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ABSTRACT

Interpretations of Bicoherence in Space & Lab Plasma Dynamics

Gregory Allen Riggs

The application of bicoherence analysis to plasma research, particularly in non-linear, coupled-

wave regimes, has thus far been significantly belied by poor resolution in time, and/or outright

destruction of  frequency information. Though the typical  power spectrum cloaks the phase-

coherency between frequencies, Fourier transforms of higher-order convolutions provide an n-

dimensional  spectrum which is  adept at  elucidating  n-wave phase coherence.  As such,  this

investigation focuses on the utility of  the normalized bispectrum for detection of  wave-wave

coupling  in  general,  with  emphasis  on distinct  implications  within the scope of  non-linear

plasma physics. Interpretations of bicoherent features are given for time series from “shots” at

the DIII-D tokamak facility; the solar wind, as measured by the Cluster-II satellite installation;

a  van der Pol oscillator; and various audio signals, both recorded and contrived. Evaluations of

the bicoherence exhibited by simple harmonic relationships are contrasted with those displaying

truly non-linear signatures, and the temporal dynamics of their respective bispectra are assessed.

Also considered are the curatives and caveats of cogently condensing these 4-dimensional data.



Above: on that which walks to grieve,
The opals in the heavens' arms –

Or culls the Sound beyond our sieve,
For volant dreams belaying harms;

And make, with now, redoubted plan,
Behoove an ancient rite in flame –
The Mendicant with shades of Pan

Does fall upon the righted aim;

Since slight decides the waking wind,
Yet takes the mountain down in Time,
A blooming thing is timeless friend –
But Man may slip within his rhyme:

For stretching fields so warped in dance,
May e'er your singing doubt entrance.
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I. INTRODUCTION

A. Impetus

Alas! To what man's land am I come to now?
Homer  - The Odyssey

Among the myriad scientific advancements of  the 20th century,  signal processing stands as a

pervasive and unheralded exemplar of human progress. While the limelight is coolly stolen by

the 1900's more marketable abstractions, the cog-work of data analysis is the one invariable step

between a modern scientist and his/her results. In fact, it may be a challenge to consider the

state of natural philosophy in general absent the elementary and ubiquitous techniques of linear

regression and/or power spectrum estimation. Moreover, with the persistent realization of ever-

increasing sampling rates and storage capacities, the future of signal processing will necessarily

extend the abilities afforded to forthcoming physicists. Thus, it is pertinent to pursue not only

the  refinement  of  existing  implementations  (optimization),  but  also  the  design  of  nascent

applications,  whether  dedicated  or  generalized  (development).  To  those  ends,  and  more

specifically: a method of analysis emphasizing non-linear idiosyncrasy will remain advantageous

in varied fields of research, from magnetohydrodynamics1 to seismology2 to cosmology3. The so-

called “bispectrum” is presented herein as a candidate for such a reputation. In  loose terms, the

bispectrum is a more advanced power spectrum, insofar as acuity and dimension are concerned;

that  is,  while  typical  spectral  estimations  offer  information  only about the amplitude (and

possibly phase) of a signal's constituent frequencies, the bispectrum presents higher-order data

about the level of interaction (and phase relationships) between these frequency components4,5.

In stronger terms, it is a 2-D Fourier transform of a signal's triple correlation, a second-order

convolution  which  provides  a  complex  mapping  of  coupled-frequency  triples.  Thus,  the

intention of this work is exploration and extension of this most useful methodology.
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B. Relevancy & Scope

Using a term like 'non-linear science' is like referring to the bulk of
zoology as the study of non-elephant animals.

Stanislaw Ulam

Nature is fundamentally non-linear: the varied systems of (integro-)differential equations which

describe the evolution of our universe are scarcely simple, and much less scalar. It is a hard truth,

then,  this  non-linearity  is  unavoidably  deft  at  repelling  the  conventional  analytic  attack.

For context, an immediate example of a tractable linear equation is the well-known modeling of

damped harmonic motion6  (using dots to represent time derivatives),

                ÿ+β ẏ+ω
2 y = 0 ,  [1.1]

with β and ω as constants, whose solution is given by

                 y(t ) = Ae
−β+√(β2

−4ω
2
)

2
t
+Be

−β−√(β2
−4ω

2
)

2
t

,  [1.2]

where,  as usual,  constants of  integration (A and  B)  are determined by assessment of  initial

conditions. Ostensible complexity notwithstanding, this function is elementary, analytically. In

stark contrast, despite superficial similarity, Bessel's equation7,

                  t2 ÿ+t ẏ+(t2
−n2

) y = 0 ,  [1.3]

cannot be solved by a finite superposition of elementary functions or their combinations. The

solutions to this  linear differential  equation (for arbitrary complex number  n)  are functions

defined by this equation, or its equivalencies. To wit, in the Laurent expansion,

                    e
t
2
(z+

1
z
)

= ∑
−∞

∞
yn(t) zn ,  [1.4]

the function y
n
(t) satisfies Bessel's equation (for integer n), thus

                     yn(t) = (
t
2
)

n

∑
k=0

∞ (−1)k

(n+k )!(k )!
(

t2

4
)

k

, n∈Z ,  [1.5]

and the solution is easily seen to be non-elementary. In contrast, true deviations from linearity
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(subtle or not) will deeply affect the solutions of a differential equation, as the model for damped

harmonic motion (Eq. [1.1]) may be slightly modified to become van der Pol's equation8,

                   ÿ−μ(1−y2
) ẏ+y = 0 ,  [1.6]

one of the most intensely studied dynamical systems of the past century. Increasing the value of

of  μ from zero,  the solutions are steered away from simple harmonic motion towards non-

sinusoidal oscillations which elude clear or concise parameterization8. Proven analytic methods,

however, such as phase-space visualization and Fourier decomposition, have allowed insights

into the evolution of  this otherwise mysterious equation9.  In that vein,  there is an extensive

precedent for the study of non-linear systems working as a catalyst for scientific vision, if not

innovation:  van  der  Pol's  studies  of  his  equation  led  to  an  advanced  theory  of  electronic

relaxation oscillators10,  providing mathematical  basis for a plethora of  indispensable modern

items, from CPU clocks to turn-signals to tone-generators11. More relevantly, a seminal study in

bispectral  analysis  identified  peaking  ocean  crests  by  exposing  the  underlying  wave-wave

coupling12,  and plasma physicists have used the bispectrum for four decades to quantify the

degree of frequency interaction in both modal and turbulent regimes4,13. In this work, eclectic

phenomena  are  connected  vis-à-vis  their  bicoherent features,  recast  as  various  non-linear

artifacts inherent to coupled-frequency and/or coupled-phase systems. Specifically studied is the

multispectral  response  of  confined  fusion-plasma  nonequilibria,  the  languid,  dancing

frequencies  of  pulsating  astrophysical  fields,  quasiperiodic  behavior  in  nearly-synchronized

driven electronic oscillators, and visualization of harmony and anharmony in audio signals. The

unrelated  disposition  of  these  data  will  become  an  opportunity  for  dedicated  software

development, and will present validation in due time. Naturally, previous accomplishments by

WVU plasma physics research groups set the scaffold of  knowledge on which this corpus is

3



assembled,  most  notably  the  master's  thesis  of  Renaud  Stauber,  Applicability  of  Bispectral

Analysis to Unstable Plasma Waves. Stauber's work is, in many respects, the impulsion of this

thesis,  and  provides  a  comprehensive  resource  on  time-stationary  bispectral  analysis.  Also,

demonstrably integral is the insight of Sam Nogami, whose current research on toroidal Alfvén

eigenmodes  (TAEs)  in  the  DIII-D  tokamak not  only  encourages  use of  the  bispectrum for

instability  evaluation,  but  likewise  furnishes  a  spouting  well  of  informative  time-series  to

embolden  our  understanding.  Withal,  there  exists  an  absolutely  original  spark  herein.

Specifically:  as  Stauber's  investigation  was  ambivalent  toward  the  temporal  nature  of  the

bispectrum14,  potentially  valuable  information  regarding  the  time-relevancy  of  frequency

components was left unacknowledged. While not in any way erroneous, it does communicate a

challenge fundamental to a time-resolved bispectral analysis: effectively interpreting changes in

a function which not only exists in two dimensions of frequency, but is also an ensemble average.

The  zeroth-order amelioration  of  this  predicament  prescribes  periodic  accumulation  of

normalized  bispectral  content,  which  unfortunately  proscribes  any  resolution  in  frequency

space. Simply cataloging the quantity being averaged yields a three-dimensional array which is

unwieldy and highly susceptible to noise. A more refined approach15 is dimension suppression

via sums along lines in bi-frequency space;  however,  at present,  there is neither a generally

accepted method of summation, nor a consensus on the most reasonable way of displaying the

information.  Thus,  the  analyst's  diffident  hope  is  to  further  an  appreciation  of  the  entire

bispectrum  in  time, while  providing  an  affable  framework  for  future  algorithms  or

implementations.  More ambitious goals include creation of  safely surreptitious signals,  error

metrics, tools for non-stationary time-series, and general results for  n-wave coupling. Seeking

these, it is requisite to first explore the mathematical machinery behind this investigation.

4



C. Formalism

If a victory is told in detail, one can no longer distinguish it from defeat.
Jean-Paul Sartre

A  rigorous  treatment  of  bispectral  analysis  must  begin  by  invoking  statistical  moments.

For a process, f  , of a single random variable, x , with corresponding probability density, p , the

expectation value of  f  is thus:16 

                 E [ f (x)] = ∫
−∞

∞
f (x)p(x)dx = 〈 f 〉 ,  [1.7]

where 〈 f 〉 may,  in most circumstances,  be safely interpreted as the statistical  mean of  the

process (or function) f . A statistical moment, then, is defined by

                  mk( f ) = 〈 f k
〉 ,  [1.8]

where the subscript  k is said to be the  order of  the moment16. In particular, the zeroth-order

moment of any process is easily seen to be the sum of the probability density function over all

possible values of x , and must (if it is to be declared a physical process) equal unity. Explicitly,

                  ∫
−∞

∞
p (x)dx = 1 ,  [1.9]

is to be taken as tacit in real-world systems, and constitutes what is known as  normalization.

It may be convenient, however, to simply assure the convergence of the above integral, in which

case the process may be recognized as unnormalized.  Assuming this convergence, if the relation

                   ψ f (x) ≡ f (x ) − 〈 f 〉 ,  [1.10]

is introduced, then 〈ψ f 〉 = 0, and the statistical variance of  f  may be succinctly written as

                   σ
2
[ f (x )] = 〈( f −〈 f 〉)

2
〉 = m2(ψ f ) ,  [1.11]

using σ as the prototypical  notation for the process'  standard  deviation16.  In  this  use,  the

second-order  moment  gives  information  about  how  broadly  the  process  (or  function)  is

distributed about its mean value, and in general, higher-order moments reveal more about the
5



overall shape of the distribution function16. Specifically, the third-order moment of a zero-mean

process is called the skewness of the distribution, while the fourth-order is known as kurtosis,

and relates to “weight” in the distribution's tail (there is no standard nomenclature beyond this).

Now,  an  intimate  connection  exists  between  the  evaluation  of  these  moments  and  the

mathematics of convolution, defined between two functions as:16

                
h(τ) = f∗g = ∫

−∞

∞
f (x )g (τ−x)dx ,

= ∫
−∞

∞
f ( τ−x )g (x)dx .

 (1.12)

If  one of  the functions is  reflected, x→−x , the convolution  h is called the  cross-correlation

between f and g. The special case of the cross-correlation between a function and itself is known

as autocorrelation16. Explicitly, for a real-valued function,

                 R (τ) = ∫
−∞

∞
f (x ) f (x+τ)dx ,  (1.13)

where R  is the autocorrelation of  f . In an equivalent sense,  R may be imagined as an integral

function of an unnormalized expectation value:

                  R (τ) = 〈 f (x) f (x+τ)〉 ,  (1.14)

which is valid if  and only if  the function tends to zero for all but a non-infinite interval in  x;

that is, if m0 ( f ) <  ∞ . Furthermore, if  the mean is first subtracted, then the autocorrelation

becomes the autocovariance, A, of  f :16,17

                  A(τ) = 〈( f (x )−〈 f 〉)( f (x+τ)−〈 f 〉)〉 = 〈ψ f (x )ψ f (x+τ)〉 , (1.15)

and more generally, the covariance between functions f and g is16,17

                   A [ f , g](τ) = 〈( f (x)−〈 f 〉)(g (x+τ)−〈g 〉)〉 ,
= 〈ψ f (x) ψg(x+τ)〉 .

