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NKTR-102 Efficacy versus irinotecan in amouse
model of brainmetastases of breast cancer
Chris E. Adkins1,2†, Mohamed I. Nounou2,3†, Tanvirul Hye2, Afroz S. Mohammad1,2, Tori Terrell-Hall1,2,
Neel K. Mohan4, Michael A. Eldon4, Ute Hoch4 and Paul R. Lockman1,2*

Abstract

Background: Brain metastases are an increasing problem in women with invasive breast cancer. Strategies
designed to treat brain metastases of breast cancer, particularly chemotherapeutics such as irinotecan, demonstrate
limited efficacy. Conventional irinotecan distributes poorly to brain metastases; therefore, NKTR-102, a PEGylated
irinotecan conjugate should enhance irinotecan and its active metabolite SN38 exposure in brain metastases
leading to brain tumor cytotoxicity.

Methods: Female nude mice were intracranially or intracardially implanted with human brain seeking breast cancer
cells (MDA-MB-231Br) and dosed with irinotecan or NKTR-102 to determine plasma and tumor pharmacokinetics of
irinotecan and SN38. Tumor burden and survival were evaluated in mice treated with vehicle, irinotecan (50 mg/kg),
or NKTR-102 low and high doses (10 mg/kg, 50 mg/kg respectively).

Results: NKTR-102 penetrates the blood-tumor barrier and distributes to brain metastases. NKTR-102 increased
and prolonged SN38 exposure (>20 ng/g for 168 h) versus conventional irinotecan (>1 ng/g for 4 h). Treatment
with NKTR-102 extended survival time (from 35 days to 74 days) and increased overall survival for NKTR-102 low
dose (30 % mice) and NKTR-102 high dose (50 % mice). Tumor burden decreased (37 % with 10 mg/kg NKTR-102
and 96 % with 50 mg/kg) and lesion sizes decreased (33 % with 10 mg/kg NKTR-102 and 83 % with 50 mg/kg
NKTR-102) compared to conventional irinotecan treated animals.

Conclusions: Elevated and prolonged tumor SN38 exposure after NKTR-102 administration appears responsible
for increased survival in this model of breast cancer brain metastasis. Further, SN38 concentrations observed in
this study are clinically achieved with 145 mg/m2 NKTR-102, such as those used in the BEACON trial, underlining
translational relevance of these results.

Keywords: Breast cancer, Brain metastasis, PEGylated irinotecan, NKTR-102

Background
The overall survival rates for many cancers have not
changed over the last few decades, with the exception of
certain subtypes of cancer [1–4]. The incidence of brain
metastases (BM) continues to increase [5] with current
estimates suggesting approximately 600,000 people in
the U.S. suffer from some brain malignancy. Brain

tumors rank second among causes of cancer-related
deaths in individuals under the age of 20, and the fifth
leading cause of cancer-related deaths in females aged
20–39 [5]. Brain metastases are the predominant form
of brain malignancies, in which 20-40 % of adults with
different types of cancers eventually develop brain me-
tastases [6–10]. Breast cancer represents the second
most common source of brain metastases [11]; more-
over, the incidence of brain metastases of breast cancer
(BMBC) in HER2+ and triple negative breast cancer
(TNBC) is approximately 35 % [12]. Current therapeutic
options in treating TNBC brain metastases such as sur-
gery, whole brain radiotherapy, stereotactic radiosurgery,
and chemotherapy fail in providing significant progress
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in treating brain metastases [11, 13] and are mostly
palliative [14].
A major obstacle for effective chemotherapeutic ac-

