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Abstract

Clothing and fashion are essential parts of the everyday life of everybody, as good

dressing does not only improves comfort but also plays an important role in the image

of the wearer. Although fashion is a subjective subject, there are still standards and

guidelines to follows according to various factors such as climates and cultures. Such

guidelines can be found indirectly from outfit images or posts on the Internet.

Together with a large amount of data, the unprecedented processing power of

modern computers and graphic processing units (GPU), and the knowledge of artifi-

cial intelligence and machine learning, we could build an intelligent system to study

clothing trend faster and more efficient than ever. This leads us to focus on a few key

topics in this dissertation - semantic segmentation for fashion to identify the clothing

items in the human body, outfit quality measurement to quantify the outfit quality

according to the large amount of fashion outfit data which can also be used for outfit

recommendation, and, finally, identifying attributes of clothing items that influence

the overall quality of a particular outfit.

In the first part of this work, we consider the semantic segmentation on fashion

domain, which can be called clothing parsing. For clothing parsing, the item cate-

gories are one of the clothing items, such as t-shirt. Clothing parsing distinguishes

itself from the general object or scene segmentation problems in that objects that look

locally very similar can be in completely different categories such as skirt and a part

of dress. We extend fully-convolutional neural networks (FCN) with a side-branch

network which we refer as outfit encoder to predict a consistent set of clothing labels

to encourage combinatorial preference, and with a conditional random field (CRF) to

explicitly consider coherent label assignment to the given image. The empirical results

using Fashionista and CFPD datasets show that our model achieves state-of-the-art

performance in clothing parsing, without additional supervision during training. We

also study the qualitative influence of annotation on the current clothing parsing

benchmarks, with our Web-based tool for multi-scale pixel-wise annotation and man-
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ual refinement effort to the Fashionista dataset. Finally, we show that the image

representation of the outfit encoder is useful for dress-up image retrieval application.

For the second part of this work, we consider grading a fashion outfit for rec-

ommendations, where we assume that users have a closet of items and we aim at

producing a score for an arbitrary combination of items in the closet. The challenge

in outfit grading is that the input to the system is a bag of item pictures that are

orderless and vary in size. We build a deep neural network-based system that can

take variable-length items and predict a score. We collect a large number of outfits

from a popular fashion sharing website, Polyvore, and evaluate the performance of our

grading system. We compare our model with a random-choice baseline, both on the

traditional classification evaluation and on people’s judgment using a crowdsourcing

platform. With over 84% in classification accuracy and 91% matching ratio to human

annotators, our model can reliably grade the quality of an outfit. We also build an

outfit recommender on top of our grader to demonstrate the practical application of

our model for a personal closet assistant.

To increase transparency and trustworthy of the reported outfit quality value, the

third part of this work focus on explaining the reason behind the outfit quality pre-

diction. In particular, we proposed a gradient-based method with an interpretable

feature extraction to identify the feature of items in the outfit that positively and neg-

atively influences the outfit’s overall quality. The challenge is not only on explaining

the outfit quality but also on evaluating such explanations. Here, we transform the

problem of outfit quality explanation into outfit flaw detection by focusing on item-

features that influence outfit’s quality in a negative way. Our experiment shows that

our system can detect the flaw in our testing samples effectively at 99.52%, 99.48%,

and 85.37% item-wise, shape-and-texture-wise and color-wise, respectively.
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Chapter 1

Introduction

This chapter aims to discuss the motivation and overview of the problems studied

in this dissertation and summarizes the contribution of each chapter. Since this

dissertation focuses on the applications of deep learning on fashion, this chapter

also provides preliminary knowledge in deep learning domain in term of biological

motivation and basic modules in artificial neural networks.

1.1 Motivation

Fashion is a very large industry. It is estimated that the value of the global fashion

industry in 2016 is 3 trillion US dollars, which occupied 2% of the global GDP [5].

Clothing, in general, is also an essential part of everyday life as good dressing not

only improves the comfort of the wearer, it also improves the person’s image. Since

it is the first thing that people will notice about that person, and the first impression

also last forever [6], it is important to dress well.

Automatic outfit recommendation systems can come in handy in this regard. A

1



Chapter 1: Introduction

system that knows how to dress well can not only help a person to dress nicely, but

also save time that could be spent choosing outfits. In addition, this system can help

to find new item combinations from existing items which improve reusability, save

money, less clothing waste, and create a more sustainable society as a whole.

Although fashion is a subjective topic and subject to change over time, there are

still standards or guidelines according to various factors such as occasions, seasons,

climates, locations, and cultures. Such guidelines can be studied indirectly from outfit

images and other kinds of posts from the Internet.

In this work, we aim to study fashion preferences from online sources and develop

an effective outfit recommendation system that can also point out the flaw in an outfit

in feature level.

1.2 Overview of the problem

To create a fashion recommendation system that can point out the flaw in the

outfit, we study four essential components:

1. Fashion items in outfits.

2. A system to measure the fashionability score of an outfit.

3. A system that can recommend outfits from a pool of items.

4. A system that can point out flaws in an outfit at the feature level, so the outfit

can be improved efficiently.

1.2.1 Extracting Fashion Items in an Outfit

For extracting fashion items in an outfit image, we can apply a computer vision

technique that used to solve semantic segmentation to the outfit image. Semantic
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segmentation is a well-known computer vision problem. The goal of this problem is

to segment the image base on the semantic. In the other word, we want to give every

pixel in the image a semantic label, such as cars, roads, humans, etc.

Clothing parsing is a specific form of semantic segmentation, where the labels are

one of the clothing items, such as t-shirt. It has been actively studied in the vi-

sion community [7–11] because of its tremendous value in the real-world application.

Clothing parsing has a specific property that general object or scene segmentation

problems do not have: the fine-grained clothing categories require higher-level judg-

ment based on the semantics of clothing and the deforming structure within an image.

What we refer the semantics here is the specific type of clothing combination people

choose to wear in daily life. For example, people might wear a dress or separate a

top and a skirt, but not both of them together. However, from a recognition point

of view, both styles can look locally very similar and can result in false positives in

segmentation, as shown in figure 1.1. Such combinatorial preference at the semantic

level [12–14] introduces a unique challenge in clothing parsing where a bottom-up

approach is insufficient to solve the problem [15].

In this dissertation, we approach the clothing parsing problem using fully convo-

lutional neural networks (FCN). FCN has been proposed for general object segmen-

tation [1] and shown an impressive performance thanks to the rich representational

ability of deep neural networks learned from a huge amount of data. To utilize FCN in

clothing parsing, we need to take the above clothing-specific challenges into account,

as well as care to address the lack of training data for learning large neural networks.

Based on the FCN architecture, we propose to extend the parsing pipeline by 1) a

side-branch that we call outfit encoder to predict the combinatorial preference of gar-
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Hair Skin T-shirt Skirt Dress Blouse Shoes Boots Belt

Figure 1.1: Combinatorial preference in clothing parsing: dress and skirt are in the ex-
clusive relationship, yet independent pixel-wise prediction cannot encode such knowl-
edge and results in mixture of patches (FCN-8s [1]). We propose the side-path outfit
encoder and CRF alongside the segmentation pipeline to address the issue.

ments for dealing with semantics-level consistency, and 2) conditional random field

(CRF) to consider both semantics and appearance-level context in the prediction.

Experimental results show that starting from a pretrained network, we are able to

learn the outfit encoder and finetune the whole segmentation network with a limited

amount of training data, and our model achieves the state-of-the-art performance in

the publicly available Fashionista dataset [7] and Colorful Fashion Parsing dataset

(CFPD) [11].

We also study the qualitative issue in the current clothing datasets. The existing

benchmarks suffer from erroneous annotations due to the limitation in the superpixel-

based annotation, as well as from the ambiguity of labels [9]. We develop a Web-based

tool to interactively annotate pixels at multiple scales and study how much influence
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we have on the performance metrics by manually refining the Fashionista dataset [7].

The outfit encoder learns a compact representation of the combinatorial clothing

preference through the training of segmentation pipeline. We find that the resulting

internal representation of the encoder is suitable for style retrieval application. The

learned representation compactly encodes the gist of the dress-up style of the picture,

and when used in retrieval, the representation is able to find semantically similar

clothing style (e.g., dress only or shirt + skirt combination), even if the low-level

appearance cues such as color or texture look different.

1.2.2 Measuring the Fashionability Score of an Outfit and

Outfit Recommendation System

Although Identifying the items that people are wearing is helpful, the statistic

of individual items is not the only information we want to learn from data. Since

people wear many items together to create outfits, to create an outfit recommendation

system, knowing what kind of items that are often worn together can also be very

important. Recently, Amazon announced their automatic style assistant called “Echo

Look
TM

”. Although the underlying mechanism is not published, emerging commercial

applications confirm the ripe of computer vision applications in fashion. In this

dissertation, we purpose to create an outfit fashionability measurement system that

learns from a large number of outfits to know the good and bad item combinations

(Figure 1.2).

Previous works in outfit evaluation can be divided into two groups based on the

input format: a worn outfit as a full-body picture as in [16–19], and as a set of images

of items [20, 21], or a combination of both [22]. Each outfit can have an arbitrary
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Good
?

Bad

Figure 1.2: Given an arbitrary number of items, our goal is to evaluate the quality of
the outfit combination.

number of items. For examples, in one day, one might prefer a combination of a

jacket, a t-shirt, and jeans, while in the another she might want to wear a dress. Our

goal is to build a machine learning system that accepts variable numbers of items yet

produce a consistent score for any size of combinations.

Although previously we use clothing parsing to extract fashion items from an outfit

image, we found that the number of outfit images in the clothing parsing dataset is

very low compared to the general object or scene segmentation datasets, and we could

use the outfit data where the items in each outfit have its own image. As a result, we

collect a large number of outfit data from a popular fashion website polyvore.com

and attempt to measure the fashionability of an outfit as a bag of fashion items.

Our Polyvore409k dataset consists of 409,776 sets of clothing items from 644,192

unique items. The dataset forms a large bipartite graph of items and outfits. We par-

tition the dataset into training and testing sets such that there is no overlapping nodes

and edges between the sets, and use them measure the classification performance. We

also conduct a human study using crowdsourcing to assess predicted scores against

human judgments and show our model closely resembles human behavior. Using our

grader, we build an outfit recommendation system that takes clothing items as input

6
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Figure 1.3: Given a pool of items, our goal is to recommend outfits from items in the
pool.

Item
Flaw detection

Shape-texture
Flaw detection

Color
Flaw detection

Figure 1.4: The goal is to identify the flaw in an outfit in both item-level and feature-
level. Each row is an outfit consists of variable number of items. In the first row, the
flawed item is identified. In the second and third row, the flaw is identified to the
feature-level, so that item can be changed accordingly.

and recommends the best outfits from the given items as shown in figure 1.3.

1.2.3 Feature-Level Outfit Flaw Detection

Although the outfit grader can tell the fashionability of an outfit in a form of the

score, to help the user improve the outfit, we aim to identify the flaw in the outfit so

7
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the user can change accordingly. This aim is illustrated in figure 1.4.

Recently there are many approaches to applying computer vision techniques on

outfit fashionability measurement that also provide reasons for the given score [23,24].

However, their approaches need to be trained using a large amount of manually

annotated data, which is expensive in both time and money, and since their dataset

is not publicly available, the usefulness of the approaches is limited. Here, we purpose

an outfit fashionability measurement system that can predict the fashionability level

reliably, that is also able to explain the reason behind the predicted fashionability

score at the interpretable feature-level, by giving the numerical influence level of each

feature in each item to the overall outfit quality both positively and negatively (Item-

Feature Influence Value (IFIV)). In addition, our system is trained on a publicly

available dataset without any additional annotation.

Since evaluating the explanation via human experiment is always subjective, to

even a greater extent in the fashion topic, we also propose an evaluation protocol

as outfit flaw detection, with necessary testing samples from an existing dataset to

quantify the performance of the explanation. Because our system gives Item-Feature

Influence Value (IFIV), we can use the negative IFIV that show how each item-

feature negatively influence the outfit quality to identify the flaw in the outfit and

use the predicted item-feature to evaluate the performance of the system.

1.3 Contributions of Individual Chapter

We summarize the contribution of each chapter as follows:

8
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Contribution of chapter 2 In this chapter, the side-path outfit encoder for the

FCN architecture, and together with CRF to improve segmentation performance in

clothing parsing are proposed. The evaluation shows that the proposed model achieves

state-of-the-art performance in clothing parsing. A Web-based tool to interactively

annotate pixels and study the qualitative influence in the segmentation benchmarks is

also developed. Using the tool, the Fashionista benchmark [7] is manually annotated

with high-quality and less ambiguous labels, which is referred as Refined Fashionista

dataset. The tool and annotation is released to the public for future research. In

addition, a preliminary study is conducted as it shows that the outfit encoder is also

useful for retrieval since the encoder representation compactly encodes the combi-

natorial preference of clothing items, and suitable for retrieving semantically similar

styles.

Contribution of chapter 3 In this chapter, the Polyvore409k dataset is built.

It contains 409,776 outfits and 644,192 items, and every outfit in this dataset is

guaranteed to covers the entire body while having a variable numbers of items. An

outfit grader that produces a score for fashion outfits with a variable number of items

is also purposed. An empirical study shows that the model achieves 84% of accuracy

and precision in Polyvore409k dataset. In addition, a human judgment framework

on outfit quality is also purposed. It provides a simple and reliable method to verify

the reliability of outfit verifiers using a crowdsourcing platform. Finally, based on the

outfit grader, a outfit recommendation system that is able to suggests good outfits

from a pool of items is build to demonstrate a real-world application of the outfit

grader.

9
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Contribution of chapter 4 In this chapter, a method to extract interpretable

features from item images in outfits without using any additional annotation is pur-

posed. The outfit fashionability measurement system with item-feature influence

values is built. Given an outfit as a set of item with associated outfit parts, this sys-

tem predicts how each item-feature affects the overall outfit quality as Item-Feature

Influence Values (IFIV). These values can be used to identify the flaw in an outfit,

which not only explain the reason behind the output outfit quality, but also guide the

user to dress better. Finally, to evaluate the outfit flaw detection system, a method

to create outfit flaw detection samples is purposed.

