(i − 1)) ̸= c. Therefore, we

have coli−1(z) ̸= c, and hence Hc
i−1 has exactly one connected component H that

contains z. We thus prove that
∪
{Φi−1(y)⊕c : y ∈ V (H)} = Φi(x) for the connected

component H.

Let g′ be any node in Φi(x). Then, g′(sp(i)) = c and hence it suffices to show that

H contains an e-node y such that g′[Vi−1] ∈ Φi−1(y). Since g ∼sp(i) g
′, there exists

a path ⟨g1, g2, . . . , gℓ⟩ in Rs
i such that g1 = g, gℓ = g′ and gj(sp(i)) = g(sp(i)) =

g′(sp(i)) = c for all j ∈ {1, 2, . . . , ℓ}. Since sp(i) is adjacent with sp(i − 1),

gj(sp(i − 1)) ̸= c holds for all j ∈ {1, 2, . . . , ℓ}. Therefore, there exists a connected

component H ′ in Hc
i−1 such that the path ⟨g1[Vi−1], g2[Vi−1], . . . , gℓ[Vi−1]⟩ is contained

in
∪
{Φi−1(y

′) : y′ ∈ V (H ′)}. Because z ∈ V (H) and g1[Vi−1] = g[Vi−1] ∈ Φi−1(z),

we have H ′ = H. Thus, H contains an e-node y such that g′[Vi−1] ∈ Φi−1(y). Then,

we have g′ ∈
∪
{Φi−1(y) ⊕ c : y ∈ V (H)}.

Conversely, let g′′ be any node in
∪
{Φi−1(y)⊕c : y ∈ V (H)}. Since H is connected,

the subgraph of Rs
i−1 induced by

∪
{Φi−1(y) : y ∈ V (H)} is connected, too. Then,

the induced subgraph contains a path ⟨h1, h2, . . . , hℓ⟩ such that h1 = g[Vi−1] and

hℓ = g′′[Vi−1]. Furthermore, since H is a connected component in Hc
i−1, we know

that hj(sp(i − 1)) ̸= c for all nodes hj, j ∈ {1, 2, . . . , ℓ}. Therefore, we can extend

each node hj by c, and obtain a path ⟨h1 + c, h2 + c, . . . , hℓ + c⟩. Since h1 + c = g

and hℓ + c = g′′, we thus have g ∼sp(i) g
′′. Since g ∈ Φi(x), we have g′′ ∈ Φi(x). 2

For each e-node x ∈ V (Hi), let Hx be the connected component in H
coli(x)
i−1 which

satisfies Lemma 4.10. Then, we can identify the e-node x in Hi with the e-node x̂

in Ĥ ′
i such that EN(x̂) = V (Hx). We then prove the following lemma.

Lemma 4.11 Let x and y be two e-nodes in Hi, and let x̂ and ŷ be two e-nodes in

64 Chapter 4 List Coloring Reconfiguration

Ĥ ′
i corresponding to x and y, respectively. Then, EN(x̂) ∩ EN(ŷ) ̸= ∅ if and only if

xy ∈ E(Hi).

Proof. We first prove the only-if direction. Suppose that the set EN(x̂) ∩ EN(ŷ)

contains an e-node a in Hi−1. Choose an arbitrary node h ∈ Φi−1(a), then two nodes

h + coli(x) ∈ Φi(x) and h + coli(y) ∈ Φi(y) are adjacent in Rs
i . Thus, xy ∈ E(Hi).

We then prove the if direction. Suppose that xy ∈ E(Hi), then there exist two

adjacent nodes gx ∈ Φi(x) and gy ∈ Φi(y) in Rs
i . Since gx and gy are adjacent and

coli(x) ̸= coli(y), we know that gx[Vi−1] = gy[Vi−1]. By Lemma 4.10, there exists

an e-node a ∈ EN(x̂) such that gx[Vi−1] ∈ Φi−1(a). Similarly, there exists an e-node

b ∈ EN(ŷ) such that gy[Vi−1] ∈ Φi−1(b). Since gx[Vi−1] = gy[Vi−1], we have a = b.

Therefore, a = b ∈ EN(x̂) ∩ EN(ŷ) ̸= ∅. 2

By Lemmas 4.10 and 4.11, we have Hi ⊆ Ĥ ′
i and coli = ĉoli. We now prove the

following lemma.

Lemma 4.12 inii = ̂inii and tari = t̂ari.

Proof. We prove only inii = ̂inii; it is similar to prove tari = t̂ari.

Let x be any e-node in Hi such that inii(x) = 1. Then, fs[Vi] ∈ Φi(x), and

coli(x) = ĉoli(x) = fs(vi) holds. By Lemma 4.10 there exists an e-node y ∈ EN(x)

such that fs[Vi−1] ∈ Φi−1(y) and inii−1(y) = 1. Since fs[Vi] = fs[Vi−1] + coli(x), we

thus have ̂inii(x) = 1.

Conversely, let x̂ be any e-node in Ĥ ′
i such that ̂inii(x̂) = 1. Then, EN(x̂) contains

an e-node y such that fs[Vi−1] ∈ Φi−1(y) and inii−1(y) = 1. Note that y is in H
coli(x̂)
i−1 ,

and fs[Vi−1] + coli(x̂) = fs[Vi]. By Lemma 4.10 we thus have fs[Vi] ∈ Φi(x̂) and

hence inii(x̂) = 1. 2

Finally, we show following lemma.

Lemma 4.13 Ĥi = Hi.

4.2 A polynomial-time algorithm for graphs with pathwidth one 65

Proof. Recall that Hi consists of a single connected component which contains the

e-node z such that fs[Vi] ∈ Φi(z). By Lemma 4.11 Hi is contained in one connected

component of Ĥ ′
i as a subgraph, and the connected component contains an e-node

ẑ such that fs[Vi] ∈ Φi(ẑ). By Lemma 4.12 we have ̂inii(ẑ) = 1, and hence the

connected component is indeed Ĥi. We thus have Hi ⊆ Ĥi.

Therefore, to show Hi = Ĥi, by Lemma 4.11 it suffices to prove that there exists

no edge xŷ ∈ E(Ĥi) which joins two e-nodes x ∈ V (Hi) and ŷ ∈ V (Ĥi) \ V (Hi).

Suppose for a contradiction that there exists such an edge xŷ ∈ E(Ĥi). Then, the

set EN(x) ∩ EN(ŷ) contains an e-node z. Choose an arbitrary node h ∈ Φi−1(z),

then two nodes h + coli(x) and h + coli(ŷ) are adjacent in Rs
i . Then, h + coli(ŷ) ∈∪

z′∈EN(ŷ)(Φi−1(z
′) ⊕ coli(ŷ)). By Lemma 4.10 the corresponding e-node y should be

contained in Hi; this contradicts the assumption that ŷ ∈ V (Ĥi) \ V (Hi). 2

This completes the proof of Lemma 4.5.

4.2.4 Running time

We now estimate the running time of our algorithm in Section 4.2.2. The following

is the key lemma for the estimation.

Lemma 4.14 For each index i ∈ {1, 2, . . . , n},

|V (Hi)| ≤

{
2 if i = 1;

|V (Hi−1)| + d(G, vi) otherwise.

In particular, |V (Hn)| = O(n), where n is the number of vertices in G.

We now prove Lemma 4.14. Since |V (Ĥi)| ≤ |V (Ĥ ′
i)| holds, it suffices to prove

the following inequality: for each index i ∈ {1, 2, . . . , n},

|V (Ĥ ′
i)| ≤

{
2 if i = 1;

|V (Hi−1)| + d(G, vi) otherwise.
(4.1)

66 Chapter 4 List Coloring Reconfiguration

Consider the case where vi is a leaf. Then, V (Ĥ ′
i) = V (Hi−1), and hence Eq. (4.1)

clearly holds. In the remainder of this subsection, we thus consider the case where

vi is a spine vertex.

For a graph G = (V,E), we denote by cc(G) the number of connected components

in G. For a connected graph G, that is, cc(G) = 1, we denote by TG any spanning

tree of G. Since E(TG) ⊆ E(G), we clearly have the following proposition.

Proposition 4.1 Let G be a connected graph, and let V0 be any vertex subset of G.

Then, cc(G[V0]) ≤ cc(TG[V0]).

We now apply Case (B) of our algorithm to any spanning tree THi−1
of Hi−1,

instead of applying the operation to Hi−1. Let ĤT
i be the obtained encoding graph,

instead of Ĥ ′
i. Then, we have the following lemma.

Lemma 4.15 |V (Ĥ ′
i)| ≤ |V (ĤT

i)|.

Proof. For each color c ∈ L(vi), let HT,c
i−1 be the subgraph of THi−1

obtained by

deleting all e-nodes y in THi−1
with coli−1(y) = c. Then,

|V (Ĥ ′
i)| =

∑
c∈L(vi)

cc(Hc
i−1),

and

|V (ĤT
i)| =

∑
c∈L(vi)

cc(HT,c
i−1). (4.2)

By Proposition 4.1 we have cc(Hc
i−1) ≤ cc(HT,c

i−1) for each color c ∈ L(vi), and hence

|V (Ĥ ′
i)| ≤ |V (ĤT

i)|. 2

We finally show the following lemma, which verifies Eq. (4.1) and hence completes

the proof of Lemma 4.14.

Lemma 4.16 If vi is a spine vertex, then |V (Ĥ ′
i)| ≤ |V (Hi−1)| + d(G, vi).

4.2 A polynomial-time algorithm for graphs with pathwidth one 67

Proof. We first consider the case where |V (Hi−1)| = 1. Then, cc(Hc
i−1) ≤ 1 for any

color c ∈ L(vi), and hence

|V (Ĥ ′
i)| =

∑
c∈L(vi)

cc(Hc
i−1) ≤ |L(vi)|.

By Lemma 4.1 we have |L(vi)| ≤ d(G, vi) + 1, and hence

|V (Ĥ ′
i)| ≤ 1 + d(G, vi) = |V (Hi−1)| + d(G, vi).

We then consider the case where |V (Hi−1)| ≥ 2. Recall that THi−1
is a spanning

tree of Hi−1, and hence V (THi−1
) = V (Hi−1). For each color c ∈ L(vi), let

Xi−1(c) = {x ∈ V (THi−1
) : coli−1(x) = c}.

For each vertex x ∈ V (THi−1
), we denote by d(THi−1

, x) the degree of x in THi−1
.

Then, by deleting x from THi−1
, the number of connected components in the resulting

graph is increased by d(THi−1
, x) − 1. We thus have

cc(HT,c
i−1) = cc(THi−1

) +
∑{

d(THi−1
, x) − 1 : x ∈ Xi−1(c)

}
= 1 +

∑{
d(THi−1

, x) − 1 : x ∈ Xi−1(c)
}
. (4.3)

By Lemma 4.15 and Eq. (4.2) we have

|V (Ĥ ′
i)| ≤ |V (ĤT

i)| =
∑

c∈L(vi)

cc(HT,c
i−1).

Therefore, by Eq. (4.3) we have

|V (Ĥ ′
i)| ≤

∑
c∈L(vi)

(
1 +

∑{
d(THi−1

, x) − 1 : x ∈ Xi−1(c)
})

≤ |L(vi)| +
∑{

d(THi−1
, x) − 1 : x ∈ V (THi−1

)
}

= |L(vi)| + 2|E(THi−1
)| − |V (THi−1

)|. (4.4)

Since THi−1
is a tree, |E(THi−1

)| = |V (THi−1
)| − 1. Furthermore, recall that THi−1

is

a spanning tree of Hi−1, and hence V (THi−1
) = V (Hi−1). By Eq. (4.4) we thus have

|V (Ĥ ′
i)| ≤ |L(vi)| + |V (Hi−1)| − 2.

68 Chapter 4 List Coloring Reconfiguration

v1 v2 v3 vn-1 vn

P

{c1 , c2 , c3}{c1 , c2} {c1 , c2}{c1 , c2 , c3} {c1 , c2 , c3}

Figure 4.6: The path P with n vertices.

By Lemma 4.1 we have |L(vi)| ≤ d(G, vi) + 1, and hence

|V (Ĥ ′
i)| ≤ |L(vi)| + |V (Hi−1)| − 2 ≤ |V (Hi−1)| + d(G, vi) − 1,

as required. 2

By Lemma 4.14 each encoding graph Hi is of size O(n) for each i ∈ {1, 2, . . . , n}.

Therefore, our algorithm runs in polynomial time.

This completes the proof of Theorem 4.2.

We finally note that our estimation of the size of the encoding graph Hi is tight

in some sense. For example, consider the path P with n vertices illustrated in

Figure 4.6. Then, its encoding graph Hn−1 is of size Ω(n).

69

Chapter 5 List Homomorphism

Reconfiguration

In this chapter, we study the complexity of LHR.

5.1 PSPACE-completeness on paths

In this section, we show the following theorem.

Theorem 5.1 LHR is PSPACE-complete even if k = O(1) for paths.

Proof. We give a polynomial-time reduction from R-word reconfiguration,

which is defined as follows. Let R be a (possibly non-simple) directed graph. An

R-word (of length ρ) is a string w ∈ V (R)ρ such that wiwi+1 ∈ E(R) for every

pair of consecutive symbols wi and wi+1 in w; in other words, w can be seen as

a directed walk in R. For an integer ρ ≥ 1, an R-word graph Wρ(R) is a graph

such that V (Wρ(R)) is a set of all R-word of length ρ, and two R-words w and

w′ are adjacent if and only if the hamming distance between them is exactly one.

Then, R-word reconfiguration asks for a given integer ρ, two R-words ws and

wt, whether there exists a walk between ws and wt in Wρ(R) or not. Wrochna

showed that there exists a directed graph R such that R-word reconfiguration

is PSPACE-complete [60].

We now construct an instance (G,D, C, fs, ft) of LHR corresponding to an in-

stance (ρ,ws,wt) of R-word reconfiguration. The idea is similar to the one

used in the proof of the PSPACE-completeness of HR for cycles [60]. Let G be a

path with ρ vertices v1, v2, . . . , vρ. An underlying graph H is constructed as follows.

70 Chapter 5 List Homomorphism Reconfiguration

x

y

z

(a)

xp

yp

zp

xp+1

yp+1

zp+1

Lp Lp+1Ep

(b)

Figure 5.1: (a) A directed graph R and (b) the edge set Ep between Lp and Lp+1.

The vertex set V (H) is a union of three sets L0, L1, L2, where Lp = {xp : x ∈ V (R)}

for each p ∈ {0, 1, 2}; each Lp is called a layer. For any integer q > 2, we define

xq = xp and Lq = Lp if q ≡ p (mod 3). The edge set E(H) is a union of three

sets E0, E1, E2, where Ep = {xpyp+1 : xy ∈ E(R)} for each p ∈ {0, 1, 2}. (See Fig-

ure 5.1 for an example of Ep.) Let D = V (H), and let L(vi) = Li for each vertex

vi ∈ V (G). For each edge vivi+1 ∈ E(G), we construct the constraint C(vivi+1) so as

to respect H, L(vi) and L(vi+1). Finally, we define fr for each r ∈ {s, t} as follows.

For each vi ∈ V (G), let fr(vi) = wp
i if wi is the i-th symbol of wr. This completes

the construction of (G,D, C, fs, ft), which can be done in polynomial time.

In order to show the correctness, we show that there exists a bijection between all

solutions of (G,D, C) and all R-words of length ρ. Let f : V (G) → D be any mapping

which respects all lists such that (f(v1), f(v2), . . . , f(vρ)) = (w1
1, w

2
2, . . . , w

ρ
ρ) for some

w1, w2, . . . , wρ ∈ V (R). We now define ω(f) as a string w1w2 · · ·wρ. For each i ∈

{1, 2, . . . , ρ− 1}, f(vi)f(vi+1) = xiyi+1 ∈ E(H) if and only if wiwi+1 = xy ∈ E(R).

