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ABSTRACT 

Three Essays on Energy Markets 

Sultan A. Alturki 

This dissertation includes three essays investigating topics relevant to the energy markets. The first 

essay employs a new dataset to measure the impact of investor sentiment regarding oil prices on 

the U.S. inflation premium. The empirical analysis relies on Structural Vector Autoregression 

(SVAR) and out-of-sample forecasts. The results indicate that a one standard deviation positive 

shock to overall investor sentiment regarding oil prices results in a significant increase in the U.S. 

inflation premium by approximately 1.2% over the subsequent 10 weeks. Compared to individual 

investor sentiment, institutional investor sentiment regarding oil prices has a larger impact on the 

U.S. inflation premium. Finally, the study finds out-of-sample evidence that the overall investor 

sentiment regarding oil prices has predictive power on the U.S. inflation premium. 

 The second essay uses sequential energy inventory announcements to shed new light on 

the informational efficiency of financial markets. The findings provide clear evidence of 

inefficiency in oil futures and stock markets. This inefficiency can be exploited by sophisticated 

traders. The study further examines the effect of market conditions, such as liquidity and oil 

attention, on the efficient incorporation of information in this setting. It also constructs a predictor 

that can predict inventory surprises and pre-announcement returns in-sample and out-of-sample. 

Finally, it develops a combination forecast that can be used as a proxy for market expectations of 

oil inventory announcements. 

 The third essay examines the impact of oil shocks on sovereign credit default swaps (CDS) 

for the G10 countries and major oil-exporting countries. The results show that oil demand shocks 

have a uniformly negative impact on CDS spreads. In contrast, oil supply shocks increase the 

spreads of the G10 countries, but reduce the spreads of oil-exporting countries. Using quantile 

regressions, the study finds that oil demand shocks affect spreads across the conditional 

distribution, while oil supply shocks mostly influence the upper quantiles of spread changes. 

Furthermore, a two-state Markov-switching modeling confirms a significant non-linearity in the 

impact of oil shocks
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INTRODUCTION 

This dissertation presents three essays investigating topics relevant to the energy markets. 

The first essay examines the impact of investor sentiment regarding oil prices on the U.S. 

inflation premium. Based on the Structural Vector Autoregression (SVAR) analysis, a 

positive one standard deviation shock to the overall investor sentiment regarding oil prices 

results in a significant increase in the U.S. inflation premium by approximately 1.2% over 

the subsequent 10 weeks. Compared to individual investor sentiment, institutional 

investor sentiment regarding oil prices has a larger impact on the U.S. inflation premium. 

In this paper, we employ a new dataset to measure investor sentiment regarding oil prices. 

Therefore, investor sentiment regarding oil is an important factor that significantly 

influences the U.S. inflation premium. 

The second essay sheds light on market inefficiencies using unique sequential 

energy inventory announcements. The main empirical results provide clear and 

pronounced evidence of market inefficiency in oil futures and stock markets. Additionally, 

market conditions, such as liquidity and oil attention, play an essential role in the efficient 

incorporation of information in this setting. Furthermore, the study constructs a predictor 

that has an in-sample and an out-of-sample predictive power over oil inventory surprises. 

Finally, it develops a combination forecast that could be used to accurately proxy for 

market expectations regarding oil inventory announcements. Hence, the results show that 

asset prices do not instantaneously reflect new public information; which provides 

profitable opportunities to several players in the financial markets. 

The third essay examines the impact of oil shocks on sovereign credit default swaps 

(CDS) for the G10 countries and major oil-exporting countries. The study shows that oil 

demand shocks have a uniformly negative impact on CDS spreads. However, oil supply 
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shocks increase the spreads of the CDS for the G10 countries, but reduce the spreads of 

the major oil-exporting countries. Moreover, using quantile regressions the study finds 

that oil demand shocks significantly affect spreads across the conditional distribution, 

while oil supply shocks mostly influence the upper quantiles. Finally, a two-state Markov-

switching modeling confirms a significant non-linearity in the impact of oil shocks. 
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Essay 1. Oil Sentiment and the U.S. Inflation Premium 

 

“Measures of short-term inflation compensation derived from yields on inflation-indexed Treasury 

securities increased over the inter-meeting period, due in part to sharply higher prices for oil”  

FOMC Minutes, June 24-25, 2008 

 

1.1. Introduction 

Oil plays a vital role in industrial economies. Nine out of ten post-World War II recessions were 

preceded by significant increases in oil prices and oil price volatility (Hamilton, 2008). As noted 

in the above quote from the FOMC minutes, sharp increases in oil prices often increase the 

inflation compensation required by investors. Figure 1 displays the spot price of West Texas 

Intermediate (WTI) on the left-hand axis and the U.S. 1-year breakeven inflation rate (inflation 

premium) on the right-hand axis.  