tivity against BM is drug penetration across the blood–
brain barrier (BBB) and the blood-tumor barrier (BTB).
The BBB serves as a protective interface that sequesters
the brain from undesired chemicals by utilizing physical
barriers, efflux transporters, and enzymatic degradation.
Together, these components functionally regulate brain
penetration of numerous small and large molecules
such as anticancer drugs [15]; it is estimated that less
than 2 % of drugs targeting the CNS enter clinical trials
because of inefficient distribution into brain [16]. The
vasculature associated with brain metastases (BTB) be-
comes compromised resulting in elevated permeability
compared to normal BBB; however, the extent of BBB
opening following its disruption by the formation of
brain metastasis is limited, preventing small molecule
chemotherapeutics to reach efficacious levels in the
majority of metastatic lesions [17].
The application of nanotechnology and polymer chem-

istry shows promise in animal models of CNS tumors, in
particular, glioblastoma multiforme [18–20]. Several
drugs applying nanotechnology or polymer chemistry
are currently in clinical development for CNS tumors, in-
cluding ANG1005, in which paclitaxel is conjugated to a
peptide vector [18, 21], 2B3-101, a glutathione-PEGylated
doxorubicin [22, 23], and MM-398, a liposomal encapsu-
lation of CPT-11 [24]. NKTR-102 (Etirinotecan pegol) is a
long-acting polymer conjugate of irinotecan designed to
provide continuous exposure of SN38 in tumors while
avoiding high irinotecan and SN38 Cmax, which is associ-
ated with unwanted side effects [25]. A member of the
camptothecin class of topoisomerase 1 (Top1) inhibitors,
irinotecan (Camptothecin-11; CPT-11), is a widely used
chemotherapeutic agent [11]. CPT-11 is indicated for the
treatment of colorectal cancer in combination with 5-

fluorouracil (5-FU) and folinic acid (first line) and as a
single agent in patients with disease progression following
initial 5-FU-based therapy (second line) [26–28]. Top1 in-
hibition with irinotecan has shown clinical benefit in a
wide variety of tumors, including central nervous system
cancers [29–31]. In its idealized form, NKTR-102 consists
of a 4-arm PEG polymer with a nominal molecular weight
of 20 kDa, a hydrolysable ester-based linker, and one iri-
notecan molecule at the end of each arm (Fig. 1). Upon
administration, the linker slowly hydrolyzes resulting in
sustained exposure to irinotecan that is subsequently me-
tabolized to the active metabolite SN38 (Fig. 1) [32–35].
NKTR-102 exhibits improved drug penetration into tu-
mors resulting in improved efficacy over irinotecan in a
variety of mouse models of human cancers [36], improved
peripheral pharmacokinetics [37], and promising clinical
activity in metastatic ovarian [38] and breast cancers [39].
We, hypothesized that PEGylation of irinotecan

would result in elevated and sustained SN38 concentra-
tions in brain metastases of breast cancer by 1) enhan-
cing passive diffusion of the conjugate from blood into
brain via the epithelial tight junction dysregulation at
the BTB and 2) bypassing various BBB and BTB efflux
transporters, such as P-glycoprotein, that function to
restrict drug uptake into brain and brain metastases
[40, 41], and 3) releasing SN38 intracellulary within
brain metastases at concentrations that result in tumor
cell cytotoxicity.
Here, we present encouraging survival and pharmaco-

kinetic (PK) results for NKTR-102 in an experimental
mouse model of TNBC brain metastasis. NKTR-102
crosses the BTB, accumulates in brain tumor tissue and
serves as a reservoir for release of SN38. The tumor/
plasma ratios of SN38 after irinotecan and NKTR-102
administration were 2.8 and 31 respectively. Further-
more, the tumor/plasma ratio of NKTR-102 was 170
compared to 4 for irinotecan. Equally important, tumor

Fig. 1 Structures of NKTR-102 (a), irinotecan (b), and the active metabolite SN38 (c)
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SN38 concentrations after NKTR-102 is greater than
20 ng/mL for 168-h, while tumor SN38 concentrations
after irinotecan administration only exceeded 1 ng/mL
for up to 2-h. This preferential targeting of CNS tumors
results in regression of brain metastases and prolongs
mouse survival. Plasma SN38 trough concentrations
observed in this model are achieved clinically with
145 mg/m2 NKTR-102, which is a dose used in the
Phase 3 BEACON study in patients with metastatic
breast cancer, thereby emphasizing the potential trans-
lational relevance of these results.