Therefore, f is a solution of (G,D, C) if and only if ω(f) is an R-word of length ρ. Let

ω′ be the restriction of ϕ on V (S ((G,D, C))), that is, ω′ = ω|V (S ((G,D,C))). Then,

by the definition of ω, ω′ is a bijection between V (S ((G,D, C))) and V (Wρ(R)).

Moreover, this bijection preserves the adjacency relation of the solution graph, and

fr = ω′(wr), r ∈ {s, t}. Thus, (G,D, C, fs, ft) is a yes-instance if and only if

(ρ,ws,wt) is. 2

5.2 A polynomial-time algorithm 71

This theorem implies that the polynomial-time algorithm for caterpillars in the

previous chapter is unlikely to be extended to LHR, since a caterpillar has the

pathwidth one.

5.2 A polynomial-time algorithm

In this section, we show the following theorem, which generalizes the known

tractability results for LCR [17] and HR [59].

Theorem 5.2 LHR can be solved in polynomial time if k = 3.

Proof. Let I = (G,D, C, fs, ft) be a given instance of LHR such that H is the

underlying graph with |V (H)| ≤ |D| = 3 and L is a list assignment. We assume

without loss of generality that G is connected and has at least two vertices. Since

G is connected, for any homomorphism f from G to H, there exists exactly one

connected component C such that f(v) ∈ V (C) holds for every vertex v ∈ V (G).

Moreover, for any two homomorphisms f and f ′ from G to H which correspond to

different connected components, |dif(f, f ′)| = |V (G)| ≥ 2 holds; and hence they are

not adjacent in the solution graph. Because the relation of reconfigurability between

homomorphisms is transitive, Cs = Ct holds if fs and ft are reconfigurable, where

Cs and Ct are connected components of H corresponding to fs and ft, respectively.

Thus, we can assume that Cs = Ct, and let H := Cs and D := V (Cs). If H is

complete, I is also an instance of LCR with |D| ≤ 3, which is solvable in polynomial

time [17]. Otherwise, H is a path ({1, 2, 3}, {12, 23}) of length two. Let Vs (resp.

Vt) be the set of all vertices v ∈ V (G) with fs(v) ∈ {1, 3} (fs(v) ∈ {1, 3}). We

now claim that I is a yes-instance if and only if Vs = Vt, which can be checked in

polynomial time.

If Vs = Vt, then dif(fs, ft) ⊆ Vs holds. Because H contains no edge between 1 and

3 and fs is a homomorphism from G to H, Vs must be an independent set of G.

72 Chapter 5 List Homomorphism Reconfiguration

Therefore, we can independently change the value of each vertex in dif(fs, ft) ⊆ Vs

to obtain ft; and hence I is a yes-instance.

We next assume that I is a yes-instance but Vs ̸= Vt. Then, there exist two

consecutive homomorphisms f and f ′ in the reconfiguration sequence such that

(f(v), f ′(v)) ∈ {(1, 2), (2, 1), (3, 2), (2, 3)} holds, where v is the unique vertex in

dif(f, f ′); that is, f ′ is obtained from f by changing the value of v along an edge of

H. Since G is connected and has at least two vertices, v has at least one neighbor

w in G. Because f is a homomorphism, f(v) = 2 if and only if f(w) ̸= 2. Similarly,

because f ′ is a homomorphism, f ′(v) = 2 if and only if f ′(w) = f(w) ̸= 2. From the

definition of v, f(v) = 2 if and only if f ′(v) ̸= 2. We thus have that f(w) ̸= 2 if and

only if f(w) = 2, which is a contradiction. Therefore, Vs ̸= Vt if I is a yes-instance.

2

73

Chapter 6 Binary Constraint

Satisfiability

Reconfiguration

In this chapter, we study the complexity of 2-CSR (binary CSR).

6.1 PSPACE-completeness

In contrast to Theorem 5.2, we show the following theorem in this section.

Theorem 6.1 2-CSR is PSPACE-complete for bipartite planar graphs even if k =

3.

Proof. We give a polynomial-time reduction from LCR to 2-CSR. It is known that

LCR is PSPACE-complete for bipartite planar graphs even if each list has size at

most three [4]. Let I = (G,D, C, fs, ft) be such an instance of LCR, and let L is

a list assignment. Without loss of generality, we assume that D = {1, 2, 3, 4}. We

then construct an instance (G, {1, 2, 3}, C ′, f ′
s, f

′
t) of 2-CSR as follows. The idea is

to simply replace a value 4 with some value from {1, 2, 3} for each vertex without

changing the graph G. Let v ∈ V (G) be a vertex such that 4 ∈ L(v). Since

|L(v)| ≤ 3, there exists a value i in {1, 2, 3}\L(v). Let π : D → D be a permutation

such that π(i) = 4, π(4) = i and π(j) = j for each j /∈ {i, 4}, and we update

(L, C, fs, ft) as follows:

• L(v) := L(v) \ {4} ∪ {i};

• g := (π(g(v)), g(w)) for each neighbor w of v and each mapping g ∈ C(vw);

and

74 Chapter 6 Binary Constraint Satisfiability Reconfiguration

• fr(v) := π(fr(v)) for each r ∈ {s, t}.

We repeat this operation until there is no vertex v such that 4 ∈ L(v), and let

I ′ = (G, {1, 2, 3}, C ′, f ′
s, f

′
t) be the resulting instance. Observe that the construction

can be done in polynomial time.

Because we only replace values, I ′ is a valid instance of 2-CSR which is essentially

equivalent to I. Moreover, G is bipartite planar and the domain has only three

values, and thus this completes the proof. 2

We also have the following corollary.

Corollary 6.1 2-CSR is PSPACE-complete even if k = 3 for complete graphs.

Proof. Let (G,D, C, fs, ft) be an instance of 2-CSR constructed in Theorem 6.1.

We then add an edge between every non-adjacent pair, and give a trivial constraint

C(vw) = D2 to every added edge vw. Notice that this modification does not change

the solution graph, and thus the reconfigurability. 2

This implies that a fixed-parameter algorithm parameterized by k+mw is unlikely

to exist, for a complete graph has the modular-width zero.

6.2 A polynomial-time algorithm

In contrast to Theorem 6.1, we show the following theorem in this section.

Theorem 6.2 2-CSR can be solved in polynomial time if k = 2.

Proof. We reduce the problem to bijunctive BCSR, which is solvable in polyno-

mial time [26]. Bijunctive BCSR is a special case of BCSR where D = {0, 1}

and there exists a 2-CNF formula ϕ(v1, . . . , vr) such that C({v1 . . . , vr}) is exactly

the set of all satisfying assignments of ϕ for every hyperedge {v1 . . . , vr} ∈ E(G).

Let I = (G,D, C, fs, ft) be a given instance of 2-CSR where G is a graph and

D = {0, 1}. We now show that for every edge vw ∈ E(G) there exists a 2-CNF

6.2 A polynomial-time algorithm 75

formula ϕ(v, w) such that C(vw) is exactly the set of all satisfying assignments of ϕ.

For each i ∈ D and u ∈ {v, w}, we denote by ui a literal u if i = 0 or ū if i = 1.

Then we define a 2-CNF formula ϕ(v, w) as follows:

ϕ(v, w) =
∧

(a,b)∈D2\C(vw)

(va ∨ wb).

Notice that a clause (va ∨wb) corresponds to a set D2 \ {(a, b)}. Therefore, ϕ(v, w)

corresponds to the set

∩
(a,b)∈D2\C(vw)

D2 \ {(a, b)} = D2 \ (D2 \ C(vw)) = C(vw)

as required. 2

Part II

Parameterized Complexity

77

Chapter 7 Homomorphism

Reconfiguration and

List Coloring

Reconfiguration

In this chapter, we study the parameterized complexity of HR and LCR, and show

that fixed-parameter algorithms are unlikely to exist for almost all graph parameters

in Figure 1.4.

7.1 Homomorphism reconfiguration

In this section, we show the following theorem.

Theorem 7.1 HR is W [1]-hard when parameterized by the number n of vertices in

a graph.

Proof. We give a parameterized reduction from labeled clique reconfigura-

tion, which is defined as follows. Let G′ be a simple graph and let τ be a positive

integer. A τ -labeled clique (τ -LC for short) of G′ is a vector (u1, u2, . . . , uτ) con-

sisting of τ distinct vertices u1, u2, . . . , uτ ∈ V (G′) which form a clique. A τ -labeled

clique graph Cτ (G′) is a graph such that V (Cτ (G′)) is a set of all τ -LCs of G′, and

two τ -labeled cliques C and C ′ are adjacent if and only if they differ on exactly one

component. Then, labeled clique reconfiguration asks for a given graph G′,

an integer τ , two τ -LCs Cs and Ct, whether there exists a walk between Cs and Ct in

Cτ (G′) or not. It is known that labeled clique reconfiguration is W [1]-hard

78 Chapter 7 Homomorphism Reconfiguration and List Coloring Reconfiguration

when parameterized by τ [35].1 We now construct an instance (G,D, C, fs, ft) of HR

corresponding to an instance (G′, τ, Cs, Ct) of labeled clique reconfiguration.

Let G be a complete graph Kτ with τ vertices {v1, v2, . . . , vτ}, and let D = V (G′).

We define constraints for edges so that G′ is an underlying graph; that is, for each

vivj ∈ E(G), we define C(vivj) = {(up, uq) : upuq ∈ E(G′)}. Observe that (G,D, C)

is an instance of homomorphism with τ vertices. The remaining components, two

solutions fs and ft, are defined as follows. For any τ -LC C = (u1, u2, . . . , uτ) of

G′, we define ϕC be a mapping such that ϕC(vi) = ui for each i ∈ {1, 2, . . . , τ}.

Since ϕC(vi)ϕC(vj) = uiuj ∈ E(G′) holds for each distinct i, j ∈ {1, 2, . . . , τ}, ϕC

is a solution of (G,D, C). Thus, let fs = ϕCs and ft = ϕCt . This completes the

construction of I = (G,D, C, fs, ft). Finally, (G′, τ, Cs, Ct) is a yes-instance if and

only if I is, because Cτ (G′) and S (I) are isomorphic under a mapping ϕ. 2

The following also follows as a corollary.

Corollary 7.1 HR is W [1]-hard when parameterized by p, where p is any parameter

which is polynomially bounded in the number n of vertices in a graph.

7.2 List coloring reconfiguration

In this section, we show the following theorem.

Theorem 7.2 List coloring reconfiguration is W [1]-hard when parameter-

ized by vc, where vc is an upper bound on the size of a minimum vertex cover of an

input graph.

Recall that list coloring reconfiguration is PSPACE-complete even for a

fixed constant k ≥ 4. Therefore, the problem is intractable if we take only one

parameter, either k or vc.

1Although they actually show the similar result for (unlabeled) independent set
reconfiguration, the proof can be applied to labeled clique reconfiguration.

7.2 List coloring reconfiguration 79

{c*
, c1 , c1 , c1 , c1 , c1 }

u3 u4 u5

u1 u2

w1 w2

v1

v2

v3

{a , b} {a , b , c
*}

(a) H , s = 3 (b) G , L

Vfor

1 2 3 4 5

{c*
, c2 , c2 , c2 , c2 , c2 }

1 2 3 4 5

{c*
, c3 , c3 , c3 , c3 , c3 }

1 2 3 4 5

Figure 7.1: (a) An instance H of independent set, and (b) the graph G

and the list L. The set Vfor contains vertices of (i, j; p, q)-forbidding gadgets for

all (i, j) ∈ {(1, 2), (1, 3), (2, 3)} and all (p, q) ∈ {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5),

(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2)}; thus |Vfor| = 39.

In order to prove Theorem 7.2, we give a parametrized reduction from the in-

dependent set problem when parameterized by the solution size s, in which we

are asked whether a given graph H has an independent set of size at least s. This

problem is known to be W [1]-hard [22].

7.2.1 Construction

Let H be a graph with n vertices u1, u2, . . . , un, and s be an integer as the solu-

tion size parameter for independent set. Then, we construct the corresponding

instance (G,L, fs, ft) of list coloring reconfiguration with the parameter vc

as follows. (See also Figure 7.1.)

We first create s vertices v1, v2, . . . , vs, which are called selection vertices ; let

Vsel be the set of all selection vertices. For each i ∈ {1, 2, . . . , s}, we set L(vi) =

{c∗, c1i , c2i , . . . , cni }. In our reduction, we will construct G and L so that assigning the

color cpi , p ∈ {1, 2, . . . , n}, to vi ∈ Vsel corresponds to choosing the vertex up ∈ V (H)

as a vertex in an independent set of H. Then, in order to make a correspondence

between a color assignment to Vsel and an independent set of size s in H, we need

to construct the following properties:

80 Chapter 7 Homomorphism Reconfiguration and List Coloring Reconfiguration

• For each p, q ∈ {1, 2, . . . , n} with upuq ∈ E(H), we use at most one color

from {cp1, c
p
2, . . . , c

p
s, c

q
1, c

q
2, . . . , c

q
s}. This property ensures the independence of

chosen vertices from H, that is, no two adjacent vertices in H are chosen in

an independent set.

• For each p ∈ {1, 2, . . . , n}, we use at most one color from {cp1, c
p
2, . . . , c

p
s}.

This property will be used to ensure the size of the constructed independent

set of H, that is, each vertex up ∈ V (H) can be chosen at most once in an

independent set.

To do this, we define an (i, j; p, q)-forbidding gadget for i, j ∈ {1, 2, . . . s} and p, q ∈

{1, 2, . . . , n}. The (i, j; p, q)-forbidding gadget is a vertex w which is adjacent to vi

and vj and has a list L(w) = {cpi , c
q
j}. Observe that the vertex w forbids that vi and

vj are simultaneously colored with cpi and cqj , respectively. In order to satisfy the

desired properties above, we now add our gadgets as follows: for all i, j ∈ {1, 2, . . . s}

with i < j,

• add (i, j; p, q)- and (i, j; q, p)-forbidding gadgets for every edge upuq ∈ E(H);

and

• add an (i, j; p, p)-forbidding gadget for every vertex up ∈ V (H).

We denote by Vfor the set of all vertices in the forbidding gadgets. We create an edge

consisting of two vertices w1 and w2 such that L(w1) = {a, b} and L(w2) = {a, b, c∗},

and connect w2 with all selection vertices in Vsel.

Finally, we construct two L-colorings fs and ft of G as follows:

• for each vi ∈ Vsel, fs(vi) = ft(vi) = c∗;

• for each w ∈ Vfor, fs(w) and ft(w) are arbitrary chosen colors from L(w); and

• fs(w1) = ft(w2) = a, and ft(w1) = fs(w2) = b.

7.2 List coloring reconfiguration 81

Note that both fs and ft are proper L-colorings of G. This completes the construc-

tion of (G,L, fs, ft).

7.2.2 Correctness of the reduction

In this subsection, we prove the following three statements:

• (G,L, fs, ft) can be constructed in time polynomial in the size of H.

• The upper bound vc on the size of a minimum vertex cover of G depends only

on s.

• H is a yes-instance of independent set if and only if (G,L, fs, ft) is a yes-

instance of LCR.

In order to prove the first statement, it suffices to show that the size of (G,L, fs, ft)

is bounded polynomially in n = |V (H)|. From the construction, we have |V (G)| =

|Vsel| + |Vfor| + |{w1, w2}| ≤ s + s2 × (|V (H)| + 2|E(H)|) + 2 = O(n4). In addition,

each list contains O(n) colors. Therefore, the construction can be done in time

polynomial in n.