1.4 Preliminaries

This section provides preliminary knowledge in deep learning domain including

motivation behind artificial neuron network and commonly used modules in con-

structing more complex neural network architecture.

1.4.1 From Biological Motivation to an Artificial Neuron

The ANN, as the name implies, is inspired by the actual biological neural system

in brains. The biological neural system is a network consists of many neurons con-

nected together. Each neuron takes electrical signals from other neurons as inputs via

dentrites, then processes them according to learnable synaptic strengths that control

the influence magnitude of each input, and fires the neural impulse through a myeli-

nated axon to axon terminals if the total signal strength is strong enough, which pass

the impulse to other neurons. Each neuron in ANN consists of inputs xi, weights

wi which equivalent to learnable synaptic strengths, and an activation function f , as
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activation 
function

cell body

axon from a neuron
synapse

dendrite

output axon

Figure 1.5: Illustration of a mathematical model of an artificial neuron.

illustrated in figure 1.5. The output of an artificial neuron is:

y = f

(∑
i

wixi + b

)
(1.1)

1.4.2 Activation Functions

The activation function f takes a single number and perform a fixed mathematical

operation on it. The commonly used activation functions are:

• Sigmoid σ(x) = 1/(1 + e−x) which takes a real-valued number and output it

into range [0,1].

• ReLU., stands for Rectified Linear Unit, ReLU(x) = max(0, x), is simple

threshold the input at zero. It is very popular since Krizhevsky et al. [25] found

that it greatly accelerates the learning process of the network.
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Input FC1 FC2

Figure 1.6: An illustration of 2 fully connected layers.

1.4.3 Fully Connected (FC) Layer

A fully connected layer is a layer of neuron. Each neuron in a FC layer takes

input from (often called connected to) all outputs of the previous layer. Let an n

dimensional vector x ∈ Rn be an input variable, where n is also a number of outputs

of the previous layer, a FC layer can be formulated by

h = wx + b (1.2)

where h ∈ Rm is an output variable, and w ∈ Rm×n and b ∈ Rm are weight and

bias parameters, respectively. Figure 1.6 illustrates two fully connected layers with

4 nodes each, where n and m of the first FC layer are 3 and 4, while those of the

second layer are 4 and 4, respectively.

1.4.4 Convolutional Layer

In this dissertation, we consider two dimensional convolutional layers (unless spec-

ified, convolution always indicates a two dimensional convolution operation in this dis-

sertation.) The input to the convolutional layer is a tensor often in three-dimensional,

denoted as X ∈ Rw×h×c, where w, h, and c are width, height, and number of channel,

respectively. For example, a RGB image of size 224×224 is in R224×224×3.

12
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32x32x1

1x1x1
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32

32

Figure 1.7: An illustration of a convolutional layer with convolutional filter of size
5×5, and an input tensor (left) of size 32×32×3. The size of output tensor (right)
depends on stride s, size of filter, and the number of filters (10 in this case).

Instead of matching the entire input tensor with an equal number of weights,

each neuron in a convolutional layer matches only number of channels of the input

layer, while maintains a predefined size in spatial dimensions, thus reduce number of

weight, which commonly called as convolutional filter, dramatically. Figure 1.7 shows

the input tensor and the size of convolutional filter of each neuron in a convolutional

layer, where the predefined size in the spatial dimension is 5, and the size of the input

tensor is 32×32×3.

Let the number of output channels be D, the stride be s, the width and height of

each convolutional fiter be U and V , respectively. Then, the i-th and j-th element of

output tensor H on its d-th channel is computed by

H(i,j,d) =
c∑

k=1

U∑
u=1

V∑
v=1

W(u,v,k,d)X(s×i+u,s×j+v,k) + b(d), (1.3)

where W and b are convolutional filters and biases.
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Figure 1.8: An illustration of average and max pooling.

1.4.5 Pooling Layer

A pooling layer reduces the size of spatial dimensions of input tensor by the factor

of the stride s and according to the specified size of receptive field U , while maintain

the number of channels K. Given input tensor X ∈ Rw×h×c, where w, h, and c are

width, height, and number of channel, respectively, the i-th and j-th element of output

tensor H on its k-th channel is computed by

H(i,j,k) = f(X(s×i+1,s×j+1,k), . . . ,X(s×i+1,s×j+u,k), . . . ,X(s×i+u,s×j+1,k), . . . ,X(s×i+U,s×j+U,k))

(1.4)

where f can be either maximum or mean function, and the layer will be called either

max or average pooling layer, respectively. Figure 1.8 illustrates max and average

pooling operation.

1.4.6 Dropout

Dropout is a commonly-used method to help reduce overfitting. It randomly

removes (drops) the output of each neuron with probability p every training iteration.

The hyperparameter p is called dropout-rate and typically set to 0.5. It is proved to

improve the performance substantially [2]. Figure 1.9 illustrates the idea of dropout.
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Figure 1.9: An illustration of dropout idea. This figure is taken from [2].

1.4.7 Batch Normalization (BN)

Batch Normalization (BN), proposed by [26], aims to reduce the value which the

weights of neurons shift around, as known as internal covariance shift, which is caused

by the change of distribution of activations (output of the previous layer, input of the

current layer) during training. It normalizes the activations by by subtracting and

dividing the batch by mean and and standard deviation of that batch as follows:

µ =
1

n

n∑
i=1

xi (1.5)

σ2 =
1

n

n∑
i=1

(xi − µ)2 (1.6)

x̂i =
xi − µ√
σ2 + ε

(1.7)

yi = γx̂i + β (1.8)

where xi is the i-th sample in the batch of size n, ε is a small constant used to avoid

zero division, and γ and β are parameters to be learned.
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1.4.8 Softmax

Softmax function is usually used at the end of a classification model, where the

goal is to assign label i from K possible labels to each sample. The input and output

of this layer is K-dimensional vector, where the input value that represent score of

each class is transformed into a real value in [0,1] range. Since the summation of the

output values is 1, each softmax -ed value yk is often interpreted as the probability of

the output class k, and is calculated as follows:

p(y = k|x) =
exk∑K
i=1 e

xi
(1.9)

where x is the input vector.

1.4.9 Loss Functions

Loss function is used to measure the error of the output of the ANN, and adjust

the weights accordingly. The loss function is chosen according to the tasks and still

is an active research area. The commonly used loss functions are:

• Square Loss L = (y − ŷ)2 measures the different between the predicted out-

come y to the expected outcome ŷ of a sample. It is more commonly used in

regression problem where the goal is to predict single output value from the

input sample.

• Softmax Cross Entropy Loss L = − log
(

e
xŷ∑K

i=0 e
xi

)
, where ŷ is the ground

truth label of the sample out of K possible labels, and x is the output of the

final layer of classification model.
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Looking at Outfit to Parse

Clothing

2.1 Introduction

Clothing parsing is a specific form of semantic segmentation, where the categories

are one of the clothing items, such as t-shirt. Clothing parsing has been actively

studied in the vision community [7–11], perhaps because of its unique and challenging

problem setting, and also because of its tremendous value in the real-world applica-

tion. Clothing is an essential part of our culture and life, and a significant research

progress has been made with a specific application scenario in mind [14,27–36]. In this

chapter, we consider how we can utilize recent deep segmentation models in clothing

parsing and discuss issues in the current benchmarks.

* The main contributions in this chapter first appeared in our publication on “Looking at Outfit
to Parse Clothing”, arXiv preprint arXiv:1703.01386,2017.
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Figure 2.1: Combinatorial preference in clothing parsing: dress and skirt are in the ex-
clusive relationship, yet independent pixel-wise prediction cannot encode such knowl-
edge and results in mixture of patches (FCN-8s [1]). We propose the side-path outfit
encoder and CRF alongside the segmentation pipeline to address the issue.

Clothing parsing distinguishes itself from general object or scene segmentation

problems in that fine-grained clothing categories require higher-level judgment based

on the semantics of clothing and the deforming structure within an image. What we

refer the semantics here is the specific type of clothing combination people choose to

wear in daily life. For example, people might wear dress or separate top and skirt, but

not both of them together. However, from recognition point of view, both styles can

look locally very similar and can result in false positives in segmentation, as shown in

Figure 2.1. Such combinatorial preference at the semantics level [12–14] introduces

a unique challenge in clothing parsing where a bottom-up approach is insufficient to

solve the problem [15].

In this chapter, we approach the clothing parsing problem using fully-convolutional
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neural networks (FCN). FCN has been proposed for general object segmentation [1]

and shown impressive performance thanks to the rich representational ability of deep

neural networks learned from a huge amount of data. To utilize FCN in clothing

parsing, we need to take the above clothing-specific challenges into account, as well

as a care to address the lack of training data for learning large neural networks.

Based on the FCN architecture, we propose to extend the parsing pipeline by 1)

a side-branch that we call outfit encoder to predict the combinatorial preference of

garments for dealing with semantics-level consistency, and 2) conditional random field

(CRF) to consider both semantics and appearance-level context in the prediction.

Experimental results show that, starting from a pre-trained network, we are able to

learn the outfit encoder and fine-tune the whole segmentation network with a limited

amount of training data, and our model achieves the state-of-the-art performance in

the publicly available Fashionista dataset [7] and Colorful Fashion Parsing dataset

(CFPD) [11].

We also study the qualitative issue in the current clothing datasets. The existing

benchmarks suffer from erroneous annotations due to the limitation in the superpixel-

based annotation, as well as from the ambiguity of labels [9]. We develop a Web-based

tool to interactively annotate pixels at multiple scales, and study how much influence

we have on the performance metrics by manually refining the Fashionista dataset [7].

The outfit encoder learns a compact representation of the combinatorial clothing

preference through the training of segmentation pipeline. We find that the resulting

internal representation of the encoder is suitable for style retrieval application. The

learned representation compactly encodes the gist of the dress-up style of the picture,

and when used in retrieval, the representation is able to find semantically similar
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clothing style (e.g., dress only or shirt + skirt combination), even if the low-level

appearance cues such as color or texture look different.

We summarize our contribution in the following.

• We propose the side-path outfit encoder for the FCN architecture, and together

with CRF to improve segmentation performance in clothing parsing. The eval-

uation shows that our model achieves state-of-the-art performance in clothing

parsing.

• We develop a Web-based tool to interactively annotate pixels and study the

qualitative influence in the segmentation benchmarks. Using the tool, we man-

ually annotate the Fashionista benchmark [7] with high-quality and less ambigu-

ous labels, which we refer Refined Fashionista dataset, and study the impact

on the benchmark. We will release the tool and annotation for future research.

• We make a preliminary study showing that the outfit encoder is also useful

for retrieval. The encoder representation compactly encodes the combinatorial

preference of clothing items, and suitable for retrieving semantically similar

styles.

2.2 Related Work

2.2.1 Semantic segmentation

The use of deep convolutional neural networks for semantic segmentation is in-

creasingly becoming popular since the recent success in dense object recognition [1,

37,38]. Various techniques have been proposed to further improve the performance of

dense prediction by deep neural networks, including global context information [39,
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Figure 2.2: Our segmentation model based on FCN. We introduce 1) the outfit en-
coder to filter inappropriate clothing combination from segmentation, and 2) CRF to
assign a visually consistent set of clothing labels.

40], learning deconvolution layers [41], applying conditional random fields as a post-

processing [42, 43], or incorporating weakly annotated data in training set [44]. In

this chapter, we propose a side-path encoder to predict unique set of consistent labels

in segmentation and feed FCN output to fully-connected CRF for addressing com-

binatorial preference issue in clothing parsing. The side-path can be considered one

kind of attention mechanism [45] or gating function to control information flow [46].

2.2.2 Clothing parsing

Clothing parsing has been an active subject of research in the vision community [7,

9–11, 47, 48]. Also, there is a similar variant of parsing problem referred human

parsing [15,39,49–52]. The major difference between clothing and human parsing are

the types of labels; Clothing parsing attempts to identify fine-grained categories of

clothing items such as t-shirt and blouse, whereas human parsing aims at identifying

body parts and broad clothing categories, such as left-leg or upper-body clothing. This

difference brings a further challenge in clothing parsing that we have to disambiguate

confusing labels, for example, sweater and top, even if they look similar.

The basic approach attempted in clothing parsing is first to identify human body
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configuration in the image, and given the body joints, solve for the best assignment

of pixel-wise labels [7, 9, 47, 48, 51]. Often superpixel-based formulation is employed

instead of pixel-wise labeling to reduce the computational complexity, though su-

perpixels sometimes harm the final segmentation quality in the presence of textured

region [9]. In this work, we rely on the large size of receptive fields in the deep archi-

tecture to identify the contextual information from human body, and eliminate the

extra pre-processing necessity to explicitly identify human parts in the image. Skip-

ping pose-estimation has an additional advantage of not requiring full-body visible in

the image frame.

2.2.3 Clothing retrieval

Retrieval and recommendation is one of the most important applications in cloth-

ing recognition, and there have been many efforts in various scenario, such as street-

to-shop [27, 34], or style suggestion or matching [14, 30]. The key idea is to learn

a meaningful representation to define the distance between style images [18, 32]. In

this chapter, we consider retrieving the whole dress-up style rather than looking at a

specific item using the outfit encoder representation.

2.3 Our approach

This section describes our FCN model with outfit encoder and fully-connected

CRF.
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2.3.1 Fully convolutional networks

We build our segmentation model upon the FCN architecture [1]. The FCN model

is a convolutional neural network and makes a dense pixel-wise prediction by replac-

ing all fully-connected layers in the classification network with convolutional layers,

followed by upsampling filters to recover the original image resolution in the output.

The FCN model proposed in [1] can implement a different upsampling strategy. In

this chapter, we use the 8-stride variant of the VGG 16-layer net [53] to build our

clothing parsing model on.

We choose the FCN architecture for clothing parsing expecting that the receptive

fields of mid-to-later layers can cover sufficiently large input regions so that the final

pixel-wise prediction makes a proper judgment on different but similar items, such

as coat and jacket, based on the contextual information in the image. Thanks to the

deep architecture, the receptive field in the last layer has large coverage of the input

frame and is expected to contain sufficient contextual information from human body

in the internal representation within the network. Also, there is no restriction on the

input image that the image frame must contain the full human body.