Methods
Chemicals
Irinotecan, radiolabeled [14C]-irinotecan, NKTR-102
(PEGylated irinotecan, etirinotecan pegol), and [14C]-
NKTR-102 were supplied by Nektar Therapeutics
(San Francisco, CA). All other chemicals were of ana-
lytical grade and were purchased from Sigma-Aldrich
(St. Louis, MO).

Animals
Female athymic nude mice (Charles River Laboratories,
Kingston, NY) were used for all experiments in this
study. Mice were housed in microisolator cages with a
12-h light/dark cycle and received sterilized food and
water ad libitum. All animal work was approved by
Texas Tech University Health Sciences Center’s Insti-
tutional Animal Care and Use Committee (IACUC pro-
tocols 06024 & 06026) and West Virginia University’s
Animal Care and Use Committee (ACUC protocol 13–
1207). All animal work followed internationally recognized
guidelines. Human ethics approval for this study is not
applicable because no human subjects were involved in
this study.

Cell culture
Brain-seeking human metastatic breast cancer cells sta-
bly transfected to express firefly luciferase (MDA-MB-
231Br-Luc) were kindly provided by Dr. Patricia Steeg,
National Institutes of Health (NIH), Center for Cancer
Research. MDA-MB-231Br-Luc cells were cultured in
Dulbecco's Modified Eagle's medium (DMEM) supple-
mented with 10 % fetal bovine serum (FBS). Only cells
in passages 2–10 were used. All cells were cultured at
37 °C with 5 % CO2.

Uptake of irinotecan and NKTR-102 in brain tumors
Human MDA-MB-231Br-Luc cells (5 × 105) were im-
planted intracranially as previously described [42].
Tumors were allowed to grow (30 days or until neuro-
logical symptoms developed) prior to intravenous

administration of irinotecan (50 mg/kg) or NKTR-102
(50 mg/kg). Animals (n = 5/timepoint) were sacrificed
under anesthesia (ketamine/xylazine; 100 mg/kg and
8 mg/kg respectively) at pre-determined time points
(pre-dose, 2, 6, and 24-h after irinotecan; pre-dose, 6,
24, 168-h after NKTR-102) to collect blood and tumor
samples. Plasma and brain tumor samples were assayed
for NKTR-102, irinotecan, and SN38 using liquid chro-
matography–tandem mass spectrometry (LC/MS/MS).

Uptake of irinotecan and NKTR-102 in brain and brain
metastases
Anesthetized (isoflurane) animals were inoculated with
MDA-MB-231Br-Luc cells (1.75 × 105) in the left cardiac
ventricle consistent with previous methodology [43]. Ap-
proximately 40 days after intracardiac injection, 2 mice
per sampling time (2-h for irinotecan and 6-h for
NKTR-102) received intravenous injections of 50 mg/kg
14C-NKTR-102 or 14C-irinotecan (4 μCi). Brains were
removed, sectioned, and mounted onto slides for quanti-
tation of radioactivity in BM and BDT using quantitative
autoradiography (QAR).

