
  

ONLINE FIRST

This is a provisional PDF only. Copyedited and fully formatted version will be made available soon.

ISSN: 1897-5593

e-ISSN: 1898-018X

Role of extracellular signal-regulated kinase 1/2 signaling
underlying cardiac hypertrophy

Authors:  Zhi-Peng Yan, Jie-Ting Li, Ni Zeng, Guo-Xin Ni

DOI: 10.5603/CJ.a2020.0061

Article type: Review articles

Submitted: 2019-12-11

Accepted: 2020-04-12

Published online: 2020-04-17

This article has been peer reviewed and published immediately upon acceptance.
It is an open access article, which means that it can be downloaded, printed, and distributed freely,

provided the work is properly cited.
Articles in "Cardiology Journal" are listed in PubMed. 

Powered by TCPDF (www.tcpdf.org)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Via Medica Journals

https://core.ac.uk/display/322562101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tcpdf.org


Role of extracellular signal-regulated kinase 1/2 signaling underlying cardiac hypertrophy 

Running head. ERK1/2 and cardiac hypertrophy 

 

 

Zhi-Peng Yan1, 2, Jie-Ting Li2, Ni Zeng2, Guo-Xin Ni1 

1School of Sport Medicine and Rehabilitation, Beijing Sport University, China 

2Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical 

University, China 

 

Address for correspondence: Prof. Guo-Xin Ni, School of Sports Medicine and Rehabilitation, 

Beijing Sport University, tel: +(86)-10-62989780, fax:+(86)-10-62989670, e-mail: 

niguoxin@bsu.edu.cn 

 

 

 

ABSTRACT 

Cardiac hypertrophy is the result of increased myocardial cell size responding to an increased 

workload and developmental signals. These extrinsic and intrinsic stimuli as key drivers of 

cardiac hypertrophy have spurred efforts to target their associated signaling pathways. The 

extracellular signal-regulated kinases 1/2(ERK1/2), as an essential member of mitogen-activated 

protein kinases (MAPKs), has been widely recognized for promoting cardiac growth. Several 

modified transgenic mouse models have been generated through either affecting the upstream 

kinase to change ERK1/2 activity, manipulating the direct role of ERK1/2 in the heart, or 

targeting phosphatases or MAPK scaffold proteins to alter total ERK1/2 activity in response to 

an increased workload. Using these models, both regulation of the upstream events and 

modulation of each isoform and indirect effector could provide important insights into how 

ERK1/2 modulates cardiomyocyte biology. Furthermore, a plethora of compounds, inhibitors, 

and regulators have emerged in consideration of ERK, or its MAPKKs, are possible therapeutic 

targets against cardiac hypertrophic diseases. Herein, is a review of the available evidence 



regarding the exact role of ERK1/2 in regulating cardiac hypertrophy and a discussion of 

pharmacological strategy for treatment of cardiac hypertrophy.  
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pharmacological strategy 

 

 

INTRODUCTION 

The mammalian heart is a muscular pump that circulates blood throughout the body to 

maintain perfusion of peripheral organs, which meets their demand during both regular and 

stressful conditions. In response to an increased workload, enlargement of the heart occurs and is 

defined as an increase in heart size without changes in myocyte number. Physiological 

hypertrophy observed in normal growth or trained athletes is considered an adaptive and 

compensatory response to maintain cardiac function and improved cardiac contractility. By 

contrast, cardiac hypertrophy under pathological conditions, such as ischemic heart disease, 

hypertension, and heart failure, is referred to as pathological hypertrophy. This type of 

hypertrophy is associated with the production of high levels of hemodynamic overload, 

interstitial fibrosis, and myocardial cell damage and loss [1, 2]. Because cardiac hypertrophy 

plays a central role in cardiac remodeling and is an independent risk factor for cardiac events, 

understanding the molecular mechanisms is vital.  