The second statement immediately follows from the fact that {w2}∪Vsel is a vertex

cover in G of size s + 1; observe that G \ ({w2} ∪ Vsel) = G[{w1} ∪ Vfor] contains no

edge.

Finally, we prove the third statement as follows.

Lemma 7.1 H is a yes-instance of independent set if and only if (G,L, fs, ft)

is a yes-instance of LCR.

Proof. We first prove the if direction. Assume that there exists a reconfiguration

sequence W for (G,L, fs, ft). Then, W must contain at least one L-coloring f such

that f(w2) = c∗ in order to recolor w1 from a to b. Since w2 is adjacent to all vertices

82 Chapter 7 Homomorphism Reconfiguration and List Coloring Reconfiguration

in Vsel, f(vi) ̸= c∗ holds for every vi ∈ Vsel. Then, by the construction, the vertex set

{up ∈ V (H) : cpi = f(vi), vi ∈ Vsel} forms an independent set in H of size |Vsel| = s.

We then prove the only-if direction. We construct a reconfiguration sequence for

(G,L, fs, ft) which passes through two L-colorings f ′
s and f ′

t defined as follows.

We first define f ′
s, and show that fs and f ′

s are reconfigurable. From the assump-

tion, H has an independent set I of size s, say, I = {u1, u2, . . . , us}. Then, we define

f ′
s as follows:

• for each vi ∈ Vsel, f
′
s(vi) = cii;

• for each (i, j; p, q)-forbidding vertex w ∈ Vfor, f
′
s(w) is an arbitrary chosen color

from L(w) \ {cii, c
j
j}; and

• f ′
s(w1) = fs(w1) = a and f ′

s(w2) = fs(w2) = b.

Note that f ′
s is a proper L-coloring of G. We now show that fs and f ′

s are reconfig-

urable. We first recolor all vertices w ∈ Vfor to the colors f ′
s(w) (̸= c∗) in an arbitrary

order. These recoloring steps can be done, since fs(vi) = c∗ for all vi ∈ Vsel and Vfor

is an independent set in G. We then recolor all vertices vi ∈ Vsel to the colors f ′
s(vi)

in an arbitrary order. These recoloring steps also can be done, since f ′
s is a proper

L-coloring and Vsel is an independent set in G. Thus, fs and f ′
s are reconfigurable.

We then define f ′
t , and show that f ′

t and ft are reconfigurable. Similarly as f ′
0, we

define f ′
t as follows:

• for each vi ∈ Vsel, f
′
t(vi) = cii;

• for each (i, j; p, q)-forbidding vertex w ∈ Vfor, f
′
t(w) is an arbitrary chosen color

from L(w) \ {cii, c
j
j}; and

• f ′
t(w1) = ft(w1) = b and f ′

t(w2) = ft(w2) = a.

Then, the similar arguments above yield that f ′
t and ft are reconfigurable.

7.2 List coloring reconfiguration 83

Finally, we prove that f ′
s and f ′

t are reconfigurable. Recall that f ′
s(w1) = f ′

t(w2) =

a, f ′
t(w1) = f ′

s(w2) = b, and f ′
s(vi) = f ′

t(vi) ̸= c∗ for all vi ∈ Vsel. Then, we can swap

the colors a and b by the following three steps:

• recolor w2 from b to c∗;

• recolor w1 from a to b; and

• recolor w2 from c∗ to a.

After this color swap, we can recolor all vertices w ∈ Vfor to the colors f ′
t(w) in the

arbitrary order, since Vfor is an independent in G.

In this way, we can construct a reconfiguration sequence for (G,L, fs, ft) which

passes through two L-colorings f ′
s and f ′

t , and hence (G,L, fs, ft) is a yes-instance

of LCR. 2

This completes the proof of Theorem 7.2.

84 Chapter 8 List Homomorphism Reconfiguration

Chapter 8 List Homomorphism

Reconfiguration

In this chapter, we show the following theorem.

Theorem 8.1 LHR is fixed-parameter tractable when parameterized by k + mw.

Since any cograph has the modular-width zero, we also have the following corol-

lary.

Corollary 8.1 LHR is fixed-parameter tractable for cographs when parameterized

by k.

8.1 Reduction rule

In order to prove several theorems including Theorem 8.1, we give fixed-parameter

algorithms which are based on the concept of “kernelization”. That is, we compute

from the given instance into another instance whose size depends only on the pa-

rameter. After that, we can solve the problem by using Theorem 2.1.

In this subsection, we show some useful lemma, which compresses an input hy-

pergraph into a smaller hypergraph with keeping the reconfigurability. The main

idea is to “identify” two subgraphs which behave in the same way with respect to

the reconfigurability.

We now formally characterize such subhypergraphs and explain how to identify

them. Let I = (G,D, C, fs, ft) be an instance of CSR. For each vertex v ∈ V (G),

we define A(v) as a pair (fs(v), ft(v)) consisting of the initial and the target value

assignments of v. Let V1 and V2 be two non-empty vertex subsets of G such that

8.1 Reduction rule 85

v1

v2

v3

H1 = G[V1]

φ(v1)

φ(v2)

φ(v3)

H2 = G[V2]

w2 = φ(w2) w3 = φ(w3)

G[W]

Figure 8.1: An example of two subhypergraphs H1 and H2 of G which satisfies the

conditions (1) and (2). We draw each hyperedge of size two as a solid line, and

omit the bijection π : E(H ′
1) → E(H ′

2) since it is uniquely defined from ϕ : V (H ′
1) →

V (H ′
2). If A and C satisfy the conditions (3) and (4), H1 and H2 are identical.

|V1| = |V2|, and V1 ∩ V2 = ∅. Assume that N(G, V1) = N(G, V2) = W . Let

H1 = G[V1], H2 = G[V2], H
′
1 = G[V1 ∪W] and H ′

2 = G[V2 ∪W].

Definition 8.1 Two induced subhypergraphs H1 and H2 are identical if there ex-

ist two bijections ϕ : V (H ′
1) → V (H ′

2) and π : E(H ′
1) → E(H ′

2) which satisfy the

following four conditions:

(1) H ′
1 and H ′

2 are isomorphic under ϕ and π.

(2) for every vertex v ∈ W , ϕ(v) = v;

(3) for every vertex v ∈ V1, A(v) = A(ϕ(v)), that is, fs(v) = fs(ϕ(v)) and ft(v) =

ft(ϕ(v)); and

(4) for every hyperedge X ∈ E(H1), C(π(X)) = C[ϕ̂](X), where ϕ̂ = ϕ|X .

See Figure 8.1 for an example.

We next define another instance I ′ = (G′, D, C ′, f ′
s, f

′
t) as follows:

• G′ = G \ V2;

• f ′
s = fs|V (G′) and f ′

s = fs|V (G′); and

86 Chapter 8 List Homomorphism Reconfiguration

• for each X ′ ∈ E(G′), C ′(X ′) =
∩

X∈E′ G(X), where E ′ = {X ∈ E(G) : X \V2 =

X ′} and G(X) = {g|X′ : g ∈ C(X)}.

Intuitively, I ′ is obtained by restricting all components (hypergraphs, mappings in

constraints, and two solutions) of I on V (G) \ V2. We say that I ′ is obtained from

I by identifying H1 with H2.

Then, we have the following lemma, which says that I and I ′ are equivalent with

respect to the feasibility.

Lemma 8.1 Let f ′ : V (G′) → D be a mapping from V (G′) to D. Then, f ′ is a

solution for (G′, D, C ′) if and only if there exists a solution f for (G,D, C) such that

f ′ = f |V (G′).

Proof. We first prove the if direction. Assume that f is a solution for (G,D, C).

In order to show that f ′ = f |V (G′) is a solution for (G′, D, C ′), it suffices to check

that f ′ satisfies all constraints. For each X ′ ∈ E(G′), consider the hyperedge set

E ′ = {X ∈ E(G) : X \ V2 = X ′}. Recall that C ′(X ′) =
∩

X∈E′ G(X), where G(X) =

{g|X′ : g ∈ C(X)}. For every hyperedge X ∈ E ′, f |X ∈ C(X) holds since f is a

solution for (G,D, C). Notice that f ′|X′ = (f |X)|X′ , and hence it is contained in

G(X). Therefore, f ′|X′ ∈ C ′(X ′) holds, and hence f ′ is a solution for (G′, D, C ′).

We next prove the only-if direction. Assume that f ′ is a solution for (G′, D, C ′).

We claim that a mapping f : V (G) → D obtained by extending f ′ as follows is a

solution for (G,D, C):

f(v) =

{
f ′(ϕ−1(v)) if v ∈ V2;

f ′(v) otherwise.

To this end, we show that for each hyperedge X ∈ E(G), f |X ∈ C(X) holds.

Briefly, this follows the conditions (2) and (4) of Definition 8.1. If X ∈ E(G′),

C ′(X) contains f ′|X = f |X . Because C ′(X) is a subset of C(X), C(X) also contains

f |X . Otherwise, X is a hyperedge in H ′
2 = G[V2 ∪ W]. By the condition (4) of

8.1 Reduction rule 87

Definition 8.1, C(X) = C[ϕ̂](X ′) holds, where ϕ̂ = ϕ|X′ and π(X ′) = X. Because W ,

V1 and V2 are disjoint each other, X ′ ⊆ V1 ∪W does not intersect V2. Therefore, X ′

is contained as a hyperedge in G′, and hence f ′ satisfies the constraint of X ′; that

is, f ′|X′ ∈ C(X ′). Recall that C[ϕ̂](X ′) = {g ◦ ϕ̂−1 : g ∈ C(X ′)}. Thus, (f ′|X′) ◦ ϕ̂−1

is in C(X) = C[ϕ̂](X ′). It now suffices to show that (f ′|X′) ◦ ϕ̂−1 = f |X . From

the definition of f , f(v) = f ′(ϕ−1(v)) holds for each v ∈ V2 ∩X, and f(v) = f ′(v)

holds or each v ∈ W ∩ X. In addition, by the condition (2) of Definition 8.1,

f(v) = f ′(ϕ−1(v)) also holds in the later case; and hence f |X = (f ′ ◦ ϕ−1)|X . Since

ϕ̂−1 = (ϕ|X′)−1 = ϕ−1|X is a bijection from X to X ′, we have f |X = (f ′ ◦ ϕ−1)|X =

(f ′|X′) ◦ (ϕ−1|X) = (f ′|X′) ◦ ϕ̂−1 as required. 2

Notice that Lemma 8.1 ensures that the “restricted” instance I ′ is a valid instance

of CSR.

We now give the following key lemma, which says that I and I ′ are equivalent

with respect to even the reconfigurability.

Lemma 8.2 (Reduction rule) Let I and I ′ be instances of CSR defined as

above. Then, I ′ is a yes-instance if and only if I is.

Proof. We first prove the if direction. Suppose that I is a yes-instance. Then,

there exists a reconfiguration sequence ⟨f0, f1, . . . , fℓ⟩ for I, where fℓ = ft. For each

i ∈ {0, 1, . . . , ℓ}, fi|V (G′) is a solution for (G′, D, C ′) by Lemma 8.1. Therefore, by

removing all duplicate solutions appearing consecutively in the resulting sequence,

⟨f0|V (G′), f1|V (G′), . . . , fℓ′ |V (G′)⟩ is a reconfiguration sequence for I ′. Thus I ′ is a

yes-instance.

We now prove the only-if direction. Suppose that I ′ is a yes-instance. Then, there

exists a reconfiguration sequence W ′ = ⟨f ′
0, f

′
1, . . . , f

′
ℓ⟩ for I ′ with f ′

0 = fs|V (G′) and

f ′
ℓ = ft|V (G′). Our goal is to construct a reconfiguration sequence W for I from W ′.

88 Chapter 8 List Homomorphism Reconfiguration

For each i ∈ {0, 1, . . . , ℓ}, we first extend f ′
i to fi as follows:

fi(v) =

{
f ′
i(ϕ

−1(v)) if v ∈ V (H2);

f ′
i(v) otherwise.

Notice that fi corresponds to the mapping defined in the only-if proof of Lemma 8.1,

and hence it is a solution for (G,D, C). Therefore, ⟨f0, f1, . . . , fℓ⟩ is a sequence of

solutions for (G,D, C). However, there may exist several indices i ∈ {0, 1, . . . , ℓ− 1}

such that fi and fi+1 are not adjacent, that is, |dif(fi, fi+1)| > 1 may hold. Recall

that f ′
i and f ′

i+1 are adjacent for each i ∈ {0, 1, . . . , ℓ− 1}, that is, dif(f ′
i , f

′
i+1) = {w}

for some vertex w ∈ V (G′). Therefore we know that

• if w /∈ V (H1), then dif(fi, fi+1) = {w} holds, that is, fi and fi+1 are adjacent;

and

• if w ∈ V (H1), then dif(fi, fi+1) = {w, ϕ(w)} holds, that is, fi and fi+1 are not

adjacent.

In the latter case, between fi and fi+1, we insert a solution f̃i of G defined as follows:

f̃i(v) =


fi+1(v) if v = w;

fi(v) if v = ϕ(w);

fi(v) otherwise.

Observe that f̃i is a solution for (G,D, C). Moreover, both dif(fi, f̃i) = {w} and

dif(f̃i, fi+1) = {ϕ(w)} hold. Thus, we obtain a proper reconfiguration sequence W

for I as claimed. 2

8.2 Modified reduction rule

Observe that an instance obtained by applying Lemma 8.2 is of CSR in general.

Therefore, in this section, we modify the reduction rule so that it always produces

an instance of LHR from one of LHR.

To this end, we first give a simpler characterization of identical subgraphs. Let

I = (G,D, C, fs, ft) be a given instance of LHR such that H is the underlying graph

8.2 Modified reduction rule 89

and L is a list assignment. Let H1 and H2 are two induced subgraphs such that

|V (H1)| = |V (H2)|, V (H1) ∩ V (H2) = ∅.

Definition 8.2 H1 and H2 are LHR-identical if there exists a bijection

ϕ : V (H1) → V (H2) which satisfies the following two conditions:

(i) vw ∈ E(H1) if and only if ϕ(v)ϕ(w) ∈ E(H2).

(ii) for every vertex v ∈ V1,

a N(G, v) \ V (H1) = N(G, ϕ(v)) \ V (H2);

b A(v) = A(ϕ(v)), that is, fs(v) = fs(ϕ(v)) and ft(v) = ft(ϕ(v)); and

c L(v) = L(ϕ(v)).

Then, we have the following lemma.

Lemma 8.3 H1 and H2 are identical if they are LHR-identical for a bijection ϕ.

Proof. We first prove that the assumption that N(G, V (H1)) = N(G, V (H2)) is sat-

isfied. By the condition (ii)-a, we have N(G, V (H1)) =
∪

v∈V (H1)
(N(G, v)\V (H1)) =∪

v∈V (H1)
(N(G, ϕ(v)) \ V (H2)). Since ϕ is a bijection,

∪
v∈V (H1)

(N(G, ϕ(v)) \

V (H2)) =
∪

v∈V (H2)
(N(G, v) \ V (H2)) = N(G, V (H2)), as required.

Let W = N(G, V (H1)) = N(G, V (H2)), H
′
1 = G[V (H1)∪W] and H ′

2 = G[V (H2)∪

W]. In order to prove the lemma, it suffices to give two bijections which satisfy all

conditions of Definition 8.1. We define two mappings ϕ′ and π′ as follows.

• For each v ∈ V (H ′
1), ϕ

′(v) = ϕ(v) if v ∈ V (H1) and ϕ′(v) = v if v ∈ W .

• For each vw ∈ E(H ′
1), π

′(vw) = ϕ′(v)ϕ′(w).