Survival of animals bearing established brain metastases
after treatment
Animals were injected intracardially with MDA-MD-
231Br-Luc as described above followed by whole body
bioluminescence imaging (BLI) to confirm successful in-
jections. Metastases were allowed to develop for 21 days.
On day 21, treatment with vehicle (6 mg/mL lactic acid
in 5 % dextrose in H2O, pH 5–6, n = 18), irinotecan
(50 mg/kg, n = 10), and NKTR-102 (10 or 50 mg/kg, n =
10) was initiated via tail vein injection and repeated once
weekly along with bioluminescence imaging. Animals
were sacrificed under anesthesia (as described above)
once neurological symptoms became noticeable. Brains
from select animals (n = 4/group) were harvested, sec-
tioned, slide mounted, and stained with hematoxylin
and eosin (H&E) to visualize brain metastases. The size
and number of brain metastases were evaluated using
an Olympus MVX10 microscope with a 2X objective
(NA = 0.5). Bioluminescence images were acquired
15 min after a intraperitoneal injection of D-luciferin
potassium salt (150 mg/kg; PerkinElmer, Waltham,
MA) using an IVIS Lumineer XV (PerkinElmer). To
confirm successful injection and generation of reprodu-
cible large brain metastasis, animals were imaged 24
and 48-h post intracardiac injection. Tumor growth
was monitored via BLI before the start of treatment
and twice weekly thereafter. Regions of interest (ROIs)
were drawn according to the circumference of the
cranium and all data were reported as radiance (pho-
tons/s/cm2/steradian).
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Data analysis
Tumor burden (the number of metastases) and sizes were
each compared statistically across treatments using one-way
ANOVA followed by Bonferroni’s multiple comparison cor-
rection. Differences between treatments were considered sta-
tistically significant at p < 0.05. Data are reported as Mean ±
Standard Error of Mean (SEM) (GraphPad® Prism 5.0, San
Diego, CA). Animal survival was used as an additional
measure of treatment efficacy. See Additional file 1 for de-
tails regarding chemical reagents, cell culture, LC/MS/MS,
quantitative autoradiography, and histology.

Results
NKTR-102 crosses the BTB, accumulates in brain tumor
tissue and serves as reservoir for release of SN38
In our first set of experiments, we set out to determine
the plasma and brain tumor concentrations of NKTR-
102, irinotecan, and their active metabolite SN38 after
intravenous administration of either irinotecan or NKTR-
102 to mice bearing intracranially implanted tumors.
Plasma and brain tumor concentration time profiles of
irinotecan, NKTR-102 and SN38 differed significantly
between irinotecan and NKTR-102 treatments (Fig. 2).

After conventional irinotecan administration, highest
concentrations of both irinotecan and SN38 were ob-
served at 2 h (Fig. 2c and d). Both analytes essentially
cleared from circulation within 12 h, consistent with
previous reports [44]. Tumor irinotecan and SN38
concentrations generally followed kinetics of both en-
tities in plasma and declined 80-fold and 30-fold from
their respective tumor Cmax values 24 h after dosing
(Table 1). Brain tumor to plasma concentration ratios
after irinotecan administration ranged between 0.5 and
4 for irinotecan and 0.8-2.8 for SN38 during the 24-h
sampling period.
After administration of NKTR-102, plasma NKTR-

102 and SN38 concentrations were detectable through
the 168 h sampling period (Fig. 2a and b). Brain tumor
NKTR-102 concentrations continued to accumulate,
eventually exceeding corresponding plasma concentra-
tions by 170-fold 168-h after dosing (Table 1). Unlike
administration of conventional irinotecan, brain tumor
NKTR-102 concentrations declined by 4-fold compared
to corresponding Cmax value by 168-h post dose. Simi-
larly, SN38 concentrations accumulated in brain tumor,
reaching a Cmax at 24-h after dosing and exceeded

Fig. 2 Plasma and tumor concentration-time profiles of irinotecan and active metabolite SN38 after IV bolus administration of NKTR-102 (a and b)
or irinotecan (c and d) to NU/NU mice with established, orthotopic MDA-MB-231Br brain tumors. Symbols represent individual concentrations,
solid line represents mean concentrations (n = 5 per time point)
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plasma concentrations by 30-fold. 22Tumor SN38 con-
centrations following NKTR-102 administration exceeded
200-fold 24-h post dose compared to irinotecan. Equally
important, tumor SN38 concentrations after NKTR-102
were maintained at greater than 20 ng/mL for 168-h,
compared to 1 ng/mL for up to 4-h after dosing with con-
ventional irinotecan. Hence, administration of NKTR-102
maintained therapeutic SN38 concentrations [33] for
nearly 7 days, compared to fewer than 4-h following irino-
tecan administration.