Previous studies have shown that a group of medical genetic syndromes referred to as 

RASopathie are caused by germline mutations in genes that encode components or regulators of 

the RAS-RAF-MEK-ERK pathway, which include neurofibromatosis type 1, Noonan syndrome, 

Costello syndrome, and cardio-facio-cutaneous syndrome [3]. These patients suffered from 

cardiomyopathies suggesting that the RAS/MAPK pathway is critical to normal heart 

development. Moreover, before mouse genetics entered the mainstream of experiments, studies 

were conducted mainly on cultured neonatal rat cardiomyocytes or inadequate “myocyte-like” 

cell lines which discovered the activation of the ERK1/2 pathway under the hormone and 

mechanical stretch in the heart, suggesting a direct causation between ERK1/2 signaling and the 



hypertrophic response [4, 5]. To support this hypothesis, the use of dominant negative MEK1, 

antisense oligonucleotides against ERK1/2, dephosphorylation of ERK1/2, and pharmacologic 

inhibitors of MEK1/2 provided convincing data, indicating that MEK1-ERK1/2 is both necessary 

and sufficient for cardiac hypertrophy [6–10]. Autophosphorylation of ERK1/2 on Thr188 was 

also observed in isolated cardiomyocytes induced by hypertrophic stimulus [11]. Although 

considerable evidence elucidates that the activated MEK1/2-ERK1/2 can regulate cardiac 

hypertrophy in vitro, the results of other similarly designed culture-based studies are quite 

different [12, 13]; one study even suggested that ERK1/2 activation is anti-hypertrophic [14]. In 

addition to traditional 2-dimensional (2D) in vitro systems, three-dimensional (3D) tissue models 

have also offered new tools in the study of cardiovascular disease recently [15]. In response to 

3D conditions, the activation of ERK1/2 was observed during cardiomyogenesis, and the 

phosphorylation of ERK1/2 was higher compared to cells on 2D films, which provides insight 

into ERK1/2 pathways driving heart development [16, 17]. With regard to the whole organ 

phenomenon in a dynamically changing neuroendocrine environment under cardiac hypertrophy 

and heart failure, culture-based or tissue-engineering approaches have only provided some basic 

physiological parameters within a largely 2D or 3D environment [18]. However, these 

approaches will always be necessary because of the simplified process established in a largely 

isolated system and temporal relationships. More recently, a new method, known as 

mathematical optimization framework, also analyzed the complex ERK1/2 cascade in 

cardiomyocytes to find efficient adjustment screws for this cascade that is important for 

cardiomyocyte survival and maladaptive heart muscle growth [19]. 

In this review, the focus was on the main thread of the RAS-RAF-MEK-ERK pathway and 

summarize the more recent knowledge about the functional activity of ERK pathway in the 

cardiac organ to reveal the exact role of ERK1/2 in regulating cardiac hypertrophy.  Also, the 

latest scientific results of addressing ERK signaling as a therapeutic target for the treatment of 

cardiac hypertrophy is discussed. 

 



COMPONENTS AND REGULATION OF THE ERK CASCADE 

As ERK1 and ERK2 are 83% identical in sequence and share most of the same signaling 

activities, they are usually referred to as ERK1/2 [20]. However, these two proteins are not 

entirely functionally redundant. For instance, ERK1 knockout animals appear normal and are 

viable, while ERK2 deletion results in embryonic lethality [21]. In cardiomyocytes, the canonical 

ERK1/2 signal cascade is initiated by the activation of the small G protein RAS in the cell 

membrane, which leads to the recruitment and activation of RAF-1 (MAP3K), which further 

phosphorylates the dual-specificity protein kinases MEK1/2 (MAP2K); eventually, MEK1/2 

characteristically activate ERK1/2 (MAPK) by phosphorylating the threonine-glutamate-tyrosine 

(TEY) motif in the phosphorylation loop. Active ERK is then released from the MEK and 

phosphorylates a wide array of cytoplasmic substrates. Alternatively, activation of ERK is 

translocated to the nucleus and phosphorylates numerous transcription factors, which result in 

the induction of growth and proliferation and in the prevention of cell death [22]. Furthermore, 

the specificity of ERK biological effects is influenced by many factors, including (i) duration and 

strength of the signals, (ii) interaction with various scaffold proteins, (iii) subcellular localization, 

(iv) extensive cross-talk and interplay between the ERK cascade and other intracellular signaling 

pathways, and (v) presence of several similar isoforms at each tier of the cascade [23]. Although 

many of these mechanisms could independently determine signaling specificity and magnitude 

of the signaling outcome, they often work in coordination with each other to ensure proper 

downstream effects. Additionally, the pro-hypertrophic, pro-survival and pro-death effects of 

ERK1/2 converge on mitochondria upon their crucial roles in metabolism of cardiomyocyte. In 

response to types of stimuli, ERK1/2 can modulate mitochondria-mediated cardiomyocyte 

function directly through the interaction with mitochondria [24], or indirectly, by 

activation/inhibition of ERK-dependent downstream signaling molecules or mediators [25–28]. 

