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ABSTRACT 14 

In order to assess the moisture content of wood chips on an industrial scale, readily 15 

applicable techniques are required. Thus, near infrared (NIR) spectroscopy was used to 16 

estimate moisture in wood chips by means of partial least squares regressions. NIR 17 

spectra were obtained in spectrometer with an integrating sphere and optical fiber probe, 18 

on the longitudinal and transverse surface of Eucalyptus wood chips. The specimens 19 

had their masses and NIR spectra measured in 10 steps during drying from saturated to 20 

anhydrous condition. Principal Component Analysis was performed to explore the 21 

effect of moisture of wood chip on NIR signatures. The values of moisture content of 22 

chips were associated with the respective NIR spectra by Partial Least Squares 23 

Regression (PLS-R) and Partial Least Squares Discriminant Analysis (PLS-DA) to 24 

estimate the moisture content of wood chips and its moisture classes, respectively. 25 

Model developed from spectra recorded on the longitudinal face by the integrating 26 

sphere method presented statistics slightly better (R²cv = 0,96; RMSEcv = 7,15 %) than 27 

model based on optical fiber probe (R²cv = 0,90; RMSEcv = 11,86 %). This study 28 

suggests that for calibration of robust predictive model for estimating moisture content 29 

in chips the spectra should be recorded on the longitudinal surface of wood using the 30 

integrating sphere acquisition method. 31 

Keywords: Cellulose, integrating sphere, optical fiber, paper, physical properties,  32 
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RESUMEN  35 

Para evaluar el contenido de humedad de las astillas de madera a escala industrial, se 36 

requieren técnicas fácilmente aplicables. Por lo tanto, se utilizó la espectroscopía de 37 

infrarrojo cercano (NIR) para estimar la humedad en astillas de madera mediante 38 

regresiones parciales de mínimos cuadrados. Los espectros NIR se obtuvieron en un 39 

espectrómetro con una esfera de integración y una sonda de fibra óptica, en la superficie 40 

longitudinal y transversal de las astillas de madera de Eucalyptus. Las muestras tenían 41 

sus masas y espectros NIR medidos en 10 pasos durante el secado de condición saturada 42 

a anhidra. Los valores del contenido de humedad de las astillas se asociaron con los 43 

espectros NIR respectivos mediante Regresión Parcial de Mínimos Cuadrados (PLS-R) 44 

y Análisis Discriminante de Mínimos Cuadrados Parciales (PLS-DA) para estimar el 45 

contenido de humedad de las astillas de madera y sus clases de humedad, 46 

respectivamente. El modelo desarrollado a partir de espectros registrados en la cara 47 

longitudinal por el método de la esfera integradora presentó estadísticas ligeramente 48 

mejores (R²cv = 0,96; RMSEcv = 7,15 %) que el modelo basado en una sonda de fibra 49 

óptica (R²cv = 0,90; RMSEcv = 11,86 %). Este estudio sugiere que para la calibración 50 

de un modelo predictivo robusto para estimar el contenido de humedad en las astillas, 51 

los espectros deben registrarse en la superficie longitudinal de la madera utilizando el 52 

método de adquisición de esfera integradora. 53 

Palabras clave: Celulosa, esfera integradora, fibra óptica, Papel, propiedades físicas. 54 

 55 

INTRODUCTION 56 

Although moisture is not an intrinsic characteristic of wood, it is among its most 57 

important properties, because its variation affects the behavior of the material during 58 

the industrial processing and application phases (Tsuchikawa and Schwanninger 2013). 59 

In industries that use wood chips as raw material, the knowledge of moisture is an 60 

important parameter of quality, since in addition to guaranteeing the quality of the final 61 

product, it reduces losses and costs with reagents (Fardim 2005). 62 
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In the cellulose and paper industry, although it is not a limiting factor in the 63 