NKTR-102 leads to high concentrations in brain
metastases
After establishing that NKTR-102 accumulates in brain
tumor tissue and serves as a reservoir for SN38, we
wanted to determine if NKTR-102 accumulates in a
similar fashion in BMBC. Rather than injecting tumor
cells orthotopically, we injected MDA-MB-231Br cells
intracardially and waited 32–35 days for mice to de-
velop neurological symptoms before injecting either
14C-irinotecan or 14C-NKTR-102 intravenously to col-
lect brains at respective plasma SN38 Cmax times (2-h
for conventional irinotecan, and 6-h for NKTR-102).
Brains were sectioned and assessed for drug uptake
using quantitative autoradiography (QAR). After ad-
ministration of conventional irinotecan, radioactivity in
brain varied widely between and within metastases and
ranged from ~25 ng/g to ~350 ng/g (Fig. 3a, b, e), aver-
aging 66 ng/g, 4.7 times the average radioactivity of
brain distant to tumor (BDT; contralateral region)
(14 ng/g). After administration of NKTR-102, irinote-
can radioactivity in BM ranged from ~390 ng/g to
~1800 ng/g (672 ± 25 ng/g) (Fig. 3c, d, f ), significantly
higher (p < 0.05) compared to radioactivity after admin-
istration of conventional irinotecan (65.7 ± 11 ng/g)
(Fig. 3g). Average BM radioactivity following NKTR-

102 was 622 ng/g. Although only twice as high as the
average radioactivity in BDT, we speculate that higher
plasma NKTR-102 levels at the 6-h timepoint (720 ng/
mL, Table 1) largely explains radioactivity in BDT as
tracer remaining within the vasculature.

NKTR-102 prolongs survival of animals with breast cancer
brain metastases
Having established that NKTR-102 distributes to BMBC,
we then evaluated whether elevated concentrations of
NKTR-102 in BM would translate to improved survival
in an experimental model of BMBC. To evaluate this,
we intracardially injected MDA-MB-231Br cells and
allowed metastatic lesions to develop in brain. During
development of BM, tumor growth was monitored using
bioluminescence imaging (Fig. 4). Similar to our previ-
ous work [45], this model produced detectable and
quantifiable tumor growth in the brain 21 days post in-
jection, the day drug treatment started, emphasizing that
BM formed prior to drug exposure. Animals treated with
vehicle, tumor burden increased nearly 100-fold (Fig. 5a)
over three weeks at which time all animals became
moribund and required sacrifice, resulting in a median
survival of 37 days (Fig. 5b). Weekly administration of
conventional irinotecan at 50 mg/kg was unable to pro-
long survival; median survival was the same as ob-
served for the vehicle group, with one animal surviving
until day 60 (Fig. 5b). With regard to NKTR-102, drug
was administered at two dose levels: 50 mg/kg, equiva-
lent to the irinotecan dose administered, as well as
10 mg/kg, a dose previously demonstated to have activ-
ity in a subcutaneously implanted MX-1 breast cancer
model (personal communication). Weekly administra-
tion of 50 mg/kg NKTR-102 increased median survival
to 74 days, 39 days longer compared to irinotecan at
an equivalent dose, and five of ten animals survived to
completion of the study (Fig. 5b). Of interest, metastatic

Table 1 Plasma and Brain Tumor Concentrations after Administration of Irinotecan or NKTR-102

Treatment NKTR-102 Conventional Irinotecan

Time (hr) 6 24 72 168 2 6 12 24

Irinotecan Equivalent Concentration ± SEM (ng/mL or ng/g) Irinotecan Concentration ± SEM (ng/mL or ng/g)