 (1.16)

Of course, in spite of this judicious use of symbolism, there has been very little explained in the

way of making sense (or at least use) of these accumulating functions.      

6



For example, though it may be a relatively elementary manipulation to see the autocorrelation as

the convolution f (−x )∗ f (x ) (for real-valued functions*),  it is not yet obvious  why such an

operation would benefit the analyst, signal processor, or scientist. Notionally, it compares the

area under the curve of point-wise multiplications between a function and its shifted reflection;

more intuitively,  it provides an immediate means of  revealing periodicities in a function by

quantifying its translational symmetries. That is, if  f  were to be periodic,

                 f (x) = f (x+τ) ∀ x ,  (1.17)

with  period  τ ,  then  the  self-convolution,  autocorrelation,  and  autocovariance  would  also

oscillate with this period. More profoundly, Fourier's theorem would then guarantee a functional

decomposition into an infinite sum of sinusoids18, of the form

                  f (x) = ∑
j=0

∞

[a j sin (2πω j x )+b jcos (2πω j x)]  [1.18]

where ω j=
j

2 τ
.  Of course,  any well-behaved† function will submit to a  Fourier transform,  a

special type of Laplace transformation defined‡ by19

                    F { f (x)} = f̂ (ω) = ∫
−∞

∞
f (x )e−2π i ωx dx ,  [1.19]

for any real number, ω. The power of this operation is transmutation of variables: if f  is originally

defined over the time domain, then f̂ is correspondingly seen to be over the frequency domain.

An interesting property of the Fourier transform is its own periodicity in iteration,

                   
F {F { f (x )}} = F { f̂ (ω)} = f (−x) ,

F {F {F { f (x )}}} = F { f (−x )} = F−1
{ f (x )} = f̂ (−ω) ,

F {F {F {F { f (x)}}}} = F {F−1
{ f (x)}} = f (x ) ,

 [1.20]

where F−1 is taken to mean the inverse Fourier transform.

* For complex-valued functions, R (τ) = f (−x )∗ f (x ) , where the overbar denotes complex conjugation.
†   It is usually sufficient to demand the function be Lebesgue integrable, or ∫

−∞

∞
∣ f (x ) ∣dx < ∞ .

‡  There are many (nearly equivalent) definitions of the Fourier transform, most differ only by a shift or scale factor.

7



Additionally,  there is  an easily derived  correspondence between the transform of  a complex

conjugate and the conjugate of the reflected transform:

                 F { f (x)} = f̂ (−ω) .  [1.21]

From which, if f  is a strictly real-valued function,

                 f̂ (ω) = f̂ (−ω) : f ∈ℜ ,  [1.22]

immediately follows. Hence, the expedient relation,

                F { f (−x)} = f̂ (ω) : f ∈ℜ ,  [1.23]

may be gleaned by inspection of Eqs. [1.20] & [1.22], and directly relates the conjugate of a real

function's transform to the transform of the functional reflection about zero. When Eq. [1.23] is

paired with the convolution theorem16, 

                 F { f ∗g } = F { f }F {g} = f̂ (ω) ĝ(ω) ,  [1.24]

the Fourier transform of the autocorrelation function is readily seen to be

                  F {R(τ)} = F { f (−x)∗ f (x)} = f̂ (ω) f̂ (ω) ,  [1.25]

and is congruent to the classical power spectrum. Now, it is a well-known fact that the power

spectrum, while useful in representing the amplitudes of frequency components, is incapable of

providing information about their respective phase offsets16. However, if one invokes the N-tuple

correlation function,

                  RN ( τ⃗ ) = 〈 f (x) ∏
j=1

N−1

f (x+τ j)〉 ,  [1.26]

then the Fourier transform of this function, S
N 

, will naturally yield information related to N-wave

coupling. That is (referring to Appendix A for the derivation), 

                     S N (ω⃗) = F {RN ( τ⃗ )} = f̂ (∑
k=1

N−1

ωk)∏
j=1

N−1

f̂ (ω j) ,  [1.27]

and should be the interpreted as the Nth-order correlation spectrum. Thus, using this convention,

8



the classical power spectrum is clearly given by N  =  2, and the so-called "bispectrum" may be

tersely (and finally) defined by N = 3, or

                B̃(ω1 ,ω2) = S3(ω1 ,ω2) = f̂ (ω1+ω2) f̂ (ω1) f̂ (ω2) .  [1.28]

Taking the inverse transform of this expression returns the unnormalized triple correlation, the

two-dimensional analogue of autocorrelation*:

                  R3(τ1 , τ2) = 〈 f (x) f (x+τ1) f (x+τ2)〉 .  [1.29]

The deep utility of this function lies in its transform's ability to relate frequency†-coupled triples,

as the bispectrum (Eq. [1.28]) will clearly be nonzero only where f̂ (ω1) , f̂ (ω2) , and f̂ (ω1+ω2)

are simultaneously nonzero. Moreover, the value of  the bispectrum at (ω
1
,ω

2
) will not simply

present information about the coupling  amplitude,  but also divulge the phase relationships

thereof, via

                     β(ω1 ,ω2) = θ( B̃(ω1 ,ω2)) = θ(ω1)+θ(ω2)−θ(ω1+ω2) ,  [1.30]

where β is the biphase, and the calculation is done in the standard way:

                   θ(ω) = tan−1
(
ℑ( f̂ (ω))

ℜ( f̂ (ω))
) ,  [1.31]

using ℜ(a+bi ) = a , and ℑ(a+bi) = b . As presented, the above “bispectrum” is conceived

by a single,  independent realization of  a process  (or function).  More generally though,  the

bispectrum‡  will represent a weighted accumulation of the bispectral content in many successive

procedures, or

              
B(ω1 ,ω2) = 〈 B̃(ω1 ,ω2)〉 ,

= 〈 f̂ (ω1+ω2) f̂ (ω1) f̂ (ω2)〉 .
 [1.32]

This is the prevailing definition in the literature, and will be what is intended by any upcoming 

*  Well, not precisely. The true triple correlation function is actually a more general form of  cross-correlation, and
thus relates three different functions (or processes): A2 (τ1 , τ2) = 〈 f ( x)g ( x+τ1)h(x+τ2)〉 . 

† A touch of glib exists here. As x is a general variable, ω will have the units [x]-1, and is thus a general "frequency."
‡Technically, Eq. [1.32] defines the auto-bispectrum. Including functions other than f  yields the cross-bispectrum.  
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utterance  of  the  term. That  is,  the  bispectrum  is  the      ensemble  average  of  the  Fourier

transformed triple correlation function.  For the sake of  clarity, and for reasons illuminated in

Section II.B, the function B̃(ω1,ω2) will be henceforth deemed the instantaneous bispectrum.

The nuance between these conjoined quantities is best illustrated with a thought experiment:

If a process' Fourier transform were (magically) described, for all trials, by:

                 f̂ (ω) = ei ϕω , ω∈{α , γ ,α+γ} ;
= 0 , otherwise ,

 [1.33]

where  α and  γ  are positive real  numbers,  and  φ
ω
 is  a  free parameter –  then  by  using  the

definitions of B̃ and β (Eqs. [1.28] & [1.30]), the instantaneous bispectrum is found to be:

                B̃ (α ,γ) = ei(ϕα+ϕγ−ϕα+γ) = e iβ(α ,γ) ,  [1.34]

and is zero otherwise. This result, though deviously simple, underscores both the productive and

pernicious nature of bispectral analysis – while the process (or function) would certainly seem to

be experiencing frequency coupling, the instantaneous bispectrum would dutifully report only

the above phasor, despite saying absolutely nil about the overall phase-coherency. Concordantly,

there would  be no quantifiable discrepancy between a process  with three phase-incoherent

oscillations (one that happened to consistently satisfy ωα+γ=ωα+ωγ ),  and one imposing a

concurrent restriction on phase relationships, such as

                   β(α , γ) = Q(ϕα ,ϕγ) ,  [1.35]

where  here,  Q  is  an  arbitrary  function.  But,  if  the  process  was  measured  repeatedly,  the

expectation  value  of  B̃ would tend  to  reflect  this  (in)consistency  as  the  number  of

measurements increased, and therefore the bispectrum would indeed announce the disparate

nature  of  these  only-slightly-different  processes.  A  word  of  caution:  the  above  function  is

stationary in time ( dβ

d t
= 0 ),  and thus any averaging done over many trials would reveal  a

10



stationary value for the bispectrum. The general case is not so. If, say, over M trials, the biphase

was defined for all values:

                  β(α , γ) =
2π t
M

,  [1.36]

where t is the trial number, then the bispectrum would be seen to be

                  B(ω1 ,ω2) =
1
M ∑

t=1

M

e
2πi t

M ,  [1.37]

which uses previous definitions (Eqs.  [1.32] & [1.34]),  and makes the reasonable assumption

each measurement is equally likely. This is tantamount to the normalized sum of the M-roots of

unity, and in the limit of M →∞ , the sum becomes the familiar integral,

                    ∑
t=1

M

e
2π it

M
→∫

0

2π

e i u du = 0 ,  [1.38]

where the equality follows from Euler's identity. Notice, though, if  the process' instantaneous

biphase obeyed a stochastic distribution over the course of  the experiment, then by a similar

argument, the calculation would simply become a sum of phasors more or less evenly spread

around the unit circle* - a circumstance represented in the exact case by the above relations.

Alternatively, this implies any linear biphase fluctuation,

                  β(α , γ) = Q(ϕα(t) ,ϕγ(t)) ∝ t ,  [1.39]

would tend to produce a null  bispectrum,  assuming the experiment is run over a sufficient

period of time. However, a sinusoidal biphase would present one of the so-called Bessel integrals,

                   ∫e i β(α , γ)dt ∝ ∫
0

2π

e i sin(u)du ,  [1.40]

which evaluates not to zero, but 2πJ
0
(1) ~ 4.81, where J

n
(x) is a Bessel function of the first kind.

Hence, the final bicoherence spectrum is reliant on the form of the biphase's time-dependency.  

* For instance, you may have noticed that Eq. [1.37] is manifestly equal to zero.
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In particular, we find  the (averaged) bispectrum cannot generally differentiate between linearly

time-dependent phase-coherency and a random distribution of phase. Albeit partially outside the

scope of this work, it is possible to compensate for this loss by considering a double integral over

the instantaneous bispectrum. Introducing the quantity,

              ξ t = ∬ B̃t(ω1 ,ω2)d ω1 d ω2 ,  [1.41]

where the subscript t incorporates some type of variability, Fourier analysis of ξ could reveal the

subjacent periodicities in phase, which might then detail the nature of the specific Q at work.

More directly (though somewhat more aesthetically), inspection of the biphase's evolution over

the course of the experiment would just as well “reveal” these rhythms. Preliminary work has led

to the use of the real part,

                  ℜ(ξ t) = ∬ℜ( B̃t)d ω1d ω2 ,  [1.42]

as a proxy for identifying this time-dependence, with limited (but verifiable) success. Compare

with the handy relation14,

                   m3(ψ f ) = R3(τ1=0 , τ2=0) ≃ ∬ℜ(B(ω1 ,ω2))d ω1d ω2 ,  [1.43]

associating  the skewness  of  the process  to a  two-fold  integration over the real  part  of  the

bispectrum, which becomes exact as the number of  trials becomes infinite (smooth in time).

Now, as a final piece of formalism, it is pertinent to normalize the bispectrum, such that it may

be described by positive numbers less than or equal to unity. A demonstrated way to do this is:4

                  b2
(ω1 ,ω2) =

∣B (ω1 ,ω2)∣
2

〈∣ f̂ (ω1) f̂ (ω2)∣
2
〉 〈∣ f̂ (ω1+ω2)∣

2
〉

,  [1.44]

where b2 is the so-called squared bicoherence spectrum. This function is real-valued, bounded by

zero and one, and represents a consistent quantification of three-wave-coupling amplitudes. 

*NOTE: Although technically incorrect, we will for conciseness omit the "squared" in further

mentions of this quantity, and will thus simply refer to Eq. [1.44] as the "bicoherence spectrum."  
12



II. METHODOLOGY

A. Computerization

On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?"