2.3.2 Outfit encoder and filtering

We introduce a side path to FCN that encode and predict combinatorial preference

of garment items. Figure 2.2 illustrates the architecture of our network. The idea

is to predict the garment combination as a summary of segmentation using this side

encoder path, and feed it into the main segmentation pipeline to filter the prediction

on the possible set of labels. Our outfit encoder predicts a binary indicator of existence

of each clothing label in the final segmentation, as usual attribute prediction problem.
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The outfit encoder inserts two fully-connected (FC) layers and a sigmoid layer to

predict a vector of clothing indicators. The first FC layer has 256 dimensions, and the

second FC layer has dimensions equal to the number of classes in the dataset. The

second layer predicts confidences of existence of each garment, which can be viewed

as soft-attention or gating function to the segmentation pipeline. We connect 2nd

FC with a sigmoid, then merge this vector back to the FCN segmentation pipeline

using element-wise product, similarly to gating functions in LSTM or GRN [46]. This

vector multiplies confidences to filter out uncertain labels from the image.

Formally, our outfit filtering is expressed by the following. Let us denote the

heat-maps of the FCN by Fi for each label i, and the scalar prediction by our outfit

encoder by gi. Then, we apply a product to obtain the filtered heat-maps Gi:

Gi = gi · Fi.

The role of outfit filtering is to encourage or prevent certain clothing combination

from appearing at the image-level (e.g., skirt + dress never happens together, but

dress-only or skirt + top likely). Such decision requires to look at the whole image

instead of local parts, and thus we let the garment encoder predict the existence of all

labels at the image-level. The prediction is integrated back to the main segmentation

trunk as a bias to the heat-maps produced per label.

The internal representation of the garment encoder makes a compact representa-

tion of clothing semantics in the given picture. We show that the representation is

also useful in image retrieval scenario in section 2.6.
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2.3.3 Conditional random fields

The outfit filtering enforces combinatorial semantics in the segmentation, but still

the prediction contains a lot of small regions of incompatible items due to the pixel-

wise prediction without explicit modeling of label combinations. Here, we introduce a

fully-connected CRF to improve the segmentation quality. CRF has been shown to be

effective for segmentation [9,54,55] or used as post-processing step after segmentation

using CNN [42–44]. In this chapter, we use the implementation of [54] as a post-

processing step to correct predictions∗.

Our energy is a fully-connected pairwise function:

E(xxx) =
∑
i

φ(xi) +
∑
i<j

ψ(xi, xj), (2.1)

where xxx is the label assignment for pixels. The unary potential φ(xi) = − logP (xi)

takes label assignment probability distribution at pixel i, denoted by P (xi). We use

the softmax output of FCN for this probability. The pairwise potential ψ(xi, xj)

considers contrast and position of two pixels using Gaussian kernels:

ψp(xi, xj) =


w1g1(i, j) + w2g2(i, j) if xi 6= xj

0 otherwise,

(2.2)

g1(i, j) = exp

(
−|pi − pj|

2

σ2
position

− |Ii − Ij|
2

σ2
color

)
, (2.3)

g2(i, j) = exp

(
−|pi − pj|

2

σ2
smooth

)
, (2.4)

∗We also attempted the end-to-end model [43] but could not reliably learn the network perhaps
due to the small data size in our experiment.
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where g1(i, j) is an appearance kernel, g2(i, j) is a smoothness kernel, pi is the po-

sition of pixel i, and Ii is the RGB color vector of pixel i. Weights of both kernels

are controlled by w1 and w2. The hyper-parameters σposition, σcolor, σsmooth control

position scaling, color scaling, and smoothness scaling, respectively. We find the

best hyper-parameters by non-linear optimization (L-BFGS) using the validation set,

starting from the initial parameters (w1, w2, σposition, σcolor, σsmooth) = (10, 10, 30, 10, 3)

in our experiment. We approximately solve for the optimal label assignment using

the algorithm of [54]:

xxx∗ = arg min
xxx

E(xxx). (2.5)

2.3.4 Training the network

Our assumption is that we do not have a sufficient number of images to learn

deep networks from scratch in clothing parsing. We consider transfer-learning from

the pre-trained FCN models. In this chapter, we follow the incremental procedure to

fine-tune a coarse FCN model [1], and learn our garment encoder after that. We train

FCN-32s, FCN-16s, and FCN-8s in sequence, move on to the training of the encoder,

then fine-tune the whole model at the end.

We need to train new layers in the outfit encoder from scratch, using binary

attribute vector as a ground truth. We can trivially obtain a binary vector from

segmentation ground truth by simply taking a unique set of labels. We use sigmoid

cross-entropy loss to train the encoder first (Figure 2.2). The encoder path is first

trained independently with the binary indicators fixing learning rate for the main seg-

mentation pipeline to zero, then fine-tuned together with segmentation pipeline later

to avoid local optima. We implement the neural network using Caffe framework [56].
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Fa a	 O  a a 	Fa a	 O  a a 	

Figure 2.3: Common annotation error due to inappropriate superpixels. Superpixels
can segment object boundary when the region is uniform and distinct from others, but
spill over the object boundary when the regions have similar color (left) or produce
a lot of small segments on the textured surface (right).

2.4 Interactive pixel annotation

We initially attempted to evaluate our model on the publicly available Fashionista

dataset [7] and CFPD [11]. However, we find that both datasets have quite a bit of

annotation errors. The annotation errors in both datasets are caused by 1) superpixel

errors (Figure 2.3) and 2) ambiguous clothing categories (e.g., shirt and blouse). These

annotation errors lead us to noticeable prediction errors in the final segmentation.

Therefore, we decided to manually improve the annotation quality of the Fashionista

dataset, and study how much quality improvement we can benefit from the dataset

itself.

We have developed a Web-based tool to interactively annotate pixels. Our seg-

mentation tool is based on annotation over superpixels, but we resolve the improper

boundary of superpixels by coarse-to-fine interactive segmentation. Figure 2.4 demon-

strates the example. Our tool computes SLIC [3] superpixels on the fly inside the Web

browser, and the annotator can adjust the resolution of the superpixels as needed to

mark smaller segments. Our tool can overcome the limitation of superpixel-based
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Figure 2.4: Coarse-to-fine interactive annotation. We compute SLIC [3] superpixels
on the fly so that the annotator can select the desired scale.

annotation because the tool does not share the segment boundary across multiple-

resolutions. The tool can also apply morphology-based smoothing to remove the

artifacts of SLIC superpixels. In a modern Web browser, the tool computes SLIC

superpixels in a second, depending on the size of the image.

We merged some of the confusing clothing in the 56 categories (e.g., shirt and

blouse) in Fashionista dataset as well as split broad labels (e.g., accessories) to prevent

ambiguity in the annotation. We manually annotated all the 685 images in the

Fashionista dataset with 25 categories. Note that the mapping of the labels is not

unique and unfortunately the labels in one dataset cannot be automatically converted

to the other.

We hope to expand the number of fully-annotated images in the future, but we find

it still challenging to scale up the dataset due to the required level of expertise for a

non-expert user in crowdsourcing service. It is our future work to make our annotation

tool as easy as possible for non-expert users so that any type of semantic segmentation

can benefit. We release our interactive annotation tool to the community as open-

source software, as well as our annotation to Fashionista dataset.

28



Chapter 2: Looking at Outfit to Parse Clothing

2.5 Experiments

2.5.1 Datasets

We use Fashionista with the original annotation of 56 categories [7] (Fashionista

v0.2), our refined annotation with 25 categories (Refined Fashionista), and CFPD [11]

with 23 categories. Fashionista consists of 685 front-facing full-body images. Every

pixel is given one of 56 fine-grained categories. However, the dataset has only 685 an-

notated images and some label appears only once or twice in the dataset. This results

in some skewed performance metric due to the missing category in the ground truth

in the test split. Our Refined-Fashionista reduces the number of clothing categories

from 56 to 25 essential labels so as to avoid ambiguous labels. The annotation con-

tains almost no superpixel artifact. CFPD consists of 2,682 annotated images based

on superpixels for 23 labels. We divide Fashionista dataset into train-test splits using

the same setting to the previous work [7], with 10% of training images leaving for

validation, and divide CFPD dataset into (train, validation, test) = (78%, 2%, 20%)

ratio. Images in all datasets are 400×600 pixels in RGB color, and we do not change

the image format in our experiments. Each image shows a front-facing person with

visible full-body.

2.5.2 Evaluation methods

We measure the performance using pixel-wise accuracy and intersection-over-

union (IoU). We compare our models against FCN-32s, FCN-16s and FCN-8s [1], as

well as against the reported state-of-the-art for each dataset, though some measure-

ments are not available in the respective publication and the experimental condition
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could be slightly different. Note that we cannot directly compare the performance

against human parsing [39] due to the difference in semantic categories and the diffi-

culty of reproducing the same condition without a publicly available dataset.

2.5.3 Quantitative evaluation

Table 2.1 shows performance of our models compared to various baselines. First,

we notice that using FCN already shows the solid performance improvement over

the previous state-of-the-art [9,11,48] that are not based on deep architecture. Also,

as reported in [1], applying finer-scale upsampling (8s) improves the segmentation

quality. Our best model achieves the state-of-the-art 88.68% accuracy compared to

84.68% of [48] and 54.65% IoU compared to 42.10% of [11], even with annotation

issues in both benchmarks. In our Refined Fashionista dataset, our model marks

51.78% of IoU, which is a significant improvement from 44.72% of the base FCN-8s

model.

Our outfit filtering with CRF makes an improvement in all of the datasets. Par-

ticularly, CRF shows an improvement in all cases in all datasets compared to the

model without CRF. This confirms the lack of joint prediction ability in the plain

FCN [42, 43]. The final effect of outfit filtering varies depending on the dataset. In

Fashionista v0.2, our outfit filtering has weak effect, and only CRF is showing a

noticeable improvement. We suspect this is due to the large number of ambiguous

categories in Fashionista v0.2, such as blazer and jacket. Outfit filtering has weak in-

fluence by itself in CFPD, but combined with CRF, achieves the best IoU. In Refined

Fashionista, our outfit encoder together with CRF achieves the best performance.

We suspect the difference between datasets partly stems the low-quality annotation
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Table 2.1: Parsing performance [%].

Dataset Method Acc IoU

Fashionista v0.2 [7]

Paper doll [48] 84.68 -

Clothelets CRF [9] 84.88 -

FCN-32s [1] 85.94 29.61

FCN-16s [1] 87.53 34.26

FCN-8s [1] 87.51 33.97

+ CRF 88.68 38.03

+ Outfit filter 87.55 34.26

+ Outfit filter + CRF 88.34 37.23

Refined Fashionista

FCN-32s [1] 88.56 40.88

FCN-16s [1] 89.74 43.96

FCN-8s [1] 90.09 44.72

+ CRF 91.23 49.21

+ Outfit filter 91.50 46.40

+ Outfit filter + CRF 91.74 51.78

CFPD [11]

CFPD [11] - 42.10

FCN-32s [1] 90.34 47.65

FCN-16s [1] 91.27 50.07

FCN-8s [1] 91.58 51.28

+ CRF 92.39 54.60

+ Outfit filter 91.52 51.42

+ Outfit filter + CRF 92.35 54.65

in Fashionista v0.2 and CFPD.

Figure 2.5 plots the Intersection-over-union (IoU) of FCN-8s and our model in

our Refined Fashionista dataset, with % area of each class in the dataset. We find

that our models improve IoU in almost all categories. The exceptions are small items,

such as necklace, glasses, or bracelet, and dress. Dresses are usually confused with

blouse and skirt combination. The small items tend to be smoothed out by CRF, and
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Figure 2.5: Intersection-over-union (IoU) in Refined Fashionista dataset [%].

does not always yield precise segmentation. We also find that it is challenging even

for human to give precise annotation on small items, such as bag straps or necklace.

Unfortunately, our annotation tool in section 2.4 is unable to provide annotation

on such small regions, but we have less practical importance in identifying almost

invisible items anyway. All models get 0 IoU for gloves due to the extremely limited

examples (10 out of 685 images) in the Fashionista dataset.

2.5.4 Qualitative evaluation

Figure 2.6 shows successful parsing results in Fashionista v0.2, Refined Fashion-

ista, and CFPD, using the baseline FCN-8s and our outfit filtering with CRF. Our

model can produce pixel-wise segmentation that are sometimes more precise than

ground-truth annotations based on superpixels. In some case, our model can cor-

rectly identify small items that were missing in the ground truth, such as necklace

in the right half of Figure 2.6a, even though they were counted as mistakes in the

benchmark.

Figure 2.7 lists some of the failure cases from CFPD dataset. Failures can happen

either because of the model or the dataset. The common error happening in the

model-side is the confusion between clothing, such as making a mistake on dress vs.
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f0.2

f1.0blazer bag shoes skirt boots blouse jacket shirt

leggings top cardigan belt necklace watch hair skin

(a) Fashionista v0.2

f0.2

f1.0

skin hair bag belt boots coat

dress glasses jacket necklace pants/jeans blouse

shoes shorts skirt top/t-shirt vest bracelet

(b) Refined FashionistaCFPD

T-shirt bag belt blouse dress face hair

jeans pants shoe skin skirt sunglass

(c) CFPD

Figure 2.6: Successful cases in (a) Fashionista v0.2, (b) Refined Fashionista, and (c)
CFPD. The figure shows an input image, a ground truth, the output of FCN-8s and
our outfit filtering with CRF from left to right respectively.
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(a) Prediction errors

(b) Dataset problem

t-shirt bag belt blazer blouse coat dress face

hair hat legging scarf shoe shorts skin skirt

socks stocking sweater

Figure 2.7: Failure cases in CFPD. Each triple shows an input image, a ground truth,
and the output of our outfit filtering with CRF respectively. Failure is either caused
by (a) the model (prediction error), or (b) the dataset (clothing ambiguity or incorrect
annotation).

top and skirt combination. Such confusion can happen together in the same image,

and produces a mixture of incompatible segments in the foreground region (right

in figure 2.7a). We observe the common confusion among: outers (jacket, blazer,

coat, sweater), inners (t-shirt, tops, shirt, blouse, dress), long-sleeves (tops, sweater),

bottoms (jeans, pants, leggings), leggings (leggings, stockings, tights, long socks), or

(boots, high sneakers). Some of the items are even difficult for humans to distinguish

depending on the visibility. Our outfit filtering with CRF disambiguate this clothing-

specific confusion and improves the segmentation quality, but some prediction errors

still remain.