Kraft pulping process, the knowledge of the moisture of the chips is essential to make 64 

adjustment calculations in the process. Moisture values are important to determine the 65 

dry mass of the chips correctly and to calculate the quantity of the cooking reagents, 66 

and their correct ratio of wood liquor (Gomide and Fantuzzi Netto 2000). 67 

Biermann (1996) also emphasizes the importance of knowledge and the control 68 

of moisture in the costs of transportation and commercialization of raw material. The 69 

influence is observed in situations where the purchase of chips is carried out by weight, 70 

in this way, the greater the moisture of the material, the lower the amount of raw 71 

material purchased. 72 

To perform the monitoring of water contents in the wood, it is necessary to adopt 73 

techniques that are fast, efficient and inexpensive, in order to obtain improvements in 74 

the quality of the final product (Muñiz et al. 2012). The methods currently available are 75 

time-consuming, making it difficult to control the drying process for a large quantity of 76 

raw material. 77 

The principle of operation of the NIR technique consists of exposing a specimen 78 

to the near infrared region spectrum, the generated spectra contain data of the chemical 79 

constituents of the material that, when related to the results of conventional analyzes, 80 

generate statistical models that explain most this information in the spectra (Price et al. 81 

2001; Pavia et al. 2010; Pasquini 2018). Thus, it is possible to estimate several 82 

properties contained in biological materials, such as wood (Dahlbacka and Lillhonga 83 

2010; Arriel et al. 2019; Tyson et al. 2012; Tsuchikawa and Schwanninger 2013; 84 

Tsuchikawa and Kobori 2015). 85 
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              Some studies were carried out using near infrared spectroscopy (NIR) to 86 

estimate wood moisture. Thygesen and Lundqvist (2000) have investigated the thermal 87 

effects on NIR spectra for estimating moisture content in Picea abies wood under 88 

temperature conditions varying between -20 °C and +25 °C. Eom et al. (2013) applied 89 

the NIRS technique to measure the surface moisture of poplar wood of Populus specie 90 

during desorption conditions. Fujimoto et al. (2012) evaluated the NIR spectra obtained 91 

from specimen Larix kaempferi containing different amounts of water were used to 92 

verify the effect of moisture conditions on the accuracy of the estimated density of the 93 

wood. Watanabe et al. (2011) applied the NIR technique for classification based on 94 

moisture from green spruce wood. The authors have shown that NIR spectroscopy has 95 

the potential to estimate the mean green wood moisture, although it only provides 96 

values of surface moisture content. Karttunen et al. (2008) reported a survey of the 97 

moisture distribution in two sets of wild pine trunks using NIR spectroscopy. Moisture 98 

variation among trees was detected with high precision. Tham et al. (2018) carried out 99 

a study applying the capacitive method and the NIR spectroscopy together to 100 

simultaneously predict the density and moisture of wood specimens. The results suggest 101 

the possibility of a new device combining the capacitive method and the NIR 102 

spectroscopy to predict density and moisture with greater accuracy. 103 

              These studies have pointed to NIR spectroscopy as a promising alternative in 104 

the estimation of wood moisture. However, the influence of the anisotropy of the 105 

material and the path of spectral acquisition in the characterization of the wood chips 106 

via spectroscopy in the NIR is not yet fully understood. Therefore, it is necessary to 107 

know these parameters in order to develop predictive models based on moisture in wood 108 

chips in order to maintain the quality of the raw material and contribute to the industries 109 
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that use wood chips in their production, reducing costs with reagent and reducing water 110 

consumption. 111 

 112 

EXPERIMENTAL SECTION 113 

 Wood chips and water desorption monitoring 114 

Forty (40) wood chips from Eucalyptus urophylla and Eucalyptus grandis 115 

hybrids of different ages and sizes were used. The chips present, in average, the 116 

following dimensions: 35 mm wide, 25 mm long (longitudinal direction) and 3 mm - 4 117 

mm thick. The selection was performed according to the wood chips that presented 118 

better conditions on their surfaces for the acquisition of the spectra. 119 

The specimens were identified and submitted to saturation in a vessel with water, 120 