Charles Babbage

Until this point, all processes have been functions of a continuous variable. The truth, of course,

is the abundance and necessity of  discretization  in today's digital world. Explicitly, a  discrete

process (or function), f , is defined over the discrete variable, x
k
 , where k ranges from 1 to N:16

                  f :→ f (xk) , k∈[1 ,... , N ] ,  [2.1]

and whose expectation value is 

                   〈 f 〉 = ∑
k=1

N

f (xk)p( xk) ,  [2.2]

where p(x
k
) is the probability at x

k
. Then, by using the anticipatory ideas of our biphase thought

experiment (Eq. [1.37]), if the process is governed by a constant probability distribution,

                   〈 f 〉 =
1
N
∑
k=1

N

f (xk ) → p (xk )=
1
N

∀k .  [2.3]

In the special  case where  x
k
 represents a  temporal value,  then the ordered pairs,  {x

k  
,
 
f (x

k
)},

are known as a time-series. Furthermore, if the x
k
 values of a time-series are equidistant,

                    xk+1−xk = Δ , ∀k∈[1, N−1] ,  [2.4]

the characteristic time, Δ , is known as the sampling period, and its inverse is the corresponding

sampling frequency, ωs = 1/Δ . If the (real) functional values of a time-series, sampled at ω
s
,

are subject to the discrete Fourier transform, or DFT19,

                       F { f } = f̂ (ωk+1) = ∑
n=0

N−1

f (xn+1)e
−

2π in k
N ,  [2.5]
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then a fundamental result in signal processing, the Shannon-Nyquist sampling theorem, states

the transform will be aliased, or reflected, about the special frequency:16

                  ω̃ =
1

2 Δ
=

ωs

2
,  [2.6]

known as the Nyquist frequency of the time-series. That is,

                   f̂ (ωk+1) = f̂ (ωN−k+1) , ∀k≤[[
N−(N+1)mod 2

2
]] ,  [2.7]

where  the  expression  following  the  inequality  defines  [[x ]]≡ floor (x ) ,  uses  modular

arithmetic, and the shift  k+1 is due to the particular value* of  f̂ (ω1) = N 〈 f 〉 . Comparing

relations, the Nyquist frequency is quickly seen to be at ωN /2+1 (provided N is even†). What's

more, the difference in successive values of ω
k
 , or the frequency bin size, is given by16

                δω =
1

N Δ
=

ωs

N
,  [2.8]

leading to the indispensable equivalency,

                 ωk+1 = k δω → ωk =
(k−1)ωs

N
.  [2.9]

Using this, the discrete instantaneous bispectrum is defined:

                  B̃i(ω j ,ωk) = f̂ i(ω j+k−1) f̂ i(ω j) f̂ i(ωk) , j+k≤
N
2
+1 ,  [2.10]

where the subscript  i anticipates summation,  and the inequality restricts the function to an

unaliased  region  of  frequency  space.  Additionally  (in  lieu  of  symmetry  across  the  trace),

limiting the function to indices satisfying k≤ j provides a two-fold computational reduction

(when  compared  to  a  N/2 + 1  x  N/2 + 1  matrix). This  lovely  degeneracy  will  be  continually 

* If the DFT is defined as f̂ (ωk+1) =
1
N ∑

n=0

N−1

f (xn+1)e
−

2π ink
N , then f̂ (ω1) = 〈 f 〉 , conveniently.

† This isn't really asking much. Padding odd-N signals with a single zero eliminates the need for pesky specifications
on functions, while also removing certain would-be footnotes on this page and the next. Thus, N is forthwith even.
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exploited  to  truncate  the number of  steps  between a DFT and  an  “instantaneous”  slice  of

bispectral content. Taking an ensemble average of Eq. [2.10] yields

                  B(ω j ,ωk ) = 〈 B̃i(ω j ,ωk)〉 =
1
M

∑
i=1

M

f̂ i(ω j+k−1) f̂ i(ω j) f̂ i(ωk ) , [2.11]

the discrete bispectrum, where M is the number of distinct realizations, and the aforementioned

restrictions on j and k remain. Likewise, using Eqs. [1.44], [2.3], & [2.11],

                   b2
(ω j ,ωk ) =

∣B(ω j ,ωk)∣
2

(
1
M

∑
i=1

M

∣ f̂ i(ω j) f̂ i(ωk )∣
2
)(

1
M

∑
i=1

M

∣ f̂ i(ω j+k−1)∣
2
)+ε

,  
[2.12]

is the discrete bicoherence spectrum, where the small number ε protects from 0/0  catastrophe.

Apropos is now the very important query:  What exactly  is  a distinct  realization? The above

summations involve M distinct DFTs, of  M individually realized time-series (each of length N).

Is the signal processor, analyst, or scientist truly expected to constantly re-appropriate the initial

conditions of  a process (or function) in order to accrue the requisite statistics? Certainly, the

general answer is  probably not. Thus, a great deal of progress has been made in using a single

time-series as a source of multiple realizations. For instance, if N = 210 = 1024, and ω
s
 = 100.0 Hz,

the corresponding DFT bin size is δω =
ωs

N
= 0.09765 Hz, and the resolution, defined as the

inverse of this quantity, 1
δω

, is 10.24 seconds. This implies the maximum resolution of a time-

series, sampled at  ω
s
, of length N, is N

ωs
, and is equivalent to the time-series' duration. It is

trivial to see higher resolution as synonymous with smaller bin size and vice versa, yet, a far more

basal connection is at hand: as currently implemented, the DFT has in some sense corrupted our

understanding  of  the  time  evolution  of  the  process  (or  function).  Granted,  the  frequency

resolution  is  high  (bin  size  is  small  compared  the  Nyquist  frequency, δω ≪ω̃ ), yet
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the  temporal  resolution is  manifestly  abysmal.  For  assurance,  compare  the  time-series

(discretized in blocks of  0.01 seconds), to the “time resolution” of  our frequency knowledge;

where, despite having useful information about the amplitudes of  511* frequency components

between 0.09765 and 50.00 Hz, there seems to be nothing to say about when they occurred over

the 10.24  seconds of  measurement.  Therefore,  it  becomes advantageous to trade away some

portion of frequency resolution in order to aptly resolve the frequency analysis in time. The most

intuitive way to proceed is simply by sub-sectioning the time-series by a perfect divisor of  N,

taking that many DFTs, and stitching the information together to yield a spectrogram, or plot of

DFT magnitude over time. In the language of mathematics, this reads:

                  
Ψ(t i ,ωk) = ∣ f̂ Ñ , i(ωk) ∣

2 , k∈[1 , ... , Ñ ] ;

t i =
i Ñ
ωs

, i∈[1 , ... , η] ,
 [2.13]

where Ψ is the spectrogram, η is the number of subdivisions, and the further definitions† ,

                   
f̂ Ñ ,i(ωk) = F { f i(xk)} ;

f i(xk) = f (xk) , k∈[1+(i−1)Ñ , ... , i Ñ ] ;
Ñ = N /η , N mod η=0 ,

 [2.14]

complete  the  thought.  It  may  be  gathered  from  inspection  that  the  maximum  frequency

resolution has been reduced by a factor equal to the number of sub-series‡. Explicitly, if the time-

series from above is divided into 8 equal segments, the associated bin size is 0.7813 Hz, and the

spectrogram of the series will have temporal resolution of 1.280 s. Depending on the nature of

the frequency range being studied, these changes may or may not be of utility, but in general,

this approach (known as the short-time Fourier transform, or STFT) is quite beneficial to science.

*  The first bin may be safely ignored if  the expectation value of  the function (or process) is zero, which can be
trivially  guaranteed by defining a new, zero-mean process, à la Eq. [1.10].

†The second half of the second line might  have read: k∈[1+(i−1) Ñ , ... , i Ñ ] , where the underline is used as a
secondary notation for the floor (integer part) function,  if the following line did not promise a perfect divisor.
However, even if η doesn't evenly divide N, then simply appending zeros, N ' = N+η−N mod η , satisfies the
above condition for any positive integer η < N.

‡Notice, though, as the sampling rate is unaffected, the highest resolvable frequency (Nyquist) hasn't changed. 
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The technique may be taken further by assessing the diagnostic length of a sub-series, Ñ , and

shifting a window of this extent by some number of samples,  λ , until the entire time-series is

processed.  These  overlapping subdivisions  can  produce  a  glut  of  time-resolved  frequency

information in otherwise length-restricted circumstances (N < 104 by contemporary measure),

but will necessarily suffer from blur (a noticeably smeared spectrogram) if  λ is too small relative

to Ñ. Now,  although the STFT,  other time-resolution methodologies  (i.e.,  wavelet20,21),  and

their capabilities are a turgid undercurrent to this investigation, their exact implementations or

descriptions are not the crux of this work. [Investigate the appendices for elucidation of these

very interesting topics.] In terms of applicability to bispectral analysis, the zeitgeist of the prior

discussion is  sub-sectioning a time-series constitutes distinct realization. Finally, it seems, the

machinery developed over the past many pages is ready to interpret real, physical phenomena.

But not so fast. Looking all the way back to its definition (Eq. [1.19]), the Fourier transform's

convergence  is  precluded  by  functions  (or  processes)  which  do  not tend  to  zero  at  their

endpoints,  as  they  will  be non-normalizable.  And  though the  DFT  of  any  real  vector*,  x
k
,

converges, there should remain some worry as to how honestly this discrete operation models

the spirit of a Fourier transform. These concerns orbit the theory of windowing functions, which

studies the frequency domain effects of multiplying the functional values of a time-series by a

particular function in the time domain22. Explicitly,

                 f Γ(xk) = Γ(xk) f (xk) ,  [2.15]

where thus far, the analysis has implicitly used the uniform, or rectangular window:

                  Γrect (xk) = 1 ,  [2.16]

and  Γ  is not the generalized factorial, but more a handle for an arbitrary windowing function. 

* Provided none of the entries equal “inf” or “NaN.” There is no hope for those kind of vectors, real or otherwise.
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If  a noise-free time-series representing a perfect sine wave  just  so  happens to be an integer

multiple  of  the  wave's  period  (temporally),  the  uniform  window  is  nonpareil  at  properly

“binning” the wave's frequency – this is easily understood by considering the analogy to a Fourier

series. In the plurality of cases, however, the time-series will not meet this criterion, and the DFT

will suffer spectral leakage, or spillage of frequency information into bins for which there is no

active oscillation22. In other words, the rectangular window will introduce synthetic frequency

components in compensation for a discontinuity between the end-points of  the time-series.

These spurious features are called sidebands, and much of the theory of windowing functions is

formed around making the proper bins more parsimonious, i.e., improving the uniform window.

Naturally, these other windows do vary over the course of a time-series, and most seek to retain

the qualities of  f ( x
k
) near the middle of the series, whilst reducing the values of f 

Γ
( x

k
) to zero at

the endpoints22. That is, the primeval window function intends naught but 

                 Γ(x1) ≈ Γ(xÑ ) ≈ 0 ,
Γ(xÑ /2) ≃ 1 .

 [2.17]

A bit  of  mathematical  divination  might  point  to  the  derivative  of  a  sigmoid,  or  S-shaped,

function (the archetype being arctangent), and rightly so: any Gaussian or pulse-like distribution

will exhibit features similar to those indicated by the above relations, up to a shift or scale factor.

If a general class of window, based on powers of the half-period sine, is given by22

                 Γα(xk) = sinα(
π(k−1)

N−1
) ,  [2.18]

then the trivial case, α = 0, becomes the rectangular window, α = 1 defines the sine window, and

the special  case  α =  2 is  the  Hann window.  Other,  more complex distributions –  based  on

orthogonal polynomials, Bessel functions, exponentials, or convolutions thereof – abound in the

literature, as the reduction of errant frequency binning is paramount to a viable signal analysis.  
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B. Implementation

Miserable me! with what contrition,
I shuddered when he lifted me, saying: 'Perhaps

you hadn't heard I was a logician.'
Dante Alighieri  -  Inferno, Canto 26 

The past two subsections have served to build an understanding of the bispectrum's functional

pedigree  and  discretization,  respectively.  The  intention  of  this  subsection,  therefore,  is

delineation of the software package used to actually compute the analysis' bispectra. As far as

algorithmic approach is concerned, it is relatively forthright:

• Obtain a time-series  of  sampling  rate  ω
s
 and length  N  samples.  Declare the highest

essential frequency in the present analysis (not necessarily the Nyquist).

• Choose the way the time-series will be sub-intervalled, and if these sub-series will overlap

in the time domain – call  the total number of intervals M.

• Determine the desired resolution by assessing T, the temporal length of these sub-series,

and comparing it to the required computational compromises.

• Use this information to preallocate a L x L x M array, where L is the index limitation.

• Cleave the time-series, and for each subsystem:

• Subtract the mean and multiply by a selected window function.

• Perform fast  Fourier  transform (FFT),  normalize  result  by  number  of  samples  in

subsystem, truncate to a length of L, and concatenate to  build spectrogram.

• Calculate  the  instantaneous  bispectrum  and  normalization  matrices  using  FFT

coefficients, use to produce instantaneous bicoherence spectrum, keep sums.

• Use final sums to determine the cumulative bispectrum and bicoherence spectrum.