There is a noticeable error due to the annotation quality. The bottom row of
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Table 2.2: Average performance of outfit prediction [%].

Dataset Accuracy Precision Recall F1

Fashionista v0.2 88.66 25.21 26.57 25.46

Refined Fashionista 73.36 39.29 46.06 40.00

CFPD 88.57 66.70 68.06 65.50

Figure 2.7 depicts cases when the ground-truth annotation is incorrect, even if our

model can predict appropriate labels. The major reason of the annotation error is from

1) the inability of superpixel algorithms to respect object boundaries (bottom-center

and right) and 2) human mistakes between the ambiguous categories (bottom-left).

Such annotation issue introduces unreasonable artifact in the existing benchmarks.

2.5.5 In-depth analysis

How well outfit prediction performs?

Our outfit encoder learns to predict the set of applicable clothing categories as

binary classification. Here, we report the performance of this prediction after the

side-path encoder training. Table 2.2 summarizes the results in terms of average

accuracy, precision, recall, and F1, for three datasets. Note that there are categories

that always exist in the image (e.g., skin or background), but we do not exclude such

labels in the evaluation.

The average accuracy in Fashionista v0.2 is 88.66% while in Refined Fashionista

the average accuracy is 73.36%, despite the better performance in all other metrics.

This counter-intuitive result comes from the fact that Fashionista v0.2 has much

larger number of less frequent labels, and thus the large number of true negatives

contributing to accuracy, because all other metrics ignore true negatives.
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Table 2.3: Training and testing segmentation performance of outfit encoder [%IoU].

Dataset Training Testing

Refined Fashionista 84.72 46.40

CFPD 76.95 51.42

CFPD results have much better accuracy, precision, recall and F1 than both

versions of Fashionista datasets. We suspect that the smaller number of images (685)

in Fashionista compared to CFPD (2,682) is somehow causing overfitting and makes

the overall performance lower in Fashionista than in CFPD.

The drawback of our side-path architecture is the increased risk of overfitting

against small datasets, because our outfit encoder must be trained to predict an

image-level category and thus the available training size is restricted to the number

of images but not pixels. However, we are able to mitigate overfitting by fine-tuning

the entire network towards the segmentation loss at the end (section 2.3.4). Using

external weakly-annotated data [48,51] to learn the side-path is an alternative option.

How much overfitting happens in segmentation?

We evaluate how overfitting is happening in the final segmentation by comparing

the training and testing performance. Table 2.3 summarizes the IoU performance of

our outfit filtering without CRF on the training and testing splits in Refined Fashion-

ista and CFPD. There is clearly a discrepancy between the performance in training

and testing splits in both datasets, and the gap is more significant in Fashionista

dataset. Indeed, we observed the training and testing discrepancy in all of the mod-

els including baseline FCNs. Our model achieves the state-of-the-art, but the result

also suggests that we need a larger benchmark to properly evaluate clothing parsing.
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Fashionista v0.2 Refined Fashionista

Annotation Prediction Annotation PredictionImage

blazer jacket dress

hat bracelet hat bracelet

jacket dress

Figure 2.8: Comparison of annotation and prediction.

Qualitative effect of refining annotation

Figure 2.8 shows an illustrative example of how our refinement to Fashionista

dataset disambiguates the segmentation. The Refined Fashionista merges some am-

biguous labels, as shown in the figure that the confusion between blazer and jacket

in Fashionista dataset disappeared in the refined dataset. The category-ambiguity is

an inherent problem in clothing recognition, and is perhaps impossible to completely

resolve. One approach might be to re-formulate the problem to allow multiple labels

to be assigned to each pixel instead of the current exclusive label assignment, though

that might require more annotation efforts.

2.6 Application: outfit retrieval

In this section, we demonstrate the application of the outfit encoder to image

retrieval. The internal representation in the outfit encoder encompasses the gist of
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(a) Using outfit encoding

(b) Using generic fc7 feature from VGG16

Figure 2.9: Image retrieval on Refined Fashionista dataset using (a) our outfit encod-
ing, and (b) generic features from VGG16. Notice our encoding retrieves consistent
clothing combination (jacket + top + shorts), while the generic feature pays attention
to the background (road).

combinatorial clothing preference. This compact representation makes an ideal use

for retrieving images of certain clothing combination (outfit). We have a preliminary

study of how our encoding performs in the retrieval scenario. In this study, we do not

make a quantitative evaluation and instead make a small qualitative analysis, due to

the challenge in defining the ground-truth in fashion similarity [32].

Using Fashionista dataset, we first split the data into query and retrieval sets, and

extract 256 dimensional representation from the fully-connected layer in the outfit

encoder. As a baseline, we also compute the generic image feature from fc7 layer in

the pre-trained VGG16 network. Our retrieval is based on Euclidean distance.

Figure 2.9 shows an example of 5 closest images retrieved using our encoder rep-
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resentation and the baseline fc7 feature. In the figure, images retrieved using our

method contain the same set of garments as in query, such as jacket, top, or shorts,

without concerning colors. Retrieved images from the baseline feature seem to pay

more attention on color, and the results contain the same gray and green background,

but the dress-up style look rather random. We observed similar trend in other images.

The result indicates that our encoder representation clearly captures the com-

binatorial semantics of garments. The learned gist representation would benefit in

fashion-focused applications such as outfit search or recommendation. We empha-

size that the encoder does not require extra annotation for training, and the image

representation comes for free in the training of the segmentation pipeline.

2.7 Conclusion and future work

This chapter proposed an extension to FCN architecture to solve the clothing

parsing problem. The extension includes the side-path outfit encoder to predict a

set of labels in the image, and CRF to produce a consistent label assignment both

in terms of clothing semantics and structure within and image. Our model can learn

from a pre-trained network and the existing annotated dataset without additional

data. In addition, the learned image representation in the outfit encoder is useful

for similar dress-up styles thanks to the internal representation that encompasses

combinatorial clothing semantics. This chapter also introduced an refined annotation

to Fashionista dataset for better benchmarking of clothing parsing, built with a Web-

based tool to create a high-resolution pixel-based annotation. The empirical study

using the Fashionista and CFPD dataset shows that our method achieves state-of-

the-art parsing performance.
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In the future, we wish to scale up datasets for clothing recognition with our Web-

based tool, as well as to further investigate an approach to better incorporate the

semantics of clothing in the prediction, for example by integrating CRF into the

network [43]. Also, we wish to study how human pose estimation [57, 58] relates to

clothing parsing under fully-convolutional architecture.
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Chapter 3

Recommending Outfits from

Personal Closet

3.1 Introduction

There have been growing interests in applying computer vision to fashion, perhaps

due to the rapid advancement in computer vision research [7–11, 19, 32, 59–61]. One

of the popular fashion applications is item recommendation [20–22, 62], where the

objective is to suggest items to users based on user’s and/or society’s preference.

Computer vision is used in various fashion applications such as e-commerce and social

media. Recently, Amazon announced their automatic style assistant called “Echo

Look
TM

”. Although the underlying mechanism is not published, emerging commercial

applications confirm the ripe of computer vision applications in fashion.

* The main contributions in this chapter first appeared in our publication on “Recommend-
ing Outfits from Personal Closet”, in Proceedings of IEEE Winter Conference on Applications of
Computer Vision (WACV), vol. 00, pp. 269–277, Mar 2018.
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Good
?

Bad

Figure 3.1: Given an arbitrary number of items, our goal is to evaluate the quality of
the outfit combination.

Measuring the quality of outfit is essential in building fashion recommendation

system. In this chapter, we consider the problem of grading arbitrary combination

of items as a whole (Figure 3.1). Previous works in outfit evaluation can be divided

into two groups based on the input format: a worn outfit as a full-body picture as

in [16–19], and as a set of images of items [20,21], or a combination of both [22]. Each

outfit can have an arbitrary number of items. For examples, in one day, one might

prefer a combination of a jacket, a t-shirt, and jeans, while in the another she might

want to wear a dress. Our goal is to build a machine learning system that accepts a

variable numbers of items yet produce a consistent score for any size of combinations.

In this chapter, we view an outfit as a bag of fashion items and utilize deep neural

networks to produce a score for a fixed-length representation of outfits. Unlike style

recognition [16, 18, 19, 61], we take item images in isolation, not on human body, as

seen on e-commerce sites or catalogs. We collect a large number of outfit data from a

popular fashion website polyvore.com, and evaluate our approach based on standard

classification metrics and human judgment. Our Polyvore409k dataset consists of

409,776 sets of clothing items from 644,192 unique items. The dataset forms a large

bipartite graph of items and outfits. We partition the dataset into training and
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testing sets such that there is no overlapping nodes and edges between the sets,

and use them measure the classification performance. We also conduct a human

study using crowdsourcing to assess predicted scores against human judgment, and

show our model closely resembles human behavior. Using our grader, we build an

outfit recommendation system that takes clothing items as an input and recommends

the best outfits from the given items, to demonstrate the usefulness in a real-world

scenario of personal outfit assistant. The contributions of the chapter are summarized

below:

1. We build Polyvore409k dataset containing 409,776 outfits and 644,192 items.

Every outfit covers the entire body with a variable numbers of items.

2. We propose an outfit grader that produces a score for fashion outfits with a

variable number of items. Our empirical study shows that our model achieves

84% of accuracy and precision in Polyvore409k dataset.

3. We propose a human judgment framework on outfit quality, which provides a

simple and reliable method to verify the reliability of outfit verifiers using a

crowdsourcing platform.

4. We demonstrate that our outfit grader can build a recommendation system that

suggests good outfits from a pool of items.

3.2 Related Work

3.2.1 Outfit Modeling

The use of computer vision techniques to study fashion is gaining popularity.

Some early studies work on outfit images [16–18]. Although these studies can use
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the appearances of outfit on a real subject, accurately identifying items in an outfit

image is still an open problem. The manual annotation is costly, and the automatic

detection and segmentation of fashion items in an outfit image [7–11,63] are still not

reliable. For example, “dress” and “top with skirt” are often incorrectly segmented,

and the small objects like shoes and accessories are often missed. In addition, the

importance of each item to the overall style may or may not be related to the scale of

the item in an outfit image. In this chapter, we aim to study outfits as a combination

of items, where each item has its own image.

Some studies treat outfits as combinations of item images as well [12, 20–22].

In [22], items in an outfit are recommended according to the requested occasion and

the existing items in that outfit. The work by [20] focuses on learning personal

preference on fashion based on accounts and associated outfits from polyvore.com.

A study of pairwise relationship between fashion items was explored in [12] using co-

purchase data. The work by [21] also uses data from polyvore.com to learn outfits

as combinations of items based on item image, name, and category. They create an

item recommendation system that suggests an item to match with other manually

selected items.

Outfits have a natural structure based on human body, but [20–22] consider outfits

with fixed number of items without considering variation in the structure. Outfits

in [20] consist of one top, one bottom, and a pair of shoes without considering full-

body items such as a dress, nor accessories. In [22], recommendation is made for

either whole outfit, or upper-lower body pairs. Likewise, outfits in [21] consist of 4

items, regardless of item role. [21] does not guarantee the completeness of outfits.

Since an outfit can be a collection of any items, it is possible to have incomplete
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Table 3.1: Comparison of outfit datasets

[22] [21] [20] Ours

Number of
images in
dataset

24,417 347,339 85,252 644,192

Annotation
method

Crowd-
sourcing

Metadata from polyvore.com

Outfit
labels

Occasions
and
attributes

Based on
number of
votes

User-created vs.
Randomly created outfits

Number of
items in
outfits

2 4 3 Variable, up to 8

With
respect to
body parts

2 parts No 3 parts 6 parts

Train/test
item
separation

Not
verified

Verified Not
verified

Verified

Evaluated
by human

No No No Yes

outfits that do not cover whole body, such as an outfit consisting only of four pairs

of boots.

In this work, we view outfits as collections of items from polyvore.com, similar

to [20, 21]. We arrange the outfit data such that each outfit covers the entire body

by considering the body part covered by each item, with variable number of items in

the outfit.
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3.2.2 Fashion Datasets

The number of fashion datasets is growing. Each image in some datasets [8,10,11,

17] is an outfit images, which contains many items. In other datasets [12, 20, 21, 62],

each image contains only one item. Some datasets [22, 35] are combinations of both

type. In [12], item combinations come in pairwise format from amazon co-purchase

data. However, items that are bought together do not necessarily mean that they

look good together as an outfit.

There are segmentation datasets [7, 10, 11] that seem suitable for our problem

setup, because the datasets provide outfit images with the boundary of each item, but

the number of samples is too few to learn a reasonable predictive model. Although [20]

and [21] use datasets with combination of images as outfits and each item has its own

image, the dataset is not publicly available. For the above reasons, we collect and

build a new dataset, Polyvore409k dataset, which we describe in section 3.3.

In fashion outfit problem, each sample is an outfit which is a combination of

items. We have to cleanly separate training data from testing data both for a set

and individual items. [22] and [20] do not describe the detail on separation. [21]

constructs a graph dataset, where each node represents an outfit, and a connection

between any two nodes is formed if these two outfits have a common items. After

that, the graph is segmented based on connected components. In this work, we use

an efficient alternative approach to split a graph, which we describe in section 3.3.4.
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3.3 Polyvore409k Dataset

This section describes our Polyvore409k dataset that consists of variable-length

sets of items. Our Polyvore409k dataset has 409k outfits consisting of 644k item

images. The comparison of outfit datasets to the previous work is shown in table

3.1. We plan to release the metadata of items and outfits, including the URLs to the

images, to the public.

3.3.1 Data Collection

We collect Polyvore409k dataset from the fashion-based social media website

polyvore.com. Each outfit, or set in Polyvore’s terminology, consists of a title,

items in the set, a composed image, and behavioral data such as likes and comments

from other users.