[Insert Figure 1 Here] 

It is clear that there is a close co-movement between oil prices and the U.S. breakeven inflation 

rate for most of the period. We believe that the most likely mechanism through which oil price 

impacts the breakeven inflation rate is the Fisher equation (𝑖𝑡 = 𝑟𝑡 + 𝜋𝑡
𝑒). Put simply, increases in 

oil prices likely increase inflation compensation, which increases interest rates. Changes in interest 

rates have a substantial influence on the valuation of assets. Hence, it is very important to analyze 

factors that impact interest rates. Given the well-established link between investor sentiment and 

equity markets (Baker and Wurgler, 2006; Kumar and Lee, 2006; Tetlock, 2007), our aim in this 

 
* This essay is based on a paper coauthored with Eric Olson. 
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paper is to examine the effect that oil sentiment has on (1) oil future return and (2) the U.S. inflation 

premium. We estimate a simple economic model through which oil sentiment affects both oil 

future return and the U.S. inflation premium. 

 Kilian (2009) argues that variations in oil prices are primarily affected by supply shocks, 

aggregate demand shocks, and the residual of the variation is classified as precautionary demand 

shocks. Precautionary demand arises from fears regarding shortfalls in expected supply relative to 

expected demand; for example, increased demand due to increased geopolitical risk in the Middle 

East would be an example of a precautionary demand shock. To measure oil sentiment, we use a 

weekly survey-based sentiment index collected by the German-based company SENTIX. To the 

best of our knowledge, we are the first to use the SENTIX oil sentiment indices in this context.  As 

can be seen in Figure 2, the oil sentiment index shows substantial relevance to major events that 

impact the oil market, thus, the index seems to mainly reflect concerns regarding future oil supply 

and demand dynamics. Therefore, we believe that our oil sentiment measure captures oil 

precautionary demand. Other researchers use survey-based sentiment indices in a similar way to 

measure individuals’ concerns regarding different economic and financial indicators. For instance, 

several papers use the Michigan Index of Consumer Sentiment to measure concerns and 

uncertainty regarding the growth of household spending (Carroll, Fuhrer, and Wilcox, 1994; 

Souleles, 2004; Akhtar et al., 2011).  

[Insert Figure 2 Here]   

 We use the U.S. breakeven inflation rates (BEIR), the difference between the yield of the 

nominal bond and an inflation-linked bond with the same maturity, as a proxy for the inflation 

premium. BEIR is widely and extensively used by central banks, practitioners, as well as 

academics (Beechey, Johannsen, and Levin, 2011; Jochmann, Koop, and Potter, 2009; Garcia and 
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Van Rixtel, 2007). We adopt the framework of Kilian (2009) and classifying unexpected changes 

in oil prices as supply shocks, aggregate demand shocks, and precautionary demand shocks.  

Hamilton and Baumeister (2019) critique Kilian’s (2009) identification assumptions in his 

Structural Vector Autoregression (SVAR). Specifically, restrictions in SVAR usually force 

researchers to assume no contemporaneous effect between the variables. Thus, the lower the 

frequency of the data (i.e. annual data) the stronger the “no contemporaneous” identification 

appears. For example, if we were to use quarterly data, the “no contemporaneous” identification 

assumption would assume that a supply shock has no effect on the breakeven inflation rate within 

the quarter. Obviously, that would be a strong assumption that is likely not valid. One needs to 

balance modeling noise in very high frequency data (i.e. tick by tick data) versus identification of 

the structural relationships. We believe using weekly data balances the validity of the “no 

contemporaneous effect” identification assumption with the risk of simply modeling noise in the 

data. We discuss our identification assumption in depth later. 

 To preview our results, we find that a one standard deviation increase in oil sentiment 

increases the inflation premium by 1.2% over the subsequent ten weeks. This increase in the U.S. 

inflation premium controls for aggregate demand and supply shocks. Furthermore, the institutional 

investor oil sentiment has a greater impact on the U.S. inflation premium compared to the impact 

of individual investor oil sentiment on the U.S. inflation premium. Thus, our results support recent 

evidence that institutional investors may be better informed than individual investors (Ben-

Rephael, Da, and Israelsen, 2017; Roger, Edelen, Ince, and Kadlec, 2016; Sias, 2004). The rest of 

the paper is organized as follows. Section 1.2 reviews the literature and states our hypotheses, 

section 1.3 discusses the data, section 1.4 discusses our methodology, section 1.5 presents and 

discusses the empirical results and section 1.6 has our robustness checks. Section 1.7 contains our 

conclusion. 
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1.2. Literature Review and Hypotheses  

The impact of sentiment in oil markets is a relatively new area of behavioral finance. Deeney et 

al. (2015) analyze the role of sentiment by constructing an oil sentiment index using principal 

component analysis. Their findings demonstrate the importance of sentiment in explaining oil price 

movements. In addition, Li et al. (2016) show that sentiment Granger causes oil prices. Maslyuk-

Escobedo, Rotaru, and Dokumentov (2016) perform a jump detection technique to identify co-

jumps and correlation between daily energy prices (spot and future) and sentiment indices. Their 

results suggest a “significant influence in crude oil and aggregate sentiment indices on jumps in 

energy commodity prices.” Sayim, Morris, and Rahman (2013) conduct an impulse response 

function test which shows that a one standard deviation increase in the rational and irrational 

investor sentiment results in a significant positive impact on oil industry returns. Finally, Dowling, 

Cummins, and Lucey (2016) show the presence of psychological barriers around $10 price levels 

for both WTI and Brent futures prices for the pre-credit crisis period of 1990-2006, when oil prices 

were traded within low ranges.  