We now prove the condition (1) for ϕ′ and π′. Since ϕ is a bijection between V (H1)

and V (H2), ϕ′ is a bijection between V (H ′
1) and V (H ′

2). By the definition of π′,

we suffice to show that π′ is a bijection between E(H ′
1) and E(H ′

2). From the

90 Chapter 8 List Homomorphism Reconfiguration

definition and the condition (i), π′|E(G[W]) is a bijection (the identity mapping)

between E(G[W]) and E(G[W]) and π′|E(H1) is a bijection between E(H1) and

E(H2). Let E ′
1 = E(H ′

1)\(E(H1)∪E(G[W])) and E ′
2 = E(H ′

2)\(E(H2)∪E(G[W])).

Then, it suffices to show that π′|E′
1

is a bijection between E ′
1 and E ′

2. For each

vertices v ∈ V (H1) and w ∈ W , ϕ′(v)ϕ′(w) = ϕ(v)w holds. From the condition

(ii)-a, vw ∈ E ′
1 if and only if ϕ(v)w ∈ E ′

2. Therefore, π′|E′
1

is a bijection between E ′
1

and E ′
2, and hence π′ is a bijection between E(H ′

1) and E(H ′
2).

The conditions (2) and (3) directly follows the definition of ϕ′ and the condition

(ii)-b.

We finally prove the condition (4). Recall that each constraint C(vw) = {g ∈

D{v,w} : g(v)g(w) ∈ E(H) ∩ (L(v) × L(w))} depends only on L(v) and L(w). From

the condition (ii)-c, for every vw ∈ E(H1), L(v) × L(w) = L(ϕ′(v)) × L(ϕ′(w))

holds. Therefore, C(vw) and C(π′(vw)) are the same when we see them as the sets

of vectors. 2

By the above lemma, we can apply Lemma 8.2 to obtain a new instance

I ′ = (G′, D, C ′, f ′
s, f

′
t). However, G′ may contain hyperedges of size one and

it is unclear that the constraint C ′ corresponds to homomorpismL. Let I∗ =

(G∗, D, C ′|E(G∗), f
′
s, f

′
t) be an instance obtained by removing all size-one hyperedges

from I ′. We then have the following two lemmas.

Lemma 8.4 I∗ is a valid instance of LHR, where H is an underlying graph and

L|V (G∗) is a list assignment.

Proof. First of all, f ′
s and f ′

t are solutions, because I ′ is a valid instance of 2-

CSR and all constraints in I∗ is contained in I ′. We next show that the constraint

C ′|E(G∗) corresponds to homomorpismL. Since G∗ is an induced subgraph of G, each

edge vw ∈ E(G∗) is also contained in G. From the definition of I ′, C(vw) = C ′(vw)

holds. Moreover, C(vw) = E(H)∩(L(v)×L(w)) = E(H)∩(L|V (G∗)(v)×L|V (G∗)(w)).

Therefore, I∗ is a valid instance of LHR, where H is an underlying graph and L|V (G∗)

8.3 Kernelization 91

is a list assignment. 2

Lemma 8.5 I∗ is a yes-instance if and only if I ′ is.

Proof. In order to prove the lemma, it suffices to show that a mapping f : V (G′) →

D is a solution for I∗ if and only if it is a solution for I ′. If direction is trivial;

as we have seen in the proof of the previous lemma. Thus, we assume that f is

a solution for I∗. Let X ∈ E(G′) be a hyperedge. If |X| = 2, X is an edge in

G∗, and hence C(X) = C ′|E(G∗)(X). Therefore f satisfies C(X) by the assumption.

If |X| = 1, say X = {v}, the set E ′ = {vw ∈ E(G) : w ∈ V (H2)} is non-empty.

Recall that C ′({v}) =
∩

vw∈E′ G(vw), where G(vw) = {g|{v} : g ∈ C(vw)}. Let

vw ∈ E ′ be any edge. Because H1 and H2 are LHR-identical (and hence identical)

for a bijection ϕ, C(vw) = C[ϕ̂](vw′) holds, where ϕ̂ = ϕ|{v,w} and w′ = ϕ̂−1(w).

Since f satisfies C ′|E(G∗)(vw
′) = C(vw′), f ◦ ϕ−1|{v,w} is in C(vw). Observe that

(f ◦ ϕ−1|{v,w})|{v} = f |{v} is contained in G(vw). Therefore, f |{v} is also contained

in C ′({v}), and hence f is a solution for I ′. 2

In this way, we have the following modified reduction rule.

Lemma 8.6 (Modified reduction rule) Let I and I∗ be instances of LHR de-

fined as above. Then, I∗ is a yes-instance if and only if I is.

8.3 Kernelization

Let I = (G, C, fs, ft) be an instance of LHR such that H is the underlying graph

and L is a list assignment.. Suppose that |D| ≤ k, G is a connected graph with

pmw(G) ≤ pmw, and all vertices of G are totally ordered according to an arbitrary

binary relation ≺.

92 Chapter 8 List Homomorphism Reconfiguration

8.3.1 Sufficient condition for identical subgraphs

We first give a sufficient condition for which two nodes in a PMD-tree PMD(G)

for G correspond to identical subgraphs. Let x ∈ V (PMD(G)) be a node, let p :=

|V (CG(x))|, and assume that all vertices in V (CG(x)) are labeled as v1, v2, . . . , vp

according to ≺; that is, vi ≺ vj holds for each i, j with 1 ≤ i < j ≤ p. Let m ≥ p

be some integer which will be defined later. We now define an (m + 1) ×m matrix

Mm(x) as follows:

(Mm(x))i,j =



1 if i, j ≤ p and vivj ∈ E(CG(x));

0 if i, j ≤ p and vivj /∈ E(CG(x));

0 if p < i ≤ m or p < j ≤ m;

A(vj) if i = m + 1 and j ≤ p;

∅ otherwise,

where (Mm(x))i,j denotes an (i, j)-element of Mm(x). Notice that Mm(x) contains

the adjacency matrix of CG(x) at its upper left p×p submatrix, and the bottommost

row represents the vertex assignments of the vertices in V (CG(x)). We call Mm(x)

an m-ID-matrix of x. For example, consider the node x13 in Figure 2.12(a). Then,

p = 2, and a 4-ID-matrix of x13 is as follows:

M4(x13) =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

A(x3) A(x4) ∅ ∅

 .

Lemma 8.7 Let y1 and y2 be two children of a parallel node x in PMD(G), and let

m be an integer with m ≥ max{|V (CG(y1))|, |V (CG(y2))|}. If Mm(y1) = Mm(y2)

holds, then CG(y1) and CG(y2) are identical.

Proof. Let p1 := |V (CG(y1))| and p2 := |V (CG(y2))|. Observe that (Mm(y1))m+1,j

̸= ∅ if and only if j ≤ p1, and (Mm(y2))m+1,j ̸= ∅ if and only if j ≤ p2. By the

assumption that (Mm(y1))m+1,j = (Mm(y2))m+1,j for all j ∈ {1, 2, . . . ,m}, we have

p1 = p2; we denote by p this value.

8.3 Kernelization 93

We now check that CG(y1) and CG(y2) are identical. The condition 1 of iden-

tical subgraphs holds, because the upper left p × p submatrices in Mm(y1) and

Mm(y2) correspond to the adjacency matrices of CG(y1) and CG(y2), respectively.

The condition 2(b) holds, because the bottommost rows are the same in Mm(y1)

and Mm(y2). Finally, we claim that the condition 2(a) holds, as follows. Since

x is a parallel node, N(G, v) \ V (CG(y1)) = N(G, v) \ V (CG(x)) holds for all ver-

tices v in CG(y1). Similarly, N(G,w) \ V (CG(y2)) = N(G,w) \ V (CG(x)) holds

for all vertices w in CG(y2). Recall that V (CG(x)) is a module of G, that is,

N(G, v) \ V (CG(x)) = N(G, v′) \ V (CG(x)) holds for any vertices v, v′ ∈ V (CG(x)).

Therefore, N(G, v) \ V (CG(y1)) = N(G,w) \ V (CG(y2)) holds any pair of v ∈

V (CG(y1)) and w ∈ V (CG(y2)). Thus, the condition 2(a) holds. 2

8.3.2 Kernelization algorithm

We now describe how to kernelize an input instance. (See Figure 8.2 as an ex-

ample.) Notice pmw(G) ≤ max{2,mw(G)} holds for any graph G. Therefore, in

order to prove Theorem 8.1, it suffices to give a kernelization with respect to the

parameter k+pmw. Our algorithm traverses a PMD-tree PMD(G) of G by a depth-

first search in post-order starting from the root of PMD(G), that is, the algorithm

processes a node of PMD(G) after all of its children are processed.

Let x ∈ V (PMD(G)) be a node which is currently visited. If x is a non-parallel

node, we do nothing. Otherwise (i.e., if x is a parallel node,) let Y be the set of all

children of x, and let m := maxy∈Y |V (CG(y))|. We first construct m-ID-matrices of

all children of x. If there exist two nodes y1 and y2 such that Mm(y1) = Mm(y2),

then CG(y1) and CG(y2) are identical; and hence we remove CG(y2) from G by

Lemma 8.6. Then, we modify PMD(G) in order to keep it still being a PMD-tree for

the resulting graph as follows. We remove a subtree rooted at y2 from PMD(G), and

delete a node corresponding to y2 from a quotient graph Q(x) of x. If this removal

94 Chapter 8 List Homomorphism Reconfiguration

x1 x2

x8

x9 x10

x12
x11

x5 x6x3

x4

: 2-join
: parallel

x7

v1

v3 v2

v7

v4 v5

v6

v1

v3

v7

v4 v5

v6

x1

x9 x10

x12
x11

x5 x6x3

x4

x7

v1 : ({c1 , c2 , c3} , c1 , c2)
v2 : ({c1 , c2 , c3} , c1 , c2)
v3 : ({c2 , c4} , c4 , c2)
v4 : ({c1 , c2} , c1 , c1)
v5 : ({c1 , c2 , c3} , c1 , c2)
v6 : ({c2 , c4} , c4 , c2)
v7 : ({c1 , c2 , c4} , c4 , c1)

vertex assignment

process x8

identical: CG (x1) , CG (x2)

v1

v3

v7

v4
x1

x9

x12
x11

x3

x4

x7

process x11

identical: CG (x9) , CG (x10)

Figure 8.2: An example of an application of our algorithm. We first focus on

x8, which is a parallel node whose children are already kernelized, and find that

M1(x1) = M1(x2) holds. Therefore, we delete CG(x1) from the input graph. Then,

x8 has only one child, and hence we contract the edge x8x9 in order to maintain

being a PMD-tree. We next focus on x11 and find that M2(x9) = M2(x10) holds.

We thus remove CG(x10) from the current graph and fixing a PMD-tree. Then, the

algorithm terminates because we have processed all parallel nodes.

makes x having only one child y in the PMD-tree, we contract the edge xy into a

new node x′ such that Q(x′) = Q(x).

The running time of this kernelization can be estimated as follows. For each

node x ∈ V (PMD(G)), the construction of m-ID-matrices can be done in time

O(|Y | · m2) = O(|V (G)|3). We can check if Mm(y1) = Mm(y2) for each pair of

8.3 Kernelization 95

children y1 and y2 of x in time O(m2) = O(|V (G)|2). Moreover, a modification of

PMD(G), which follows an application of Lemma 8.6, can be done in polynomial

time. Recall that the number of children of x and the size of a PMD-tree PMD(G)

are both bounded linearly in |V (G)|, and hence our kernelization can be done in

polynomial time.

8.3.3 Size of the kernelized instance

We finally prove that the size of the obtained instance I ′ = (G′, L′, f ′
s, f

′
t) depends

only on k+pmw; recall that pmw is an upper bound on pmw(G). By Observation 2.1,

we can assume that the maximum clique size ω(G′) is at most k. In addition, G′ is

connected since G is connected and an application of Lemma 8.6 does not affect the

connectivity of the graph. Therefore, it suffices to prove the following lemma.

Lemma 8.8 The graph G′ has at most hk,pmw(ω(G′)) vertices, where hk,pmw(i) is

recursively defined for an integer i ≥ 1 as follows:

hk,pmw(i) =

{
1 if i = 1;

pmw · hk,pmw(i− 1) ·
√

2
(hk,pmw(i−1))2 · (2k · k2)hk,pmw(i−1) otherwise.

In particular, hk,pmw(ω(G′)) depends only on k + pmw.

Proof. We prove the lemma by induction on ω(G′). If ω(G′) = 1, then we have

|V (G′)| = 1 = hk,pmw(1) since G′ is connected.

We thus assume in the remainder of the proof that ω(G′) > 1. Then, the root r

of a PMD-tree for G′ must be a non-parallel node since G′ is connected. Because

r has at most pmw(G′) ≤ pmw children, it suffices to show that the corresponding

graph of each child of r has at most

hk,pmw(ω(G′) − 1) ·
√

2
(hk,pmw(ω(G

′)−1))2

· (2k · k2)hk,pmw(ω(G
′)−1)

vertices. We will prove this by showing the following two claims for any child x of

r:

96 Chapter 8 List Homomorphism Reconfiguration

(A) |V (H)| ≤ hk,pmw(ω(G′) − 1) holds for any connected component H of CG(x);

and

(B) CG(x) has at most
√

2
(hk,pmw(ω(G

′)−1))2 · (2k · k2)hk,pmw(ω(G
′)−1) connected compo-

nents.

In order to prove the claim (A), we first claim that ω(CG(x)) < ω(G′) holds.

Assume for a contradiction that CG(x) contains a clique X of size ω(G′). Let x̂ be

a node of a quotient graph Q(r) which corresponds to x. By the definition, Q(r)

is connected, and hence there exists a node ŷ ∈ V (Q(r)) which is adjacent to x̂.

Let y ∈ PMD(G) be the child of r corresponding to ŷ. Recall that all vertices in X

are connected with at least one vertex v in V (CG(y)) by the substitution operation,

which means that G′ has a clique X ∪ {v} of size ω(G′) + 1. This contradicts the

assumption that the maximum clique size of G′ is ω(G′); this completes the proof of

the claim. Note that ω(H) ≤ ω(CG(x)) < ω(G′) holds for any connected component

H of CG(x). Therefore, |V (H)| ≤ hk,pmw(ω(G′) − 1) follows from the induction

hypothesis.

We next prove the claim (B). If x is a non-parallel node, CG(x) is connected

and hence we are done. The remaining case is where x is a parallel node. Let Y

be the set of all children of x. For each connected component H of CG(x), there

exists exactly one child y ∈ Y such that V (CG(y)) ⊇ V (H). Since a PMD-tree

has no edge joining two parallel nodes, y is not a parallel node. Thus, CG(y) is

connected, and hence we indeed have V (CG(y)) = V (H). Therefore, it suffices to

bound the size of Y instead of the number of connected components in CG(x). Let

m := maxy∈Y |V (CG(y))|. Since G′ is already kernelized, Mm(y1) ̸= Mm(y2) holds

for any two children y1, y2 ∈ Y . Therefore, |Y | cannot exceed the number of distinct

m-ID-matrices. Recall that the upper m × m submatrix consists of m2 elements

from {0, 1}, its (i, i)-element is 0 for each i ∈ {1, 2, . . . ,m}, and it is symmetric.

Therefore, the number of such distinct m × m submatrices can be bounded by

8.3 Kernelization 97

2m2/2 =
√

2
m2

. Recall that all elements of the (m + 1)-st row are chosen from the

set 2C × C × C, where C is the color set of size at most k. Therefore, the number

of such distinct 1×m submatrices can be bounded by (2k · k2)m. By the claim (A),

we have m = maxy∈Y |V (CG(y))| ≤ hk,pmw(ω(G′)− 1). Therefore, the size of Y , and

hence the number of connected components in CG(x), can be bounded by

√
2
(hk,pmw(ω(G

′)−1))2

· (2k · k2)hk,pmw(ω(G
′)−1).