Plasma 72450 ± 48790 210 ± 126 14 ± 7.5 5.0 ± 0.09 1100 ± 306 2.9 ± 1.4 0.7 ± 0.3 2.3 ± 1.8

Tumor 3200 ± 3700 2572 ± 1323 1207 ± 904 833 ± 240 554 ± 667 7.7 ± 5.8 2.8 ± 1.2 7.4 ± 5.2

Tumor/Plasma 0.4 12 80 170 0.5 2.7 3 4

SN38 Concentration ± SEM (ng/mL or ng/g)

Plasma 63 ± 50 34 ± 13 2.2 ± 1.4 0.65 ± 0.08 36 ± 12 2.4 ± 1.3 0.7 ± 0.1 0.4 ± 0.4

Tumor 13 ± 16 208 ± 126 60 ± 78 23 ± 28 29 ± 46 0.8 ± 0.4 0.6 ± 0.4 1.1 ± 1.1

Tumor/Plasma 0.2 6 27 31 0.8 0.3 0.9 2.8

Plasma and brain tumor concentrations for parent drug and active metabolite SN38 after a 50 mg/kg IV bolus injection of either NKTR-102 or irinotecan to NU/NU
mice with established, orthotopic MDA-MB-231Br brain tumors. Results are expressed as mean ± SEM (N = 5 per time point)
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tumor burden decreased two weeks after the start of
NKTR-102 treatment and was nearly eliminated in
animals receiving treatment during the final two weeks of
the study (Fig. 5a). Even at the 10 mg/kg dose concentra-
tion, we observed tumor burden levels decreased to

approximately 50 % of irinotecan treated animals (Fig. 5a),
with 3 animals surviving to study completion at 91 days
(~2.5 longer than vehicle control); however, no increase in
median survival was observed in this group relative to the
vehicle group (Fig. 5b).

Fig. 3 Representative image of 231Br brain metastases (a) and corresponding 14C-Irinotecan accumulation (b) in metastases 2 h after intravenous
administration of radiolabeled irinotecan. Representative image of 231Br brain metastases (c) and corresponding 14C-NKTR-102 accumulation (d) in
metastases 6 h after intravenous administration of radiolabeled NKTR-102. 14C-irinotecan concentration versus 231Br lesion size in individual metastases
(e). 14C-NKTR-102 concentration versus 231Br lesion size in individual metastases (f). Dashed line in panel (e) and f represents mean BDT 14CIrinotecan
and 14C-NKTR-102 concentration respectively. Mean BDT and lesion accumulation of 14C-Irinotecan (white columns) and 14C-NKTR-102 (black columns)
(g). Mean lesion accumulations of 14C-Irinotecan and 14C-NKTR-102 were significantly different. All data are Mean ± SEM (n = 8-10)

Fig. 4 Representative bioluminescence images of mice bearing metastases and treated with either irinotecan or NKTR-102 are shown in the top
row. Day 56 was omitted to conserve space
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NKTR-102 treatment decreases the number and size of
brain metastasis
In our last experiments, we evaluated histological char-
acteristics of metastatic lesions (Fig. 6a–d) in brains
from animals used in the survival study. We observed
no significant differences (p > 0.05) in the number
(Fig. 6e) or size (Fig. 6f ) of MDA-MB-231Br lesions in
brain between vehicle and irinotecan treated animals.
However, animals treated with low dose NKTR-102
(10 mg/kg) exhibited a ~43 % reduction in lesions, both
in metastasis number and size compared to the vehicle
group. Moreover, administration of high dose NKTR-
102 (50 mg/kg) reduced average BM number by ~97 %
and size by ~87 %. Histological data appears to support
survival study observations.