• Relay all of this information to user.
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This process constitutes the circulatory system of  a broader bispectral  toolkit,  affectionately

dubbed Bicoherence Analyzer. More than a highly imaginative moniker, BicAn offers the physicist

or data scientist a consistent workspace to evaluate a signal's  overall  bicoherent features,  in

conjunction with those features' temporal manifestation. Built as a MATLAB application, BicAn

encompasses over 2000 lines of code.*, and is designed to be simultaneously user-friendly and

comprehensive: the program runs on any version of MATLAB, R2009b or later; raw data may be

loaded from inside the application's workspace or imported, and any real-valued vector may be

analyzed;  input is  straightforward  and  responsive,  with  user alteration of  parameters  being

immediately reflected by changing colors or fonts; export of figures as .jpeg or vector images is

supported,  and the entire workspace may be saved or loaded at will.  Standard visualization

techniques such as oscilloscope, Fourier transform, autocorrelation, instantaneous frequency,

phase-space,  and spectrography are blatantly incorporated; the user has quick,  unambiguous

access  to  a  signal's  cumulative  bispectrum (real  &  imaginary  part,  and  phase),  cumulative

bicoherence spectrum, and the evolution of both of these quantities, in the “instantaneous” and

accumulative senses. Typical bispectral metrics, like summation of  the bicoherence spectrum

and its  maximum value,  are perpetual  in  their presentation;  and  recent developments,  like

logarithmic convolution spectra or four-dimensional bispectral  maps,  can be integrated with

relative ease. For the purposes of this thesis, BicAn is everything except a physical laboratory, and

exists as an objective means to replicate or confirm the claims and analysis herein. Additionally,

it  presents  a  capable  platform  for  direct  utilization  of  the  so-called  instantaneous,  or

unaccumulated, bispectrum. While somewhat mis-titled, as it is most certainly not computed for

every sample, modern digitization standards are fast enough to calculate Eq. [1.28] many times a

* Appendix B covers this contraption in far more detailed terms, and most of the deeper computer science lives there.
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second, enabling this quantity to be smoothly visualized while the application is processing.

Furthermore, a built-in subordinate program permits the user to view a real-time calculation of

local  auditory  bispectral  features,  from  time-series  gathered  via  the  computer's  native

microphone. Currently, this applet makes samples at a rate of 16384 Hz, buffered in blocks of 512

samples: giving a Nyquist frequency of  8192 Hz, a temporal resolution of  0.03125 s, and Fourier

bins  32 Hz wide. As these parameters are relatively well suited to the higher registers of  the

human  voice  –  and  many  musical  instruments  –  the  applet  is  adroit  at  identifying  vocal

“fingerprints,” and more completely quantifies the musical concept of  timbre. Though outside

the intention of this work, future implementations would look to improve the resolution and

widen  the  bandwidth  such  that  the  complete  audible  spectrum  (20-20,000  Hz)  could  be

faithfully analyzed,  with direct applications in speech recognition,  sound engineering,  audio

production, and architecture. However, in more proximal issues, the general algorithm described

by this subsection, which might be called  short-time analysis of bicoherence, presents its own

thicket of  obfuscations.  Currently,  this method is highly taxing on memory requirements, as

BicAn aims  to  record  all  possible  evolutions  of  the  bispectrum (or bicoherence spectrum).

In theory,  reducing this computational  overhead is quite simple;  however,  regaining the lost

perspective  is  absolutely  not.  In  lieu  of  this,  attempts  have  been  made  to  economize  the

algorithm's impact on both RAM and the CPU, yielding an order of  magnitude reduction in

processing time over the original program. Filtering is also an issue: as conventional digital filters

can  impose  a  frequency-dependent  phase  shift,  their  naive  application  may  lead  to  a

misrepresentation  of  bispectral  dynamics,  thus,  phase-free filters  should  be used  whenever

possible.  Outside of  these,  BicAn may be seen as particularly efficient means of  bicoherence

visualization, as virtually all of the included figures were directly exported from it.
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C. Data Sources

He that would have a short Lent, let him borrow money to be repaid at Easter.
Benjamin Franklin  -  Poor Richard's Almanack, Vol. 1, 1738 

In  terms of  sheer numbers,  samples  from  audio signals  substantiate  the great bulk  of  this

analysis, but by no means should this be construed as a deficiency of  physically relevant data.

In fact, the case is quite the converse: as of writing, upwards of ten billion individual samples

from well  over 1000 distinct time-series (borne from four unconnected processes) have been

investigated  with  BicAn and  its  subapplets.  More  meaningfully,  with  sampling  frequencies

spanning the glacial (248 millihertz) to the patently alacritous (512 kilohertz), the technique has

been verified across six orders of magnitude, with hopes of further broadening this bandwidth

[see Appendix C]. The sources of these time-series are as follows:

1) DIII-D tokamak23

Owned by the General  Atomics company and located  in San Diego,  CA,  this

toroidal device has been operating since the end of the 1980's, and specializes in

confined fusion research. The D in the nomen is in deference to the tokamak's

non-circular cross-section,  which serves  to inhibit certain plasma instabilities.

A  demonstrable  non-linearity  in  this  system  is  a  special  oscillation  of  the

magnetic field lines themselves,  otherwise known an Alfvén eigenmode  (AE)24.

Measured  by  an  inducting  Mirnov  coil,  the  typical  sampling  rates  for  these

moderately noisy data range from 200 to 512 kHz, where the sampled duration is

about a half second, on average. A very high resolution is thus attainable because,

by oscillating  at an appreciable fraction of  the Nyquist frequency,  the AEs in

question permit many Fourier bins. More interestingly, as there are actually eight

coils  positioned  around  the tokamak's  inner cavity,  information from several-
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second runs of the machine (or shots) also bear this multiplicity; mountains of

data notwithstanding, these nigh-synchronous time-series admit the heretofore

forgotten  idea  of  correlating  three  distinct  processes.  Most  importantly,  these

shots have been curated by Dr. William Heidbrink to exhibit AE interaction.

2) Cluster-II satellite installation25

A mission by the European Space Agency operational since August 2000, these

four  satellites  have  become  integral  components  for  contemporary  study  of

Earth's magnetosphere, the region of our Solar System where charged particles are

affected predominantly by the planet's magnetic field. Operating in a tetrahedral

configuration, the distance between the satellites may be varied from 100 to 10,000

km,  which  enables  spatial  resolution  for a  host  of  intriguing  (and  otherwise

inaccessible)  phenomena.  Of  particular  interest  is  the  behavior  of  Earth's

magnetopause,  the distinct boundary between its magnetosphere and a broad

stream of Sun-sent plasma known as the solar wind. The two time-series under

observation were generously lent by colleagues at the Moscow Space Institute, and

measure  components  of  the  Poynting  flux,  a  vector  quantity  related  to  the

direction  of  an  electromagnetic  energy  flux26.  The  data  represent  an

approximately  16  hour  period  of  time,  and  are  sampled  at  0.248  Hz.  At

counterpoint to the tokamak analysis, the studied waves wobble at less than 10%

of  the Nyquist frequency,  seriously limiting  resolution in that domain.  When

paired with its sparse nature (N ~ 15000), these data push the limits of  BicAn's

capabilities, as resonances in the fractions of  millihertz are firmly suggested by

wavelet methods.
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3) Van der Pol oscillator via unijunction transistor (UJT)

As briefly  noted  in  Section I.B,  the solutions of  van der Pol's  non-linear differential

equation  are  generally  not  well-understood.  Using  an  otherwise  spartan  circuit,  a

unijunction transistor facilitates research into these dynamics by providing a physical

realization of  van der Pol's damping term [see Fig. 32]. Depending on amplitude (and

other factors), driving this apparatus near its resonant frequency elicits periodic pulling, a

phenomenon where the driven frequency is quickly and repetitively "pulled" toward the

driving oscillation, which creates asymmetric sidebands and a distinctive, non-sinusoidal

amplitude modulation9.  Performed on WVU's main campus,  these data were recorded

with a LeCroy waveRunner 6100 1GHz oscilloscope, sampling at 500 kHz; the circuit was

energized  by  two  Hewlett-Packard  E612A  power  supplies,  and  driver  signals  were

controlled by an Elenco GF8046 3MHz function generator. The resonant frequency of the

oscillator was found to be ~ 6.5 kHz, while the driver was set at ~ 8.5 kHz.

4) Audio signals

Nominally  the  least  "scientific"  data,  these  time-series  instead  represent  a

visceral  measure of  the analyst's  investment,  refinement,  and comprehension.

Produced on a laptop computer (HP Envy) using an Intel i5-4200U @ 1.60GHz,

the  signals  were  interpolated  with  FL  Studio  9  (a  proprietary  digital-audio

workstation), rendered as 32-bit .wav files, and are invariably sampled at 44.1 kHz.

As FL 9 supports custom plug-ins,  dedicated synthesizers were constructed to

display  particular  bicoherent  features,  and/or  to  evaluate  new  approaches.

Therefore, sensu lato, these data are a contemplation on the very meaning of the

bicoherence spectrum, and no less a vehicle for far more imaginative applications. 
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III. ANALYSIS

A. Testing

Thus the unfacts, did we possess them, are too imprecisely few to warrant our certitude...
James Joyce  - Finnegan's Wake

The developments of Section II.B are not yet proven. That is, neither BicAn nor its underpinning,

the short-time analysis of bicoherence (STA|B) algorithm, have been assessed for consistency.

In particular, the zeroth-order gut check of the technique (as developed) is the idealized case of a

time-series exhibiting one stationary frequency component over the  entire sampling duration,

where prior discussions would predict a null bispectrum and bicoherence spectrum. Moreover,

as the remainder of this subsection will deal with an essentially homogeneous type of function, it

is prescient to introduce the shorthand,

                ((ν ;ϕ)) ≡ cos(2πν xk+ϕ) ;
ν∈ℜ , ϕ∈[0 ,2 π] ,

 [3.1]

where x
k
 is as before, but it is here defined to be a 10.0 s time vector, comprising 104 data points,

and thus sampled at 1.0 kHz. With this, a 255 Hz pure cosine may be compactly represented by

((255;0)), which is of course the intention. Fig. 1a shows the FFT of this function, while Fig. 1b

affirms the accumulated bicoherence spectrum is null across all frequencies. Of note: using the

maximum resolution, the bispectral matrix is 5000 x 5000, as the bin size is 0.1 Hz. This clearly is

unnecessary based on the frequency of the cosine, and it stands to reason the time-series may be

safely sliced into 10 equal parts. This will be the convention for the remainder of this subsection*.

Fig 2a shows the FFT of the new function:

               f (xk) = ((142 ;0))+((255 ; 0)) ,  [3.2]

now the sum of two cosines, and Fig. 2b presents a bicoherence spectrum almost equal to zero.

* Actually, each spectrum represents 19 subsections, as a 1000 sample window was stepped in 500 sample increments.
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Though difficult to predict without changing the z-axis limits, the sum of bispectral values is not

precisely naught. To understand this, consider the function:

                  f (xk) = ((130 ;0))+((260 ;0)) ,  [3.3]

a 130 Hz oscillation and its (in-phase) second harmonic. The FFT and bicoherence spectrum for

this function are shown in Fig. 3, where the bicoherent features are seen to be vastly different

than the past two functions.  Why? Because the superposition principle implies this function is

no different than

                  f (xk) =
1
2
((130 ; 0))+

1
2
((130 ;0))+((260 ;0)) ,  [3.4]

and the bicoherence spectrum of  this function should absolutely be nonzero at (130,130)Hz.

What this means is a time-series containing only an oscillation and its octave may still populate

the main diagonal of the bispectrum –  the first real caveat in interpretation. Nonetheless, the

next function to be examined is three phase-coherent cosines,

                 f (xk) = ((142 ;0))+((255 ; 0))+((397 ;0)) ,  [3.5]

and whose FFT and bicoherence spectrum are shown in Fig. 4. In essence the definitive case, this

function is seen to display a strong peak (b2 ~  1) at (142,255) Hz, directly in line with theory.