 Many proxies for sentiment have been chosen in the literature to analyze its impact on 

financial and commodity markets. For the equity market, Baker and Wurgler (2006) construct a 

stock market sentiment index with six proxies “the closed-end fund discount, NYSE share 

turnover, the number and average first-day returns on IPOs, the equity share in new issues, and the 

dividend premium.” Using the same proxies, Huang et al. (2014) construct the aligned investor 

sentiment index by implementing a partial least square (PLS), and Berger and Turtle (2015) 

construct a cumulative sentiment index. Other papers use a variety of proxies, such as the level of 

discounts on closed-end funds, the ratio of odd-lot sales to purchases, and net mutual fund 

redemption, buy-sell imbalance, and Wall Street Journal “Abreast of the Market” column, and net 

exchange to equity funds (Neal and Wheatley, 1998; Kumar and Lee, 2006; Tetlock, 2007; Ben-
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Rephael, Kandel, and Wohl, 2012). On the other hand, sentiment in oil markets is measured using 

a variety of methods. Similar to the proxies used in Baker and Wurgler (2006), Deeney et al. (2015) 

measure sentiment in oil market by “the put–call ratio of oil options, the volume of the oil futures 

traded, the historical volatility of the oil price, the ratio of speculative trades to oil demand and the 

implied volatility of a local stock market index, namely the S&P 500 Energy sector for WTI and 

the Euro Stoxx 50 for Brent.” A few other research papers use Thomson Reuters news releases to 

capture oil market sentiment (Li et al., 2016; Maslyuk-Escobedo, Rotaru, and Dokumentov, 2016; 

Sayim, Morris, and Rahman, 2013). 

 In this paper, we use a unique survey-based index, Oil SENTIX. There have been a few 

other research papers that included different SENTIX indices but not the oil indices. Measuring 

individual and institutional sentiment around five stock markets, Schmeling (2007) “shows that in 

the long-horizon regressions, institutions (individuals) persistently have correct (incorrect) 

expectations about the markets”. Further, Corredor, Ferrer, and Santamaria (2014) analyze the spot 

and future stock markets dynamics for the U.S. and a few European countries during different 

levels of investor sentiment. Menkhoff, Schmeling, and Schmidt (2012) examine whether 

experience and professionalism affect the degree of overconfidence among different types of 

investors. On the effect of weather-induced stock market sentiment, Schneider et al. (2014) “show 

that individual long-term sentiment about stock markets is positively impacted by barometric 

pressure.”  

Breakeven inflation rates have been used extensively as a measure of inflation 

compensation. This market-based inflation measure provides a higher frequency measure 

compared to survey-based inflation measures resulting in a more dynamic and in-depth analysis. 

Further, BEIR is attained from profit-maximizing agents; thus, it is a relatively accurate measure 
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of the unobserved inflation expectation (Kajuth and Watzka, 2011). Jochmann, Koop, and Potter 

(2009) use daily breakeven inflation rates to study the relationship between the compensation of 

long-term and short-term inflation. Their results indicate that inflation is neither unmoored nor 

anchored, but it is apparently contained. Beechey et al. (2011) partially use BEIR to demonstrate 

that inflation in the Euro area is more anchored compared to the U.S. Christensen, Lopez, and 

Rudebusch (2010) decompose long-term BEIR into the inflation expectation and the inflation risk 

premium (IRP). Their findings indicate that the average IRP is close to zero. Lumsdaine (2009) 

finds that oil prices and BEIR of the U.S. comove, but the strength of the co-movement is time-

varying. Jiang (2018) documents the significant impact of oil shocks on the 10-year U.S. BEIR. 

However, to our knowledge, none of the previous studies investigate the impact of oil investor 

sentiment on U.S. measures of inflation.  

1.2.1 Initial Hypotheses 
 

Inflation has a relatively strong correlation to oil prices for several reasons. Oil is considered as an 

essential component that directly or indirectly enters into the production equation for almost all 

industries (Cologni and Manera, 2008). Some industries are more sensitive than others are, but 

they are still all influenced to some extent by changes in energy markets. Inflation uncertainty 

increases with volatility in oil prices which in turn has a direct impact on asset pricing and 

investment decisions due to adjusting discount and/or required rates of return (Huizinga, 1993; 

Cologni and Manera, 2008). Hence, bullish sentiment regarding oil will prompt investors to require 

a higher inflation premium to offset the reduction in purchasing power and the increase in risk.  

Hypothesis 1.1: A positive shock to the overall investor sentiment regarding oil has a significant 

impact on the U.S. inflation premium.  
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Hypothesis 1.2: Overall investor sentiment regarding oil has predictive power over the U.S. 

inflation premium. 