3.3.2 Data Preprocessing

Data Cleansing The collected sets can contain non-clothing items or items that

cannot be worn such as logo, background image for presentation purpose, or cosmetic

items. We remove the item if its name does not contain clothing categories, then each

item in a set is categorized into one of 6 outfit parts according to its categories:

1. Outer: coat, jacket, parka, etc.

2. Upper-body: blouse, shirt, polo, etc.

3. Lower-body: pants, jeans, skirt, joggers, etc.

4. Full-body: dress, gown, jumpsuit, robe, etc.

5. Feet: shoes, boots, flats, clutches, etc.

6. Accessory: bag, glove, necklace, earring, etc.
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Table 3.2: Number of unique items in each outfit part

Part Outer Upper Lower Full Feet Accessory

Train 11,168 21,760 16,287 11,523 26,574 60,760

Test 6,656 12,744 11,089 8,871 17,564 37,988

Our definition of an outfit is a set that covers both upper and lower part of body,

each of first 5 categories has at most one item, and at most three items for accessory.

Sets that do not cover the whole body, e.g. missing lower body, are removed. At the

end, we obtained 409,776 valid outfits which are composed of 644,192 unique items.

We consider only two layers on the upper body (outer and upper) because of the

visibility, as the layers under two outermost layers are usually covered. We process

sweaters, knitwear, and the likes as outer-upper hybrids. They will be considered as

an upper if the outfit has other outer, and as an outer if the outfit does not have.

The list of item categories and respective outfit parts is included as supplementary.

3.3.3 Quality Measurement

Measuring the quality of an outfit is a challenging task due to the subjective

nature of judging visual appearance. The approach of [21] directly uses the number

of votes (or like in polyvore.com’s terminology) of the outfit on the website as a

quality measurement. However, some studies [17, 18, 64] argue that the number of

votes from social media does not directly reflect the quality of the outfit, because the

number of clicks is affected by a variety of factors, such as the topology of the social

networks or the time when the outfit was published. In [20], the quality is defined

by the preference of each user: outfits created by the user are treated as positive

samples, and outfits created by randomly pick items are treated as negative. Given
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Algorithm 1: Disjoint Set Sampling

input : All outfits O
output: Set A, B, and C containing outfits such that items in outfits in A is

not in B and vice versa
A← B ← C ← ∅;
A ∪ {O0};
for i← 1 to |O| do

O ← Oi;
itemsA ← items in outfits in A;
itemsB ← items in outfits in B;
itemsO ← items in O;
secAO ← intersection(itemsA, itemsO);
secBO ← intersection(itemsB, itemsO);
if |secAO| > 0 and |secBO| > 0 then C ∪ {O} ;
else if |secAO| > 0 then A ∪ {O} ;
else if |secBO| > 0 then B ∪ {O} ;
else

if |A|/2 > |B| then B ∪ {O} ;
else A ∪ {O} ;

end

end

these insights, we take the following strategy.

Positive Samples Each Polyvore409k outfit has an associated likes that Polyvore

users provide. Although the number of like might not directly reflect the quality of

the outfit, it still shows that some people like the outfit. As a result, we use 212,623

outfits that has least one like as positive samples. In the future, as we obtain more

data, we wish to increase the number of like threshold.

Negative Samples Similar to [20], we use outfits created by picking items ran-

domly as negative samples. We believe that there are some preferred combinations

of colors, textures, or shape of items in an outfit, and we assume that a randomly

created outfit has very small chance to match those preferences.
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Table 3.3: Number of outfits in each train and test partition

Number of outfits Train Test

Positive samples 66,434 26,813

Negative samples 132,868 53,626

Total 199,302 80,439

Ratio positive:negative 1:2 1:2

For each positive sample, we create two identical samples as negative samples,

because the number of preferred combinations is expected to be significantly lower

than random combinations. Then, we replace items in those two negative samples

with random items of the same parts from the same train/test item pool. Although

this sampling strategy is not i.i.d., this approach guarantees the disjoint set property

between training and testing sets, and tends to produce hard negative examples that

shares some items with positive counterpart. Also, the distribution of number of

items and existences of outfit parts in samples are preserved.

Table 3.2 shows the number of items in each part of outfit. Figure 3.2 shows the

distribution of number of items in an outfit in train and test splits for both positive

and negative samples. Table 3.3 shows the numbers of positive and negative samples

in each split.

3.3.4 Evaluation Data

The set-item relationship constitutes a bipartite graph, where nodes are outfits or

items, and edges represent inclusion relationship. For performance evaluation using

Polyvore409k, we have to split the bipartite graph such that the training and testing

50



Chapter 3: Recommending Outfits from Personal Closet

2 3 4 5 6 7 8
Number of items in an outfit

0

10

20

30

Nu
m

be
r o

f o
ut

fit
s (

%
)

2.68

14.19

23.29

30.25
23.96

5.45
0.06

5.43

17.81

25.04
28.43

18.42

4.27
0.04

Train
Test

Figure 3.2: Distribution of number of items in outfits in training and testing partition
are similar.

Y/N
Good 
outfit?

outer

B
in

ar
y 

C
la

ss
ifi

erOutfit 
Representation

Φ

upper

lower

feet

An outfit

Figure 3.3: Outfit Grader

splits do not share any item or outfits. We use Algorithm 1 to separate training and

testing splits.

3.4 Outfit Grader

3.4.1 Problem Formulation

We formulate the outfit grading as a binary classification problem. Given an outfit

O ≡ {xouter, xupper, · · · , xaccessory3}, where xpart is an item image, the goal is to learn

a mapping function: F : O 7→ y to predict the outfit’s quality y ∈ {0, 1}. Once we

learn the mapping F , we are able to sort arbitrary combinations of items according
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to the prediction score.

The challenge is how to represent an outfit O with a variable number of items.

Luckily, the number of visible items is limited even though an outfit can contain a

variable number of items. Therefore, we assign each item into one of the six cate-

gories and concatenate the item representations to produce the outfit representation.

Figure 3.3 shows our grader. Our grader takes a bag of images and convert them

to feature representations, then concatenates the individual features according to the

item’s category to produce the fixed-length representation. We describe details below.

3.4.2 Item Representation

We convert the image of each item in the outfit to a feature representation

φpart(xpart), using a convolutional network. In this chapter, we use ImageNet-pretrained

ResNet-50 [65], and extract the 2,048-dimensional embedding from pool5 layer as an

item representation. We extract features for 5 item parts and up to 3 accessories. For

missing parts, we give a mean image to obtain features which is equal to zero-input

to the convolutional network.

3.4.3 Outfit Representation

After we extract features from each item, we concatenate all features in the fixed

order to form an outfit representation Φ(O) ≡ [φouter, φupper, · · · , φaccessory2]. Note that

we allow accessories to appear multiple times in the outfit, and we simply concatenate

all the accessory features ignoring the order. Outfits with less than 3 accessories get

mean images as well to the other part. We have 5 item parts and 3 accessories per

outfit, resulting in a 16,384 dimensional representation as the outfit representation.
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3.4.4 Scoring Outfits

From the outfit representation Φ, we learn a binary classifier and predict a score.

We utilize a multi-layer perceptron (MLP) to learn the mapping function. In this

chapter, we compare 3 MLPs with various configurations to see the effect of number

and size of fully-connected (FC) layers on this problem. The models we used are:

1. one fc4096: one 4096-d FC layer

2. one fc128: one 128-d FC layer

3. two fc128: two 128-d FC layers

Each of fully-connected layers are followed by batch normalization and rectified

linear activation (ReLU) with dropout. One 2-d linear layer followed by soft-max

activation is added to every models to predict a score. We use multinomial logistic

loss to learn the parameters of the grading model.

3.5 Performance Evaluation

3.5.1 Evaluation Setup

We learn the grading model from the training split of Polyvore409k dataset, and

evaluate the binary classification measures on the testing split. The performance is

measured against the ground truth. In this chapter, we report the performance of our

models without fine-tuning the parameters of the convolutional network for the item

feature extraction. We implement the neural network using Caffe framework [56]. We

choose cross entropy as a loss function. We train the models for 400,000 iterations

using stochastic gradient descent with momentum, where the initial learning rate and

momentum are set to 10−4 and 0.9, respectively. We measure accuracy, precision, and
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Table 3.4: Accuracy, average precision, and average recall of our outfit graders at
400,000 iterations.

Accuracy Avg. Precision Avg. Recall

one fc4096 84.51 83.66 80.62

one fc128 80.14 81.25 72.79

two fc128 82.11 82.14 76.36

Table 3.5: Precision, recall, and F1 value of both classes from one fc4096 model at
400,000 iterations.

Testing Training

Negative Positive Average Average

Precision 85.60 81.73 83.66 99.25

Recall 92.29 68.95 80.62 99.31

F1 88.82 74.80 81.81 99.28

recall to evaluate the performance. The prediction is counted as correct if it matches

the ground truth.

3.5.2 Quantitative Results

The accuracy, average precision, and average recall of all models are displayed in

table 3.4. According to the table, one fc4096 ,which has 84.51% accuracy, 83.66%

average precision, and 80.62% average recall, is clearly the best among the three

models. The precision, recall and f1 value of both classes from one fc4096 model are

shown in table 3.5. Top 8 positive and negative samples from the model are shown

in figure 3.4. Qualitatively, preferred outfits contain items with consistent colors and

styles, whereas low-scoring outfits tend to have less common visual elements between
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Figure 3.4: Eight best (top row) and worst (bottom row) outfits judged by our outfit
grader

items.

From table 3.5, 92.29% recall for negative class shows that the model is very

reliable for pointing out the bad outfit. However, 68.95% for the positive one shows

that it tends to judge positive outfit as a negative one as well. When considering

that the training performance is almost 100% correct as shown in table 3.5, we can

conclude that the model overfits the training data.

3.5.3 Color and Item Type Analysis

We conduct another set of experiments to analyze the effect of various features

on grading performance. We train one fc4096 for 100,000 iterations using 5 features:

(1) item type, (2) 4-color palette, (3) (1)+(2), (4) ResNet-50 features from grayscale

images, and (5) ResNet-50 features from RGB images. Item types are extracted from

item name, and 4-color palettes are extracted from item image.

The result in table 3.6 shows that the item type and color represent the items
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Table 3.6: Performances of one fc4096 outfit grader trained by different features: (1)
item type, (2) 4-color palette, (3) (1)+(2), (4) ResNet-50 features from grayscale
images, (5) ResNet-50 features from RGB images

Feature Accuracy Avg. Precision Avg. Recall

(1) Item types 74.33 71.77 67.02

(2) 4-color palettes 74.53 72.71 66.35

(3) (1)+(2) 78.93 77.57 73.03

(4) ResNet-50 grayscale 81.31 79.35 77.69

(5) ResNet-50 RGB 84.26 83.06 80.73

equally, and the combination of them gives a better representation. However, the

composite feature from ResNet-50 outperforms both primitive features, even without

the color information. Finally, the color information in the ResNet-50 features affects

the performance of outfit grader by 3% classification accuracy.

3.6 Human Evaluation

Outfit quality is a subjective topic. An outfit that looks chic to one person may

look ugly to another. Although an evaluation on testing samples is important, we

argue that it might be insufficient to verify the reliability of the approach. We conduct

a large-scale human perception evaluation to further assess our model. We use the

predictions from one fc4096 to do evaluations on human perception using Amazon

Mechanical Turk (AMT).
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3.6.1 Geographic Trends

People from different regions have different tastes in fashion. Since the one fc4096

model learned from data from polyvore.com, in order to show that the model suc-

cessfully learned the compatibilities between fashion items, the model’s predictions

should be judged by people from the same region as the training data. After we

inspect metadata of all 93,247 outfits that are used as positive samples, we found

that they come from 39,590 different users. Around half of them (21,413 users ,54%)

did not provide the country. For the remaining 18,177 users, which come from 175

countries, most of them come from United States (8,167 users, 45%), followed by

Canada (872 users, 5%), and other countries. As a result, our model’s predictions

will be judged by Americans.

3.6.2 Evaluation Protocol

We setup the experiment as choosing the better outfit from each pair to minimize

the effect of absolute bias or personal preference from human subjects. In addition,

outfits in each pair must have exactly same outfit parts at the same location in the

outfit image, so that only the compatibility of items affects the judgments, not the

outfits’ configuration nor number of items in the outfits.

Our hypothesis is, if outfits in the pair have similar quality, people will choose

both outfits equally. On the other hand, if the outfit has a large gap in quality,

people will definitely choose one over the other. The quality score of each outfit come

from our outfit grader. If our outfit grader can reliably judge the quality of the outfit,

our hypothesis will be true.

To verify the hypothesis, we select a number of best outfits as references, denoted
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Figure 3.5: Mean, range, and SD of scores in each samples group ∆ and A

as Alpha (A). Then, we select other outfits of different qualities, denoted as Delta

(∆), and pair them up with best outfits. After that, we show these pairs to human

annotators. For each pair, we tell the annotators to choose the better of the two.

Our expectation is that, the difference in quality between outfits in the A group

and each of ∆ group is directly related to the probability that the annotators will

choose outfits in the A group given the outfits in ∆. Since this experiment is set as

pairwise comparisons, we believe that the mentioned probability should be approxi-

mated as

p(sα|sδ) = sα/(sα + sδ) (3.1)

where sα and sδ are positive probability calculated by our model of outfits in A and

∆, respectively.

3.6.3 Implementation detail

Our outfit’s score is the positive probability from the outfit grader. We randomly

select 1,000 outfits with the score more than 95% as “A” group. After that, we
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Table 3.7: Number of “Unable to decide” answers and ties from the experiments
comparing outfits in A to ∆j for j ∈ 0, 1, 2, 3, 4

j 0 1 2 3 4

Number of ”Unable to decide” out of 5,000 questions 688 820 924 696 422

Number of ties Out of 1,000 pairs 63 80 114 111 80

sort outfits with score less than 95% in an ascending order, then divide them into

5 groups, from “∆0” which is the group of outfits with the lowest scores, to “∆4”

which is outfit with the highest scores but still less than 95%.