Finally, the inactivation of ERKs is regulated by various phosphatases, including dual-specificity 

MAPK phosphatases (MKPs), protein serine/threonine phosphatases (PPs), and protein tyrosine 

phosphatases (PTP) [29, 30].  



 

ERK1/2 AND CARDIAC HYPERTROPHY 

Studying the role of the RAS-RAF-MEK-ERK pathway in the heart, did not, herein, satisfy 

a detailed understanding of the physiological function of the cascade, which revealed that 

cardiomyocytes are isolated from their physiological environment, the present investigation  

focuses on the emergence of genetic approaches in mice using gained or lost functional mutants 

(Fig. 1). 

 

Targeting upstream kinase 

The previously published H-Ras-V12 transgenic model with overstimulating of the RAS 

hinted at the trend of decompensation and dilatation of the heart and developed a chain of events 

that contributed to the pathogenesis of cardiovascular disease [31–33]. Subsequently, Wei et al. 

[34] demonstrated that discontinuing overactivation of this pathway after the onset of 

cardiomyopathy could lead to improved survival and cardiomyopathy lesion scores, suggesting 

the reversibility of early pathogenic hypertrophy. More recently, the possible anti-hypertrophic 

effect of RAS inhibition in the setting of pressure-overload cardiac hypertrophy in rats was 

examined [35]. After pressure-overload induction and Ras-mutant gene transfer, the hypertrophic 

degrees of the heart in both Ras mutants were similar. However, the Ras-Val12 mutant increases 

LV systolic diameter and reduces LV fractional shortening compared to control and dominant 

negative mutant N17-DN-Ras (DN-Ras). Moreover, DN-Ras exhibited some similarities with 

physiologic hypertrophy, especially the lower expression of markers of pathologic cardiac 

hypertrophy. Although these studies used different promoters to drive RAS expression, the same 

constitutively activated RAS mutants were generated, indicating that the inactivation of Ras is 

cardioprotective rather than anti-hypertrophic. Ras directly activates Raf-1, which may 

subsequently lead to MEK1-ERK1/2 activation. It also activates other intracellular signaling 

pathways. Importantly, its activation is involved in pathological changes in sarcoplasmic 

reticulum calcium handling [36, 37]. 



Activating mutations in the serine-threonine kinase Raf cause cardiac hypertrophy and 

contribute to Noonan syndrome in humans. Heterozygous Raf1L613V mice were generated and 

exhibited eccentric cardiac hypertrophy, aberrant cardiac fetal gene expression, and 

decompensation following pressure overload, but treatment of these mice with MEK inhibitors 

(PD0325901) or constitutive deletion of ERK effector (RSK3) rescued Raf-mediated cardiac 

hypertrophy and other phenotypic abnormalities [38, 39]. In addition, a dominant negative form 

of Raf-1 animals had obvious resistance to the development of cardiac hypertrophy and 

hypertrophic gene induction in response to pressure overload [40]. Both groups found that, while 

Raf-1 kinase activity was essential for cardiac hypertrophy, enhanced MEK-ERK activity was 

critical for causing RAF1-mutant phenotypes. However, recently, Yin et al. showed that left 

ventricular hypertrophy was due to the interplay of cardiac cell types [41]. Using inducible 

Raf1L613V expression, mutant RAF1 expression in cardiomyocytes enhanced Ca2+ sensitivity 

and cardiac contractility rather than hypertrophy. By contrast, endothelial/endocardial (EC)-

restricted mutant expression does not affect contractility, but evokes hypertrophy. Moreover, 

aberrant RAF1 activity in cardiomyocytes or cardiac fibroblasts, but not ECs, contributes to 

pressure overload-induced fibrosis in Noonan syndrome cardiomyopathy. These results support a 

paradigm shift away from the myocyte-centric view of cardiac development and disease. 