Institutional investors are considered to be informed or smart investors as they have the capability 

to process and to uncover asset-specific information more efficiently than individual investors 

(Bharath, Jayaraman, and Nagar, 2013). However, institutional investors are still prone to 

behavioral biases that influence their investment decisions. Roger et al. (2016) show that 

institutions play a causal role with assets’ anomalies and strongly rejects the sophisticated 

institution's hypothesis. Institutions demonstrate herding behavior as they follow each other to 

invest in the same securities (Sias 2004). Additionally, institutional attention plays a more vital 

role in explaining assets’ mispricing than retail attention (Ben-Rephael, Da, and Israelsen, 2017). 

These pieces of evidence lead us to believe that any behavioral bias by institutions may have a 

higher impact on inflation premium than individuals’ biases. 

Hypothesis 2.1: Institutional investor oil sentiment has a larger effect on the U.S. inflation 

premium than individual investor oil sentiment has on the U.S. inflation premium.  

1.3. Data 

Our analysis covers the period between July 18 / 2008 – August 31 / 2019. The sample consists of 

558 weekly observations. The selected time period was based on data availability. In this paper, 

we use a weekly survey-based sentiment index collected by the German-based company SENTIX. 

The data for SENTIX were accessed through Bloomberg. SENTIX has a database consisting of 

more than 5000 individual and institutional investors and reflects overall oil sentiment for the one-

month price outlook. As noted above, the overall oil sentiment index is broken down into 

individual and institutional investors’ indices. Institutional investors are defined as those who 

register online using their firm e-mail address and go through an identity check. Individual 
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investors are those who register with their individual e-mail addresses. Finally, we use bond and 

equity investor sentiment as part of our robustness checks to differentiate between the oil investor 

sentiment and overall market investor sentiment. 

 Participating in the survey is conducted online through the company website 

(www.sentix.de/index.php/en/), and a weekly reminder e-mail is sent to registered members. The 

participation in the survey is not mandatory but participants are rewarded by access to some 

exclusive data analysis as an incentive.  In Oil SENTIX indices, participants are asked about their 

expectations of oil prices in the short-term (one month). There are four answer choices which they 

can select from bullish, bearish, neutral, and no opinion. In this paper, we use the short-term 

Headline Oil SENTIX (SNTXOIH1), which reflects the concerns and beliefs of the survey’s 

participants regarding oil prices after one month. The survey’s participants can take part in the 

survey weekly from Friday – Saturday, Central European Time (SENTIX, 2016). In addition, the 

index is constructed based on the so-called bull-bear-spread, which is used in several previous 

research papers such as (Brown and Cliff, 2004; Brown and Cliff, 2005). The formula is: 

Oil SENTIX Index =  
, ,

, , ,

# #

# # #

i s i s

t t

i s i s i s

t t t

bullish bearish

bullish bearish Neutral

−

+ +
 

 where the subscript t indicates time horizon (short-term), i and s denote individual investors and 

institutional investors, respectively. Figure 2 displays the overall oil sentiment index over the 

2008-2019 time period with the gray highlighted areas denoting key events (i.e. the Arab Spring, 

Iran Sanctions fear, etc.). As we can see, the sentiment index spikes during times of critical events.  

In order to measure oil prices, we use the continuous closest to expiration Brent oil future 

contracts. The oil future prices are appropriately adjusted for contract rollovers. Furthermore, the 

weekly Brent oil futures return has been deflated using the U.S. online-inflation index (MIT’s 

http://www.sentix.de/index.php/en/
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Billion Price Project). All the Brent oil future contracts prices are provided by Genesis Financial 

Technologies. As noted above, the Breakeven Inflation Rate (BEIR) is the difference between the 

yield of a nominal bond and an inflation-linked bond with the same maturity. This market-based 

inflation measure provides a higher frequency measure compared to survey-based inflation 

measures resulting in a more dynamic and in-depth analysis. In this paper, we choose the 1-year 

U.S. BEIR.1 Table 1 displays the summary statistics for all the data used in our analysis and Table 

2 displays the unconditional correlations. Note in Table 1 that the mean of the 1-year U.S. inflation 

premium is 0.74 and has a 0.16 correlation (Table 2) with the overall investor sentiment regarding 

oil. However, the correlation decreases with longer horizons; for example, the U.S. the 5-year U.S. 

inflation premium has only 0.11 correlation with the oil sentiment measures. 

[Insert Tables 1 and 2 Here]  

 We use the Baltic Dry Index (BDI) as a proxy for worldwide economic activity which 

represents the aggregate demand. It has been shown in numerous research papers that oil prices 

are highly correlated and significantly impact global economic activities (Brown and Yücel, 2002; 

Hamilton, 2009; He, Wang, and Lai, 2010). Shipping accounts for around 80% of internationally 

traded goods and commodities.2 Additionally, freight rates are heavily dependent on oil prices as 

it accounts for approximately 50%-60% of total operating costs (UNCTAD, 2010). Several 

previous studies use a similar measure to capture the global economic activities  (Kilian, 2009; 

Kilian and Park, 2009); however, previous measures have a lower frequency (monthly), whereas 

the BDI is published daily which allows us to aggregate it to a weekly measure. Figure 3 displays 

 
1 We have retrieved the 2, 3,5, and 10 year U.S. breakeven inflation rate to conduct robustness checks. Furthermore, 

all the BEIRs data was accessed through Bloomberg terminal. 
2 https://www.balticexchange.com/about-us/shipping-markets 
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the BDI index over our sample period. Furthermore, the BDI measure has been widely used in 

previous academic research (Bakshi, Panayotov, and Skoulakis, 2011; Apergis and Payne, 2013).  