The same bicoherence should likewise be represented by a constant phase relationship, such as

                f (xk) = ((142 ;0))+((255 ; 0))+((397 ;π/2)) ,  [3.6]

which is confirmed by Fig. 5. Just as important, then, are the differences between the real part of

their  bispectra  (displayed  in  Fig.  6).  Now,  according  to  the  discussion  of  Section  I.C,  the

bicoherence spectrum will equal zero if the biphase is random, or is linear in time. That is,

                   f (xk) = ((142 ;0))+((255 ; 0))+((397 ;2π
k

1000
)) ,  [3.7]

represents the sum of three cosines with a time-dependent phase difference, and is expected to

yield a null bicoherence spectrum. Fig. 7 demonstrates this quite contrived consideration is true.
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In terms of more physically realizable functions, the general equation,

                   qcos(a , b ,ϕa ,ϕb) ≡ ((a;ϕa))+((b; ϕb))+((a; ϕa))((b ;ϕb)) ,  [3.8]

represents quadratically coupled cosines, equal to:

                  ((a;ϕa))+((b; ϕb))+
1
2
((a+b ;ϕa+ϕb))+

1
2
((a−b ;ϕa−ϕb)) ,  [3.9]

by the well-known trigonometric relation. As many non-linear instabilities are related to this

type of frequency and phase coupling2,14,27, it is of particular importance to the analysis. The first

three terms in Eq. [3.9] immediately imply a bicoherent feature at (a,b), and further bicoherence

is suggested at (b,|a-b|), by inspection. Explicitly, the function

               f (xk) = qcos(255 , 142 ,ϕa ,ϕb) ,  [3.10]

should show bispectral features at (255,142) Hz & (142,113) Hz, as long as φ
a
 and φ

b
 are constant

during sampling. Fig. 8b shows peaks nearing unity at exactly those locations. More generally

though, Figs. 9 & 10 report the bicoherence spectra of the functions,

                 

f (xk) = qcos(245 ,142 ,κ ,0)

κ = 2π
k

1000
, &

f (xk) = qcos(245 ,142 , ra, k , rb, k)

r i ,k = 2π∗rand

 

[3.11a]

[3.11b]

respectively, where rand is a (pseudo)random number between 0 and 1. In words, Fig. 9b implies:

frequency-stable quadratically coupled cosines may exhibit a signature bicoherent feature even in

the  presence  of  linear  time-dependencies  in  phase  – a  serendipitous  result  explained  by the

biphase tending to naught at the frequencies,

                  β(a , b) = ϕa+ϕb−(ϕa+ϕb) = 0 ,
β(b , a−b) = ϕb+(ϕa−ϕb)−ϕa = 0 .

 [3.12]

Fig. 10, on the other hand, has no pronounced bicoherent features, as Eq. [3.11b] describes an

unusual  (if  not  pathological)  process  where  each  sample's  phase  is  randomly  distributed
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between 0 and 2π, and is nowhere phase-coherent. This begs the question: Is there a meaningful

way to assess the veracity of a bicoherence spectrum? The answer, it seems, is a resounding very

likely. If the relation between skewness and B (Eq. [1.43]) is discretized,

                     
1
N
∑
k=1

N

( f (xk)−〈 f 〉)
3

= ρ ∑
n ,m

L

ℜ(B (ωn ,ωm)) ,  [3.13]

where L is the index limitation, and ρ is a correction factor related to windowing*,

                  ρ = 12(
1
N
∑
k=1

N

Γ(xk) )
−1

,  [3.14]

the l.h.s. of Eq. [3.13] is then known as the meancube (skewness). Comparing the sum of the real

part of the bispectrum (r.h.s. of Eq. [3.13]) to the meancube seems to be an objective measure of

a bicoherence spectrum's validity. The following table was constructed by assessing both values

for the covered test functions:

TABLE 1

Comparison between meancube and sum of real bispectrum for various processes.

Process                                                                      Meancube                                  Σ   Re(B)                                 

Single tone (Fig. 1b) ................................................ <1E-012 ........................... 6.251E-009 ...........................

Two tones (Fig. 2b).................................................. <1E-012 ........................... 6.014E-007.............................

Harmonic (Fig. 3b)..................................................... 0.7500 ................................ 0.4717 ...............................

Phase-coherent cosines, 0o (Fig. 4b).......................... 1.500 ................................. 1.499 .................................

Phase-coherent cosines, 90o (Fig. 5b).................... <1E-012 ........................... 8.134E-007 ............................

Time-phase coupling  (Fig. 7b).............................. <1E-012 ............................. -0.05951 ...............................

Q-coupled cosines (Fig. 8b)....................................... 1.500 ................................. 1.499 .................................

Phase-oscillating q-cosines (Fig. 9b) ........................ 1.500 ................................. 1.499 .................................

Random-phase q-cosines (Fig. 10b) .......................... 1.519 ................................. 1.114 .................................

* The factor of 12 relates to an unmentioned hexagonal symmetry in the complex plane. See Ref. 14 for more details.
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There is much to be observed in Table 1, and it is not all ob viam. To begin, any value less than

0.000001, or 10-6, should be assumed to be zero, considering accumulative error propagation in

double precision numbers. With this, the values of the meancube and summed real bispectrum

are seen to be in excellent equivalence, with three flagrant exceptions: the "harmonic" case of a

fundamental tone and its octave, dynamic phase-coherency (Eq. [3.7], "time-phase coupling"),

and the "random-phase q-coupled cosines" (Eq. [3.11b]). For the last case, it is interesting that

the meancube is  relatively  unchanged  (when compared  to phase-static quadratic coupling),

while the summed value has been reduced by a significant fraction (~25%). In fact, there appears

to be a direct connection between the degree of  phase-entropy [defined as the ratio of  the

amplitude of random phase fluctuations to φ] and the value of this decrease, corroborated by

Fig.  11a.  However,  as  Eq.  [3.11b]  represents  a  non-physical  system,  further  considering  its

implications will be of little use. Toward more salient ends, Fig. 11b displays the effect of raising

Eq. [3.8]'s phase "frequency" from 0.00 to 1.00 Hz, and highlights the time-independent phase-

coherency condition as outlined in Section I.C. The meancube and summed real bispectrum are

seen to follow a similar distribution versus this frequency,  appearing to be highly correlated.

Thus, somewhat surprisingly, the analysis of Eq. [3.3] reports the lone meancube anomaly, and

actually requires the most delicacy: consider the unnormalized sum of K harmonic cosines,

                 C K (ν ,ϕ) = ∑
n=1

K

((nν ;ϕ)) ,  [3.15]

with corresponding (idealized) Fourier transform,

   |Ĉ K (ω)| = 1 , ω=nν , n∈[1 , ... , K ] ,
= 0 , else .

 [3.16]

Notice, as in Eq. [3.4], the fundamental tone ("ν" Hz) may be split into two waves of half  the

amplitude,  which meet the bispectrum's frequency-sum condition for the second harmonic.
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More generally, the frequency of the Kth harmonic is seen to satisfy many simultaneous relations,

equal in number to P(K)-1, where P is the partition function*. For clarity, imagine K = 5. Then,

neglecting permutations, there are P(5)-1 = 6 equations,

                

5ν = ν+ν+ν+ν+ν ,
= ν+ν+ν+2ν ,
= ν+ν+3ν ,
= ν+2 ν+2 ν ,
= 2ν+3 ν ,
= ν+4 ν ,

 [3.17]

appeased  by the frequency of  the fifth harmonic.  This is  non-trivial,  and implies  C
5
 would

exhibit bicoherent, tricoherent, quatrocoherent, and pentacoherent features. In fact, considering

only the bicoherence of these five oscillations leads to a demonstration of every possible 2-sum:

                   

2 ν = ν+ν ,
3ν = ν+2 ν ,
4 ν = ν+3 ν ,

= 2ν+2ν ,
5ν = ν+4 ν ,

= 2 ν+3ν ,

 [3.18]

and is presented in Fig. 12b. Furthermore, Fig. 13a evinces a connection between the meancube,

summed  real  bispectrum,  and  harmonic  number  (K),  whereby a  tentative  relation  may be

posited (observing Eq. [3.13]),

                 

ρ ∑
j ,k

ℜ(B(ω j ,ωk))

〈( f −〈 f 〉)
3
〉

= Φ ~ 1+K
−

3
2+ϵ  [3.19]

using  ε as a small  correction factor.  Additionally,  Fig.  13b shows this connection is virtually

invariant with respect to a phase shift (φ in Eq. [3.15]), which may warrant a deeper investigation

in the future. For now, it shall be sufficient to understand the comparison between the summed

real bispectrum and meancube as a context-sensitive test of bispectral accuracy.  Beyond this, the

implementations from Sections II.A,B have been found quite valid for stationary bispectra.  

* The one from number theory, that is. It counts the ways a positive integer can be expressed as a sum of integers.
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B. Interpretations

Is the universe rotating yet?
Kurt Gödel

This  world  is  inundated  by  sound.  Therefore,  an organic place to  begin understanding  the

temporal dynamics of the bispectrum (and with it, the bicoherence spectrum) is by studying an

immediate and palpable subject: rhythmic pressure variations in local fluid structure, or audio.

A  convivial  consequence  of  the  prior  subsection  is  the  bicoherence  implicit  to  harmonic

oscillations: applying the analysis of Eq. [3.15] to basic tenants of waveform synthesis, it should

be readily seen that a conventional sawtooth wave,

                  Saw (ν ; t ) = ∑
n=1

∞ 1
n

sin (2πnνt) ,  [3.20]

will exhibit an array of bicoherent features, increasingly attenuated at higher frequencies. Fig. 14

reports this precisely, and uses a 50 Hz sawtooth over 10 s, sampled at 44100 Hz. Now, a well-

known example of  a richly harmonic (read:  sawtoothy) process in music is the characteristic

vibration of a bowed instrument, like a cello or viola. Fig. 15 shows the bicoherent features in an

audio recording, graciously provided by an associate of the analyst, containing a few seconds of a

G
1
 note (~  60 Hz) produced by a 19th Century cello.  Notice the conspicuous absence of  the

fundamental in the FFT (Fig. 15a), despite it being adamantly alleged by the distance between

harmonics.  Going  further,  the  bicoherence  spectrum  (Fig.  15c)  unveils  a  two-dimensional

structure in these frequency components,  whose height is  a function of  FFT amplitude and

cumulative phase-coherency. This begs the question:  Is there a bispectral analogue of spectral

power estimation? That is, can the bicoherence spectrum be reduced in dimension, such that it

reports the level of coupled-frequency contributions from each component? If this were possible,

then an allusion between this new metric and the traditional  power spectrum would surely
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enlighten  analyses  of  coupled-frequency,  phase-coherent  processes.  To  develop  the  idea,

consider the idealized discrete bicoherence spectrum,

               b2
(ω j ,ωk) = 1 , [ j , k ]=[10 ,3]

= 0 , else .
 [3.21]

for some particular time-series. Then, the discussions of Sections I.C & II.A dictate the presence

of  frequency components at ω3 ,ω10 ,and ω12 (noticing ωi+ω j=ωi+ j−1 ).  Thus,  by invoking

the unsightly relation (please refer to Fig. 16a,d,e for further explanation),

Y (ωk ) = ∑
l=[[ k /2 ]]+1

k−1

b2(ωk−l+1 ,ωl)+ ∑
m=1

min(k , L−k)

b2(ωm ,ωk)+ ∑
n=k

L−k+1

b2(ωk ,ωn) ,
[3.22]

lines of constant bispectral frequency may be accumulated into a single-variable construction.

This cumulative bispectral power (CBP) should be used as an intermediary between a DFT and

the  bispectrum, as the latter may become quite complex when many frequencies are at work.

Though  the DFT and CBP are quantitatively equivalent in the above exposition (Eq. [3.21]), Fig.

15d adduces the qualitative discrepancies between the cello's power spectrum and its coupled-

frequency compliment. Seeking a loose interpretation, it appears the instrument's fourth and

sixth harmonics, despite being higher in amplitude, are less bolstered by frequency interaction

than the second or third. In any case, Eq. [3.22] suffers a temporal ailment, congruent to the

standard DFT's ignorance of the time domain (discussed in Section II.B). To fix this, the CBP is

found  at  each  bicoherence  summand,  and  the  results  are  threaded  together  to  yield  a

bispectrogram  – a plot of  the cumulative bispectral  power over time.  Fig.  16  compares this

approach to the canonical spectrogram (for the cellist's recording), and is the first demonstration

of temporal bispectral techniques herein. Seguing toward this broader topic, Fig. 17 relays the

complete analysis  of  a  rising  sawtooth tone,  and enables  an overt examination of  the thus

formulated methodology. Correspondingly, as this is the first studied time-series to purvey in
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frequency-domain dynamism, the accumulative nature of the bicoherence spectrum may finally

shed its occlusion. Contrary to the static,  harmonic matrix seen previously,  Fig.  17c  heralds

smeared  low-frequency  features,  which  bloom  into  distinct  and  structured  peaks  as  the

sawtooth's pitch is raised.  Clearly,  the bicoherence spectrum has accrued contributions from

each subsection of the time-series, and is presenting all instances of  phase-coherent frequency

couples. Furthering the formulation, it is possible to contrive signals such that the bicoherence

spectrum is designed, or equivalently: by frequency-modulating three (or more) oscillations in a

way which retains the sum-of-frequencies condition, parametric bispectral information may be

covertly imbued to data. Inspection of Fig. 18 quickly proves this hypothesis, as three FM sines

interact to demarcate a (mostly) circular region in the bicoherence spectrum. The exact utility of

this control is not considered here, but it is not difficult to imagine the repercussions of a poly-

modulation cipher to cryptography, or of bispectral synthesis to music production. As a tractable

example,  Fig.  19  shows the bicoherence analysis  of  a time-series  concealing  a cursive letter

"G,"  fashioned  by  modulating  the component frequencies  with  decomposed  Bezier curves *.