which was changed periodically for 30 days until complete saturation. The moisture of 121 

the specimens was performed in10 steps during drying of according to the gravimetric 122 

method described in NBR 14929 (ABNT 2017). 123 

In the first phase, the saturated test specimens were submitted to natural drying 124 

until reaching equilibrium moisture (~12 %). Mass measurements and spectral 125 

acquisition were performed when the control specimens lost about 10 % of the mass as 126 

a function of the pre-determined anhydrous mass. After reaching equilibrium moisture, 127 

the test specimens were subjected to drying in an oven at 50 °C ± 2 °C until the control 128 

specimen lost approximately 10 % of the mass in relation to anhydrous mass, according 129 

to the procedure described in Santos (2017).  130 

Recording NIR spectra 131 

The spectral acquisition was performed in a diffuse reflection mode using a 132 

Fourier transform spectrometer. The spectrometer has two acquisition paths: integrating 133 
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sphere and optical fiber probe. The spectra were captured in the near infrared region, 134 

opening the range of 12500 cm-1 to 4000 cm-1, with spectral resolution of 3845 cm-1 and 135 

32 scans for reading according to Costa et al. (2018). 136 

The spectra were captured during the 10 drying steps, at every 10 % mass loss 137 

of water using the fiber optical probe on longitudinal and transverse surface of the 138 

material. For acquisitions based on integrating sphere, NIR spectra were taken only on 139 

longitudinal surface of wood. It was not possible to record NIR spectra on the transverse 140 

surface of chips due to the difficulty of positioning the specimen on scanner window. 141 

Individual chip specimens were investigated instead to analyze chip batches in 142 

order to reduce the possible noise level in the signal. NIR were recorded from an optical 143 

fiber probe or integrating sphere directly on the single chip surface. When using a 144 

portion of chips, there is a lot of empty space between the chips and between the sensor 145 

and the wood surface, generating noise in the signal. 146 

 147 

Multivariate statistics 148 

Principal Component Analysis (PCA), Partial Least Squares Regression (PLS-149 

R) and the Partial Least Squares Discriminant Analysis (PLS-DA) were developed in 150 

the free software Chemoface version 1.61 (Nunes et al. 2012). 151 

PCA was used to evaluate the effect of the presence of water in the wood chips 152 

are in their spectral signature. PLS-R was developed to associate spectra with the chip 153 

moisture values determined by gravimetric method and generate a regression capable 154 

of estimating continuous values of moisture based on the NIR spectra recorded on the 155 

chips. PLS-DA model was held in order to classify their moisture in three (3) categories 156 

of moisture (up to 40 %, between 40 % and 80 %, and above 80 % moisture content) 157 

based on NIR spectrum signature. 158 
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Analyzes were performed separately for the spectra obtained in the longitudinal 159 

and transverse surfaces of the specimens and by two methods of spectral acquisition: 160 

integrating sphere and fiber optic probe. 161 

After adjusting several preliminary models, six latent variables (LV) calculated 162 

from 1300 spectroscopic variables were used for all models. Thus, the presented models 163 

were developed with these six (6) latent variables for calibrations and validations. To 164 

select the best predictive models the following criteria were adopted: coefficient of 165 

determination of the cross-validation model (R²CV), root mean standard error of cross-166 

validation (RMSECV) and the ratio of performance to deviation (RPD), as described in 167 

Rosado et al. (2019). The independent and cross-validation methods were used to test 168 

the robustness of the estimates. Leave one out method was used for full cross 169 

validations while for independent validation was done using 2/3 of samples chosen at 170 

random for calibrations and 1/3 of remaining specimens for test set validation. 171 

The calibrations were performed from the original (untreated) spectra and the 172 

mathematically treated spectra by the first derivative method using Savitzky–Golay 173 

algorithm with 13-point filter and a second-order polynomial, as described in Costa et 174 

al. (2018). Moreover, the wavenumbers from 12000 cm-1 to 9000 cm-1 were not 175 

considered. That process had the purpose eliminate noise and improve the quality of 176 

the calibration signal. 177 

 178 

 179 

 180 

 181 

 182 

 183 
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RESULTS AND DISCUSSION 184 