[Insert Figure 3 Here]   

We use the inflation measure developed from the Billion Price Project at MIT.3 The data 

for this index is collected from scrapping prices from websites of large retails stores such as 

Walmart. This index has a high frequency (daily) compared to the traditional monthly Consumer 

Price Index (CPI).4 Further, it covers a substantial number of prices. In the United States, 

approximately a half-million prices are collected daily, whereas the U.S. Bureau of Labor Statistics 

collects only eighty thousand prices monthly (Cavallo and Rigobon, 2016). As such, we use it to 

transform our variables into real variables. Moreover, the U.S. online-price inflation index shows 

significant reliability as it co-moves with the U.S. CPI (see figure 4). Finally, we use the Michigan 

Inflation Expectation index, retrieved from Bloomberg, as part of our robustness checks.  

1.4. Methodology 

1.4.1. Empirical Model 

As a preliminary, we conduct unit root tests to examine whether the time series contains a unit 

root. The null hypothesis of the ADF test (𝐻0) is the series contains a unit root. In our data, all the 

variables were stationary with the exception of the 10-year Treasury constant maturity rate; as 

such, we use first differences for the 10-year Treasury. The VAR model estimated included the 

following four weekly endogenous variables: overall oil sentiment, the real growth rate of Baltic 

Dry index, Brent oil future real return, and the U.S. 1-year BEIR. We include two exogenous 

 
3 We are grateful to Prof. Alberto Cavallo and Prof. Roberto Rigobon in the Sloan School of Management at MIT and 

founders of the Billion Prices Project for sharing their private data.  
4 Due to our lack of access to the Billion Prices Project after September 2016, we use the monthly U.S. CPI to transform 

our variables into real variables.   
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variables (the credit spread and the first difference of the 10-year Treasury) to control for 

macroeconomic conditions. The estimated reduced VAR takes the following form:  

𝑌𝑡 = 𝑐0 + ∑ 𝐴𝑗

𝑘

𝐽=1

𝑌𝑡−𝑗 + ∑ 𝐵𝑗

𝑝

𝐽=1

𝑋𝑡−𝑗 + 휀𝑡                                                                     (1) 

where Yt-j is the vector of the four endogenous variables, Xt-j is a vector of exogenous variables, 

and 휀𝑡 is the vector of shocks used to estimate the structural VAR. The shocks satisfy the condition 

E(휀𝑡휀𝑡′) = I, which is, the shocks’ series are uncorrelated white noise. In addition, 𝑐0 is a vector of 

constants, 𝐴𝑗 and 𝐵𝑗 are coefficient matrices. The lag length was selected using the likelihood ratio 

tests.5 As noted above, in order to control for macroeconomic conditions and the state of the 

business cycle, we include the first difference of the ten-year constant maturity U.S. Treasury rate 

and the credit spread, defined as the difference between the Moody’s BAA and AAA bonds. The 

weekly time series of the above variables were downloaded from the Federal Reserve Bank of St. 

Louis FRED database. 

1.4.2. Identification From SVAR 

In order to obtain structural impulse responses, (1) is rewritten in its moving average 

representation. That is:    

  𝑌𝑡 = B(L) 𝑣𝑡,                                                                 (2) 

where B(L) is (4   4) convergent matrix with B(L) = ∑ 𝐵𝑗 𝐿
𝐽∞

𝑗=0  and 𝐵0 = 𝐼4. 𝑣𝑡 is a vector of (4   

1) of reduced-form residuals assumed to be identically and independently distributed, 𝑣𝑡~ 𝑖𝑖𝑑(0, 

 
5
 The maximum number of lags allowed in a VAR model should be no more than mp + 1 < T where m is the number 

of endogenous variables, p is the number of lags, and T is the total number of observations (Brandt and Williams 

2006) pg.26. 
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𝛺).  Further, we assume that the reduced-form residuals (𝑣𝑡) have a linear combination with the 

structural shocks (휀𝑡) such that: 

𝑣𝑡 = 𝑆휀𝑡                                                                             (3) 

where S is the (4   4) contemporaneous covariance matrix. Thus, we can express (1) as 

𝑌𝑡 = C(L) 휀𝑡                                                                 (4) 

which implies B(L)S = C(L). In order to uniquely identify S, we must impose additional identifying 

restrictions. Thus, we first order the vector of uncorrelated structural shocks as 휀𝑡 =

 [휀𝑆𝑒𝑛𝑡 , 휀𝐵𝑎𝑙𝑡𝑖𝑐 , 휀𝑜𝑖𝑙 , 휀𝐵𝐸𝐼𝑅] where 휀𝑆𝑒𝑛𝑡. is the oil sentiment, 휀𝐵𝑎𝑙𝑡𝑖𝑐 is the real growth rate of Baltic 

Dry Index, 휀𝑜𝑖𝑙  is Brent oil future real return, and 휀𝐵𝐸𝐼𝑅 is the U.S. 1-year BEIR.  