In theory, these bicoherent features may follow any path – offering academics (as well as artists)

a progressive means to both understand and express. Returning to the task at hand, Fig. 20 is a

synopsis of this subsection's development, as coupled sine waves experiencing a rise in pitch are

simultaneously frequency modulated, which yield a widening circle under bispectral analysis.

In addition to the typical metrics, the helix of Fig. 21 is a beautiful portrait of bicoherence in time,

and is  arguably the visual  apotheosis of  this analysis.  As time progresses  (increasing  z),  an

"instantaneous"  bicoherent  feature  coils  around a cylinder of  increasing radius, and manifests a

a four-dimensional solid analogous to a hot wire twisting through an otherwise cool atmosphere.

*  These  are  specialized  B-splines  used  to  manipulate  discrete  control  points  into smooth  functions,  and  are
omnipresent in engineering and graphics processing.
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Flowing to more relevant waters, Fig. 22 shows the analysis of  a driven van der Pol oscillator

whose driving amplitude is smoothly increased over time. As this occurs, the natural frequency

transitions through three empirical regimes9: 1) classical amplitude modulation, characterized by

symmetric sidebanding, 2) periodic pulling, primarily diagnosed by a non-linear beat envelope &

frequency domain asymmetry, and 3) entrainment, where the oscillator's resonant condition is

bootstrapped to the driver, and may be willfully manipulated within a certain frequency range.

Fig.  22b testifies to a relatively meek bicoherence spectrum in the cumulative sense,  but the

bispectrogram (Fig. 22d) hints at brief features outside conventional beating. To focus on this,

the analysis was repeated – choosing the driving frequency's amplitude so the oscillator would

exhibit constant pulling – and is displayed in Fig. 23. Here, strong sidebands opposite the driving

frequency create significant bicoherent features, vaguely reminiscent of those seen in a sawtooth

wave. Far from uncanny, however, the accompanying bispectrogram (Fig. 23d) confesses the non-

linearity by exposing a spectral hierarchy in the beat envelope, and is drastically different from

the traditional  spectrogram (Fig.  23b).  Yet,  before espousing  the technique's  successes,  it  is

instructive to reflect on the subtleties of  this particular system.  Prior research at WVU has

demonstrated  that  amplitude  modulation  and  periodic  phase  mismatches  between  the

spontaneous oscillation and driving frequency underpin the "pulling" experienced by the driven

frequency9. Phrased in the language of bicoherence analysis, this implies the system's biphase is

time-dependent exactly where this quasi-phase-coupling is occurring. As discussed in Section I.B,

a biphase which is strictly linear in time will tend to produce a null bicoherence spectrum, unless

there is a time-dependent mechanism of cancellation (such as quadratic coupling). However, the

bicoherence spectrum obtained from a sinusoidal biphase instead accumulates contributions of

the most stationary value(s) of this phasor, and does not generally tend to zero. Inspection of
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Fig. 23e reveals the "biphasic spectrum" of  this time-series, which supports the hypothesis of

both a linear and oscillatory component in the driven oscillator's phase angle 9. Stated a different

way, this means the biphase will converge to a similar phasor precisely where the bicoherence

spectrum exhibits significant values, as the linear dependence will decouple the oscillation from

background noise, while the sinusoidal guarantees the sum does not disappear. Fig. 23f displays

this phenomenon in detail, showing both frequency and biphase changing in lockstep with the

time-series'  AM envelope.  Interestingly,  an eerily correspondent result may be found in data

from the DIII-D tokamak, specifically shot # 152932. Given by Fig. 24, the analysis of this shot

possesses many parallels to Figs. 22 & 23, including possible entrainment, sideband asymmetry,

and a grid  of  bicoherent features  below the driving  frequency's  diagonal.  In particular,  the

bispectrogram  (Fig.  24d)  seems  to  insist  a  connection  between  frequency  dehiscence  and

bicoherence amplitude, as they are related temporally in both processes. More compelling are

the qualitative similarities between Figs. 23e and 24e, which allude to time-dependencies in the

sideband frequencies'  phase interaction, precisely where the bicoherence spectrum evidences

energy transfer; thus, it is not entirely speculative to posit a non-linear coupling reminiscent of

periodic  pulling.  Of  course,  the response of  a  toroidally-confined  plasma will  not  typically

correspond to a van der Pol oscillator (if  at all), and the dynamical analysis need not have an

analogue, a priori. Fig. 25 attests to this: a spectrogram of shot #170803 (Fig. 25b) reports a series

of staccato frequencies whose mountainous bicoherence spectrum (Fig. 25c) is unprecedented in

this investigation. While the many transient processes necessarily relate to these high values of

b2  (as broadband bursts of phase-coherent frequencies will be accumulated), it is hinted in the

bispectrogram  (Fig.  25d)  that  interaction  between  modes  remains.  To  ameliorate  the

contributions from high-frequency transients, the analysis of  shot #170803 was repeated after
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low-pass filtering (cut-off ~ 150 kHz), revealing two distinct regimes of coupling: one populated

by components at low frequencies (15-45 kHz), the other involving  both low and high (110-145

kHz)  frequencies.  These  regions  of  energy  transfer  in  bi-frequency  space  can  be  seen  to

correspond with peaks in the time-series' FFT (Fig. 25e), and are reminiscent of previous results

by our research group14. More importantly, this time-series may signal the presence of an Alfvén

eigenmode (AE), examples of  which are given by Fig. 26. In short, AEs are discrete modes of

magnetic field oscillation which tend to reduce the damping of turbulence in otherwise stable

plasmas28. When facilitated by a tokamak's toroidal geometry, reversed-shear regimes and other

physical contraints, "gaps" are manifested in the frequency continuum as a function of  radial

position, wherein only particular values of frequency are allowed. Contingent on the mechanism

of generation, an AE may be categorized as toroidal (TAE), reversed-shear (RSAE), global (GAE),

etc. In any case, review of Figs. 25e-h confirms this frequency discretization in DIII-D, and posits

coherencies in biphase. Furthermore, the spectrogram of shot # 158001, presented in Fig. 27b,

displays another example of AE phenomena; the corresponding bicoherence spectrum (Fig. 27c)

details coupling of low-frequency AEs, indicating strong transport of energy between waves at 10,

20, and 30 kHz. Additionally, though Fig. 27c seems to reveal a swath of mode interactions along

the 10 kHz line, more careful consideration shows this is nothing more than a time-dependency

in the coupling condition - that is, as the AEs experience a coordinated fall in frequency (from

Doppler shifts, etc.), the associated peak in the bicoherence spectrum also displaces in time. A

further  demonstration  of  time-dependent  bicoherence  is  seen  in  shot  #153593,  whose

spectrogram appears in Fig. 28a. In this figure, a pitchforking family of oscillations (read: AEs)

emulate the tendencies of a progressively frequency-modulated wave. In analogy to the dynamics

of  shot #170803,  there appear to be well-defined regimes of  coupling:  the first typifies low-
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frequency interactions implicit to the "harmonics" of this modulation, while the other represents

coupling  between the AEs and  their beat  frequency.  Snapshots  of  the raw data affirm this

perspective, showing both a sinusoidal waveform (Fig. 28c) and subtle envelope modulation (Fig.

28d).  Now, although determining precisely  which type of  AE is responsible for these data is

beyond the limitations of this work (as are the full complexities of tokamak plasmas), there is

clear justification for the utilization of bispectral techniques for energy mapping and instability

detection in these convoluted systems. Nonetheless, Fig. 29 displays raw data from the Cluster-II

satellite installation. Notice the genuinely short nature of these time-series (for context, if these

were represented by audio files sampled at the standard 44.1 kHz, they would be ~ 0.25 s in

duration). Records this brief  enforce a trade-off  between time and frequency resolution, such

that  slicing  the  data  into  more  than  8  subsections  is  unproductive.  In  addition,  a  special

windowing function known as the  flat-top is necessary,  as it provides the optimal  scalloping

loss22 (FFT peaks are broad, but have very accurate amplitudes). Fig. 30 is a bispectral analysis of

the first data record,  whose bicoherence spectrum (Fig.  30c)  connotes  a ~  1  mHz wave (or

modulation) through interpretation of the bispectral grid's characteristic length. Investigation of

the  bispectrogram  (Fig.  30d)  divulges  two  temporal  regimes  (at  minimum),  each  with  its

particular features: one dominated by contributions from ~ 2.5 mHz and its first few harmonics,

another influenced by this 1  mHz phenomena. Correspondingly, Fig. 31 relays analysis of  the

second record, returning a far more localized bicoherence spectrum (Fig.  31c),  a feature-rich

bispectrogram (Fig. 31d), and a complex spectrogram (Fig. 31b). In both analyses, there are hints

of  a ramp in frequency through the first portion of measurement, and as well as a wave near

1 mHz. A contemporary report29 researching these data claim low-frequency coupling between

oscillations at 1.5 and 2.3 mHz, and direct comparison of the analyses to ours is shown in  Fig. 32.
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C. Conclusions

On his feet he wore... blisters.
Aristotle

A working  implementation of  time-dependent bicoherence analysis  is  now available  to  the

WVU  Physics  &  Astronomy  Dept.,  its  collaborators,  and  the  public.  But,  beyond  simply

achieving the pragmatic vision of this work, many of the posited goals have also been addressed:

the bispectrum has displayed utility for highlighting non-linearity, invoked a powerful means of

visualization,  and  even  explored  artistic  avenues.  Non-sinusoidal  beat  envelopes,  frequency

modulations, and phase couplings have been shown to possess bicoherent features, and plasma

systems orders of magnitude apart are seen to be equally approachable. While not a pure stroke

of  inception, assessing the temporal behavior of  the bicoherence spectrum has walked along

lines of  unresearched inquiry, and should be considered a ripened topic for investigation. As

processing power is expected to continue to increase, resolution in both frequency and time will

continue  to  improve,  and  direct  bicoherence  analysis  shall  become  less  inhibited  by

computational  clauses.  With  this  advancement,  and  a touch of  tenacity,  the science of  the

bispectrum may prove a propitious addition to the pantheon of modern data analysis, joining the

inviolable ranks of  linear regression,  power-spectrum estimation,  and the like.  All  jocularity

aside,  thus is the nature of bicoherence analysis  – not an end or be-all, but simply a buttress.

More prospector than judge,  the bispectrum will  not by itself  guarantee analytic justice or

objectivity  – it simply parses data for precious flecks of  a bigger picture.  In this way,  it is a

wonderful tool for assessing deeper features in seemingly stochastic time-series, mitigating time-

frequency complexity, or simply being a signal processor's second line of defense. Will hosts of

non-linear phenomena fall to our understanding with DFTs of their triple correlation functions?