The experiment consists of 5,000 pairs of outfits. We use outfits from A group

as “good” outfits, and ∆j for j ∈ {0, 1, 2, 3, 4} as “bad” outfit. For each αi ∈ A, we

randomly select an outfit δj,i ∈ ∆j for each j ∈ {0, 1, 2, 3, 4} that has exactly same

outfit parts as αi. Our hypothesis is, the visible difference in outfit quality in (αi, δ0,i)

pairs is more than in (αi, δ4,i). We denote pair (αi, δj,i) as pj,i for j ∈ {0, 1, 2, 3, 4}

and i ∈ {0, 1, .., 999}. We show in figure 3.5 the mean, range, standard deviation of

scores in each ∆j for j ∈ {0, 1, 2, 3, 4} and A, and the difference of mean of scores of

each group to A.

We ask 5 annotators to vote each pair pj,i. Each annotator selects the better outfit

in each pair, or select “Unable to decide” if the annotator thinks that the outfits looks

equally good (or bad). The total number of questions in our experiment equals to: 5

annotators × 1,000 questions × 5 δs = 25,000 questions. We show examples of outfits

in figure 3.6. For each row, 5 pairs of outfits are created by pairing an outfit in ∆j

for j ∈ {0, 1, 2, 3, 4} with A. An example questionnaire is shown in figure 3.7.
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0 1 2 3 4 A

Figure 3.6: Comparison of outfits used in human evaluation. Each row shows outfits
in different quality groups but have the same outfit configuration.

3.6.4 Evaluation Metrics

We use the term Matching Ratio to describe the ratio that human annotators

select αi in pair (αi, δj,i) as the better-looking outfit. We also remove the “Unable

to decide” votes, shown in table 3.7, from the calculation. There are two metrics,

matching ratio by individual answer, and by majority vote on each pair. For the

latter, we also remove ties, shown in table 3.7, from the calculation.
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Which outfit looks better ? (When all items in the outfit are worn in the same time.)  (click to see the

instructions)

Overview

Each outfit has up to 8 parts: outer layer, upper-body, lower-body, full-body, feet, and 3 accessories.

Given two outfits, select the outfit that looks good when all items in the outfit are worn together at the same

time, based on your preference.

Direction:

Please select the group of items that looks good when worn together according to your taste.1. 

Please choose "Unable to decide" only if you consider that items in both groups look goods (but maybe

for different occasions), or both look bad in any occasion.

2. 

Examples

 Which outfit looks better?  

Unable to decide

The left outfit The right outfit

file:///home/tangseng/Desktop/verifier_amt_mod...

1 of 4 06/20/2017 04:01 PMFigure 3.7: An example of questionnaires used in human evaluation, with associated
outfit part of each item

3.6.5 Results

The results, with our expectation as explained in section 3.6.2, are shown in

figure 3.8. The 91.25% matching ratio by voting shows that the human annotators

agree with predictions from our model. Although not perfectly matched, the result

has similar trend with our expectation. The result indicates that that the value of

our positive probability (score) properly resembles the quality of the outfit.

Regarding the gap between human votes and our model, we have to remind that,

the reliability of the human evaluations is not the absolute. As said earlier, fashion

is a subjective topic. We might be able to use some small sets of questions to verify

the ability of annotators, although this approach introduces absolute bias to the
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Figure 3.8: Matching ratio of the prediction to human judgment in each samples
group ∆ with our expectation

evaluation since people have different tastes in fashion.

3.7 Application: Outfit Recommendation

If the number of items is not very large, as is often the case with a personal closet,

our outfit grader can directly be used as an outfit recommender by generating multiple

outfits and ranking them. To demonstrate this usage, we conduct experiments as

follows.

3.7.1 Outfit generation

For generating outfits, we consider four outfit configurations: (1) outer layer with

upper- and lower-body, (2) only upper- and lower-body, (3) outer layer with full-

body, and (4) full-body only. All configurations include a footwear and at most three

optional accessories.
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Although it may be reasonable to assume that there are a modest number of

clothes, there could be a large number of accessories and generating all possible item

combinations is computationally expensive. We test four methods for generating out-

fits that take efficiency into consideration. The first method (Ordered Beam Search)

is to regard outfit generation as a sequence generation problem, and employ a beam

search algorithm. To be specific, in each item step t, the items that belongs to partt

are the possible item extensions, and our “one fc4096” outfit grader is used as the

scoring function. The beam search starts from each item in the pool and considers

all outfit configurations applicable to the item. It stops when all parts of the outfit

are added according to its configuration. We then remove the duplicated outfits and

recommend the best outfits based on the score from our outfit grader.

The second method (Orderless Beam Search) uses the entire item pool as the

possible item extensions at all time steps, while the rest is the same as the first

one. The third method (Partial Beam Search) generates all possible combination

of main parts (outer, upper, lower, full, feet) of the four outfit configurations, from

which ten best outfits (based on score from our outfit grader) per outfit configuration

per item are kept as base outfits. We then use the beam search to add accessories

to those base outfits. The fourth method (Baseline) creates 100 outfits per outfit

configuration in a random manner. Then, the duplicates are removed and the best

ones are recommended.

Each of the four methods outputs 10 best outfits based on the scores from our

outfit grader. In the experiments, for all the methods, we set the beam width for

beam search to three and include a null item in the item pool as an accessory to give

a choice to the beam search to add nothing to an outfit in each “accessory” time
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steps.

3.7.2 Evaluation

A good outfit recommender should be able to find sets of well-coordinate items

in a pool of apparently random items. To test each recommendation method in

terms of this property, we created 957 test cases, each of which contains items from

one positive, denoted as P , and two negative samples. These samples are randomly

drawn from the testing partition of Polyvore409k dataset. From those items, the

recommended outfit, denoted as R, should be similar to the positive samples P . To

measure the performance of the recommender, we use four conditions as (1) P = R,

(2) P ⊂ R (3) R ⊂ P , (4) (P = R)∪(P ⊂ R)∪(R ⊂ P ). For each method, we regard

a recommendation (i.e., top ten recommended outfits) as successful if the condition

is met by one of the ten recommended outfits.

Table 3.8 shows the results. It is seen that Partial Beam Search outperforms

the baseline in every metrics. The reason why Ordered and Orderless Beam Search

perform worse than Partial Beam Search is because our outfit grader is trained using

complete outfits, while the early steps of beam search rely on the score of partial

outfits, which our outfit grader is not trained for. Figure 3.9 shows successful and

unsuccessful recommendations. We argue that the recommended outfits in the failure

case are even better than the target positive sample. This is due to the nature of

weakly-supervised data.
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Figure 3.9: Recommended outfits from Partial Beam Search. Each row shows one
test case, where 5 outfits on the right are generated from items in 3 outfits on the
left. Outfits with blue border are positive, red are negative, green are exact match,
cyan are P ⊂ R, and orange are R ⊂ P . The others are recommended outfits that
do not meet the conditions.

Table 3.8: Performance of outfit recommendation by the proposed outfit grader com-
bined with four outfit creation methods. The metrics are (1) P = R, (2) P ⊂ R (3)
R ⊂ P , (4) (P = R)∪ (P ⊂ R)∪ (R ⊂ P ), where P and R denote the positive sample
and recommended outfits, respectively.

Approaches (1) (2) (3) (4)

Ordered Beam Search 11.39 14.11 19.64 32.29

Orderless Beam Search 14.84 20.79 9.40 29.89

Partial Beam Search 34.38 41.80 22.68 59.77

Baseline 8.88 21.53 14.11 36.36
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Figure 3.10: Mean of outfit score by number of items according to prediction and
truth

3.8 Conclusion

In this chapter, we study outfits as combinations of items by developing outfit

graders and outfit recommenders. Given a combination of items as an outfit, our

best model can judge if the outfit looks good or not at over 84% accuracy on testing

samples, and at 91% matching ratio on evaluations by human annotators. In addition,

user can just give a pool of items that user have to our outfit recommender, and it

will recommend outfits from the item pool. We also collect a large clothing dataset

consisting of over 600,000 clothing items and over 400,000 outfits, and use the dataset

to learn and evaluate the outfit graders and recommenders.

3.9 Appendix

3.9.1 On Biases from the Creation of Negative Samples

In section 3.3.3, we claimed that our negative sample creation method can prevent

additional artificial bias between positive and negative samples. There are two biases
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Figure 3.11: Mean of scores of outfits containing each outfit part. Note that the
train:truth line lies on top of the test:truth line perfectly.

that we tried to prevent:

• Bias from number of items in outfits

• Bias from existence of parts

To support the claim, we analyze our model’s predictions as follows:

Bias from number of items in outfits To see if the number of items affects the

outfit quality judged by our model or not, we plot the average score of testing samples

for different number of items in samples in figure 3.10.

The mean score from the truth of samples is 0.33 because the ratio between number

of positive (the score is one) and negative (the score is zero) samples is 1:2. However,

our model gives lower score to all cases, while outfits with 4-5 items got higher scores

than others. We notice that the curve is similar to the distribution of outfits by

number of items in figure 3.2. We suspect that the bias come from the overfitting of

our model to training samples.

As mentioned in [2], the neuron network is prone to overfit training data if the
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number of sample is not large enough. Because we have more outfits with, for exam-

ples, 4 and 5 items than 2 or 7, and we have more negative than positive samples at

the ratio of 2:1. As a result, our model overfits these samples, especially with 2 or 7

items, which leads to lower scores in said samples.

To conclude, the result shows that our method to create negative samples can

prevent the bias from number of items in outfits.

Bias from existence of parts To see if the existence of outfit parts affects the

score given by our model or not, we plot the average score of training and testing

samples containing each outfit part in figure 3.11.

As shown in figure 3.11, the mean of scores of training samples containing each

part is exactly 0.33 because the ratio between number of positive and negative samples

is 1:2. In testing samples, the means are around 0.3 perhaps because of overfitting.

The figure also shows that the average score of outfits containing each part are almost

identical, means that the score does not depend on the existence of any particular

outfit part, thus confirm that this bias does not exist in our dataset.
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Chapter 4

Identifying Feature-Level Flaws in

Outfits via Gradient-Based Method

4.1 Introduction

Recently, there are many approach on applying computer vision technique on

fashion, either as an item recommendation based on one’s purchase history or per-

sonal preference [20], recommending outfits from a pool of item [4, 22], measuring

outfit fashionability [4, 17, 21, 24, 66], and recommending outfits according to the lo-

cation [23]. However, many of these works rely on black-box model that, while giving

a very good numerical result on testing samples, do not explain the reason behind

the prediction that is useful in term of fashion [4,20–22]. For the works that provide

reasons [23,24], the model usually needs to be trained on a large amount of manually

* The main contributions in this chapter first appeared in our publication on “Toward Explain-
able Fashion Recommendation”, arXiv preprint arXiv:1901.04870,2019.
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Item
Flaw detection

Shape-texture
Flaw detection

Color
Flaw detection

Figure 4.1: The goal of the this work is to identify the flaw in an outfit in both
item-level and feature-level. Each row is an outfit that consists of variable number of
items. In the first row, the flawed item is identified. In the second and third row, the
flaw is identified to the feature-level.

annotated data, which is expensive in both time and money, and usually not publicly

available. Here, we purpose an outfit fashionability measurement system that can

predict outfit fashionability level reliably, is able to explain the reason behind the

predicted fashionability score at the interpretable feature-level by giving the numeri-

cal influence level of each feature in each item to the overall outfit fashionability both

positively and negatively (Item-Feature Influence Value (IFIV)), and is trained on

publicly available dataset without any additional annotation.

Since evaluating the explanation via human experiment is always subjective, es-

pecially in the fashion topic, we create our testing samples from an existing dataset

and use them to quantify the performance of the explanation as an outfit flaw de-
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tection. Because our system gives Item-Feature Influence Value (IFIV), we can use

the negative IFIV, that show how each item-feature negatively influences the outfit

fashionability, to identify the flaw in the outfit and use the predicted item-feature

to evaluate the performance of the system. The goal of this work is illustrate in the

figure 4.1.

The main contributions of this chapter are as follows:

1. A method to extract interpretable features from item images in outfits without

using any additional annotation.

2. The outfit fashionability measurement system with item-feature influence values

that, given an outfit as a set of item with associated outfit parts, predicts how

each item-feature affects the overall outfit fashionability. These values can be

used to identify the flaw in an outfit, which not only explain the reason behind

the output outfit fashionability, but also guide the user to dress better.

3. A method to create outfit flaw detection samples which can be used to evaluate

the outfit flaw detection system.

The organization of this chapter is as follows. We discuss the related work in

section 4.2. Next, we talk about our purposed method to explain outfit fashionability

at item-feature level in section 4.3. To reliably explain the outfit fashionability, we

first evaluate the outfit fashionability measurement system in section 4.4, then use

outfit flaw detection as an evaluation method for item-feature influence prediction at

section 4.5. Finally, we provide a conclusion of our work in this chapter in section 4.6.
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4.2 Related Work

4.2.1 Outfit Fashionability Measurement and Recommenda-

tion

There is a growing interest in the application of computer vision techniques to

measure the fashionability of an outfit. The authors of [17] predicted fashionability

scores from an outfit image and tags. The authors of [66] used bidirectional LSTM (Bi-

LSTM) [67] to learn the compatibility relationships among fashion items by modeling

an outfit as a sequence. In contrast, the authors of [4, 21] use fully-connected layers

instead of Bi-LSTM. In [4,21,66], the authors used fashion item representations from

deep models that is trained for generic image recognition to measure the fashionability

of outfits. This approach works well for measuring the fashionability of an outfit by

giving the score. However, since it cannot provide the reason to support the score,

the usefulness of the score is limited. In addition, fashion is a subjective. Without

providing any reason, user may just discard the score entirely.

4.2.2 Explaining Artificial Intelligence

Recent advances in deep learning have dramatically improved neural network

accuracy in image classification [53, 65, 68], object detection [69], object segmenta-

tion [1, 70], Visual-Question Answering (VQA) [71–74], etc. Despite the impressive

performances, the lack of explanation and understanding raise concerns from public,

especially in life-critical applications [75]. To this end, there are several works trying

to explain the decision of machine learning models [76–79]. The author of [76] ex-

plained the prediction from a complex model of any particular sample by examining
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the local perturbed neighbors of that sample, then created a linear model that ap-

proximates the complex model locally to the sample being explained. The authors

of [77] proposed the Class Activation Map (CAM) which shows the region in an image

that responsible for the prediction. Unfortunately, it is only applicable to image clas-

sification models that do not contain any fully-connected layer. The authors of [78]

generalized and extended [77] into a new method called Grad-CAM, which applicable

to wide variety of CNN model-families including CNN with fully-connected layers

(e.g. [53]), image captioning [80–82], and Visual Question Answering (VQA) [71–74].