From the claims (A) and (B), we have the following inequality

|V (G′)| ≤ pmw × hk,pmw(ω(G′) − 1) ×
√

2
(hk,pmw(ω(G

′)−1))2

· (2k · k2)hk,pmw(ω(G
′)−1)

as claimed. In particular, we can conclude that hk,pmw(ω(G′)) depends only on

k + pmw, because ω(G′) ≤ k. 2

Thus, Theorem 8.1 now follows from Theorem 2.1 and Lemma 8.8.

98 Chapter 9 Constraint Satisfiability Reconfiguration

Chapter 9 Constraint

Satisfiability

Reconfiguration

In this chapter, we give several fixed-parameter algorithms and some lower-bound

for CSR.

9.1 Graphs with bounded tree-depth

In this section, we show the following theorem.

Theorem 9.1 CSR is fixed-parameter tractable when parameterized by k + td.

We remark that the maximum arity of a constraint is bounded by td(P(G)); since

otherwise P(G) contains a clique of size more than td(P(G)), which is a contradic-

tion. (See the next subsection for the definition of tree-depth.) Therefore, we can

assume that each constraint is explicitly given as a set of mappings.

9.1.1 Definitions

We first define the notion of tree-depth of a graph. Let G be a connected graph.

A tree-depth decomposition of G is a rooted tree T such that V (T) = V (G) and if

vw ∈ E(G) then one of two endpoint is an ancestor of the other in T . The depth of

T is the maximum number of vertices of a path in T between the root and a leaf.

The tree-depth td(G) of G is the minimum depth of a tree-depth decomposition

of G. In Figure 9.1, T is a tree-depth decomposition of G whose depth is three;

note that T has the minimum depth, and hence td(G) = 3. It is known that there

9.1 Graphs with bounded tree-depth 99

v1

v2

v3 v4

v5

v6 v7

G

v1

v2

v3 v4

v5

v6 v7

T

Figure 9.1: A graph G and a tree-depth decomposition T of G with the root v1.

exists an algorithm computing the tree-depth decomposition of depth td in time

O∗(2O(td2)) [54]. For a tree-depth decomposition T of a graph G and for a vertex

v ∈ V (T) = V (G), Tv denotes the subtree of T rooted at v, and Anc(v) denotes

the set of all ancestors of v. From the definition of a tree-depth decomposition,

N(G, v) ⊆ V (Tv) ∪ Anc(v) holds.

9.1.2 Kernelization

In order to prove Theorem 9.1, we give a kernelization with respect to k + td. To

this end, we first explain a preprocessing of our kernelization algorithm, which will

simplify the discussion, and then give a sufficient condition that two subhypergraphs

are identical.

Let I = (G,D, C, fs, ft) be a given instance of CSR, and let T be a tree-depth

decomposition of P(G) with depth td. We assume that all vertices of V (G) are

totally ordered in the pre-order of the depth-first search on T starting with its root;

let ≺ be the binary relation defined by this ordering. Let X ∈ E(G) be a hyperedge.

From the definition of the primal graph, any two distinct vertices v and w in X are

adjacent in P(G), and hence they are in ancestor-descendant relationship in T .

Therefore, there exists the unique vertex which is farthest from the root. We call v

the bottommost vertex of X. Then, for each vertex v ∈ V (G), we modify the given

100 Chapter 9 Constraint Satisfiability Reconfiguration

instance as follows.

• Remove all hyperedges X whose bottommost vertices are v from G.

• Add a hyperedge Xv = Anc(v) ∪ {v} to G, and let C(Xv) be the set of all

mappings g ∈ DXv which satisfy the constraints of all removed hyperedges.

Observe that this modification can be done in time O∗(ktd), since each vertex has

at most td ancestors, and does not change the set of solutions. Therefore, in the

remainder of this section, we assume that there exists a one-to-one correspondence

between V (G) and E(G) such that v ∈ V (G) corresponds to the hyperedge Anc(v)∪

{v}.

Let v ∈ V (T) be a vertex, and assume that all vertices in V (Tv) are labeled as

v1, v2, . . . , vp according to ≺. Then, we define three p-tuples N (v), A (v) and C (v)

as follows.

• The i-th component of N (v) is N(T, vi).

• The i-th component of A (v) is A(vi).

• The i-th component of C (v) is a set of vectors of length |Xi| which correspond-

ing to C(Xi) under the total order ≺, where Xi = Anc(vi) ∪ {vi}.

We call these tuples ID-tuples of v. Then, we have the following lemma.

Lemma 9.1 Let v and w be two children of a vertex u in T such that |V (Tv)| =

|V (Tw)|. If (N (v),A (v),C (v)) = (N (w),A (w),C (w)) holds, then G[V (Tv)] and

G[V (Tw)] are identical under some pair of two bijections.

Proof. By the preprocessing, N(G, V (Tv)) = N(G, V (Tw)) = Anc(v) = Anc(w)

holds. We denote H1 = G[V (Tv)], H2 = G[V (Tw)], H ′
1 = G[V (Tv) ∪ Anc(v)] and

H ′
2 = G[V (Tw) ∪ Anc(w)]. We now define a pair of mappings ϕ and π as follows. ϕ

9.1 Graphs with bounded tree-depth 101

maps the i-th vertex in V (H ′
1) to the i-th vertex in V (H ′

2) according to ≺. π(X) =

{ϕ(x1), ϕ(x2), . . . , ϕ(xr)} holds for each hyperedge X = {x1, x2, . . . , xr} ∈ E(H ′
1).

Then, it suffices to show that ϕ and π satisfy the conditions (1) through (4) of

Definition 8.1. From the definition of ϕ, the condition (2) holds; that is, ϕ(x) = x

if x ∈ Anc(v). Since A (v) = A (w), the condition (3) holds. In order to verify the

condition (1), we show that π is a bijection from E(H ′
1) to E(H ′

2). The assumption

that N (v) = N (w) implies that Tv and Tw isomorphic under ϕ. Furthermore,

T [V (Tv) ∪ Anc(v)] = T [V (H ′
1)] and T [V (Tw) ∪ Anc(w)] = T [V (H ′

2)] are isomorphic,

too. Recall that for any vertex x ∈ V (G), there exists the corresponding hyperedge

X ∈ E(G) such that X = Anc(v) ∪ {v}. Therefore, for each hyperedge X ∈ E(H ′
1)

corresponding to x ∈ V (H ′
1), π(X) is a hyperedge corresponding to ϕ(x) ∈ V (H ′

2).

Thus, condition (1) holds. Finally, since C (v) = C (w), the condition (3) holds. 2

We now describe our kernelization algorithm. Our algorithm traverses T from

leaves to the root, that is, the algorithm processes a vertex of T after its all children

are processed.

Let u ∈ V (G) be a vertex which is currently visited. We check if there is a

pair of children v and w which satisfies the conditions of Lemma 9.1. If such a

pair is found, we apply Lemma 8.2 to remove V (Tw). We note that the one-to-one

correspondence between the vertex set and the hyperedge set is preserved during

this process. Therefore, we repeat this as long as such a pair is left.

The running time of this kernelization can be estimated as follows. For each

pair of two children of a vertex, Lemma 9.1 can be checked in time polynomial in

|V (G)| and the maximum size of a constraint (i.e., O(ktd)). Since there exist at

most |V (G)|2 pairs to be checked, the algorithm runs in time polynomial in |V (G)|

and O(ktd).

Finally, we prove that the obtained instance (G′, D, C ′, f ′
s, f

′
t) has bounded size.

We have the following lemma.

102 Chapter 9 Constraint Satisfiability Reconfiguration

Lemma 9.2 The graph G′ has at most hk,td(td) vertices, where hk,td(j) is recursively

defined for an integer j ≥ 1 as follows:

hk,td(j) =

{
1 if j = 1;

α2 · (2α · k2 · 2kα)
α

otherwise,

where α = hk,td(j − 1). In particular, hk,td(td) depends only on k + td.

Proof. In order to prove the lemma, we define the level of the tree-depth decom-

position: each leaf has the level one, and the level of each internal vertex is the

maximum level of a child plus one. Then, we prove the following stronger claim:

Claim 9.1 Let u be a vertex of level i, and let Gu and T ′ be the graph and the tree-

depth decomposition obtained by the algorithm after processing u. Then, Gu[V (T ′
u)]

has at most hk,td(i) vertices.

We prove the claim by the induction on i. If i = 1, then we have |V (Gu[V (T ′
u)])| =

1 = hk,td(1) since u is a leaf.

We thus assume in the remainder of the proof that i > 1. Consider each child v of u

in T ′. Since v’s level is less than i, and Gu[T ′
v] is the graph obtained by the algorithm

after processing v, |V (T ′
v)| ≤ hk,td(i − 1) by the induction hypothesis. Thus, it

suffices to show that r has at most α · (2α · k2 · 2kα)
α

children, where α = hk,td(i−1).

Because the algorithm has processed u, there exists no pair of two children v and w of

u which satisfies Lemma 9.1. Therefore, the number of children can be bounded by

the number of distinct combinations of three ID-tuples with at most α components.

For each β ≤ α, the number of distinct combinations of three ID-tuples with β

components can be bounded as follows. Recall that for each child v such that

|T ′
v| = β, N (v), A (v), and C (v) consist of β subsets of T ′

v, β pairs of tow values

from D, and β constraints of arity at most β, respectively. Thus,

• the number of distinct N (·)’s is at most (2β)
β
;

• the number of distinct A (·)’s is at most (k2)
β
; and

9.2 Graphs with small vertex cover 103

• the number of distinct C (·)’s is at most (2kβ)
β
.

Therefore, the number of children is at most

α∑
β=1

(2β · k2 · 2kβ)
β
≤ α · (2α · k2 · 2kα)

α

as required. 2

This completes the proof of the theorem.

9.2 Graphs with small vertex cover

In this section, we consider the size vc of a minimum vertex cover. Note that

Theorem 9.1 implies CSR is fixed-parameter tractable when parameterized by k+vc.

We strengthen it as follows.

Theorem 9.2 The shortest variant of CSR is fixed-parameter tractable when pa-

rameterized by k + vc.

Theorem 9.3 There exists a fixed-parameter algorithm for CSR parameterized by

k + vc which runs in time O∗(kO(vc)).

We remark that the maximum arity of a constraint is bounded by vc(P(G)) + 1;

since otherwise P(G) contains a clique of size more than vc(P(G)) + 1, which is

a contradiction. Therefore, we can again assume that each constraint is explicitly

given as a set of mappings.

9.2.1 Proof of Theorem 9.2

We give a fixed-parameter algorithm for a more general “weighted variant” of

CSR. Let I = (G,D, C, fs, ft) be an instance of CSR, and assume that each ver-

tex v ∈ V (G) has a weight ω(v) ∈ N, where N is the set of all positive inte-

gers. According to the weight function ω, we define the weight of each edge ff ′ ∈

104 Chapter 9 Constraint Satisfiability Reconfiguration

E(S ((G,D, C))) in the solution graph as the weight of v, where {v} = dif(f, f ′).

We denote by Sω((G,D, C)) the weighted solution graph defined in this way. The

length lenω(W) of a reconfiguration sequence (i.e., a walk) W in Sω((G,D, C)) is

the sum of the weight of the edges in W . For each vertex v ∈ V (G), we denote

by #(W , v) the number of edges ff ′ in W such that dif(f, f ′) = {v}. In other

words, #(W , v) is the number of steps changing the value of v in W . Notice that

lenω(W) =
∑

v∈V (G) ω(v) · #(W , v) holds. We denote by OPT(I, ω) the minimum

length of a reconfiguration sequence between fs and ft; we define OPT(I, ω) = +∞

if I is a no-instance of CSR. The weighted variant of CSR is to determine whether

OPT(I, ω) ≤ ℓ or not for a given instance (I, ω) and an integer ℓ ≥ 0. Notice

that the shortest variant is equivalent to the weighted variant where every vertex

has weight one. Thus, in order to prove Theorem 9.2, it suffices to construct a

fixed-parameter algorithm for the weighted variant parameterized by k + vc.

The central idea is the same as the previous section; that is, we again kernelize

the input instance.

Reduction rule for the weighted variant

In this subsection, we give the counterpart of Lemma 8.2 for the weighted version.

Let (I = (G,D, C, fs, ft), ω) be an instance of the weighted version, and assume

that there exist two identical subgraphs H1 and H2 of G, both of which consist of

single vertices, say, V (H1) = {v1} and V (H2) = {v2}. We now define a new instance

(I ′, ω′) as follows:

• I ′ is the instance obtained by applying Lemma 8.2 for H1 and H2; and

• ω′(v1) = ω(v1) + ω(v2) and ω′(v) = ω(v) for any v ∈ V (G) \ {v1, v2}.

Intuitively, v2 is merged into v1 together with its weight. Then, we have the following

lemma.

9.2 Graphs with small vertex cover 105

Lemma 9.3 OPT(I, ω) = OPT(I ′, ω′).

Proof. Let I ′ = (G′, D, f ′
s, f

′
t). By Lemma 8.2, OPT(I, ω) = +∞ if and only if

OPT(I ′, ω′) = +∞. Therefore, we assume that OPT(I ′, ω′) ̸= +∞ and OPT(I, ω) ̸=

+∞.

We first show that OPT(I, ω) ≤ OPT(I ′, ω′). Since OPT(I, ω) ≤ lenω(W) holds

for any reconfiguration sequence W for I, it suffices to show that there exists a recon-

figuration sequence for I whose length is at most OPT(I ′, ω′). Let W ′ be a shortest

reconfiguration sequence for I ′ such that lenω′(W ′) = OPT(I ′, ω′). Following the

only-if direction proof of Lemma 8.2, we can construct a reconfiguration sequence

W for I such that #(W , v1) = #(W , v2) = #(W ′, v1) and #(W , v) = #(W ′, v) for

any v ∈ V (G) \ {v1, v2}. Therefore,

lenω(W) =
∑

v∈V (G) ω(v) · #(W , v)

= ω(v1) · #(W , v1) + ω(v2) · #(W , v2) +
∑

v∈V (G)\{v1,v2} ω(v) · #(W , v)

= (ω(v1) + ω(v2)) · #(W , v1) +
∑

v∈V (G)\{v1,v2} ω(v) · #(W , v)

= ω′(v1) · #(W ′, v1) +
∑

v∈V (G)\{v1,v2} ω
′(v) · #(W ′, v)

=
∑

v∈V (G′) ω
′(v) · #(W ′, v)

= lenω′(W ′)

= OPT(I ′, ω′).

Thus, W is a desired reconfiguration sequence for I.

We next show that OPT(I ′, ω′) ≤ OPT(I, ω). Since OPT(I ′, ω′) ≤ lenω′(W ′)

holds for any reconfiguration sequence W ′ for I ′, it suffices to show that there exists

a reconfiguration sequence for I ′ whose length is at most OPT(I, ω). Let W be a

shortest reconfiguration sequence for I such that lenω(W) = OPT(I, ω). We now

construct a reconfiguration sequence for I ′ from W such that lenω′(W ′) ≤ OPT(I, ω)

as follows.

Case 1. #(W , v1) ≤ #(W , v2).