Effect of moisture on spectral signature 185 

Figure 1 shows diffuse reflectance spectra of wood chips obtained on the 186 

longitudinal face using the integrator sphere acquisition path in different moisture 187 

classes, with the original data and after the mathematical treatment of the first derivative. 188 

The first derivative is able to identify differences in moisture classes in wood chips. 189 

Figure 1: Diffuse reflection spectra obtained with the original (untreated) data (A) 190 

and with the treatment of the first derivative (B). 191 

Absorption peaks can be observed at wavelengths of approximately 7000 cm-1 192 

and 5100 cm-1 or (1428 and 1960) nm. These values are consistent with the results 193 

obtained by Watanabe et al. (2011) that found greater absorption at the wavelength of 194 

1430 nm and 1910 nm. The variation in these absorption peaks can be associated with 195 

variation in moisture content, since they indicate vibrations characteristic of hydroxyl 196 

groups – OH present in water. These peaks increase with increasing chip moisture. 197 

              According to Karttunen et al. (2008) water absorption bands occurs mainly 198 

due to changes in the free water content in capillaries, because different water levels 199 
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can modify the NIR spectrum when incident light is spread on the surface of the 200 

specimen. 201 

              According to Adedipe and Dawson-Andoh (2008) a higher or lower spectral 202 

range has no significant influence on moisture prediction, from which the range 203 

encompasses water absorption bands. The same authors, when limiting the spectral 204 

range from 1400 nm to 1940 nm, predicted the water content in the wood with similar 205 

precision when they used a range 800 nm to 2500 nm. 206 

Principal component analysis 207 

The principal component analyzes (PCA) were carried out with original spectra 208 

obtained through the two acquisition pathways (integrator sphere and optical fiber) in 209 

the longitudinal and transverse faces of the wood chips, to carry out a preliminary 210 

evaluation of the behavior of the spectra and possible separation of the specimens 211 

according to the 10 moisture steps ranging from 1 (saturated condition) to 10 212 

(anhydrous condition) Figure 2. 213 

The two main components together account for approximately 100 % of the 214 

variability of the analyzed data on the longitudinal side of both acquisition pathways, 215 

99,35 % are explained by the main component 1 (PC1) and 0,50 % is explained by the 216 

main component 2 (PC2) in the fiber optic acquisition pathway. with regards to the NIR 217 

spectra taken by the integrating sphere, 99,40 % of variance was explained by PC1 and 218 

0,48 % by PC2. 219 

The integrating sphere in the longitudinal face was able to differentiate better 220 

the specimen with different moisture, generating less overlaps. The wettest specimens 221 

were more dispersed in relation to the drier specimens. This was due to the existence 222 

of similar moisture in these measurement steps. 223 
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Figure 2: Graphic of scores obtained by PCA applied to the spectral information 224 

measured in the wood chips from the optical fiber probe acquisition path on the 225 

longitudinal face (A) transverse surface (B) and from the acquisition path acquisition 226 

integrating sphere longitudinal surface (C). 227 

Global model for estimating chip moisture 228 

Table 1 presents the statistics associated to calibrations and cross validations for 229 

estimating the wood chip moisture from the original spectra and treated with the first 230 

derivative. 231 

The spectra-based models in the NIR were efficient for estimating moisture in wood 232 

chips with errors between 7,15 % and 11,86 %. The longitudinal face is the most 233 

suitable for spectral acquisition, since the estimation error is smaller when compared to 234 

the transverse face, besides the operational ease of measurement. However, the 235 

transverse face can also be used in the estimation of moisture, since they presented 236 

acceptable RPD of 3,16. According to Sobering and Williams (1993) with calibrations 237 

with RPD values between 2 and 3 indicate that the predictions are approximate and 238 

values between 3 and 5 indicate that the calibrations are satisfactory for the predictions. 239 