 We follow the literature in imposing our restrictions and use non-recursive identifying 

restrictions (Sims 1986; Blanchard and Watson, 1986; Bernanke, 1986). Under the non-recursive 

approach, variables could have a contemporaneous effect regardless of their ordering in the VAR. 

For example, oil futures return could have an impact on overall oil sentiment and vice-versa 

regardless of the order in which they entered the VAR system (Kim and Roubini, 2000). On the 

other hand, for a variable to have an impact on other variables, under the recursive approach, this 

variable has to enter first in the VAR system, which is not appealing in our case.  

 The number of restrictions has to be (n × ( n – 1))/2 in order to achieve identification, 

where n is the number of variables (Kim and Roubini, 2000). Since we have four variables, the 

needed number of restrictions is six. To identify the restrictions, we use economic and finance 

theory and impose the following restrictions:  
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Thus, we assume: 

1- It is assumed that the U.S. BEIR shock does not have a contemporaneous effect on the overall 

oil sentiment, the real growth rate of Baltic Dry Index and oil futures real return, which are 

the three zeros in column 4. 

2-  It is also assumed that oil futures real return shock does not have a contemporaneous effect 

on the real growth rate of the Baltic Dry Index, which is the zero in column 3. 

              Given that the matrix in (5) is two restrictions short, we impose the following long-run 

restrictions. A shock to oil sentiment (overall oil sentiment) has no long-run effect on itself and on 

the real growth rate of the Baltic Dry Index. The restrictions can be imposed by setting the values 

of the infinite number of relevant lag coefficients in equations (3) and (4), ∑ 𝐶11
∞
𝑗  and ∑ 𝐶21

∞
𝑗  

equal to zero (Olivier Jean Blanchard and Quah 1989; Bjørnland and Leitemo 2009). The long-

run restrictions of ∑ 𝐶11
∞
𝑗  and ∑ 𝐶21

∞
𝑗  imply the following linear restrictions: 

𝐵11(1)𝑆11 + 𝐵12(1)𝑆21 +  𝐵13(1)𝑆31  + 𝐵14(1)𝑆41= 0                                (6) 
 

                                  𝐵21(1)𝑆11 + 𝐵22(1)𝑆21 +  𝐵23(1)𝑆31  + 𝐵24(1)𝑆41  = 0                              (7)                

 The restrictions on the fourth column imply that the overall investor sentiment regarding 

oil, the real growth rate of Baltic Dry Index and oil futures real return do not contemporaneously 

respond to a shock in the U.S. 1-year BEIR. These restrictions are similar to the restrictions 

imposed by Kilian (2009) and Kilian and Park (2009). As mentioned before, the literature has 

shown that oil has an impact on inflation, whereas, the impact of inflation on oil has very weak 

evidence in the literature. Moreover, the restrictions in our model are moderated and more 

reasonable as we are using weekly frequency data. Furthermore, the restriction on the third column 

implies that the real growth rate of the Baltic Dry Index, a proxy for aggregate demand shock, does 

not contemporaneously respond to oil futures real return. This restriction is consistent with the 
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literature, which asserts that the response of the aggregate demand shock, which reflects the global 

real economic activity, is sluggish to changes in real oil price/return (Kilian, 2009).  

 The restriction on the first column implies that a shock to investor sentiment regarding oil 

has no long-term effect on itself and on the real growth rate of the Baltic Dry Index, a proxy for 

aggregate demand shock. Oil sentiment as it reflects fears and uncertainty regarding the oil market 

does not have a long-lasting impact on aggregate demand. Aggregate demand is mostly driven by 

strategic planning, so it is expected to dissipate the effect of fears regarding the status of the oil 

market in the long run.6 Furthermore, we assume that the overall oil sentiment to have no long-run 

impact on itself for a couple of reasons. Fears and uncertainty regarding the oil market most likely 

to be mitigated in the long run as events unfold, and investors acquire more relevant information. 

For instance, a shocking geopolitical event may immediately increase fears and uncertainty 

regarding the oil market, but this fear is expected to evaporate as participants of the oil market 

actively acquire more information. 

1.5. Empirical Results and Discussion  

1.5.1. Impulse Response Functions 

Figures 5 - 7 present the cumulative impulse response functions, where column 1 shows the 

response to shocks in the oil sentiment, column 2 shows the responses to shocks in the real rate 

of Dry Baltic (aggregate demand shock), column 3 shows the response to the real return of oil 

futures (supply shock), and column 4 shows the responses to shocks in the U.S. BEIR (inflation 

premium). 

 
6 Several real world examples support this restriction. For example, the recent attack in the Saudi oil company 

(Aramco) in September 2019, and many others.  