In this case, we restrict all solutions in W on V (G′) to obtain a reconfiguration

sequence W1 for I ′; recall the if direction proof of Lemma 8.2. From the construction,

#(W1, v1) = #(W , v1) ≤ #(W , v2) and #(W1, v) = #(W , v) holds for any vertex

106 Chapter 9 Constraint Satisfiability Reconfiguration

v ∈ V (G′) = V (G) \ {v2}. Therefore, we have

lenω′(W1) =
∑

v∈V (G′) ω
′(v) · #(W1, v)

= ω′(v1) · #(W1, v1) +
∑

v∈V (G′)\{v1} ω
′(v) · #(W1, v)

= (ω(v1) + ω(v2)) · #(W , v1) +
∑

v∈V (G)\{v1,v2} ω(v) · #(W , v)

≤ ω(v1) · #(W , v1) + ω(v2) · #(W , v2) +
∑

v∈V (G)\{v1,v2} ω(v) · #(W , v)

=
∑

v∈V (G) ω(v) · #(W , v)

= lenω(W)

= OPT(I, ω).

Thus, W1 is a desired reconfiguration sequence for I ′.

Case 2. #(W , v1) > #(W , v2).

In this case, instead of restricting solutions in W on V (G′) = V (G)\{v2}, we restrict

them on V (G) \ {v1} and obtain a reconfiguration sequence W2 for an instance

obtained by restricting on V (G) \ {v1}. Then, because H1 and H2 are identical,

we can easily “rephrase” W2 as a reconfiguration sequence W ′
2 for I ′. By the same

arguments as the case 1 above, we have lenω′(W ′
2) < lenω(W) = OPT(I, ω). Thus,

W ′
2 is a desired reconfiguration sequence for I ′.

In this way, we have shown that OPT(I, ω) = OPT(I ′, ω′) as claimed. 2

Kernelization

Finally, we give a kernelization algorithm as follows.

Let (I = (G,D, C, fs, ft), ω) be an instance of the weighted version such that the

primal graph P(G) has a vertex cover of size at most vc. Because such a vertex

cover can be computed in time O(2vc · n) [22], assume that we are given a vertex

cover C of size at most vc. Notice that I := V (G) \ C forms an independent set of

P(G). In order to simplify the proof, we first modify I without changing the set

of solutions as follows. For each vertex v in I, we remove all hyperedges containing

v and add a new hyperedge Cv = C ∪ {v}; note that each removed hyperedges are

subsets of Cv since I is an independent set of P(G). We then define a constraint

of Cv as the set of all mappings g ∈ DCv satisfying the constraints of all removed

9.2 Graphs with small vertex cover 107

hyperedges. Observe that this modification can be done in time O∗(kO(vc)) and does

not change the set of solutions. Thus, we can assume that for each vertex v ∈ I,

there exists the unique hyperedge Cv such that Cv = C ∪ {v}.

Let v1 and v2 be two vertices in I. We now define two mappings ϕ : Cv1 → Cv2 and

π : {Cv1} → {Cv2} as follows: ϕ(w) = w if w ∈ C, ϕ(v1) = v2, and π(Cv1) = Cv2 .

Suppose that A(v1) = A(v2) and C(Cv2) = C[ϕ](Cv1) hold. Then, induced subgraphs

G[{v1}] and G[{v2}] are identical. Therefore, we can apply Lemma 9.3 to remove

v2 from G, and modify the weight function without changing the optimality. As

a kernelization, we repeatedly apply Lemma 9.3 for all such pairs of vertices in I,

which can be done in polynomial time. Let G′ be the resulting subgraph of G, and

let I ′ := V (G′) \ C. Since C is of size at most vc, it suffices to prove the following

lemma.

Lemma 9.4 |I ′| ≤ k2 · 2kvc+1
.

Proof. Recall that I ′ contains no pair of vertices which correspond to identical

subgraphs, and hence any pair of vertices v1, v2 ∈ I ′ does not satisfy at least one

of A(v1) = A(v2) and C(Cv2) = C[ϕ](Cv1). Therefore, |I ′| can be bounded by the

number of distinct combinations of a vertex assignment and a constraint of arity

vc + 1. Since the domain has size k, the number of (possible) vertex assignments

can be bounded by k2. Since a constraint of arity vc + 1 can be seen as a subset of

Dvc+1, the number of (possible) constraints can be bounded by 2kvc+1
. We thus have

|I ′| ≤ k2 · 2kvc+1
as claimed. 2

This completes the proof of Theorem 9.2.

9.2.2 Proof of Theorem 9.3

In order to prove the theorem, we first introduce the notion of a “contracted

solution graph”, which was used to solve some reconfiguration problems [3, 7].

108 Chapter 9 Constraint Satisfiability Reconfiguration

Let I = (J , fs, ft) be an instance of CSR, where J = (G,D, C), and let P be a

partition of the vertex set of the solution graph S (J). The contracted solution graph

(or CSG for short) CSG(J ,P) is defined as follows. The vertex set V (CSG(J ,P))

is exactly P; we call each vertex of the CSG a node. Each pair of distinct nodes (i.e.,

sets of solutions) P, P ′ ∈ P are adjacent in the CSG if and only if there exist two

solutions f ∈ P and f ′ ∈ P ′ such that ff ′ ∈ E(S (J)). In other words, CSG(J ,P)

is obtained by contracting a (possibly disconnected) subgraph of S (J) induced by

each set P ∈ P into one node. A partition P is proper if every set P ∈ P induces

a connected subgraph of S (J). Since the contraction of a connected subgraph

maintains the connectivity of a graph, we have the following proposition.

Proposition 9.1 Let I = (J , fs, ft) be an instance of CSR, where J = (G,D, C),

and let P be a proper partition of V (S (J)). Then, I is a yes-instance if and only

if there exists a walk between Ps and Pt in CSG(J ,P), where fs ∈ Ps and ft ∈ Pt.

Moreover, the above condition can be checked in time polynomial in |P|.

Therefore, we first define a proper partition P such that |P| depends only on

k + vc, and then give an algorithm constructing the CSG and specifying the nodes

corresponding to fs and ft.

Defining a proper partition

Let I = (J , fs, ft) be an instance of CSR, where J = (G,D, C). Assume that

P(G) has a vertex cover C of size at most vc. For each solution f ∈ V (S (J)),

we define [f] = {f ′ : f |C = f ′|C}. Then, we define P = {[f] : f ∈ V (S (J))};

that is, P is the set of the equivalence classes under the equivalence relation “their

restrictions on C are the same”. Clearly, P is a partition of V (S (J)) and |P| is

bounded by the number of mappings from C to D, that is, |P| ≤ kvc.

In order to prove that P is proper, we introduce some notation. Let S ⊆ V (G)

be a vertex subset, and let h : S → D be a mapping from S to D. We define the

9.2 Graphs with small vertex cover 109

substitution SUB(J ;h) as an instance (G′, D, C ′) of constraint satisfiability

such that:

• G′ = G \ S; and

• for each X ′ ∈ E(G′), C ′(X ′) =
∩

X∈E′ G(X), where E ′ = {X ∈ E(G) : X \S =

X ′} and G(X) = {g|X′ : g ∈ C(X), h and g are compatible}.

We have the following lemma.

Lemma 9.5 Let f ′ : V (G) \ S → D and f : V (G) → D be two mappings such that

f |V (G)\S = f ′. Then, f ′ is a solution for SUB(J ; f |S) = (G′, D, C ′) if and only if f

is a solution for (G,D, C).

Proof. We first show the if direction. Assume that f is a solution for (G,D, C).

Let X ′ be any hyperedge of G′. For every hyperedge X of G such that X \ S = X ′,

f |X ∈ C(X) holds. Since f |S and f |X are compatible, by the definition of C ′,

(f |X)|X′ is in C ′(X ′). In addition, (f |X)|X′ = f |X′ = f ′|X′ holds, and hence, f ′

satisfies C ′(X ′). Therefore, f ′ is a solution for SUB(J ; f |S).

We next show the only-if direction. Assume that f ′ is a solution for SUB(J ; f |S) =

(G′, D, C ′). Let X be any hyperedge of G. Then, there exists a hyperedge X ′ of G′

such that X \ S = X ′. From the definition of C ′, there exists a mapping g ∈ C(X)

such that f ′|X′ = g|X′ , and f |S and g are compatible, that is, f |S∩X = g|S∩X . Since

f ′|X′ = f |X and X ′ ∪ (S ∩ X) = X, f |X = g|X holds, and hence f satisfies C(X).

Therefore, f is a solution for (G,D, C). 2

The following lemma implies that P is proper.

Lemma 9.6 Let P be a solution set in P such that f |C = h holds for every f ∈ P .

Then, S (J)[P] is connected.

Proof. By Lemma 9.5, there exists a one-to-one correspondence between P and

the solution set for SUB(J ;h) which preserves the adjacency relation. Thus, we

110 Chapter 9 Constraint Satisfiability Reconfiguration

suffices to show that S (SUB(J ;h)) is connected. Since C is a vertex cover of P(G),

P(G)[V (G) \ C] has no edges. This means that SUB(J ;h) contains only 1-ary

constraints. Therefore, a value assignment of each vertex v ∈ V (G) \ C can be

changed independently, and hence S (SUB(J ;h)) is connected. 2

Algorihm computing CSG

In order to give an algorithm computing CSG(J ,P) correctly, we first show two

claims.

Claim 9.2 Let h be a mapping from C to D. Then, CSG(J ,P) has a node corre-

sponding to h if and only if SUB(J ;h) = (G′, D, C ′) has a solution.

Proof. By Lemma 9.5, SUB(J ;h) has a solution f ′ if and only if there exists a

solution f for J such that f |V (G′) = f ′ and f |C = h. Since P is a partition of the

solution set, there exists a set P ∈ P which contains f ; and hence CSG(J ,P) has

a node corresponding to h. 2

Claim 9.3 Let P1 and P2 be two nodes of CSG(J ,P), and let h1 : C → D and

h2 : C → D be mappings corresponding to P1 and P2, respectively. Then, P1P2 ∈

E(CSG(J ,P)) if and only if both of the following conditions hold:

• |dif(h1, h2)| = 1; and

• SUB(J ;h1) and SUB(J ;h2) has a common solution f ′.

Proof. We first assume that the above two conditions hold. For each i ∈ {1, 2},

let fi : V (G) → C be a mapping such that fi|V (G′) = f ′ and fi|C = hi. Then, by

Lemma 9.5, f1 and f2 are adjacent solutions such that f1 ∈ P1 and f2 ∈ P2; and

hence P1P2 ∈ E(CSG(J ,P)).

We next assume that P1P2 ∈ E(CSG(J ,P)), that is, there exist two solutions

f1 and f2 such that |dif(f1, f2)| = 1, f1 ∈ P1 and f2 ∈ P2. From the definition of

9.2 Graphs with small vertex cover 111

P, h1 ̸= h2. Therefore, dif(f1, f2) = dif(h1, h2), and hence the first condition holds.

Furthermore, f1|V (G)\C = f2|V (G)\C holds. By Lemma 9.5, f1|V (G)\C and f2|V (G)\C

are solutions for SUB(J ;h1) and SUB(J ;h2), respectively; and hence the second

condition hold. 2

From Claims 9.2 and 9.3, we can construct the following algorithm to compute

CSG(J ,P) with nodes corresponding to fs and ft.

Phase 1 For each mapping h from C to D, check if SUB(J ;h) has a solution. If

so, create a node corresponding to h. For each r ∈ {s, t}, if h = fr|C , it

corresponds to fr.

Phase 2 For each pair of two nodes P1 and P2, check if the two conditions of

Claim 9.3 hold. If so, join them by an edge.

The correctness follows from Claims 9.2 and 9.3. The first phase can be done

in polynomial time for each mapping, because the constructed instance SUB(J ;h)

of constraint satisfiability contains only 1-ary constraints. Since |DC | ≤ kvc,

whole running time of this phase is O∗(kvc). In the second phase, the second condi-

tion of Claim 9.3 can be checked as follows. Let C1 and C2 are constraint assignments

in the substitutions SUB(J ;h1) and SUB(J ;h2). We now define for each X ′ ∈ E(G′)

a constraint C ′(X ′) = C1(X ′) ∩ C2(X ′). Then, a solution for (G′, D, C ′) is also a so-

lution for both of SUB(J ;h1) and SUB(J ;h2). Because (G′, D, C ′) is an instance of

constraint satisfiability which contains only 1-ary constraints, we can solve it

in polynomial time. Therefore, whole running time of this phase is O∗(kO(vc)).

We thus completed the proof of Theorem 9.3.

9.2.3 Discussions

We conclude this section by showing some corollaries and discussing hitting sets

on hypergraphs, which is a well-known generalization of vertex covers on graphs.

112 Chapter 9 Constraint Satisfiability Reconfiguration

Corollaries

We here show some results as corollaries of Theorems 9.2 and 9.3.

Corollary 9.1 The shortest variant of LHR is fixed-parameter tractable for split

graphs when parameterized by k. Moreover, there exists a fixed-parameter algorithm

for LHR on split graphs parameterized by k which runs in time O∗(kO(k)).

Proof. Let (G,D, C, fs, ft) be an instance of LHR such that G is split, L is a list

assignment, and H is an underlying graph. Recall that the vertex set of a split

graph G can be partitioned into a clique VQ and an independent set VI . Therefore

VQ is a vertex cover of G and hence vc(G) ≤ ω(G) holds. By Observation 2.1 and

the fact that fs is an L-homomorphism from G to H, we have ω(G) ≤ |V (H)| = k.

Thus, vc(G) ≤ k always holds if G is split. 2

Corollary 9.2 There exists a fixed-parameter algorithm for CR parameterized by

vc which runs in time O∗(vcO(vc)).

Proof. We first consider the case where k ≤ vc + 1. Then, the statement follows

directly from Theorem 9.3. We next consider the case where k ≥ vc + 2. We note

that any graph is vc-degenerate. Since it is known that any instance is a yes-instance

if the graph is d-degenerate and k ≥ d + 2 [4, Theorem 11], we can conclude that it

is a yes-instance. 2

Hitting sets

Although a hitting set of a 2-uniform hypergraph is equivalent to a vertex cover

of the graph, such an equivalence does not hold for general hypergraphs. Thus, it is

worth considering the complexity of CSR with respect to the size of a hitting set of

a given hypergraph. For a hypergraph G, a vertex subset V ′ ⊆ V (G) is a hitting set

if V ′ ∩X ̸= ∅ holds for every hyperedge X ∈ E(G). We have the following theorem,

9.3 Extension of the algorithm for binary BCSR 113

which implies that a fixed-parameter algorithm for CSR is unlikely to exist when

parameterized by the size of a hitting set plus k.

Theorem 9.4 3-CSR is PSPACE-complete even for hypergraphs with a hitting set

of size one and k = 3.

Proof. Let I = (G,D, C, fs, ft) be an instance constructed in Theorem 6.1. Briefly

speaking, we add a new vertex u to G, include it in every edge vw ∈ E(G), and

modify the constraints so that a value assignment to u does not affect any other

vertices. More precisely, we construct a new instance I ′ = (G′, D, C ′, f ′
s, f

′
t) as

follows. Let V (G′) := V (G) ∪ {u} and E(G′) := {{u, v, w} : vw ∈ E(G)}, where u

is a new vertex which is not in G. Then, G′ has a hitting set {u} of size one. For

each hyperedge {u, v, w} ∈ E(G′), we let C ′({u, v, w}) := {1} × C(vw). We finally

extend fs (resp., ft) to f ′
s (resp., f ′

t) by setting f ′
s(u) = 1 (resp., f ′

t(u) = 1). This

completes the construction. I ′ is equivalent to I by ignoring a value assignment to

u. 2

9.3 Extension of the algorithm for binary BCSR

In this section, we show the following theorem.

Theorem 9.5 There exists a fixed-parameter algorithm for 2-CSR parameterized

by k + nb which runs in time O∗(kO(nb)).