 240 
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Table 1: Calibrations and cross-validations for moisture estimation in wood chips. 241 

Model 
Via of 

acquisition 
Surface Treat. R²cal RMSEc % R²cv RMSEcv % RPD 

1 
Sphere Long 

- 0,95 7,54 0,95 7,78 4,82 

2 1d 0,96 6,79 0,96 7,15 5,24 

3 

Fiber 

Long 
- 0,94 9,08 0,93 9,38 4,00 

4 1d 0,94 9,17 0,93 9,61 3,90 

5 
Trans 

- 0,90 11,30 0,89 11,60 3,23 

6 1d 0,90 11,29 0,90 11,86 3,16 

Treat - mathematical treatment; 1d - first derivative; R²c - coefficient of determination of the 

calibration; RMSEc - Root mean square error of calibration; R²cv - coefficient of determination of the 

cross-validation; RMSEcv - Root mean square error of cross-validation; RPD - ratio performance to 

deviation; Long - longitudinal surface and Trans - transverse surface. 

Regarding the spectral acquisition method, the calibrations developed from the two 242 

types of spectra in the NIR (integrator sphere and fiber optic) have the potential to 243 

satisfactorily estimate the moisture of the wood. However, the models generated from 244 

the spectra obtained by integrator sphere (models 1 and 2) presented more satisfactory 245 

statistical results (R²CV higher than 0,95 and RMSECV lower than 7,77 %). 246 

The models generated from the first derivative of the spectra (models 2, 4 and 247 

6) provided better estimates. Martens and Naes (1991) argue that mathematical 248 

treatments aim to improve signal quality and reduce noise. However, it is observed that 249 

there was no significant improvement in the spectra of the wood chips via optical fiber 250 

treated with the first derivative. 251 

              In general, the model generated by the spectra of the integrating sphere 252 

presented better statistics than those generated by optical fiber probe. According to 253 

Costa (2018) this difference between the models can be explained from the comparison 254 

between the areas of the acquisition path ways. The integrating sphere acquisition 255 

pathway has a circular area with a diameter of 10 mm, while the fiber optic acquisition 256 

pathway has a circular area of approximately 1 mm in diameter. The higher value area 257 



Maderas-Cienc Tecnol 22(3):2020 

Ahead of Print: Accepted Authors Version 

12 

 

allows better representation of the surface of the wood chips. In this way, this path 258 

becomes better suited to acquire spectra in order to estimate moisture in wood chips. 259 

The wood surface that presented the best results, in both acquisition pathways, 260 

was longitudinal. This result differed from some authors, such as Defo et al. (2007) 261 

who used near-infrared spectroscopy to determine the moisture of Quercus spp. (red 262 

oak) by means of spectra collected on the radial, tangential and transverse face. When 263 

comparing the prediction of the models generated in the different faces, the authors 264 

realized that the transversal face was the one that obtained the best performance. This 265 

difference in results may have occurred due to the raw material of the authors being 266 

lumber, whereas the one used in the study is wood in the form of wood chips. 267 

Figure 3 shows the relationship between moisture estimated by the NIR and 268 

determined in the laboratory from the optical fiber probe, on both surfaces (longitudinal 269 

and transverse) of the wood chips. The prediction accuracy is higher in specimens with 270 

moisture content lower than 30 % (Figure 3). Yang et al. (2014) have reported fiber 271 

saturation point of 29 % for Eucalyptus urophylla wood. Thus, we supposed that the 272 

spectral change in lower moisture content is mainly due to the decrement of absorbed 273 

water whereas in higher moisture content spectral change is resulted in the change of 274 

free water. 275 

The cross-validation values obtained by the acquisition of spectra in the 276 

integrating sphere presented values similar to the measured values of moisture in the 277 

laboratory (Figure 3). However, it was observed that the cross-validation performed by 278 

the longitudinal face presented a better distribution of the data (R² = 0,93), when 279 

compared with the transversal face that presented the lowest performance (R² = 0,89). 280 