15 
 

The accumulated impulse response functions (IRF) are plotted in Figure 5 for all the four 

endogenous variables over the ten-week horizon. Note that the results in column 1 are consistent 

with results one would expect from increased fears of possible negative aggregate supply shocks.7 

In column 1 row 2, a positive one standard deviation shock to the overall oil sentiment results in 

a negative contemporaneous effect on changes in the real Baltic index (aggregate demand). Due 

to the relatively fixed amount of global supply in the short term, we believe an increase in oil 

precautionary demand, which is mainly captured by oil sentiment, would result in a decrease in 

the aggregate demand (Peersman and Robays, 2012; Jo, 2014). In addition, a positive shock to 

sentiment increases Brent oil future real return (column 1, row 3) by about 3% in the first week, 

and a significant cumulative return of 2.91% over the next ten weeks.8 Furthermore, a shock to 

the real growth rate of the Baltic Dry index in column 2 results in a significant Brent oil future 

real return of about 1.02% in the first week, and a significant cumulative return of 2.46% over the 

next ten weeks. However, note in the second column that a shock to the Baltic Dry index 

(aggregate demand) does not have any meaningful effect on oil sentiment whereas a shock to the 

futures price of oil has a positive and statistically significant effect on oil sentiment (column 3 

row 1).  

 As noted above, the breakeven inflation rate (BEIR) captures the premium required by 

investors to bear the burden of both expected inflation and inflation risk. Thus, we expect investors 

to require a higher inflation premium if they feel the future price of oil will increase. The impulse 

responses in column 1 of Figure 5 show that a positive one standard deviation shock to the overall 

oil sentiment results in a significant increase in the U.S. 1-year inflation premium of about 0.05% 

 
7 Able, Bernanke, and Croushore (2010) use increases in oil prices during the 1970s as examples of negative aggregate 

supply shocks.  
8 The results are robust and significant when we use oil spot and future prices instead of return. 
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in the first week, and a significant cumulative increase of 1.22% over the next ten weeks. 

Furthermore, column 2 of Figure 5 shows a shock to the real growth rate of the Baltic Dry index 

results in a significant increase on the U.S. 1-year inflation premium of about 0.04% in the first 

week and a significant cumulative increase of 0.23% over the next 5 weeks, and a cumulative 

increase of 0.43% over the next ten weeks. The oil demand shock seems to have a lower and short-

term significant impact on the inflation premium compared to the other shocks. This indicates that 

investors consider increases in oil prices driven by the demand side as good news and a sign of a 

strong economy. Furthermore, evidence shows that the U.S. economy demonstrates resilience to 

oil price increases driven by the demand side (Kilian, 2009). Finally, column 3 of Figure 5 

demonstrates the cumulative 10-week response of the U.S. 1-year inflation premium to the oil 

future real return (supply shock) is approximately equal to 1.08%. These results are highly 

significant given that the mean of the U.S. 1-year inflation premium is 0.74%. 

[Insert Figure 5 Here] 

Overall, our results indicate that the oil sentiment measure is capturing concerns about potential 

disruptions in the oil market that are most likely driven by geopolitical and economic concerns 

given our sample period. 

 Furthermore, the overall oil sentiment measure is decomposed into institutional and 

individual oil sentiment indices and re-estimate the SVAR (see Figures 6 and 7). Our results in 

column 1 of Figures 6 and 7 show that institutional investor oil sentiment has a greater impact on 

the U.S. inflation premium (1-year BEIR) compared to the impact of individual investor oil 

sentiment on the U.S. inflation premium. Column 1 of Figure 6 illustrates that a shock to the 

institutional investor oil sentiment results in a significant cumulative increase of 1.43% in the U.S. 

inflation premium over the next 10 weeks, while column 1 of Figure 7 shows that a shock to the 
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individual investor oil sentiment results in a significant cumulative increase of 1.15% in the U.S. 

inflation premium over the next 10 weeks. While the point estimates certainly appear different, 

given the size of the standard errors, we are not able to definitively argue that the impulse responses 

are statistically different from each other. Again, note also that the results in Figures 6 and 7 are 

consistent with the oil sentiment indices capturing concerns about potential macroeconomic supply 

shocks.  

[Insert Figures 6 and 7 Here] 

1.5.2. Structural Variance Decomposition 

In order to better understand the dynamics of the structural VAR, we also estimate the structural 

variance decomposition. Specifically, we would like to address the question regarding the relative 

importance of each random shock in explaining the fluctuation in the U.S. inflation premium. 

Hence, we compute the forecast error variance decomposition from the estimated structural VAR 

model. This estimation allows allocating the percentage of the forecast error variance to the 

individual shocks. The total percentage of the variance of the error should add up to 100% at a 

given forecast horizon.  

 Table 3 displays the results of the structural variance decompositions at two different 

horizons: 5 weeks and 10 weeks. The column variables explain the amount of variance of the row 

variable. The BEIR rows in each of the two panels are italicized. Note that the oil sentiment index 

explains almost 11.60% of the variation of the BEIR over five weeks, and almost 17% over the 

subsequent 10 weeks. The real returns of oil explain 9.21% of the BEIR variation over five weeks, 

and 13.10% over a ten-week time period. Also, note that the oil sentiment index explains nearly 

half of the variance of the oil returns over both time horizons. Again, these results are consistent 

with the story that oil sentiment is capturing investor concerns about potential supply disruptions.    
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[Insert Table 3 Here]   

1.5.3. Forecasting Models 

Finally, we also develop several forecasting models to examine the out-of-sample predictability of 

the oil sentiment on the inflation premium, measured by the U.S. 1-year BEIR. Welch and Goyal 