We note that k = 2 implies that nb = 0, and hence this generalizes Theorem 6.2.

Let I = (J , fs, ft) be an instance of 2-CSR, where J = (G,D, C). We denote

by VB and VN be the set of Boolean and non-Boolean vertices, respectively. We

first define a partition similarly to Section 9.2.2 as follows. For each solution f ∈

V (S (J)), we define [f] = {f ′ : f |VN
= f ′|VN

}. Then, we define P = {[f] : f ∈

114 Chapter 9 Constraint Satisfiability Reconfiguration

V (S (J))}. Clearly, P is a partition of V (S (J)) and |P| ≤ knb. In contrast to

Section 9.2.2, however, P may be improper in this case.1

Therefore, as the first step of our algorithm, we modify the given instance so that

P is proper by some preprocessing. More formally, we show the following lemma.

Lemma 9.7 Let I = (J , fs, ft) be an instance of 2-CSR, where J = (G,D, C).

We can compute in polynomial time an instance I∗ = (J ∗, f ∗
s , f

∗
t) of 2-CSR such

that:

1. the number of non-Boolean vertices in J ∗ is at most that of J ;

2. I is a yes-instance if and only if I∗ is; and

3. the partition for J ∗ is proper.

Then, we can compute the CSG in the same way as Section 9.2.2; we just replace C

with VN. In order to check the existence of vertices and edges in the CSG, we solve

instances of Boolean 2-constraint satisfiability which are constructed by

the substitution operation. Since Boolean 2-constraint satisfiability can be

solved in polynomial time [56], the whole running time of the algorithm is O∗(kO(nb)).

In the remainder of this section, we prove Lemma 9.7.

9.3.1 Implication graphs

In order to describe a preprocessing, we first introduce the notion of “implication

graph”, which was first introduced in [26] in order to prove the tractability of some

variant of Boolean 2-CSR. Let J = (G,D, C) be an instance of constraint

satisfiability where {0, 1} is a domain; we consider the values 0 and 1 as Boolean

values. We define the implication graph IMP(J) for J as follows. (See Figure 9.2

1As a simple example, let us consider 2-colorings of K2. Clearly VN is empty set, and
hence all (indeed, only two) 2-colorings of G are in the same set of P. On the other hand,
they are not reconfigurable each other.

9.3 Extension of the algorithm for binary BCSR 115

u v w

C(uv) = {00, 01, 10}

C(vw) = {00, 11}

(a)

u[0]

u[1]

v[0]

v[1]

w[0]

w[1]

(b)

Figure 9.2: (a) An instance J = (G, {0, 1}, C) and (b) the implication graph IMP(J)

for J .

for an example.) For each vertex v ∈ V (G) and for each value i ∈ D such that

there exists a solution f with f(v) = i, we add a vertex v[i] to IMP(J). For each

adjacent vertices v, w ∈ V (G), add two arcs v[i] → w[¬j] and w[j] → v[¬i] if and

only if (i, j) /∈ C(vw), where ¬ denote a negation of a Boolean value. Intuitively,

an arc v[i] → w[¬j] means that if v is assigned i, then w must be assigned ¬j in

any solution. We note that IMP(J) can be computed in polynomial time, since the

existence of a vertex v[i] can be checked in polynomial time by solving Boolean

2-constraint satisfiability instance obtained by substituting f(v) = i. We

now prove the following lemma.

Lemma 9.8 If there exists a vertex v ∈ V (G) such that v[0] or v[1] is contained in

a directed cycle of IMP(J), any two solutions f0 and f1 for J such that f0(v) = 0

and f1(v) = 1 are not reconfigurable. On the other hand, if IMP(J) contains no

directed cycles, S (J) is connected.

Proof. The second statement can be proved by the similar argument as the proof

of Lemma 4.9 in [26], although our implication graph is slightly different from the

original one.

Therefore, we prove the first statement. Let C = v0[i0] → v1[i1] → · · · →

vm[im] → v0[i0] be a directed cycle in IMP(J), where v0 = v and ij ∈ {0, 1},

0 ≤ j ≤ m. From the construction, m ≥ 1 holds. Without loss of generality, assume

that i0 = 0. Recall that each arc v[i] → w[¬j] means that if v is assigned i, then

116 Chapter 9 Constraint Satisfiability Reconfiguration

w must be assigned ¬j. Then, f0(vp) = ip holds for every p ∈ {0, 1, . . . ,m}. More-

over, by contrapositions of the above implications, f1(vp) = ¬ip also holds for every

p ∈ {0, 1, . . . ,m}. We assume for a contradiction that f0 and f1 are reconfigurable,

and consider the first solution f in a reconfiguration sequence such that f(vp) = ¬ip

for some p ∈ {0, 1, . . . ,m}. Since there exists an arc vq[iq] → vp[ip] in a directed

cycle C, and hence f(vq) must be ¬iq. However, by the definition of f , we have

f(vq) = iq, which is a contradiction. 2

9.3.2 Preprocessing

We now explain a preprocessing, which eliminates all “undesirable” vertices which

prevent the partition from being proper. Let I = (J , fs, ft) be an instance of 2-

CSR, where J = (G,D, C). Without loss of generality, we can assume that a

list L(v) of every Boolean vertex v ∈ VB is a subset of {0, 1} by a simple value

replacement. Then, we define the instance J res = (Gres, D, Cres) of 2-constraint

satisfiability as the instance obtained by restricting all component of J on VB.

That is,

• Gres = G[VB]; and

• for each X ′ ∈ E(Gres), Cres(X ′) =
∩

X∈E′ G(X), where E ′ = {X ∈ E(G) : X ∩

VB = X ′} and G(X) = {g|X′ : g ∈ C(X)}.

Let Vfix be the set of vertices v ∈ V (G) such that v[0] or v[1] are contained in a

directed cycle of IMP(J res). By Lemma 9.8, in any solution for J res, all vertices v

in Vfix are fixed, that is, cannot be reconfigured at all. This property also holds for

the original instance J . Therefore, if fs|Vfix
̸= ft|Vfix

holds, then we can immediately

conclude that I is a no-instance. In the other case, we construct in polynomial time

the substitution SUB(J ;h′), where h′ = fs|Vfix
= ft|Vfix

. Then, we have the following

proposition.

9.3 Extension of the algorithm for binary BCSR 117

Proposition 9.2 I is a yes-instance if and only if I ′ = (SUB(J ;h′),

fs|V (G′), ft|V (G′)) is.

Proof. Because all vertices v in Vfix are fixed, I is a yes-instance if and only if there

exists a reconfiguration sequence W such that every solutions f in W satisfies f |Vfix
=

h′. By Lemma 9.5, there exists such a reconfiguration sequence if and only if there

exists a reconfiguration sequence between fs|V (G′) and ft|V (G′) in S (SUB(J ;h′)). 2

Therefore, we can obtain an equivalent instance which satisfies the conditions (1)

and (2) of Lemma 9.7 by repeating the above transformation until the corresponding

implication graph becomes acyclic or empty. Since the number of vertices decreases

during the process, this can be done in polynomial time. Let I∗ = (J ∗, f ∗
s , f

∗
t),

where J ∗ = (G∗, D, C∗), be an instance obtained by this preprocessing. Then, it is

left to prove that I∗ satisfies the condition (3).

9.3.3 Properity of the partition

Let P be the partition for J ∗, and let P be any solution set in P such that the

restriction of every solution in P on VN is h. By Lemma 9.8, in order to prove that

P is proper, it suffices to show that IMP(SUB(J ∗;h)) has no directed cycles.

Assume for a contradiction that IMP(SUB(J ∗;h)) has a cycle C. Let J ∗res be an

instance obtained by restricting all component of J ∗ on VB. From the definition

of the implication graph, for each vertex v[i] in C, there exists a solution f ′ for

SUB(J ∗;h) such that f ′(v) = i. By Lemma 9.5, a mapping f such that f |VN
= h

and f |VB
= f ′ is a solution for J ∗. Moreover, f |VB

= f ′ is a solution for the

restricted instance J ∗res. Therefore, IMP(J ∗res) has a vertex v[i]. For each arc

v[i] → w[j], a mapping (i,¬j) is not contained in the constraint C∗′(vw) of vw in

SUB(J ∗;h). Recall that C∗′(vw) is the mapping set
∩

X∈E′ G(X), where E ′ = {X ∈

E(G∗) : X \ VN = {v, w}} and G(X) = {g|{v,w} : g ∈ C(X), h and g are compatible}.

Since G∗ has a hyperedge of size at most two, E ′ contains exactly one edge vw.

118 Chapter 9 Constraint Satisfiability Reconfiguration

Therefore, C∗′(vw) = C∗(vw) holds, and hence (i,¬j) not contained in C∗(vw).

Moreover, the constraint C∗res(vw) does not contain (i,¬j), too. From the definition,

IMP(J ∗res) contains the arc v[i] → w[j]. By the above observations, IMP(J ∗) has a

directed cycle C, which contradicts that we have eliminated all directed cycles from

the implication graph by the preprocessing.

Thus, we have proved Lemma 9.7 and hence Theorem 9.5.

9.3.4 Discussion

We conclude this section by showing the following proposition, which states that

we can eliminate k from the parameter when restricted to CR

Proposition 9.3 There exists a fixed-parameter algorithm for CR parameterized

by nb which runs in time O∗(nbO(nb)).

Proof. Let I = (G, C, D, fs, ft) be an instance of CR. We can assume that k ≤

|V (G)| and k ≥ 3, since otherwise it is trivial. Because a list of each vertex is exactly

D in CR and |D| = k ≥ 3, |V (G)| = nb holds. Therefore, we can solve it in time

O∗(nbO(nb)) by Theorem 2.1. 2

9.4 ETH-based lower bound

Finally, we show the following theorem.

Theorem 9.6 Under ETH, there exists no algorithm solving 2-CSR in time

O∗((k + n)o(k+n)).

Proof. We give a polynomial-time reduction from (κ×κ)-clique, which is defined

as follows. An instance of (κ×κ)-clique is a graph H with the vertex set {up
i : 1 ≤

i, p ≤ κ}; we denote Ui = {up
i : 1 ≤ p ≤ κ} for each i ∈ {1, 2, . . . , κ}. Then, the

problem asks whether there exists a clique Q ⊆ V (H) such that |Q∩Ui| = 1 for every

9.4 ETH-based lower bound 119

i ∈ {1, 2, . . . , κ}. It is known that there exists no algorithm solving (κ×κ)-clique in

time O∗(κo(κ)) under ETH [20, Theorem 14.12]. We will present a polynomial-time

transformation from an instance H of (κ × κ)-clique to an instance I of 2-CSR

such that

• a graph has κ + 2 vertices and a domain has κ + 1 values; and

• H is a yes-instance if and only if I is.

If there exists an algorithm A solving 2-CSR in time O∗((k+n)o(k+n)), an execution

of A for the transformed instance I yields an algorithm solving (κ × κ)-clique in

time

O∗((k + n)o(k+n)) = O∗((2κ + 3)o(2κ+3)) = O∗((κ2)o(2κ+3)) = O∗(κo(κ)).

Before constructing I, we first reformulate (κ× κ)-clique as a special case of 2-

ary constraint satisfiability by a similar idea of the proof of Theorem 7.1. Let

G′ be a complete graph Kκ with κ vertices {v1, v2, . . . , vκ}, and let D′ = {1, 2, . . . , κ}.

We construct each constraint so that assigning a value p ∈ D to a vertex vi ∈ V (G′)

corresponds to choosing a vertex up
i as a member of a clique Q. That is, we define

C ′(vivj) := {(p, q) : up
iu

q
j ∈ E(H)}. Observe that we can simultaneously assign p and

q to vi and vj, respectively, if and only if up
i and uq

j are adjacent in H. Therefore,

H and (G′, D′, C ′) are equivalent. Clearly, |V (G′)| = |D′| = κ holds.

We now construct an instance I = (G,D = D′ ∪ {0}, C, fs, ft) of 2-CSR as

follows. A graph G is obtained from G′ by adding two new vertices w1 and w2 and

edges {w1w : w ∈ V (G′) ∪ {w2}}. These added vertices will form a key component

which links the existence of a solution of (G′, D′, C ′) with the reconfigurability of I.

Clearly, |V (G)| = κ + 2 and |D| = κ + 1 hold. We first construct the constraints of

the original graph G′. For each edge vivj ∈ E(G′), we add to a constraint C ′(vivj),

all mappings which contain 0; that is, C(vivj) := C ′(vivj) ∪ ({0} ×D) ∪ (D × {0}).

We have the following observation.

120 Chapter 9 Constraint Satisfiability Reconfiguration

Observation 9.1 A solution of (G′, D, C) in which no vertices are assigned 0 one-

to-one corresponds to a solution of the original instance (G′, D′, C ′).

We next define the constraints regarding w1 and w2. The constraint C(w1w2) of

w1w2 ∈ E(G) is defined as C(w1w2) := {(0, 1), (0, 2), (1, 2), (2, 1)}. For each vi ∈

V (G′), we let C(w1vi) = D2 \ {(0, 0)}. Then, we have the following observation.

Observation 9.2 we can assign 0 to w1 if and only if no other vertices are assigned

0.

Finally, we define two solutions fs and ft as follows:

• for each vertex vi ∈ V (G′), let fs(vi) = ft(vi) = 0; and

• let fs(w1) = ft(w2) = 1 and fs(w2) = ft(w1) = 2.

In order to show the correctness, it suffices to show the following lemma.

Lemma 9.9 (G′, D′, C ′) has a solution if and only if I is a yes-instance.

We first show the if direction. Assume that fs and ft are reconfigurable. Then, a

reconfiguration sequence must contain a solution f such that f(w1) = 0. Otherwise,

values of w1 and w2 can never be changed because only allowed assignment to

{w1, w2} is either (1, 2) or (2, 1) in this case, which contradicts the reconfigurability.

Since f assigns 0 to w1, no other vertices are assigned 0 by Observation 9.2. In

addition, by Observation 9.1, f |V (G′) is a solution of (G′, D′, C ′).

We next prove the only-if direction. Let g be a solution of (G′, D′, C ′). We extend

it to solutions f ′
s and f ′

t of (G,D, C) as follows. For each r ∈ {s, t},

• let f ′
r(vi) = g(vi) for each vi ∈ V (G′); and

• let f ′
r(w1) = fr(w1) and f ′

r(w2) = fr(w2).

9.4 ETH-based lower bound 121

Notice that f ′
r is a solution, and that fr and f ′

r are reconfigurable by changing values

of all vertices vi ∈ V (G′) from 0 to f ′
r(vi). Furthermore, f ′

s and f ′
t are reconfigurable

by the following three steps:

• change a value of w1 from 1 to 0;

• change a value of w2 from 2 to 1; and

• change a value of w1 from 0 to 2.

We note that this yields a valid reconfiguration sequence: in particular, Observa-

tion 9.2 and the construction of f ′
s justify the first step. Therefore, fs and ft are

reconfigurable. 2

122 Chapter 10 Conclusions

Chapter 10 Conclusions

In this thesis, we studied CSR and its spacial cases, especially 3-CSR, 2-CSR,

(L)HR and (L)CR from the viewpoints of polynomial-time solvability and pa-

rameterized complexity, and gave several interesting boundaries of tractable and

intractable cases.

Part I

In Chapter 3, we studied CR from the viewpoint of graph classes. We first showed

that the problem is PSPACE-complete even for chordal graphs and thus answered

the open question posed by Bonsma and Paulusma [7]. On the other hand, we then

showed that the problem is polynomial-time solvable for 2-degenerate graphs and

gave linear-time algorithms for subclasses of chordal graphs, that is, q-trees with

any integer q ≥ 1, split graphs, and trivially perfect graphs.