Absolutely not. Do they give glimpses into wider, florid realms of frequency? Without question.
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V. APPENDICES

A. Derivation of N-spectrum

This follows the standard method of proving the convolution theorem. First, noticing

                  f (t) = ∫
−∞

∞

f̂ (ω)e2π iω t d ω ,  [A.1]

and remembering the definition of the N-correlation function,

                  RN ( τ⃗) = ∫
−∞

∞

dt f (t )∏
n=1

N−1

f (τn+t ) ,  [A.2]

we find:

                  RN ( τ⃗) = ∫
−∞

∞

dt f (t )∏
j=1

N−1

∫
−∞

∞

f̂ (ω j)e
2π iω j(t+τ j)d ω j .  [A.3]

Expanding the product and interchanging N-1 integrations yields

                  RN ( τ⃗) = ∫
−∞

∞

...∫
−∞

∞

∫
−∞

∞

dt f (t )e
−2π i t∑

k=1

N−1

(−ωk )

∏
j=1

N−1

f̂ (ω j)e
2π iω j τ jd ω j .  [A.4]

Using the definition of the one-variable Fourier transform (Eq. [1.19]), 

                  RN ( τ⃗) = ∫
−∞

∞

...∫
−∞

∞

f̂ [−∑
k=1

N−1

ωk ] ∏
j=1

N−1

f̂ (ω j)e
2π iω j τ j d ω j .  [A.5]

Now, if the multi-dimensional inverse Fourier transform is defined as

                  F −1{ f̂ (ω⃗)} = f ( τ⃗) = ∫
−∞

∞

...∫
−∞

∞

f̂ (ω⃗) ∏
j=1

dim( τ⃗)

e2πi ω j τ j dω j ,  [A.6]

the N-correlation function is easily seen to be:

                  RN ( τ⃗) = F −1 { f̂ (∑
k=1

N−1

ωk)∏
j=1

N−1

f̂ (ω j)} .  [A.7]

Therefore, taking the Fourier transform produces the desired result,

                  S N(ω⃗) = F {RN( τ⃗)} = f̂ (∑
k=1

N−1

ωk )∏
j=1

N−1

f̂ (ω j) ,  [A.8]

which is exactly Eq. [1.27].                                                                                                              QED.
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B. MATLAB scripts

function W = pplk401(samprate,res,Y,freqlim,noise,trials,mode,windoe)

% - - - - - - - - - - - - - - - - - - - -
% <3 & Soul of Bicoherence Analysis
%
% samprate is assumed to be in Hertz
%
% res is assumed to be in seconds
%
% freqlim (Hz) is user limit to window
%
% Y is time-series, sampled at samprate
%
% noise is an attempt at "dithering", adding random noise relative to signal max
%
% trials is # of repeated sessions, wherein noise is applied
%
% mode is 0 if plotting slices, 1 if plotting evolution, & 2 if efficiency 
%
% windoe is selected window function, as a string
% - - - - - - - - - - - - - - - - - - - -
L = res;% L is an artifact    % This creates a vector of the appropriate "resolution", in steps of sampling time,...
x = 0:1/samprate:L;  %...whose length becomes the cut-off for the incoming time-series, as using a longer...
n = length(x);                %...record length only wastes computation time.
Y = Y(1:n); % If this seems crazy, remember: the FT simply takes a signal of time T, of N samples, at samprate f, and transforms it into...
%...a vector representing N "bins" of size 1/T, ranging to f. Thus, a decent FFT, at a low res, of a long signal, requires "chopping".
lim = floor(freqlim*L);       % "lim" will become matrix size
if isequal(windoe,'tukeyhanning')
    win=wndo(x,L);            % Use function from Stauber's thesis...
else
    win = window(windoe,n)';  %...or MATLAB's windowing function
end
f = n*linspace(0,1,n)/L;      % Creates frequency domain
e = zeros(lim,lim); e2=e; e3=e; spec = zeros(lim,trials); % "Preallocating for speed" ;)
% Often, this loop will seem unnecessary, but it *may* serve a purpose.
for m=1:trials
    if noise~=0
        y = Y+max(Y)*noise*(.5-rand(1,n)); % Application of "dithering"
    else
        y = Y;                      % Else pass the signal
    end
    y = win.*(y-mean(y));         % Remove DC offset, multiply by windowing function
    g = bispec2(y,lim);           % Apply bispectrum
    s = g(1:lim,1:lim);           % Prune square of straggling FFT coeffs's
    p = g(:,(lim)+1);             % Pluck said coeff.'s from bispec(...)                
    spec(:,m) = abs(p);           % Use said coeff.'s to build spectrogram
    E = biexp(p,lim);             % Compute expectations for current iteration
    e = e+s;                      % -> Bispectrum
    e2 = e2+E(1:lim,1:lim);       % -> Expectation           { Sums }
    e3 = e3+E(1:lim,1+lim:2*lim); % ->  " "          
    w = bicoh1(e,e2,e3);          % Produce bicoherence spectrum
    if isequal(mode,1)
        imagesc(f(1:lim),f(1:lim),w); set(gca,'YDir','normal');
        grid on; xlabel('Frequency (Hz)'); ylabel('Frequency (Hz)'); 
        title('Bicoherence Spectrum'); ylim(gca,[0 f(lim)/2]);
        getframe;                 % Print slices if needed
    end
end
vect = 1:trials;                    % Useful if ever trials exceeds 1
W = {f(1:lim),w,spec,vect,{e,e2,e3},sum(sum(w))};
% The cell output here seems a bit esoteric, but it is:
% W{1} = Frequency vector
% W{2} = Bicoherence slice
% W{3} = "Spectrograph" of slice (probably just FFT coeff.'s)
% W{4} = "Time" vector
% W{5} = Cell array of cumulative bispectrum & normalizations
% W{6} = Sum of slice
 
function B = bispec2(V,lim)
 
V = fft(V)/length(V);  % Normalize by signal length
B = zeros(lim);
V = V(1:lim);          % Deal only with what is necessary
V = [V 0];             % Append a zero for convenience
 
for k=2:floor(lim/2)+1   % Some inspection may be required to decode this...
    B(k,k+1:(lim-k+1)) = V(k)*( V(k+1:lim-k+1).*conj(V((2*k):lim)) );
end  % Essentially, time is saved by computing along only one dimension 
B(:,(lim)+1) = V(1:(lim)); % Tacks on Fourier coeff.'s as output
 
function E = biexp(p,lim)
% Calculates expectations for bispectral analysis
% Sends both matrices at once
 
E=zeros(lim,2*lim);
for k=2:lim % Start with bin # 2 (first is DC)
    for q=2:lim
        if q>k && q+k-1<=lim            % * Triangle made here *
            E(k,q) = abs(p(k)*p(q))^2;  % Less elegant than above...
            E(k,q+lim) = abs(p(k+q-1))^2; %...but much more intuitive
        end      
    end
end

_______________________________________________________________________________________________________________________________________________
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function W = pplk5sm(samprate,res,Y,freqlim,noise,trials,chop,choice,space,mode,windoe)

% - - - - - - - - - - - - - - - - - - - -
% BicAn time-series chopping/selection function 
%
% Serves as master of ceremonies for all things dissociative
%
% See @pplk401 & @pplk501sm to untangle the inputs
%
% - - - - - - - - - - - - - - - - - - - -
N = length(Y);                              % Check signal length
tail_error = mod(N,chop);                   % Assess tail errors with modulo
if tail_error~=0
    Y = [Y zeros(1,chop-tail_error)];       % Problem? Tack on some zeros...
    N = N+chop-tail_error;                  %...now it's this long!
end
 
a = Y(floor((choice-1)*N/(chop*space)+1):floor((1+(choice-1)/space)*N/chop));
% Phew! That's brutal... 
 
W = pplk401(samprate,res,a,freqlim,noise,trials,mode,windoe);

_______________________________________________________________________________________________________________________________________________

function W = pplk501sm(samprate,res,Y,freqlim,noise,trials,chop,space,mode,windoe)
% - - - - - - - - - - - - - - - - - - - -
% Main cogwork of BicAn 
%
% Mother of all bicoherence processing
%
% See @pplk401 & @pplk5sm for further info on inputs samprate:trials,mode,windoe
%
% chop is "slicing" selection -> how many rough blocks the time-series is carved
%
% space is "step" selection -> how many steps per block
%
% - - - - - - - - - - - - - - - - - - - -
M = (chop-1)*space+1;                      % Find total # of steps
lim = floor(freqlim*res);                  % Matrix size
 
c=zeros(lim,1);                            % All kinds of preallocation....
S=cell(1,M); bicoherence=cell(1,M); bibi=cell(1,M); 
evo_bicoh=cell(1,M); evo_bispec=cell(1,M);
e=zeros(lim,lim); e2=e; e3=e;
gulp=zeros(1,M); summ=gulp;
 
n = length(1/samprate:1/samprate:res);      % Length of frequency vector to Nyquist
f = (n-1)*linspace(0,1,n);                  % Create said vector
 
for k=1:M 
    S{k} = pplk5sm(samprate,res,Y,freqlim,noise,trials,chop,k,space,mode,windoe); 
    % Thus, "S" will contain ALL the information... Too much, memory-wise?
    bicoherence{k} = S{k}{2};          % Bicoherence slices for each chop
    gulp(k) = S{k}{6}*(4/(lim^2));     % Vector of normalized sums of spectra
    b = S{k}{3}; c = [c b];            % Concatenating for the spectrograph
    e = e+S{k}{5}{1}; e2 = e2+S{k}{5}{2}; e3 = e3+S{k}{5}{3};
    % All of this nonsense is ONLY for the final picture...
    bibi{k} = S{k}{5}{1};              % ...except for the utility of chop-wise bispectra...
    evo_bicoh{k} = bicoh1(e,e2,e3);    % ... the development of bicoherence slices...
    evo_bispec{k} = e/k;                 % ... bispectral slices...
    summ(k) = sum(sum(evo_bicoh{k}))*(4/(lim^2));  % ...and sums.
    
    if isequal(mode,0)                       % Plot evolution if user wants
        w = evo_bicoh{k};
        imagesc(f(1:lim)/res,f(1:lim)/res,w);% Use "f", for once in this file...
        set(gca,'YDir',     'normal',...         
                'Title',    text('String','Total Bicoherence','Color','k'),...
                'XLabel',   text('String','Frequency (Hz)','Color','k'),...
                'YLabel',   text('String','Frequency (Hz)','Color','k'))     
        grid(gca,'on');             % Setting axes the hardest way possible
        ylim(gca,[0 f(lim)/(2*res)]);
        getframe(gca);              % Carpe framum 
    end
end
  
spec = c(1:lim,2:trials*M+1); % Spectrograph
w = bicoh1(e,e2,e3);          % Final bicoherence spectrum
final_bispec = e/M;           % Final bispectrum
    W={S{1}{1},...       % (1) Frequency vector
        bicoherence,...  % (2) Bicoherence slices
        spec,...         % (3) Spectrograph
        chop*S{1}{4},... % (4) "Psuedo-time" vector
        w,...            % (5) Total bicoherence spectrum
        gulp,...         % (6) Sums per slice
        final_bispec,... % (7) Final bispectrum
        bibi,...         % (8) Bispectral slices
        summ,...         % (9) Evolution of sums
        evo_bicoh,...    % (10) Total bicoherence slices
        evo_bispec,...   % (11) Total bispectral slices

_______________________________________________________________________________________________________________________________________________

function [s]=wndo(x,t)
% "Tukey-hanning" window
n=length(x);
s=zeros(1,n);
for k=1:n
    s(k)=.5*(1+cos((x(k)+t/2)/(t/(2*pi))));
end

_______________________________________________________________________________________________________________________________________________
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C. Wavelet Bicoherence

The following borrows heavily from Ref. 21 (which offers a more comprehensive discussion); this

is intended only as glancing resource on the topic. For pulse-like, low-frequency disturbances,

the  STFT is  limited  in  its  available  temporal  resolution.  To  counter this,  the  time-smooth

convolution,

                   W (s ,t0) = ∫
−∞

∞
f (t)Ψ s ,t0

(t)dt ,  [B.1]

where f  is the signal to be analyzed, is known as the continuous wavelet transform of f, where

                   Ψs , t0
(t) =

1

√s
Ψ0(

t−t0

s
) ,  [B.2]

is the mother wavelet, shifted by t
0
 , and scaled by s. Under most conditions, the mother wavelet

may be any function satisfying

                      ∫
−∞

∞
Ψ0(t)dt = 0 ,  [B.3]

the zero-mean condition. Then, by analogy with Eq. [1.32], the wavelet bispectrum is given by

                   BW (s1 , s2) = ∫
T

W (s , τ)W (s1 , τ)W (s2 , τ)d τ ,  [B.4]

where T is the signal's time domain, and s satisfies:

                      
1
s

=
1
s1

+
1
s2

.  [B.5]

The scales may be associated with frequencies using

                      ωs =
2π

s
.  [B.6]

Relating Eq. [1.44] with [B.4],

              bW
2
(s1, s2) =

| BW (s1 , s2) |
2

∫
T

|W (s1 , τ)W (s2 , τ) |
2d τ∫

T

|W (s , τ)|2d τ
 [B.7]

is therefore the wavelet bicoherence spectrum.
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D. Tricoherence

Though most of this work has dealt with the phase-coherent interactions of three frequencies,

many processes (as pointed out in Section III.A) naturally exhibit  four-wave coupling in the

frequency domain, to which the analytic methods of bicoherence are blind. Thus, by inspecting