This result may have occurred due to the fact that the longitudinal face presents a rough 281 
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surface in relation to the transverse face, since the roughness may have facilitated the 282 

penetration of light in the chips. 283 

Figure 3: Moisture of the wood chips determined in the laboratory and 284 

estimated in the NIR from the optical fiber according to models 3 and 5 of Table 1. 285 

 286 

Zhang et al. (2015) studied the correlation between NIR spectroscopy and the 287 

surface roughness of the wood. The authors used optical fiber to obtain the spectra. The 288 

results showed that the roughness of the surface of the wood can influence in the 289 

statistics to estimate the properties of the wood from NIR spectroscopy. Greater surface 290 

roughness may be associated with more pronounced diffuse reflection. 291 

The longitudinal face through the integrating sphere presented the best model in 292 

the PLS-R analysis, so it was divided into three ranges of moisture (0 % to 40 %, 40 % 293 

to 80 %, and > 80 % moisture) for to generate models capable of predicting wood 294 

moisture by classification using PLS-DA.    295 

Model 2 of Table 1 was applied in the NIR spectra of specimens to generate estimates. 296 

Specimens were separated into 3 classes (0 % to 40 %, 40 % to 80 %, and > 80 %) 297 

based on the predicted moisture content by model 2 and a confusion matrix was 298 

presented in Table 2 to evaluate the correct classification ratio. 299 
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Table 2: Confusion matrix of predictions of chip moisture based on NIR spectra 300 

through model 2 (Table 1). 301 

 302 

The confusion matrix (Table 2) shows that 363 from 400 (90,7 %) of specimens were 303 

correctly classified based on PLS-R model 2 (Table 1). 203 from 215 chips had their 304 

estimated moisture value correctly classified within the class of drier samples (0 to 305 

40) %. In the class of samples with intermediate humidity (between 40 and 80), 84 % 306 

of the samples were correctly classified by model 2 of Table 1. Finally, in the class of 307 

the most humid samples, 89 of 101 samples were correctly classified and only 7 samples 308 

(6,9 %) had moisture estimates that classified them as intermediate samples. 309 

This approach is very useful for pulp and paper companies that need to have a tool that 310 

allows them to separate chips into batches of different moisture quickly and reliably. 311 

Model for estimating the moisture of the wood chips per class 312 

Table 3 shows the regression models obtained by calibration and cross-313 

validation from the spectra with and without first derivative treatment. 314 

Table 3 shows that the first moisture class of (0 to 40) % was the one that 315 

presented the best estimates of wood moisture, especially when submitted to the 316 

treatment of the first one derivative, resulting in R²CV of 0,96 and RMSECV of 2,15 % 317 

and RPD of 5,33 (model 8) which indicates that this model is suitable for estimating 318 

the moisture of the wood.  319 

Nominal Moisture 
classes (%) 

Moisture estimated by 
model 2 (%) 

Correct 
classification 

Total 
specimens 

0 - 40 40 - 80 > 80 No.  % No. 

0 - 40 203 6 6 203 94,4 215 

40 - 80 12 71 12 71 84,5 84 

> 80   7 89 89 88,1 101 

Total 215 83 107 363 90,7 400 
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Table 3: Calibrations and cross-validations for the estimation of moisture in each class 320 

by PLS-R. 321 

Model Moisture Treat R²c 
RMSEc 

(%) 
R²CV 

RMSECV 

(%) 
RPD 

7 

0 - 40 

- 0,96 2,22 0,95 2,34 4,80 

8 1d 0,96 2,00 0,96 2,15 5,33 

9 

40 - 80 

- 0,65 6,93 0,50 8,39 1,40 

10 1d 0,71 6,27 0,46 8,99 1,31 

11 

> 80 

- 0,81 7,54 0,69 9,55 1,82 

12 1d 0,87 6,16 0,76 8,43 2,07 

Treat - mathematical treatment; 1d - first derivative; R²c - coefficient of determination of the 

calibration; RMSEc - Root mean square error of calibration; R²CV - coefficient of 

determination of the cross validation; RMSECV - Root mean square error of cross-validation 

and RPD - ratio performance to deviation. 