In Chapter 4, we studied LCR from the viewpoint of graph classes. We first

showed that the problem is PSPACE-complete even for threshold graphs, which have

the modular-width zero. On the other hand, we gave a polynomial-time algorithm

for graphs with pathwidth one using the method of dynamic programming. We note

that it is known that it is PSPACE-complete for graphs with pathwidth two [60],

and hence, our algorithm gave a sharp boundary of the complexity of LCR with

respect to the pathwidth.

In Chapter 5, we studied LHR. We first showed the PSPACE-completeness of

LHR for graphs with pathwidth one; and hence, the above algorithm for LCR is

unlikely to be extended to LHR. On the other hand, we gave a polynomial time

algorithm for k = 3.

123

In Chapter 6, we studied 2-CSR from the viewpoint of the size k of a domain.

We showed the PSPACE-completeness of 2-CSR for k = 3 and gave a polynomial

time algorithm for k = 2; these two results shows the boundary of the complex-

ity of 2-CSR with respect to k. Indeed, in the proof of the first hardness result,

there are essentially two types of constraints between vertices; the constraint cor-

responding LCR and the trivial one. Recall that LHR, in which all edge have the

essentially same constraint corresponding to a given underlying graph, can be solved

in polynomial-time for k = 3.

Part II

In Chapter 7, we showed that HR parameterized by the number n of vertices and

LCR parameterized by vc are both W [1]-hard. These imply that fixed-parameter

algorithms are unlikely to exist for almost all graph parameters in Figure 1.4.

In Chapter 8, we first gave some useful lemma, which we call the reduction rule,

for general CSR. We then gave a fixed-parameter algorithm for LHR parameterized

by k + mw by kernelizing an input instance using the reduction rule.

In Chapter 9, we first gave a fixed-parameter algorithm for CSR parameterized

by k + td, by again using the reduction rule. By the relationship between vc and td,

this implies that CSR is fixed-parameter tractable when parameterized by k + vc.

However, we gave two stronger results; that is, we gave an algorithm for the shortest

variant and a faster algorithm. We also gave a fixed-parameter algorithm for 2-CSR

parameterized by k + nb; this result generalizes the polynomial-time solvability of

2-CSR for k = 2. We finally showed the lower bound of the computation time

for 2-CSR under the well-known exponential time hypothesis. This lower bound

matches the running times of some of our algorithms.

Finally, we discuss a future direction. In 2014, Mouawad et al. [48] gave a meta-

theorem to develop a fixed-parameter algorithm for the shortest variant of a re-

configuration problem on graphs when parameterized by the length ℓ of a recon-

124 Chapter 10 Conclusions

figuration sequence and the treewidth. We then have one question whether such a

meta-theorem for some parameters which do not contain ℓ can be given. Note that

many reconfiguration problems are fixed-parameter intractable when parameterized

only by the treewidth; recall for example that LCR is PSPACE-complete even for

graphs with constant bandwidth and hence with constant treewidth [60]. Therefore,

generalizing fixed-parameter algorithms parameterized by k+mw, k+ td and k+ vc

may be an interesting direction.

Bibliography 125

Bibliography

[1] M. Bonamy and N. Bousquet. Recoloring graphs via tree decompositions. Eu-

ropean Journal of Combinatorics, 69:200–213, 2018.

[2] M. Bonamy, M. Johnson, I. Lignos, V. Patel, and D. Paulusma. Reconfiguration

graphs for vertex colourings of chordal and chordal bipartite graphs. Journal

of Combinatorial Optimization, 27(1):132–143, 2014.

[3] P. Bonsma. Rerouting shortest paths in planar graphs. Discrete Applied Math-

ematics, 231:95–112, 2017.

[4] P. Bonsma and L. Cereceda. Finding paths between graph colourings:

PSPACE-completeness and superpolynomial distances. Theoretical Computer

Science, 410(50):5215–5226, 2009.

[5] P. Bonsma, M. Kamiński, and M. Wrochna. Reconfiguring independent sets

in claw-free graphs. In Proceedings of the 14th Scandinavian Symposium and

Workshops on Algorithm Theory (SWAT 2014), volume 8503 of Lecture Notes

in Computer Science (LNCS), pages 86–97, 2014.

[6] P. Bonsma, A. E. Mouawad, N. Nishimura, and V. Raman. The complexity of

bounded length graph recoloring and CSP reconfiguration. In Proceedings of

the 11th International Symposium on Parameterized and Exact Computation

(IPEC 2014), pages 110–121, 2014.

[7] P. Bonsma and D. Paulusma. Using contracted solution graphs for solving

reconfiguration problems. In 41st International Symposium on Mathematical

126 Chapter 10 Conclusions

Foundations of Computer Science (MFCS 2016), volume 58 of Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), pages 20:1–20:15, 2016.

[8] N. Bousquet and G. Perarnau. Fast recoloring of sparse graphs. European

Journal of Combinatorics, 52:1–11, 2016.

[9] A. Brandstädt, V. Le, and J. Spinrad. Graph Classes: A Survey. Society for

Industrial and Applied Mathematics, 1999.

[10] R. C. Brewster, J.-B. Lee, B. Moore, J. A. Noel, and M. Siggers. Graph homo-

morphism reconfiguration and frozen H-colourings, arXiv:1712.00200, 2017.

[11] R. C. Brewster, J.-B. Lee, and M. Siggers. Recolouring reflexive digraphs.

Discrete Mathematics, 341(6):1708–1721, 2018.

[12] R. C. Brewster, S. McGuinness, B. Moore, and J. A. Noel. A dichotomy theorem

for circular colouring reconfiguration. Theoretical Computer Science, 639:1–13,

2016.

[13] R. C. Brewster and J. A. Noel. Mixing homomorphisms, recolorings, and ex-

tending circular precolorings. Journal of Graph Theory, 80(3):173–198, 2015.

[14] J. Cardinal, E. D. Demaine, D. Eppstein, R. A. Hearn, and A. Winslow. Re-

configuration of satisfying assignments and subset sums: Easy to find, hard

to connect. In Proceedings of the 24th International Computing and Com-

binatorics Conference (COCOON 2018), Lecture Notes in Computer Science

(LNCS), pages 365–377, 2018.

[15] M. Celaya, K. Choo, G. MacGillivray, and K. Seyffarth. Reconfiguring k-

colourings of complete bipartite graphs. Kyungpook Mathematical Journal,

56:647–655, 2016.

Bibliography 127

[16] L. Cereceda. Mixing Graph Colourings. PhD thesis, The London School of

Economics and Political Science, 2007.

[17] L. Cereceda, J. van den Heuvel, and M. Johnson. Finding paths between 3-

colorings. Journal of Graph Theory, 67(1):69–82, 2011.

[18] G. Chen and A. Saito. Graphs with a cycle of length divisible by three. Journal

of Combinatorial Theory, Series B, 60(2):277–292, 1994.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, 3rd Edition. MIT Press, 2009.

[20] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,

M. Pilipczuk, and S. Saurabh. Lower bounds based on the exponential-time

hypothesis. In Parameterized Algorithms, pages 467–521. Springer International

Publishing, 2015.

[21] E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono,

Y. Otachi, R. Uehara, and T. Yamada. Linear-time algorithm for sliding tokens

on trees. Theoretical Computer Science, 600:132–142, 2015.

[22] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,

1999.

[23] M. Dyer, A. D. Flaxman, A. M. Frieze, and E. Vigoda. Randomly coloring

sparse random graphs with fewer colors than the maximum degree. Random

Structures & Algorithms, 29(4):450–465, 2006.

[24] C. Feghali, M. Johnson, and D. Paulusma. A reconfigurations analogue of

brooks’ theorem and its consequences. Journal of Graph Theory, 83(4):340–

358, 2016.

128 Chapter 10 Conclusions

[25] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Sci-

entiarum Hungarica, 18(1):25–66, 1967.

[26] P. Gopalan, P. G. Kolaitis, E. N. Maneva, and C. H. Papadimitriou. The con-

nectivity of Boolean satisfiability: Computational and structural dichotomies.

SIAM Journal on Computing, 38(6):2330–2355, 2009.

[27] R. Haas and G. MacGillivray. Connectivity and hamiltonicity of canonical

colouring graphs of bipartite and complete multipartite graphs. Algorithms,

11(4), 2018.

[28] R. Haas and K. Seyffarth. The k-dominating graph. Graphs and Combinatorics,

30(3):609–617, 2014.

[29] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decom-

position. Computer Science Review, 4(1):41–59, 2010.

[30] A. Haddadan, T. Ito, A. E. Mouawad, N. Nishimura, H. Ono, A. Suzuki, and

Y. Tebbal. The complexity of dominating set reconfiguration. Theoretical Com-

puter Science, 651:37–49, 2016.

[31] P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica,

1(3):275–284, 1981.

[32] R. A. Hearn and E. D. Demaine. PSPACE-completeness of sliding-block puzzles

and other problems through the nondeterministic constraint logic model of

computation. Theoretical Computer Science, 343(1–2):72–96, 2005.

[33] J. van den Heuvel. The complexity of change. In Surveys in Combinatorics

2013, pages 127–160. Cambridge University Press, 2013.

Bibliography 129

[34] T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Ue-

hara, and Y. Uno. On the complexity of reconfiguration problems. Theoretical

Computer Science, 412(12):1054–1065, 2011.

[35] T. Ito, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, and K. Yamanaka. On the

parameterized complexity for token jumping on graphs. In Proceedings of the

11th Annual Conference on Theory and Applications of Models of Computation

(TAMC 2014), Lecture Notes in Computer Science (LNCS), pages 341–351,

2014.

[36] T. Ito, K. Kawamura, and X. Zhou. An improved sufficient condition for recon-

figuration of list edge-colorings in a tree. IEICE Transactions on Information

and Systems, 95-D(3):737–745, 2012.

[37] T. Ito, H. Nooka, and X. Zhou. Reconfiguration of vertex covers in a graph.

IEICE Transaction on Information and Systems, 99-D(3):598–606, 2016.

[38] T. Ito and A. Suzuki. Web survey on combinatorial reconfiguration.

http://www.ecei.tohoku.ac.jp/alg/coresurvey/. Updated on November

9, 2017.

[39] M. Johnson, D. Kratsch, S. Kratsch, V. Patel, and D. Paulusma. Finding

shortest paths between graph colourings. Algorithmica, 75(2):295–321, 2016.

[40] M. Kamiński, P. Medvedev, and M. Milanič. Shortest paths between shortest

paths. Theoretical Computer Science, 412(39):5205–5210, 2011.

[41] M. Kamiński, P. Medvedev, and M. Milanič. Complexity of independent set

reconfigurability problems. Theoretical Computer Science, 439:9–15, 2012.

[42] D. Lokshtanov and A. E. Mouawad. The complexity of independent set recon-

figuration on bipartite graphs. In Proceedings of the 29th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2018), pages 185–195, 2018.

130 Chapter 10 Conclusions

[43] K. Makino, S. Tamaki, and M. Yamamoto. On the Boolean connectivity prob-

lem for horn relations. Discrete Applied Mathematics, 158(18):2024–2030, 2010.

[44] K. Makino, S. Tamaki, and M. Yamamoto. An exact algorithm for the Boolean

connectivity problem for k-CNF. Theoretical Computer Science, 412(35):4613–

4618, 2011.

[45] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph

coloring algorithms. Journal of the ACM, 30(3):417–427, 1983.

[46] R. M. McConnell and F. de Montgolfier. Linear-time modular decomposition

of directed graphs. Discrete Applied Mathematics, 145(2):198–209, 2005.

[47] A. E. Mouawad, N. Nishimura, V. Pathak, and V. Raman. Shortest recon-

figuration paths in the solution space of Boolean formulas. SIAM Journal on

Discrete Mathematics, 31(3):2185–2200, 2017.

[48] A. E. Mouawad, N. Nishimura, V. Raman, and M. Wrochna. Reconfiguration

over tree decompositions. In Proceedings of the 11th International Symposium

on Parameterized and Exact Computation (IPEC 2014), volume 8894 of Lecture

Notes in Computer Science (LNCS), pages 246–257, 2014.

[49] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture

Series in Mathematics and Its Applications. OUP Oxford, 2006.

[50] N. Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.

[51] H. Osawa, A. Suzuki, T. Ito, and X. Zhou. Complexity of coloring reconfigura-

tion under recolorability constraints. In Proceedings of the 28th International

Symposium on Algorithms and Computation (ISAAC 2017), volume 92 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 62:1–62:12, 2017.

Bibliography 131

[52] H. Osawa, A. Suzuki, T. Ito, and X. Zhou. The complexity of (list) edge-coloring

reconfiguration problem. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, 101-A(1):232–238, 2018.

[53] A. Proskurowski and J. A. Telle. Classes of graphs with restricted interval

models. Discrete Mathematics and Theoretical Computer Science, 3(4):167–

176, 1999.

[54] F. Reidl, P. Rossmanith, F. S. Villaamil, and S. Sikdar. A faster parameterized

algorithm for treedepth. In Proceedings of the 41st International Colloquium on

Automata, Languages, and Programming (ICALP 2014), pages 931–942, 2014.

[55] N. Robertson and P. Seymour. Graph minors. I. Excluding a forest. Journal of

Combinatorial Theory, Series B, 35(1):39–61, 1983.

[56] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing (STOC 1978), pages

216–226, 1978.

[57] K. W. Schwerdtfeger. A computational trichotomy for connectivity of Boolean

satisfiability. Journal on Satisfiability, Boolean Modeling and Computation,

8(3–4):173–195, 2014.

[58] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modular

decomposition via recursive factorizing permutations. In Proceedings of the 35th

International Colloquium on Automata, Languages, and Programming (ICALP

2008), pages 634–645, 2008.

[59] M. Wrochna. Homomorphism reconfiguration via homotopy. In Proceedings of

the 32nd International Symposium on Theoretical Aspects of Computer Science

(STACS 2015), volume 30 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 730–742, 2015.

132 Chapter 10 Conclusions

[60] M. Wrochna. Reconfiguration in bounded bandwidth and tree-depth. Journal

of Computer and System Sciences, 93:1–10, 2018.

133

List of papers

Refereed papers in journals

1. Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The coloring reconfigu-

ration problem on specific graph classes, IEICE Transactions on Information

and Systems, E102-D(3), 2019, to appeared.

2. Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. Parameterized complexity

of the list coloring reconfiguration problem with graph parameters, Theoretical

Computer Science, 739:65–79, 2018.

3. Tatsuhiko Hatanaka, Takehiro Ito and Xiao Zhou, The list coloring recon-

figuration problem for bounded pathwidth graphs, IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences E98-

A(6):1168–1178, 2015.

Refereed papers in international conferences

1. Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The coloring reconfigura-

tion problem on specific graph classes, In Proceedings of the 11th Annual In-

ternational Conference on Combinatorial Optimization and Applications (CO-

COA 2017), volume 10627 of Lecture Notes in Computer Science (LNCS),

pages 152–162, 2017.

2. Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. Parameterized complexity

of the list coloring reconfiguration problem with graph parameters, In Pro-

134 List of papers

ceedings of the 42nd International Symposium on Mathematical Foundations

of Computer Science (MFCS 2017), volume 83 of Leibniz International Pro-

ceedings in Informatics (LIPIcs), pages 51:1–51:13, 2017.

3. Tatsuhiko Hatanaka, Takehiro Ito and Xiao Zhou, The list coloring recon-

figuration problem for bounded pathwidth graphs, In Proceedings of the 8th

Annual International Conference on Combinatorial Optimization and Appli-

cations (COCOA 2014), volume 8881 of Lecture Notes in Computer Science

(LNCS), pages 314–328, 2014.