Eq. [1.26], the quadruple correlation function is seen to be

                      R4(τ1 , τ2 , τ3) = 〈 f (x) f (x+τ1) f (x+τ2) f (x+τ3)〉 ,  [C.1]

whose Fourier transform is 

                      T̃ (ω1 ,ω2 ,ω3) = f̂ (ω1+ω2+ω3) f̂ (ω1) f̂ (ω2) f̂ (ω3) ,  [C.2]

the  "instantaneous"  trispectrum.  Following  the  reasoning  of  Eq.  [1.32],  the  accumulated

trispectrum quickly becomes

T (ω1 ,ω2 ,ω3) = 〈 T̃ (ω1 ,ω2 ,ω3)〉 ,

= 〈 f̂ (ω1+ω2+ω3) f̂ (ω1) f̂ (ω2) f̂ (ω3)〉 ,
 [C.4]

which leads naturally (à la Eq. [1.44]) to:

                         t2
(ω1 ,ω2 ,ω3) =

∣T (ω1 ,ω2 ,ω3)∣
2

〈∣ f̂ (ω1) f̂ (ω2) f̂ (ω3)∣
2
〉 〈∣ f̂ (ω1+ω2+ω3)∣

2
〉

,  [C.5]

the squared tricoherence spectrum. If discretized, this becomes (comparing to Eq. [2.21]),

              t 2(ω j ,ωk ,ωl) =
∣T (ω j ,ωk ,ωl)∣

2

(
1
M ∑

i=1

M

∣ f̂ i(ω j) f̂ i(ωk ) f̂ i(ω l)∣
2
)(

1
M ∑

i=1

M

∣ f̂ i(ω j+ k+l−2)∣
2
)+ε

,
[C.6]

where the inequality

                  j+k+l ≤
N
2

+1 ,  [C.7]

contains  the computation  below the Nyquist  frequency.  Though somewhat unwieldy,  these

relations are not difficult to naively implement in a computer. The real problem is computational

time and visualization, as each "slice" of trispectrum is naturally a rank-four tensor.
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VI. FIGURES

    (a)                                                                                     (b)  

FIG 1. Analysis of single tone at 255 Hz - (a) FFT magnitude, (b) bicoherence spectrum, noticeably
absent of features

       (a)                                                                                     (b)  

FIG 2. Analysis of tones at 142 & 255 Hz – (a) FFT magnitude, (b) bicoherence spectrum. 
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(a)                                                                                     (b)  

FIG 3. Analysis of single tone at 130 Hz tone and next harmonic - (a) FFT magnitude, (b) bicoherence
spectrum, with peak at (130,130) Hz.

(a)                                                                                     (b)  

FIG 4. Phase-coherent cosines, with 00 phase difference - (a) FFT magnitude, (b) bicoherence
spectrum, with peak at (255,142) Hz.
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(a)                                                                                     (b)  

FIG 5.  Phase-coherent cosines, with 900 phase difference - (a) FFT magnitude, (b) bicoherence
spectrum, with peak at (255,142) Hz.

(a)                                                                                     (b)  

FIG 6.  Comparison of real bispectra from coherent cosines with varied phase  - (a) 00, (b) 90o.
Explanation - as the component tones have zero phase offset, the discrepancies in biphase are

purely due to phase of the sum frequency, and may be observed in the bispectrum's real and imaginary
components.
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(a)                                                                                     (b)  

FIG 7.  Cosines with time-dependent phase phase coherency - (a) FFT magnitude, (b) bicoherence
spectrum, absent of features.

(a)                                                                                     (b)  

FIG 8.  Quadratically coupled cosines - (a) FFT magnitude, (b) bicoherence spectrum, with strong
peaks at (255,142) & (142,113) Hz.
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(a)                                                                                     (b)  

FIG 9.  Quadratically coupled cosines with time-dependent phase between parent waves - (a) FFT
magnitude, (b) bicoherence spectrum (notice there is no difference from Fig. 8b).

(a)                                                                                     (b)  

FIG 10.  Quadratically coupled cosines with 100% phase stochasticity - (a) FFT magnitude,
(b) bicoherence spectrum.

The salience of this figure is demonstrating the bicoherence spectrum of a completely random ("white
noise") signal is not exactly zero, as all Fourier bins are equally likely to be filled. However, as the time-

dependencies of biphase will tend to nullify accumulated bicoherence, the overall spectrum will be
relatively weak.
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          (a)                                                                                            (b)  

FIG 11.  Evaluations of meancube relevancy for - (a) random phase quadratically coupled cosines, (b)
time-dependent phase coherent cosines.

        (a)                                                                                            (b)  

FIG 12.  Analysis of a 50 Hz tone and its four harmonics - (a) FFT magnitude, (b) bicoherence
spectrum, representing the six 2-sums (inspect Fig. 14b for similarities). 
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      (a)                                                                                            (b)  

FIG 13.  Evaluations of meancube relevancy for  - (a) increasingly harmonic cosines, (b) phase-shifted
harmonics (notice a sine wave is used here).

      (a)                                                                                         (b)  

FIG 14.  Analysis of 50 Hz sawtooth wave - (a) FFT magnitude, (b) contours of bicoherence spectrum.
This "grid" of bispectral features is the hallmark of non-sinusoidal oscillations.
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    (a)                                                                                            (b)  

    (c)                                                                                            (d)  

FIG 15.  Analysis of time-series from cellist - (a) FFT magnitude, (b) spectrogram, (c) bicoherence
spectrum, showing mild features,  (d) cumulative bispectral power [compare with (a)]. 

53

Frequency (Hz)

     Fast Fourier transform                            Spectrogram      

Bicoherence spectrum

|P
|2

   
 F

re
qu

en
c y

 (
H

z )

Freq. (Hz) Freq. (Hz)

       Time (s)

      Σ f (Hz)

      Cumulative bispectral power      

A
.U

.



        (a) 

               (b)                                                                                            (c)     

FIG 16.  (a) Explanation of lines of accumulation. Here, the above contour represents the contribution
to the 0.3 fN bin for a single subinterval of a time-series. (b) "Bispectrogram" of cello data, created by

calculating the cumulative bispectral power for each subinterval.  (c) Reproduction of Fig. 15b for
comparison. 
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              (d)

              (e)

FIG 16, cont'd.  Analysis of a "toy model" time-series, for clarity. Tones at 120, 290, and 410 Hz begin at
t=0, 5, & 10 seconds, respectively. All oscillations have zero phase offset until t=20 s, when the phase
of the 410 Hz tone is adjusted randomly: (d) spectrogram, (e)  bispectrogram. Notice the absence of
bicoherence until 3 waves are present, evidence of beat-note interactions (lines at 290-120=170  and
410-170=240 Hz), and the reduction of bicoherence after the introduction of a phase incoherency.
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(a)                                                                                           (b)  

    (c)                                                                                            (d)  

FIG 17.  Analysis of rising sawtooth tone - (a) FFT magnitude, (b) spectrogram, (c) contour plot of
bicoherence spectrum (whose general features derive from the time-varying nature of the Fourier

components), (d) bispectrogram.
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(a)                                                                                            (b)  

    (c)                                                                                            (d)  

FIG 18.  Analysis of three (non-sinusoidally) FM sine waves - (a) FFT magnitude, (b) spectrogram,
(c) contour plot of bicoherence spectrum, (d) bispectrogram.

57

Frequency (Hz)

Frequency (Hz)          Time (s)

          Time (s)

      Fast Fourier transform           Spectrogram      

   Bispectrogram      Bicoherence spectrum

|P
|2

   
 F

re
qu

en
c y

 (
H

z )

   
 F

re
qu

en
c y

 (
H

z )

Σ 
f (

H
z )



    (a)                                                                                              (b)  

    (c)                                                                                              (d)  

FIG 19.  Analysis of hidden-message time-series - (a) FFT magnitude, (b) spectrogram, (c) contour
plot of bicoherence spectrum (arrows represent changes in time), (d) bispectrogram.
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    (a)                                                                                               (b)  

    (c)                                                                                              (d)  

FIG 20.  Analysis of modulated, rising, phase-coherent sine waves - (a) FFT magnitude, (b)
spectrogram, (c) contour plot of bicoherence spectrum, (d) bispectrogram.
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FIG 21.  Visualization of bicoherence in the time domain for modulated, rising, phase-coherent sines
(review Fig. 20 to "see" the development of theses features).
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(a)                                                                                     (b)  

     (c)                                                                                            (d)  

FIG 22.  Analysis of swept driving frequency in van der Pol oscillator - (a) FFT magnitude,
(b) spectrogram, (c) bicoherence spectrum, (d) bispectrogram.
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    (a)                                                                                            (b)  

    (c)                                                                                            (d)  

FIG 23.  Analysis of periodic pulling in van der Pol oscillator - (a) FFT magnitude, (b) spectrogram,
(c) bicoherence spectrum, (d) bispectrogram.
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                 (e)

(f)

FIG 23, cont'd. (e)  Visualization of (time-averaged) biphase for van der Pol oscillator. Observe the
tendency to a consistent value of biphase at points of high bicoherence [compare with Fig. 23c]. 

(f) Presentation of highly time-resolved analysis of the same data [from top: spectrogram, raw
data, sum of real instantaneous bispectrum, line-out of biphase at (5000,1550) Hz.] Notice the

correspondence between FM, AM, and phase modulation (dashed lines are meant to 
guide the eye to a single period of these modulations).
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   (a)                                                                                            (b)  

    (c)                                                                                            (d)  

FIG 24.  Analysis of DIII-D tokamak shot # 152932, coil 2 - (a) FFT magnitude, (b) spectrogram,
(c) contour plot of bicoherence spectrum, (d) bispectrogram.
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    (a)                                                                                            (b)  

FIG 24, cont'd. - (e) Visualization of time-averaged biphase (compare/contrast with Fig. 23e), 
(f) sample of time-series demonstrating amplitude modulation - for shot # 152932.

65

Frequency (10kHz)

Fr
eq

u e
nc

y 
( 1

0k
H

z)

C
u r

re
nt

 (
A

)

Samples (104)

                    Raw signal                  Biphasic spectrum    



    (a)                                                                                            (b)  

        (c)                                                                                            (d)  

FIG 25.  Analysis of DIII-D tokamak shot # 170803, coil 7 - (a) FFT magnitude, (b) spectrogram,
(c) bicoherence spectrum, (d) bispectrogram.

As many features seem related to noise, it is pertinent to re-analyze the time-series after low-pass
filtering.
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    (e)                                                                                            (f)   

    (g)                                                                                            (h)  

FIG 25, cont'd. Analysis of shot # 170803, after low-pass filtering - (e) FFT magnitude,
(f) spectrogram, (g) bicoherence spectrum, (h) biphasic spectrum.
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FIG 26.  Example of Alfvén eigenmodes in tokamak plasmas. TAEs are toroidal Alfvén eigenmodes,
RSAEs are reversed-shear Alfvén eigenmodes. Borrowed from Ref. 24
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   (a)                                                                                           (b)  

    (c)                                                                                            (d)  

FIG 27.  Analysis of DIII-D tokamak shot # 178001, coil 5 - (a) FFT magnitude, (b) spectrogram,
(c) bicoherence spectrum (red delineates "~10 kHz line"), (d) bispectrogram, where changing frequency of

upper-mode AEs is observable.
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(a)                                                                                      (b) 

    (c)                                                                                            (d)  

FIG 28.  Analysis of DIII-D tokamak shot # 153593, coil 3 - (a) spectrogram, (b) contour plot of
bicoherence spectrum, (c) vaguely sinusoidal waveform in time-series, (d) possible amplitude

modulation in data.
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FIG 29.  Raw data from Cluster-II installation.
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    (a)                                                                                            (b)   

   (c)                                                                                              (d)   

FIG 30.  Analysis of Poynting flux as measured by Cluster-II satellites - (a) FFT magnitude,
(b) spectrogram, (c) bicoherence spectrum, (d) bispectrogram.
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    (a)                                                                                            (b)  

    (c)                                                                                            (d)  

FIG 31.  Analysis of sunward Poynting flux as measured by Cluster-II satellites - (a) FFT magnitude,
(b) spectrogram, (c) bicoherence spectrum, (d) bispectrogram.
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    (a)                                                                                            (b)  

    (c)                                                                                             (d)  

FIG 32.  Comparison with collaborator's analyses  - (a) wavelet bicoherence spectrum, Sunward
Poynting flux, points 1-9000, (b) bicoherence spectrum, Sunward Poynting flux, points 1-9000, using BicAn,

(c) wavelet bicoherence spectrum, Poynting flux dynamic pressure, points 9000-15140, (d) bicoherence
bicoherence spectrum, Poynting flux dynamic pressure, points 9000-15140, using BicAn.
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(a)                                                                                     (b)  

(c)                                                                                     (d)  

FIG 33.  Analysis of an additional signal, for school spirit - (a) spectrogram, (b) contour plot of
bicoherence spectrum, (c) bispectrogram, (d) imaginary part of bispectrum.
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