Even though RAS transgenic mice exhibited cardiac hypertrophy associated with 

cardiomyopathy, MEK1 transgenic mice showed a stable concentric hypertrophy without any 

signal of decompensation up to 12 months of age [42]. Furthermore, these mice expressing 

activated MEK1 showed a dramatic increase in cardiac function measured by echocardiography 

and isolated working heart preparation, and there was activation of ERK1/2, but not p38 or JNK. 

In addition, MEK1 transgenic mice showed resistance to ischemia/reperfusion-induced 

apoptosis. These outcomes suggest that MEK-ERK not only sufficiently induces normally 

hypertrophic response, but that it also has a bearing on partial resistance to apoptosis. 

Taken together, these results support that the RAS-RAF-MEK-ERK pathway is generally 

regarded as pro-hypertrophic and suggest that sustained cascade activation also plays a 



cardioprotective role in the heart. Furthermore, the closer the upstream kinase is to ERK, the 

stronger the correlation with hypertrophic process. This may be because the initial upstream 

kinase is more susceptible to interference from other factors.  

 

Targeting ERK1/2 

In view that evidence of non-redundancy is apparent from isoform-specific ERK targeted 

mice, overexpression of intrinsically active ERK1 and ERK2 in the heart were generated to 

further test the effects of ERK1/2. A recent study reported transgenic mice expressing activated 

ERK1 under the transcriptional control of the α-MHC promoter — which, similar to the 

observations in hypertrophy, is phosphorylated on both the TEY and the Thr207 motifs and is 

overexpressed at pathophysiological levels — developed a modest adaptive hypertrophy with 

increased contractile function and without fibrosis [43]. Nevertheless, another recent study 

demonstrated that volume overload-induced eccentric hypertrophy is associated with reduced 

cardiac ERK1/2 activation while phosphorylation of other MAPKs was unaffected in vivo. 

However, transgenic mice with cardiomyocyte-specific ERK2 overexpression did not alter left 

ventricular dilation and hypertrophy [44]. Importantly, Molkentin et al. [18] found that high 

levels of ERK2 overexpression in the heart from two independent transgenic lines with the same 

α-MHC promoter did not induce hypertrophy. However, MEK1 transgenic mice crossed with 

ERK2 transgenic mice showed synergistic hypertrophy. Although ERK2 seems to be dominant in 

the results of the knockout experiment, the single overexpression of these two kinds of MAPK 

appears inconsistent, and the relationship between MEK1/2 and ERK2 is likely to be close. 

These results indicate that ERK1 may induce the hypertrophic effect after the inhibition of 

MEK1/2. Further, a novel ERK2 autophosphorylation site, other than TEY phosphorylation, was 

found on Thr188 after stimulation with pressure overload and in failing human hearts [11]. The 

equivalent phosphorylation was also discovered on EKR1 at Thr207 [45, 46]. The authors 

generated several lines of transgenic mice overexpressing ERK2 with mutations at Thr188. 

Compared with baseline wild type mice, no hypertrophy was observed in these mice [11]. After 



pressure overload, the ERK2T188D (gain-of-function ERK) mice showed more striking 

hypertrophy, not the ERK2T188A or ERK2T188S (phosphorylation-deficient ERK) mice. This 

mechanism depends on upstream signals — specifically, activation of Gq-coupled receptors, 

which release Gβγ; activation of the entire Raf-MEK-ERK cascade; subsequent phosphorylation 

of ERK1/2 within the TEY motif; and ERK dimerization. The integration of these signaling 

events leads to autophosphorylation of ERK2 at Thr188. In addition, the phosphorylation of 

Thr188 is related to the pathological morphology of hypertrophy [47]. It is generally believed 

that the specific role of Thr188 phosphorylation of ERK1/ 2 in vivo was to transform adaptive 

ERK signals into maladaptive signals. However, this notion is based on a study of mice 

overexpressing ERK2 Thr188 mutants, which may eliminate catalytic activity of ERK. 