4.2.3 Explaining Artificial Intelligence for Fashion Outfit

In recent years, there are several studies on popularity of fashion styles and fashion

recommendation as mentioned in section 4.2.1 [12, 20–22, 83]. Many of these works

employed the black-box scheme that gives very high predictive performance but also

uninterpretable. Although there are several attempts on explaining black box models

as mentions in section 4.2.2, fashion outfits consist of sets of items, which those

approaches are not applicable.

Recently, there are two attempts to explain the popularity on fashion styles [24,84].

The author of [24] relied on a massive amount of annotated data to train a multi-

category attribute predictor and create a composition graph based on pairwise co-

occurrence of those predicted attributes in an outfit. This method is very costly

because of the required manual annotations. This model also considers only pairwise

relationships between items in an outfit. On the other hand, the authors of [84]

created an upper-lower matching recommendation with a textual explanation from

outfits and comments crawled from polyvore.com. Although this work does not
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Figure 4.2: The overview of our outfit fashionability measurement system with fea-
ture influence values. Given an outfit as a set of item, we extract edge image and
main colors of each item, then forward propagate them through a pretrained CNN,
normalization, concatenation, and fully connected layers with ReLU and batch nor-
malization to obtain the raw score for the bad outfit label. We then backpropagate
the gradient of the bad outfit label back to the representation of each item. The
values of gradient at the item representation are separated by feature and, summed,
rectified, and scaled to [0,1] range. We call these values Item Feature Influence Value
(IFIV). Finally, the IFIV of each item feature is used to identify the flaw of the outfit.

require manual annotation, the size of outfits is limited to only 2 items, and we argue

that the comments from a social media website are considered weak.

In this work, we create an outfit fashionability measurement system that takes an

outfit that consists of a variable number of items that is able to quantify the influence

that each item in the outfit has on the outfit fashionability in the feature level. In

addition, we also purpose an evaluation protocol to assess the ability of our method

to identify the flaw of the outfit.
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4.3 Explaining Outfit fashionability

In [4], the outfit grader classifies an outfit as a positive (good) and negative (bad)

outfit as in the binary classification problem and use the probability of positive pre-

diction as the outfit score. Motivated by Grad-CAM [78]’s ability to identify the

section of feature map that corresponds to a specified class accurately while using

only image-level annotation in training, we develop a gradient-based method that

can identify the degree that each item affects the goodness and badness of an outfit.

In addition to item-level influence, we also develop a method to extract human-

interpretable features from each item, which allow us to identify how each feature

of each item influences the fashionability of the outfit compared to the same feature

of other items. As a result, we purpose a system architecture that can separate

each item in an outfit into shape with texture and main colors, measure the outfit’s

fashionability, then use a gradient-based method to see how each feature of each item

affect the fashionability of the outfit.

An overview of our outfit fashionability measurement system with feature influence

values is illustrate in figure 4.2

4.3.1 Extraction of Interpretable Item Features

Intuitively, attributes that associate with fashion items are item type, material,

color, shape, and texture. However, obtaining such attributes requires experts in the

fashion domain, and there is no clear definition of various attributes such as item type

and shape of the item. As a result, we purpose to use the three explainable features

that are already embedded in the item image and can be extracted easily: shape,

texture, and colors, as the features of each item in an outfit.
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Figure 4.3: Item images with their edge image and main colors.

Shape, texture, and colors of an item can be extracted from an item image using

conventional image processing techniques. In this work, we extract main colors using

K-mean clustering [85]. For shape and texture, we apply two operations to an item

image and combine the result together as shown in Algorithm 2. We call the output

of this process edge image.

For an item with a rougher texture, the edge image output contains more small

dots over the area. On the other hand, the edge image of an item with smoother tex-

ture contains less number of dots. The operation also preserves creases and patterns

in the item.

From the edge image, we then use a pretrained convolutional neural network

(CNN) as a feature extractor E to extract an n-d embedding from edge image, de-
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Algorithm 2: edge image extraction
input : RGB Image I
output: edge image

f ←


−1 −1 −1

−1 8 −1

−1 −1 −1


Ie1 ← canny(I, σ = 1.1) [86];
Ie2 ← I ∗ f ;
Ie ← Ie1 + Ie2 ;
edge image ← 255− clip(Ie, 0, 255);

noted as x0
edge image and use as a representation of shape and texture of an item.

x0
edge image = E(edge image) (4.1)

For colors, we first remove the background from the item image, then apply K-

mean clustering [85] to cluster the color value of all pixels in the item image into 3

clusters. We then use the centroids of those 3 clusters as 3 dominant colors of the

item, results in 9-d color representation (3 colors × 3 RGB color values) denoted as

x0
colors. The examples of original images, their edge image, and 3 dominant colors are

shown in figure 4.3.

4.3.2 Item Representation

To create an item representation from n-d edge image representation and 9-d color

representation, we normalize both representations separately by

xf =
x0
f − µ(X0

f )

σ(X0
f )

, f ∈ {edge image, colors} (4.2)
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where x0
f and xf are a raw and normalized representation of a feature f of an item

respectively, while µ(X0
f ) and σ(X0

f ) are mean and standard deviation vector of the

raw representation of feature f of all items in training outfits.

Finally, we concatenate xedge image and xcolors together as the representation of an

item, denoted as x.

x = [xedge image,xcolors] (4.3)

Since we have multiple item in an outfit, and each item occupy a specific outfit

part, we denote the representation of item that occupy part i as xi.

4.3.3 Outfit Representation and Encoding

Firstly, for each item in an outfit, we encode its representation x as φ by

φi = G(xi) (4.4)

where G is a trainable item encoder and φi is the item encoding of an item that

occupy ith part of human body.

Based on [4], our outfit representation Φ of an outfit O is defined as

Φ = H([φ0, φ1, . . . , φn]) (4.5)

where n is a maximum number of items that an outfit can have, which is 8 in the

polyvore409k dataset [4], and H is a trainable outfit encoder.
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4.3.4 Outfit Grader as a Binary Classifier

Given an outfit representation Φ of an outfit O, a binary classification model F

is used to evaluate the fashionability of the outfit:

s = S(wTΦ + b) (4.6)

F (O) = σ(s) (4.7)

where wT and b are the weights and bias of the linear model, respectively. F (·) is

the entire system, and σ(·) is the softmax function:

σ(s)k =
exp(sk)∑1
m=0 exp(sm)

, k ∈ {0, 1} (4.8)

where we are using the notation sk to refer to the k-th element of the vector of class

scores s of outfit O. To learn the parameters (G,H, S) in the framework, a loss

function L(O, y), is defined on the training data (O, y) based on softmax loss that

has the form:

L(O, y) = − log

(
exp(sy)∑1

m=0 exp(sm)

)
(4.9)

Temperature scaling Since we use the positive probability σ(s)1 as an outfit score,

and it is an output of the softmax function (equation 4.8), scores of outfits are ac-

cumulated at either end of probability range, which is less ideal when using it to

compare the fashionability of outfits. To elevate this, we apply the temperature scal-

ing [87], which is the simplest extension of Platt scaling [88], to calibrate the outfit
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score q̂ as follows:

q̂ = σSM(s/T )(1) ∗ 100 (4.10)

where T is a trainable parameter called the temperature. T is optimized with respect

to the negative log-likelihood on the validation samples. We use q̂ as the fashionability

score of an outfit O.

4.3.5 Item Feature Influence Value (IFIV)

As shown in figure 4.2, Item Feature Influence Value (IFIV) of an item feature

indicates the degree of item feature’s influence to outfit fashionability relative to the

same feature of other items. To obtain the value, first, we forward propagate the

outfit through the model to obtain logit of class c, yc. We then compute the gradient

of yc with respect to the representation of each item in the outfit xi (section 4.3.2),

i.e. ∂yc

∂xi
. The gradient values are element-wise multiplied with the item representa-

tion. And since our item representation is a concatenation of feature representations

(equation 4.3), the item-feature gradient vector gi,f of item-feature representation

xi,edge image and xi,colors of outfit part i can be obtained as:

gi,f = xi,f ◦
∂yc

∂xi,f
, f ∈ {edge image, colors}

To get the Item Feature Influence Value (IFIV) of feature f and outfit part i, we

sum gi,f of each item i to get item feature influence vector vf , ,and scale it to range
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[0,1] as follows:

vi,f = ReLU

(∑
k

gi,f,k

)
(4.11)

IFIVi,f =
vi,f

max(vf )
(4.12)

4.4 Evaluation of Outfit fashionability Measure-

ment

4.4.1 Interpretability vs. Classification Performance

Naturally, there exists a trade-off between the interpretability and performance

of the model: a more interpretable architecture (e.g. decision tree) usually has lower

performance than an opaque architecture (e.g. artificial neural network). In our case,

we create a more interpretable model by separating the RGB image into colors and

edge image and use them to examine the features separately. Here, we compare the

performance of our models that are trained on interpretable item representations in

section 4.3.2 to a similar model (as a baseline) that is trained on uninterpretable item

representations [4].

Model architecture The architecture of both models is very similar since the only

difference is the item representation x while other parts of the model are identical.

Based on the architecture shown in figure 4.2 and described in section 4.3, the

item representation x of the baseline model is a feature vector extracted directly from

the RGB item image using the feature extractor E. In other words, we replace these
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equations in section 4.3:

x0
edge image = E(edge image) (4.13)

xf =
x0
f − µ(X0

f )

σ(X0
f )

, f ∈ {edge image, colors} (4.14)

x = [xedge image,xcolors] (4.15)

with

x = E(RGB image) (4.16)

The other parameters are as follows:

• The feature extractor E is the ImageNet-pretrained InceptionV3 [68] up to pool5

layer which R2048 feature vector.

• The item encoder G is an identity function.

• The outfit encoder H is a 4096-d fully-connected (FC) layer with batch normal-

ization [26] and ReLU [89] activation function.

• We train both models for 30 epochs with learning rate 1e − 4 and batch size

100 on Polyvore409k dataset [4].

Evaluation We define the accuracy as in traditional binary classification problems.

The prediction is counted as correct if it matches with the ground truth.

Result Table 4.1 shows the results. Accuracy indicates that of binary classification,

where a prediction is considered to be correct if it matches the ground truth. As
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Table 4.1: Training, validation, and testing accuracy and average f1 of both outfit
graders after training for 30 epochs on Polyvore409k dataset [4].

Partition Train Validation Test

Model Acc. Avg. F1 Acc. Avg. F1 Acc. Avg. F1

Baseline 98.41 98.20 83.19 81.86 79.19 74.11

Interpretable model 99.62 99.57 80.78 79.48 76.69 71.11

expected, the baseline model shows better performance than the interpretable model

by 2.50% accuracy and 3.00% average f1. This is a noticeable gap but is arguably

not so large to make the explanation by the interpretable model meaningless.

Performance of various configurations In addition to the model configuration

we mentioned above, we also develop a number of configurations of the interpretable

model to find a better model to be used to explain the fashionability of an outfit.

The differences between these models and the one mentioned above are item encoder

G and outfit encoder H.

Both item encoder G and outfit encoder H are implemented as a series of FC

block. Each FC block consists of 3 layers: fully connected, batch normalization, and

ReLU. The differences between models are the size and number of blocks that the item

encoder G and outfit encoder H has. The configurations and their performance on

testing samples are shown in table 4.2. Since the model#4 has the best performance,

we will use this model in our outfit fashionability measurement system with feature

influence values.
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Table 4.2: Testing accuracy and average f1 of various configurations of outfit grader
after training for 30 epochs of Polyvore409k dataset [4]. Each cell in the Item Encoder
G and Outfit Encoder H column specify the size of FC layer in the FC block. The ×
indicates multiple FC blocks.

# Item Encoder G Outfit Encoder H Acc. Avg. F1

1 - 4096 76.69 71.11

2 1024 4096 78.93 73.43

3 512×256 4096 79.34 75.19

4 512×256 2048 79.45 75.76

5 256×128 4096 79.00 74.47

6 256×128 2048 78.78 74.70

4.4.2 The Effect of Temperature Scaling

As mentioned in section 4.3.4, The temperature scaling is used to calibrate the

score of the outfit q̂. Here, we use the reliability diagram [90,91], Expected Calibration

Error [92], and the distribution of outfit scores to visualize the effect of temperature

scaling on the scores of outfits.

To visualize the effect of temperature scaling, we split out testing samples into 10

interval bins, S0, S1, . . . , S9, by the scores (0-100) of testing samples from our model.

For a set of samples, Si, and their sample score, Qi = {q̂s}; s ∈ Si in the bin i, the

reliability diagram plots the expected accuracy of samples:

acc(Si) =
1

|Si|
∑
s∈Si

1(ŷs = ys) (4.17)
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against the average confidence from the outfit scores:

Q̄i =
1

|Si|
∑
s∈Si

max(q̂s, 1− q̂s) (4.18)

If the model is perfectly calibrated, the classification accuracy of a set Si should match

its confidence, acc(Si) = Q̄i.

We also use the Expected Calibration Error [92], which compute the difference

in expectation between confidence and accuracy, as a scalar summary statistic of

calibration, i.e.

Ê
P

[∣∣∣P(Ŷ = Y |P̂ = p
)
− p
∣∣∣] (4.19)

which, in our work, is estimated as:

ECE =
10∑
i=1

|Si|
N

∣∣∣∣acc(Si)− Q̄i

∣∣∣∣ (4.20)

where N is the total number of testing samples.

As a result of optimization on validation samples, the temperature T in equa-

tion 4.10 is set to 6.968055. The reliability diagram and outfit score distribution on

each partition of Polyvore409k dataset [4], before and after temperature scaling, along

with ECE values, are show in figure 4.4 and 4.5, respectively.