Discussion
NKTR-102 overcomes several limitations of irinotecan
therapy. Administration of irinotecan produces a
SN38 plasma half-life of 24–48 h, well below a half-
life of ~50-days after NKTR-102 administration
resulting in continuous drug exposure between dosing

cycles. The sustained exposure observed with NKTR-102
in cancer patients was associated with promising activity
during both Phase 1 [37] and Phase 2 [38, 39] studies of
NKTR-102. In particular, patients with third-line meta-
static breast cancer of all types (including triple-negative
disease) who received NKTR-102 demonstrated a con-
firmed objective response rate of 29 % by RECIST criteria
[39]. This efficacy was achieved with manageable and
significantly milder side effects than reported for irino-
tecan therapy, in which the most common Grade 3/4
toxicity was diarrhea, occurring in 20-23 % of patients
[39]. In animal models of cancer, the polymer moiety in
NKTR-102 led to prolonged circulation time and tumor
localization, resulting in increased tumor exposure to
SN38 that correlates well with superior suppression of
tumor growth compared with irinotecan [36]. Here we
show superior properties imparted by the polymer in
NKTR-102 translate to advantages over irinotecan in a
setting of CNS tumors. NKTR-102 crossed the BTB
and preferentially accumulated in brain tumors, as evi-
denced by the 12- to 170-times higher tumor compared
to plasma concentrations for >85 % of the dosing inter-
val. The sustained tumor NKTR-102 concentrations
through 168-h post dose, indicates slow elimination of
drug from the tumor. The elevated and sustained SN38
concentrations in tumor compared to plasma after
NKTR-102 administration indicates the retention of
NKTR-102 within brain tumors serves as a reservoir for
continued release of SN38 in the brain tumor micro-
environment. In contrast, administration of irinotecan
produces tumor pharmacokinetics that mirror its
plasma pharmacokinetics without preferential accumu-
lation and retention, leading to exposure holidays for
70 % of the dosing interval.
The ability of NKTR-102 to cross the BTB and accu-

mulate in brain tumor tissue appeared to contribute to
the efficacy observed in this experimental model of
BMBC. NKTR-102 not only increased median survival
in animals with BM, but reduced established brain me-
tastases in 50 % of animals. Based on this data, the de-
gree of efficacy and improved survival with NKTR-102
exceeds many conventional chemotherapeutics in this
model of BMBC [46].
Brain tumor entry and distribution of molecules and

formulations greater than >2.5 nm are believed to occur
via the enhanced permeability and retention (EPR) effect
[47, 48]. This effect describes elevated permeability as a
consequence of vascular dysregulation due to the prox-
imity of proliferating tumors or metastases [49]. In
addition to enhanced permeability and drug uptake, de-
creased clearance mechanisms resulting from tumor
interstitial spaces may contribute to prolonged drug ex-
posure [50]. The kinetics and pharmacodynamics of
NKTR-102 described in this report align with previous

Fig. 5 a Mean BLI signal versus time by treatment in mice exhibiting
brain metastases. Treatment was initiated on day 21. Each data point
represents mean ± SEM (n = 5-18 per time point). (b) Survival analysis
of mice bearing brain metastases of human breast cancer and treated
weekly via IV bolus (tail vein injection) with vehicle, irinotecan
(50 mg/kg), NKTR-102 (10 mg/kg), or NKTR-102 (50 mg/kg), starting
21 days post intracardiac injection of tumor cells. Median survival
time was 37 days for vehicle, 35 days for irinotecan, 35 days for
NKTR-102 (10 mg/kg), and 74 days for NKTR-102 (50 mg/kg)
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studies of nanoparticle agents, including liposomal for-
mulations, polystyrene-co-maleic acid conjugated nano-
carzinostatins, and albumin-bound drugs that are also
thought to accumulate in tumor tissue due to the EPR
effect [51]. Nanoparticle formulations similar in size to
the estimated hydrodynamic volume of NKTR-102
(~2-3 nm) show clinical utility by taking advantage of
the EPR effect; for example, large dextran coated iron
oxide nanoparticles can be used clinically for MRI im-
aging of brain tumors and metastases [52]. Addition-
ally, the long systemic circulation time of NKTR-102,
relative to other nanotherapeutics should further en-
hance its exposure to brain metastases [53]. We previ-
ously evaluated the permeability of different sized
dextrans (3 kDa to 70 kDa) in this BMBC animal
model which estimated average vascular pore sizes at
approximately 10 nm, though with significant variabil-
ity among lesions (data not shown). Pores of this size