Contrary to the gain of function of ERK1/2, some reports on ERK knockout mice suggested 

that ERK1/2 signaling may not be necessary to mediate cardiac growth in vivo. ERK1 null (–/–) 

and ERK2 null (+/–) mice showed no reduction in cardiac hypertrophy response to pathologic 

stimulus-induced by transverse aortic constriction (TAC) or to physiologic stimulus-induced by 

swimming [48]. Moreover, mice lacking all ERK1/2 protein in the heart (ERK1–/– ERK2fl/fl-

Cre) were generated. After eliminating both isoforms, the heart still increased in weight with 

both aging and pathological stress stimulation, where the heart showed spontaneous dilatation 

and the cardiomyocytes showed spontaneous lengthening [49]. Another study examined the 

cardiomyocyte-specific deletion of the ERK2 gene (ERK2cko mice). Following short-term 

pathological hypertrophic stresses, the mutant mice showed attenuated hypertrophic remodeling 

characterized by a blunted increase in the cross-sectional area of individual myocytes. However, 

the absence of ERK2 did not affect physiological hypertrophy induced by exercise [50].  

Above all, these results suggest that either ERK1/2 are not critical for mediating cardiac 

hypertrophy under pathophysiologic stress or the remaining ERK1/2 activity in each gene-

targeted mouse model was sufficient to mediate the signaling events required to drive the 

hypertrophic response. This outcome places ERK at the crossroads of cardiac hypertrophic 

signaling pathways and raises the possibility that different isoforms of ERK may play different 



roles in regulating the growth of cardiac myocytes.  

 

Targeting phosphatases and MAPK scaffold proteins 

Due to the high embryonic lethality, it was difficult to generate ERK1–/– ERK2+/– mice (3 

of 4 alleles deleted) to address the necessity of ERK1/2 signaling in mediating cardiac 

hypertrophy. Therefore, other approaches are desirable to more effectively alter total ERK1/2 

activity within the heart. Dual-specificity phosphatases (DUSPs), the largest family of MAPK-

selective phosphatases, act to dephosphorylate both the p-Ser/Thr and -Tyr residues that are 

essential for cytosolic and/or nuclear MAPK activity. A precedent for these phosphatases 

appeared with the description of DUSP6–/– mice [51]. An increase in basal ERK1/2 

phosphorylation in the absence of DUSP6 was identified, but no effect was observed on other 

MAPKs after stimulation. DUSP6–/– mice with larger hearts was not due to hypertrophy, but 

rather to hypercellularity of the myocytes. A recent study confirmed a similar finding in the 

zebrafish heart by suppressing the Dusp6 function, which showed that DUSP6 attenuated 

Ras/MAPK signaling during regeneration, and inactivation of DUSP6 could enhance cardiac 

repair [52]. Opposite to the activation of ERK1/2, multiple lines of DUSP6 contained in the 

mouse heart were specifically generated [48]. Similar to ERK1 null (–/–) and ERK2 null (+/–) 

mice, low-, medium-, and high-Dusp6 Tg mice showed no reduction in hypertrophy after 

pressure overload stimulation, neuroendocrine agonist infusion, or physiologic exercise 

stimulation, though the activation of all cardiac ERK1/2 at baseline were nearly eliminated. 

Notably, a phosphatase known as DUSP8 has drawn attention recently. DUSP8–/– mice 

increased ERK1/2 phosphorylation and were mildly hypercontractile at baseline with the 

concentric remodeling of the heart, which provided prolonged protection from progressing 

towards heart failure in two surgery-induced disease models [53]. While cardiac-specific 

overexpression of DUSP8 produced spontaneous eccentric remodeling with heart failure, 

overexpression of DUSP8 in the heart caused dephosphorylation of all three major MAPK 

terminal effectors. Overall, although these studies suggest that ERK1/2 manipulated by DUSP6 



and DUSP8 are not required for mediating hypertrophy per se, one critical point to consider is 

that other DUSPs such as DUSP2, -4, -5, -7, and -9 also dephosphorylate ERK1/2 [54]. While 13 

DUSP proteins are dedicated to regulating and recycling the MAPKs, each appears to have a 

highly specialized regulatory role. 