               322 

The moisture range of 40 % to 80 % was the one that showed the lowest performance 323 

with R²CV of 0,46 and RMSCV of 8,99 % and RPD of 1,40 (model 9), being considered 324 

unsatisfactory. RPD values greater than 1,5 are considered satisfactory in studies on 325 

forest sciences (Schimleck et al. 2003).  326 

              The third moisture class (> 80 %) provided a model with R²CV of 0,76 and 327 

RMSECV of 8,43 and RPD of 2,07, presenting better estimates than the second class 328 

of moisture, however, the error found is considered high, even though the RPD is 329 

indicating that the model is satisfactory. The best estimate found in this class was the 330 

treatment of the first derivative as well as in the first class of moisture. However, the 331 

second class of moisture that presented the lowest performance did not improve the 332 

model when performing the first derivative treatment in the spectra. 333 

Figure 4 shows the plots made from the PLS-R in the three moisture ranges of 334 

original spectra and mathematically treated by the first derivative, collected from the 335 

longitudinal face through the integrator sphere acquisition path. 336 
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Figure 4: Moisture of the wood chips determined in laboratory and estimated from NIR 337 

by integrating sphere of according to Table 3. 338 

 339 

Figure 4 shows that the calibration values obtained from the spectra measured 340 

in the 0 % to 40 % moisture range were more similar to those measured in the laboratory. 341 

In this moisture range the spectra treated with the first derivative were the ones that 342 

indicated the best model. 343 

The moisture of 40 % to 80 % presented a lower adjustment of the data when 344 

compared to the first and third moisture range. The third range of moisture also showed 345 

a certain dispersion of the specimens when related to the actual values, however it 346 

showed improvement when the first derivative treatment was performed. 347 

 348 

 349 

 350 
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Test set validation of models for moisture estimation by class  351 

According to Pasquini (2003), external validation is recommended because it 352 

presents results that are closer to the real ones. Therefore, the models of the three 353 

moisture ranges were validated according to this method (Table 4). 354 

Table 4: Cross- and test set validations for the estimation of moisture in each class. 355 

Moisture 

range (%) 
R²CV 

RMSECV 

(%) 
R²p 

RMSEP 

(%) 
RPD 

0-40 0,97 2,51 0,96 2,16 3,90 

40-80 0,64 7,10 0,42 10,49 1,27 

> 80 0,79 9,93 0,56 12,50 2,04 

R²CV - coefficient of determination of the cross-validation; RMSECV - Root mean square 

error of cross validation; R²p - coefficient of determination of external validation; RMSEP – 

Root mean square error of external validation; RPD - standard deviation performance ratio. 

From Table 3 and Table 4 it is possible to notice that the external validation 356 

values were similar to the values obtained through cross validation. However, most of 357 

the external validation values were inferior to those obtained in the cross validation. 358 

Figure 5 shows the values obtained in the laboratory and predicted by the NIR, 359 

showing the distribution of the calibration points and the validation of the best model 360 

for estimating moisture in wood chips. 361 

Figure 5: Regression of wood chips moisture values obtained in the laboratory and 362 

estimated in the NIR. 363 
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In order to improve the models, the initial specimens were separated according 364 

to the moisture of the wood and the wave numbers of 9000 cm-1 to 12000 cm-1 were 365 

excluded due to the occurrence of noise. However, as can be seen in Figure 5, only the 366 

first moisture range of 0 % to 40 % showed a strong correlation between the measured 367 

values and the predicted values, especially in moisture up to 25 %. This value is 368 

desirable for the pulp and paper industries, since the moisture in the wood chips should 369 

be above 25 %, but below 55 % for better use of the raw material in pulping and lower 370 

consumption of reagents. 371 

Partial Least Squares - Discriminant Analysis 372 

Table 5 lists the PLS-DA classifications, including the number of correct and 373 

incorrect classifications and the correct classification percentage by means of cross-374 

validations. The confusion matrix (Table 5) shows that 343 from 400 (85,75 %) of 375 

specimens were correctly classified based on PLS-DA model. 376 

Table 5: Confusion matrix of predictions of chip moisture through PLS-DA 377 

analysis. 378 

Nominal 
Moisture 

classes (%) 

Moisture estimated by NIR 
(%) 

Correct 
classification 

Total 
specimens 

0 - 40 40 - 80 > 80 No. % No. 