Both figure 4.4 and 4.5 show that the temperature scaling works well for cali-

brating the outfit scores, as the confidences match the prediction accuracies almost

perfectly and ECE is reduced from 13.90 and 16.02 before the calibration to 1.10 and

2.16 after calibration, for validation and testing partition of Polyvore409k dataset [4]
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Figure 4.4: Reliability diagrams and ECE values before and after temperature scaling
for validation and testing partition of Polyvore409k dataset [4]. Confidence is equiv-
alent to the outfit score. Note that the ideal lines and confidence lines are almost the
same.

respectively. The distribution of outfit scores also spreads more evenly compare to

before the application of temperature scaling. The 8 best and worst outfits according

to our outfit grader are shown in figure 4.6.
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Figure 4.5: Distribution of outfit scores before and after temperature scaling for
positive and negative samples in validation and testing partition of Polyvore409k
dataset [4].

4.5 Outfit Flaw Detection as Item Feature Influ-

ence Evaluation

In this section, we evaluate our model’s ability to output item feature influence

values (IFIV) accurately. Since the IFIV estimates how each item affects the fashion-

ability of overall outfit, both positively and negatively, we can evaluate the system

by using it to identify the item-feature that negatively affect the outfit the most.
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Figure 4.6: 8 best and worst outfits from testing partition of Polyvore409k dataset
according to our outfit grader.

4.5.1 Evaluation Method

To evaluate our system in outfit flaw detection, we need outfit samples that contain

a flaw which can be identified by the outfit part î that associated with the flawed

item. We then use our system to obtain negative IFIV as in equation 4.12, that is,

how each item-feature influences the outfit fashionability negatively. The outfit flaw

prediction is the item-feature that the most negatively affects the outfit as:

i∗ = arg max
i

IFIVi,f (4.21)

where i∗ is the outfit part associated with the predicted flawed item and f is the

item-feature of interest. We consider the prediction i∗ as correct if it matches with

the ground truth flaw of the outfit î.
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4.5.2 Outfit Flaw Detection Samples

Since our goal here is to detect the flaw of an outfit and measure the accuracy,

each sample may contain more than one flaw, but one of the flaws must completely

dominate the others. Ideally, we would like to have an outfit that has no flaw, we

then inject a major flaw into the outfit by replacing one of the item-feature in the

outfit with other. To ensure that the substituted item-feature is the flaw, the overall

fashionability of the outfit must be decreased. Since our system can also measure the

outfit fashionability, we create the outfit flaw detection samples as follows:

1. Consider only 92,428 items and 26,813 positive outfit samples from the testing

partition of Polyvore409k dataset [4].

2. Obtain 1,000 base samples by:

2.1 Score all samples with the 512×256-2048 outfit grader from table 4.2.

2.2 To ensure that the samples do not have any major flaw in the first place,

we take only 1000 samples with the highest score from step 2.1 and use

them as base samples. The average score of these base samples is 97.16

(out of 100).

3. For each outfit part i in each base sample, we obtain 10 mod samples by:

3.1 Create 500 mod samples by replacing the item-feature f in the base sample

with the one from a random item of the same outfit part.

3.2 Use the same 512×256-2048 outfit grader to score those 500 mod samples.

3.3 Use only 10 worst samples to ensure that the substituted item-feature is

the flaw, not a complement to the base sample.

89



Chapter 4: Identifying Feature-Level Flaws in Outfits via Gradient-Based Method

Since we are considering 2 interpretable features; edge image and colors, we create

3 types of outfit flaw detection samples: edge image-wise, colors-wise, and item-wise

outfit flaw detection samples. For the first type, “edge image-wise” , we replace only

edge image in step 3.1. For the second type, “colors-wise”, only colors is replaced.

And the third type, “item-wise”, the entire item is replaced. The statistic of the base

samples and the 3 types of outfit flaw detection sample, including number of samples

by outfit part and by number of item in the sample for both base samples and outfit

flaw detection samples, are shown in table 4.3. The distribution of score of base

samples and those 3 types of outfit flaw detection samples is shown in figure 4.8. The

distribution of the gap between the score of outfit flaw detection sample and its base

sample is shown in figure 4.9. Two examples of base samples and their associated

outfit flaw detection samples are shown in figure 4.7. Notice that the colors are not

changed in edge image-wise samples, and the edge images are not changed in colors-

wise samples.

4.5.3 Results

Figure 4.7 shows two base samples and the associated outfit flaw detection testing

samples. For item-wise testing samples, both edge image and colors of an item are

replaced. For edge image- and colors-wise testing samples, only edge image or colors

is replaced, respectively. In the table, the replaced feature(s) is enclosed with a red

border, and the IFIVs indicate how each item negatively influence the fashionability

of the outfit in range of [0,1].

Overall performance As shown in the table 4.4, our method can detection the

flaw in outfits perfectly for item- and edge image-wise testing samples as the overall
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Figure 4.7: Examples of IFIVs computed by the proposed method. The red boxes
indicate the replaced entities from the original high-quality outfits, which makes the
new outfits have low outfit scores. IFIV scores mean negative IFIV values. Raw IFIV
scores means the IFIVs before getting ReLU’d and scaled to [0,1].

accuracy is 99.52 and 99.49 percent respectively. While the 85.37 percent prediction

accuracy for colors-wise samples is lower than the other two, it is still impressive

compared to accuracy by chance which is at 17.86 percent.

Performance by gap of outfit score between base samples and the associ-

ated testing samples The score gaps are the difference between outfit fashionabil-

ity (judge by the model) of the base samples to the associated outfit flaw detection
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Table 4.3: Statistic of base samples and outfit flaw detection samples. Even though
we have 3 types of outfit flaw detection samples for edge image-wise, colors-wise, and
item-wise, their statistic here are identical because the only difference between sample
types are the feature(s) that have been modified.

Sample type Number of samples containing following

outfit parts number of items

Base sample

Outer

Upper

Lower

Full

Feet

Accessory0

Accessory1

Accessory2

385

615

664

379

953

977

903

722

3 items

4 items

5 items

6 items

7 items

8 items

Total

15

80

364

375

165

1

1,000

Outfit flaw detection

sample

Outer

Upper

Lower

Full

Feet

Accessory0

Accessory1

Accessory2

3,850

6,150

6,640

3,790

9,530

9,770

9,030

7,220

3 items

4 items

5 items

6 items

7 items

8 items

Total

450

3,200

18,200

22,500

11,550

80

55,980

samples. If the score gap is low, it means model did not see much difference in the

outfit fashionability. As a result, it is also more difficult to identify the flaw since

there are not many flaws to be identified in the first place. As shown in figure 4.10

and 4.9, the score gap in the colors-wise samples are much lower than the other two

sample types, which is consistent with the accuracy values shown in the table 4.4.
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Figure 4.9: Distributions of the score gap between each type of outfit flaw detection
samples and their associated base samples. Notice the differences in the value range
of each axis between colors-wise and others.

Table 4.4: Overall accuracy (%) of outfit flaw detection.

sample type prediction accuracy

By chance all 17.86

Proposed method

item-wise

edge image-wise

colors-wise

99.52

99.49

85.37
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Table 4.5: Accuracy (%) of outfit flaw detection by number of items in an outfit.

sample type
Number of items

3 4 5 6 7 8

By chance all 33.33 25.00 20.00 16.67 14.29 12.50

Proposed

method

item-wise 99.78 98.94 99.59 99.67 99.42 75.00

edge image-wise 99.33 98.75 99.54 99.66 99.47 75.00

colors-wise 93.78 90.09 89.34 83.52 81.31 52.50

Table 4.6: Accuracy (%) of outfit flaw detection by outfit part. Note that there are
8 outfit parts in Polyvore409k dataset The acc outfit part is accessory and there are
up to 3 accessories per outfit in this dataset.

sample type
Outfit part

outer upper lower full feet acc0 acc1 acc2

By chance all 15.44 16.97 16.97 18.77 17.36 17.31 16.96 16.50

Proposed

method

item-wise 99.25 99.11 99.94 95.57 100.00 99.90 99.99 99.96

edge image-wise 99.17 99.32 99.89 95.09 100.00 99.84 99.99 100.00

colors-wise 78.91 79.93 86.07 85.65 93.05 86.82 85.71 80.11

Performance by number of items in outfits As shown in table 4.5, the accuracy

values across the the number of items are quite consistence for item- and edge image-

wise samples, except at the outfit with 8 items. It cannot be said the same for

colors-wise samples, though, as the score decreases as the number of items increases.

However, as shown in table 4.3, there is only one out of 1,000 base samples that have

8 items, so the performance reported here may be unstable, and could be changed if

the number of samples with 8 items increases.
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Figure 4.10: Accuracy and distribution of testing samples by score of base samples
and score gap between testing samples and the associated base samples. Notice the
differences in value range of score gaps between colors-wise testing samples and others.
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Performance by the flawed outfit part in testing samples As shown in ta-

ble 4.6, for item- and edge image-wise testing samples, the outfit flaw detection per-

formance are almost equal across all outfit parts, except the full outfit part, that is

at around 95 percent accuracy while the rest is around 99 percent. For colors-wise

testing samples, however, the accuracies are lower the other two types, and not as

equal across the outfit parts.

4.6 Conclusion

In this chapter, we purposed a novel item-feature-wise outfit fashionability expla-

nation technique using the purposed gradient-based method. This method is able to

extract and quantify the effect of interpretable features of each item on the fashion-

ability of an outfit both positively and negatively as Item Feature Influence Value

(IFIV) without any additional item-level attribute annotation. Based on the pro-

posed IFIV of each feature of each item in an outfit, we are able to detect the flaws

in an outfit in feature level by finding the item-feature has the highest negative IFIV.

Our outfit flaw detection experiments show that our method can detect the flaw in our

testing samples effectively, at 99.52, 99.49, and 85.37 percent item-wise, edge image-

wise, and colors-wise, respectively. We believe that our work can provide insight

into the outfit fashionability prediction, thus increase the trustworthy of the system.

Since this work can point out the flaw in an outfit at the feature level, future work

includes the outfit recommendation system that can improve the outfit fashionability

effectively and be able to design fashion item based on the extracted features.
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Conclusions

Recent years have seen numerous attempt to apply computer vision to real-world

applications, such as classification, semantic segmentation, etc. However, there are

problems with unique characteristics in the fashion domain that require special care

and specific approaches. For example, in semantic segmentation, the areas that look

locally similar may have total different semantic or an outfit classification where the

number of items can be varied but orderless, unlike both traditional image classifi-

cation and natural language processing. Therefore, in this dissertation, we presented

deep learning-based systems that leverage those special characteristics of data to

address fashion specific problems.

In chapter 2, we proposed an extension to FCN architecture to solve the clothing

parsing problem. The extension includes the side-path outfit encoder to predict a

set of labels in the image, and CRF to produce a consistent label assignment both

in terms of clothing semantics and structure within an image. Our model can learn

from a pre-trained network and the existing annotated dataset without additional

data. In addition, the learned image representation in the outfit encoder is useful
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for similar dress-up styles thanks to the internal representation that encompasses

combinatorial clothing semantics. This chapter also introduced a refined annotation

to Fashionista dataset for better benchmarking of clothing parsing, built with a Web-

based tool to create a high-resolution pixel-based annotation. The empirical study

using the Fashionista and CFPD dataset shows that our method achieves state-of-

the-art parsing performance.

So far, we only consider the relationship between item types in an outfit image. In

chapter 3, we study outfits as combinations of items by developing outfit graders and

outfit recommenders. Given a combination of items as an outfit, our best model can

judge if the outfit looks good or not at over 84% accuracy on testing samples, and at

91% matching ratio on evaluations by human annotators. In addition, users can just

give a pool of items that user have to our outfit recommender, and it will recommend

outfits from the item pool. We also collect a large clothing dataset consisting of

over 600,000 clothing items and over 400,000 outfits and use the dataset to learn and

evaluate the outfit graders and recommenders.

To provide more transparency and trustworthy of the outfit quality measurement,

in chapter 4, we purposed a novel item-feature-wise outfit quality explanation tech-

nique using the gradient-based method. This method is able to extract and quantify

the effect of interpretable features of each item on the quality of an outfit both posi-

tively and negatively as Item Feature Influence Value (IFIV) without any additional

item-level attribute annotation. Based on the proposed IFIV of each feature of each

item in an outfit, we are able to detect the flaws in an outfit in feature level by finding

the item-feature has the highest negative IFIV. Our outfit flaw detection experiments

show that our method can detect the flaw in our testing samples effectively, at 99.52,
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99.49, and 85.37 percent item-wise, edge image-wise, and colors-wise, respectively.

We believe that our work can provide insight into the outfit quality prediction, thus

increase the trustworthy of the system. Since this work can point out the flaw in

an outfit at the feature level, future work includes the outfit recommendation system

that can improve the outfit quality effectively and be able to design fashion item

based on the extracted features.
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Yann LeCun. Overfeat: Integrated recognition, localization and detection using

convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[38] Aayush Bansal, Xinlei Chen, Bryan Russell, Abhinav Gupta, and Deva Ra-

manan. Pixelnet: Towards a general pixel-level architecture. arXiv preprint

arXiv:1609.06694, 2016.

106



Bibliography

[39] Xiaodan Liang, Chunyan Xu, Xiaohui Shen, Jianchao Yang, Si Liu, Jinhui Tang,

Liang Lin, and Shuicheng Yan. Human parsing with contextualized convolu-

tional neural network. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1386–1394, 2015.

[40] Vladimir Nekrasov, Janghoon Ju, and Jaesik Choi. Global deconvolutional net-

works for semantic segmentation. arXiv preprint arXiv:1602.03930, 2016.

[41] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution

network for semantic segmentation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1520–1528, 2015.

[42] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 40(4):834–848, 2018.

[43] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,

Zhizhong Su, Dalong Du, Chang Huang, and Philip Torr. Conditional random

fields as recurrent neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, 2015.

[44] George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L Yuille.

Weakly-and semi-supervised learning of a dcnn for semantic image segmenta-

tion. arXiv preprint arXiv:1502.02734, 2015.

[45] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-

lan Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, attend and

107



Bibliography

tell: Neural image caption generation with visual attention. arXiv preprint

arXiv:1502.03044, 2015.

[46] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Hol-
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