Given that MAPK scaffolding proteins enable the formation of specific signaling complexes 

and subcellular localization in the activation of an MAPK cascade, many studies of genetic 

mouse models, specifically MAPK scaffolding proteins, have further reinforced a direct role for 

ERK1/2 pathway in stress-induced cardiac hypertrophy. Scaffold proteins tether MAPK/ERK 

signaling at the sarcomere and plasma membrane in the cardiac muscle and regulate ERK 

signaling strength and duration [55]. As such, ANKRD1, which conducts the components of the 

sarcomere-associated biomechanical sensors, can be markedly induced by various hypertrophic 

stimuli and in distinct animal models of hypertrophy. ANKRD1-overexpressing transgenic mice 

developed less hypertrophy, and no differences were evident in heart function compared to wild-

type mice in TAC- and isoproterenol-induced models [56], which were mediated by the 

inhibition of ERK1/2 and TGF-β pathways. Conversely, striking cardiac hypertrophy with 

reactivation of the cardiac fetal gene program induced by chronic PE infusion in wild-type mice 

was completely eliminated in ANKRD1 null mice via ANKRD1-ERK-GATA4 complex to 

regulate hypertrophic responses [57]. This phenomenon may be caused by different hypertrophic 

stimuli. Respectively, IQGAP1, which bind to the plasma membrane, played a part in the 

maintenance of cardiomyocyte physiology and the induction of adaptive hypertrophy. IQGAP1-

null mice initially developed compensatory hypertrophy and unaltered basal heart function in 

response to pressure overload, but with a prolonged stimulus, they showed acceleration towards 

the development of maladaptive hypertrophy resulting in a decrease of cardiac contractility [58]. 

These results emphasize that different scaffold proteins may mediate the spatial regulation of 

ERK1/2 activation, which in turn determines the substrate specificity of pathological states 

associated with cardiac hypertrophy. Additionally, MAPK scaffolds, such as MP1 [59] and 

DYRK1A [60], have been characterized in the heart, but their role in cardiac remodeling has not 



yet been addressed. By extension, readers can see several excellent recent reviews on this issue 

[61, 62]. 

 

PHARMACOLOGICAL STRATEGY FOR THE TREATMENT OF CARDIAC 

HYPERTROPHY 

Despite substantial advances, there is still a major demand for finding novel therapeutic 

strategies to use in the hypertrophic process of cardiac remodeling and cardiac events. Although 

ERK activation events need to be investigated further and refined in detail, ERK or its MAPKKs, 

is a possible therapeutic target for a pharmacological strategy against cardiac hypertrophic 

diseases. If the intrinsic manipulation of ERK is insufficient to reliably achieve complete 

remission, an obvious alternative strategy is to target extrinsically potential compounds, 

inhibitors, or regulators.  

 

Compounds 

Recent works are underway to discover compounds that inhibit this pathway and thus 

provide a potential therapeutic agent that could attenuate cardiac growth. Traditional Chinese 

medicine has been reported to be effective for the treatment of cardiac hypertrophy in animal 

models, such as Baicalein and Bu-Shen-Jiang-Ya [63] decoction (BSJYD). Baicalein, known for 

its antibacterial, antiviral, and anti-inflammatory effects, protects against cardiac hypertrophy 

and fibrosis in response to chronic pressure overload by regulating the MEK-ERK1/2 signaling 

pathway [63]. Additionally, BSJYD treatment decreases systolic blood pressure and heart rate 

efficiently and suppresses the hypertension-induced cardiac hypertrophy associated with the 

suppressive effect of BSJYD on the EKR signaling pathway [64]. Other compounds were also 

reported to target the ERK pathway. Sun et al. [65] showed that Gentisic acid attenuates pressure 

overload-induced cardiac hypertrophy and fibrosis in mice through inhibition of the ERK1/2 

pathway. Additionally, Li et al. [66] demonstrated that selumetinib could attenuate pathological 

and physiological cardiac hypertrophy in vivo caused by pressure overload and swimming. 



In short, these preclinical studies encourage the emergence of more effective compounds to 

target cardiac hypertrophy with aberrant ERK activation. 