0 - 40 253 3 0 253 98,83 256 

40 - 80 26 43 14 43 51,81 83 

> 80 0 14 47 47 77,05 61 

Total 279 60 61 343 85,75 400 

 379 

              Table 5 shows that in the first moisture class (0 to 40) %, composed of 256 380 

specimens, three of these specimens were incorrectly classified as belonging to the 381 

second moisture class, corresponding to 1,18 % of incorrect specimens. In the second 382 

class of moisture (40 to 80) %, 40 from 83 specimens were classified as incorrect; 26 383 

specimens were classified in the first moisture class and 14 specimens as the third 384 
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moisture class, corresponding to 48,20 % of specimens misclassified. In the third 385 

moisture range (> 80 %), of the only 14 specimens were misclassified, which represents 386 

22,96 % of incorrect specimens. 387 

              The class that classified the most specimens incorrectly was 40 % to 80 % of 388 

moisture, while the class that obtained the most correct classifications was 0 % to 40 % 389 

of moisture, presenting 98,82 % of correct classifications. Also, it is verified that none 390 

of the specimens of the first class of moisture was classified as being of the third, and 391 

the opposite also occurred. This can be explained by the large difference between these 392 

two classes of moisture. Therefore, the specimens that were classified as incorrect could 393 

present similar moisture in the classes that were assigned.      394 

  This study was carried out with the objective of verifying the feasibility of this 395 

technique for rapid, immediate estimate of the moisture content in wood chips. The 396 

promising findings of this approach open up new possibilities for applying NIR 397 

spectroscopy in real situations, in which it is necessary to know the raw material 398 

properties in real time for to optimizing the production process. One of the potential 399 

applications would be on conveyors that take the chip from the pile to the digester in 400 

pulp and paper mills. In this situation, the challenges are even greater, as chips with 401 

different moisture, wood density and lignin content are mixed in the digester and the 402 

resultant pulp must be as uniform as possible. Thus, more comprehensive studies 403 

including chips with varying wood density and lignin content should be carried out to 404 

reduce the distance from what is done under laboratory conditions and to real situations 405 

in the pulp companies.          406 

 407 
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CONCLUSIONS 408 

This study indicates that NIR spectroscopy associated with multivariate analysis 409 

has the potential to estimate wood moisture in Eucalyptus chips. The model can be 410 

generated from NIR spectral signatures obtained by integrator sphere and optical fiber. 411 

The longitudinal face of the chips was shown to be more suitable for recording NIR 412 

spectra and estimating the moisture in wood chips when compared to the transverse 413 

face.  414 

PLS-DA was able to correctly classified 85,75 % of the specimens in three 415 

moisture classes. In each class, 98,82 % of specimens were correctly classified into the 416 

group of drier specimens (0 to 40) % and 77,04 % of specimens were correctly grouped 417 

in the class of wetter specimens (moisture > 80 %). PLS-DA models misclassified 418 

48,20 % of specimens with moisture varying from 40 % to 80 %.  419 

For PLS-R models, the estimates used for classifications of moisture classes 420 

yielded better results. The percentage of correct classifications was 91 % when chips 421 

were grouped into the three moisture classes based on the estimates originated from 422 

PLS-R model.  423 

This approach can be useful for the pulp and paper industries as it provides 424 

accurate estimates of the moisture content of chips, assisting in the definition of cooking 425 

parameters and optimizing industrial processes and the consumption of raw material 426 

and reagents. 427 
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