are large enough to allow penetration of NKTR-102,
while larger nanotherapeutics may encounter steric
hindrance [54]. Based on the data presented here, the
size of NKTR-102, its enhanced pharmacokinetic pro-
file, and previously published data in subcutaneous
tumor models, we believe NKTR-102 takes advantage
of the EPR effect facilitating its penetration into brain
tumors and maintaining sufficient cytotoxic SN38 con-
centrations, leading to the regressions observed.
The ability of NKTR-102 to avoid P-glycoprotein (P-gp)

mediated efflux provides an added benefit over conven-
tional chemotherapeutics. Consistent with human brain
lesions, P-gp significantly limits solute uptake into lesions
in this preclinical model [55]. Conventional irinotecan is
subject to P-gp mediated efflux in vitro and in vivo
[56, 57], while NKTR-102 bypasses P-gp mediated ef-
flux, resulting in enhanced drug distribution to BM
[58, 59]. Strategies to modulate efflux transporter

Fig. 6 Representative cresyl-violet stained brain sections from a vehicle, (b) irinotecan, (c) NKTR-102 10 mg/kg, and (d) NKTR-102 50 mg/kg
treated animals. Tumor regions are outlined and shaded. (e) The number of detectable brain metastases by treatment. Significant differences
(p < 0.05 and p < 0.01) were observed in the number of CNS metastases in animals treated with low dose (9.2 ± 1.7) and high dose NKTR-102
(0.54 ± 0.2) compared to vehicle (16.4 ± 1.4) and irinotecan (14.5 ± 1.6) treated animals. (f) The average size of the CNS metastasis (μm2) was
smaller in animals treated with low dose (0.17 ± 0.02) and high dose NKTR-102 (0.04 ± 0.01) compared to vehicle (0.29 ± 0.3) and irinotecan
(0.26 ± 0.2) treated animals. All data are Mean ± SEM (n = 5-10)
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activity using transporter inhibitors (i.e. elacridar) to
enhance drug distribution have been investigated in
similar preclinical models [60]; however, there is some
scrutiny regarding the efficacy of drugs designed to
modulate efflux transporter activity [61].
The translation of results in the non-clinical to the

clinical setting is often impaired by preclinical doses that
are irrelevant in the clinical setting. We elected to limit
NKTR-102 doses to 50 mg/kg irinotecan equivalents to
maintain plasma SN38 concentrations at ≥2 ng/mL.
Similar plasma SN38 trough concentrations are achieved
clinically with administration of 145 mg/m2 NKTR-102
given every three weeks [37]. This is the recommended
dose and schedule for single agent use of NKTR-102, in-
creasing the likelihood that the nonclinical activity de-
scribed here translates to efficacy in the clinical setting.
The phase 3 BEACON (Breast Cancer Outcomes With
NKTR-102), NCT01492101) study in patients with ad-
vanced breast cancers allowed enrollment of patients
with stable brain metastases enabling an initial assess-
ment of whether the promising efficacy observed in this
experimental mouse model of breast cancer brain metas-
tases translates to the clinical setting.

Conclusions
In summary, data presented herein demonstrate efficacy
of NKTR-102 in an experimental mouse model of
BMBC. The efficacy observed correlates with the ability
of NKTR-102 to cross the BTB, leading to preferential
accumulation and retention in brain tumor, followed by
sustained efficacious concentrations of the active metab-
olite SN38. Together, these data demonstrate the poten-
tial use of NKTR-102 in patients diagnosed with BMBC.

Additional file

Additional file 1: Supplementary methods contains fine details of
various protocols and assays used in this work. (PDF 91 kb)
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