 

Inhibitors 

Developed for the treatment of various cancers, kinase inhibitors are also used to reduce 

excessive signal activation in cardiac hypertrophy. One study that explored the effects of the 

MEK inhibitor of Pimasertib on cardiac hypertrophy and heart failure showed a reversible effect 

of Pimasertib on a transgenic model expressing an activated MET receptor, which was attributed 

to the inhibition of ERK1/2 pathway [67]. Several in vitro studies have also explored the effects 

of MEK inhibitor effects on cultured cardiomyocytes. Two of the most commonly utilized are 

PD98059 and U0126. PD98059 reversed leukemia inhibitory factor (LIF)-induced 

cardiomyocyte hypertrophy [68]. Similarly, U0126 blocked cardiomyocyte growth induced by 

endothelin-1 and phenylephrine [69]. As available MEK inhibitors for the ERK signaling 

pathway, these agents target regions distinct from the ATP pocket. However, these two inhibitors 

inhibit all MEKs upstream of the ERKs, including MEK1, MEK2, and MEK5. More recently, a 

newly potent and selective MEK inhibitor called TAK733 was confirmed to suppress 

norepinephrine or phenylepinephrine-induced cardiomyocyte hypertrophy through the 

depression of MEK-ERK signaling [70]. These studies support the role of MEK-ERK cascade in 

promoting hypertrophy, but the inherent non-selectivity of some inhibitors should not be ignored 

because of their effects on MEK5. 

 

Regulators 

It is common knowledge that MAPK pathways are largely associated with G protein-

coupled receptor (GPCRs)-mediated signaling. Belonging to cell membrane receptors, GPCRs 

interact with G‐ proteins to activate multiple downstream intracellular cascades and in turn 

modulate subsets of effector proteins [71]. Regulators of G‐ protein signaling (RGS) proteins are 

negative regulators of G protein‐ mediated signaling that serve as GTPase‐ activating protein for 

heterotrimeric G proteins. Recently, accumulating studies have demonstrated that RGS proteins 



can regulate cardiac hypertrophy independent of GTPase-activating protein activity. Among 

them, RGS3 [72], RGS5 [73], RGS10 [74], RGS12 [75], and RGS14 [76] protect against 

pressure overload-induced hypertrophic response and improve cardiac function by inhibiting 

MEK–ERK1/2 signaling. Notably, unlike most overexpression approaches leading to beneficial 

effects on the heart, RGS12-defcient hearts showed a decreased cardiomyocyte cross area 

without predisposing the heart to adverse remodeling and failure. Although RGS10, RGS12 and 

RGS14 belong to the R12/D subfamily, the reason for such opposing responses is not completely 

understood. Considering the anti-hypertrophic effect attributed to some RGS proteins through 

MEK–ERK1/2 signaling, their potential as targets for therapeutic intervention warrants further 

examination. 

 

CONCLUSIONS 

In summary, although the ERK cascade is a major signaling component and regulates many 

distinct cellular processes, the functional role of the ERK1/2 in the heart still presents a potential 

dilemma. As this review shows, many current approaches are based solely on opposite ways to 

dissect the cardiac disease states, such as cell culture versus mouse genetics, direct versus 

indirect manipulation of ERK1/2, and gain versus loss of function. However, the ERK cascade is 

mainly regulated at several levels by different phosphatases and scaffold proteins, other signaling 

pathways, subcellular localization, and even different isoforms per se. Many of these 

mechanisms can work together to determine the final specificity of the cascade. While 

uncontrolled activation of RAS-RAF-MEK-ERK signaling may lead to cardiac hypertrophy, 

inhibiting the pathway may also make the heart more susceptible to stress induced 

cardiomyocyte death. Therefore, to unravel the ERK1/2 mechanisms, more sophisticated model 

systems are required, which will help us to make sure the critical role of ERK1/2 and the ensuing 

effects in the heart. In light of the lack of uniform results in ERK biology in cardiac hypertrophy, 

translation of the knowledge about pro-hypertrophic signaling pathways may lead to both 

exciting and challenging clinical insights. 
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Figure 1. Schematic diagram of extracellular signal-regulated kinases (ERK) pathway and 

mitogen-activated protein kinase (MAPK)-associated genetic mouse models. In cardiomyocytes, 

the canonical ERK1/2 signal cascade is initiated by the activation of the small G protein RAS in 

the cell membrane, which leads to the recruitment and activation of RAF-1, which further 

phosphorylates the dual-specificity protein kinases MEK1/2; eventually, MEK1/2 

characteristically activate ERK1/2. In response to growth factors, hormones, and mechanical 

stress, the RAS-RAF-MEK-ERK pathway, dual-specificity phosphatases and scaffold proteins 

were overexpressed or inhibited in the mouse to change ERK1/2 activity, which examines the 

connection between ERK activation and cardiac hypertrophy. 
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