(2008) posit that significant in-sample predictive power doesn’t ensure significant out-of-sample 

predictive ability. We follow Welch and Goyal (2008) to develop our benchmark model as a no 

predictability model which is the constant expected U.S. 1-year BEIR model: 

                                  𝐵𝐸𝐼𝑅𝑡 =  𝛽0  + 휀𝑡.                                                         (8)   

Afterward, we compare our baseline model against four competing predictive regression models:  

                           𝐵𝐸𝐼𝑅𝑡 =  𝛼0 +  𝛼1𝐵𝐸𝐼𝑅𝑡−1 + 휀𝑡                                       (9) 

                                         𝐵𝐸𝐼𝑅𝑡 =  𝛼0 + 𝛽 𝑆𝑒𝑛𝑡𝑡−1 + 휀𝑡                                        (10) 

                                                  𝐵𝐸𝐼𝑅𝑡 =  𝛼0 +  𝛽 𝑂𝑖𝑙𝑡−1 + 휀𝑡                                          (11) 

                                                𝐵𝐸𝐼𝑅𝑡 =  𝛼0 +  𝛽 𝐵𝑎𝑙𝑡𝑖𝑐𝑡−1 + 휀𝑡                                     (12) 

To compare our baseline with other competing predictive models, we compute the cumulative 

squared prediction errors for each regression. Subsequently, we construct our lines by computing 

the cumulative squared prediction errors of the NULL minus the cumulative squared prediction 

errors of the ALTERNATIVE. Hence, an increase in a line indicates better performance of the 

ALTERNATIVE model and a decrease in the line indicates better performance of the NULL. Thus, 

we follow the literature in which the OOS forecast starts after 20 weeks from the beginning of the 

data.  
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 In Figure 8, we find that the overall investor sentiment regarding oil can predict the U.S. 

inflation premium, measured by the 1-year U.S. BEIR. Furthermore, the aggregate demand, 

measured by the real growth rate of the Baltic Dry Index has also significant predictability over 

the inflation premium. However, the real return of oil does not seem to predict the inflation 

premium. We believe this is consistent with the findings of Kilian (2009) in which the supply 

shock of oil has a minimal impact on the macroeconomic aggregates.  

[Insert Figure 8 Here] 

1.6. Robustness Checks 

We conduct several alternative tests to gauge the robustness of our results. First, we estimate the 

generalized impulse response function (IRF) and the generalized historical decomposition (HD) 

(see Figure 9).9 The main objective of estimating the generalized impulse response is to 

demonstrate the results of the same model without imposing any restrictions. All the results are 

consistent with the SVAR results. Columns 1 and 3 of Figure 9, show that a positive one standard 

deviation shock to the overall oil sentiment and the real return of oil futures result in a significant 

cumulative increase in U.S. 1-year inflation premium by approximately 1.25% and 1.70% 

respectively. However, column 2 of Figure 9 demonstrates that a shock to the real growth rate of 

Baltic Dry Index results in an insignificant cumulative increase in the U.S. 1-year BEIR by 0.14%. 

This is consistent with our SVAR results that investors consider increases in oil prices driven by 

the demand side as good news and a sign of a strong economy.  

[Insert Figure 9 Here] 

 Second, we substitute the breakeven inflation rate with an actual measure of the U.S. 

inflation, which is the online-price inflation index. This index is developed out of the Billion Price 

 
9 For the sake of brevity, historical decomposition results and graphs can be provided upon request. 
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Project at MIT. The index was constructed by scraping prices from websites of giant stores such 

as Walmart. We include an actual measure of inflation to validate that sentiment regarding oil has 

an evident and significant impact on an actual measure of inflation. Subsequently, this impact 

should be reflected in inflation premiums measured by BEIR.  The impulse responses show that a 

positive one standard deviation shock to the overall oil sentiment, and the real return of oil futures 

result in a significant cumulative increase on the online-price inflation index by 0.10%, 0.15%, 

respectively. Again, we conclude that the results are consistent with our evidence on the U.S. 

inflation premium.10  

 Additionally, we address the concern that the oil sentiment measure is just a reflection of 

market sentiment or inflation expectation. We use a U.S. bond market sentiment to evaluate the 

impact on the U.S. 1-year inflation premium. The main reason for using a bond market sentiment 

is that the inflation premium measure, BEIR, calculated as the difference between the nominal 

bond yield and the real bond yield. Hence, a bond sentiment measure is more relevant than the 

sentiment for other markets.11 We use the overall SENTIX U.S. bond sentiment index to conduct 

our analysis. This index is constructed exactly the same as the overall oil sentiment which allows 

us to compare the two. The results show that a shock to the overall bond sentiment has an 

insignificant impact on both the real return of oil futures and the U.S. inflation premiums (U.S. 1-

year BEIR) (see Figure 10). Another concern is that oil sentiment is just a reflection of inflation 

expectations. Thus, we repeat our main analysis by adding the Michigan Inflation Expectation 

index as a  control variable. Our results are robust and remain almost the same.12 This contributes 

 
10 The results are based on the following sample period July 2008 – September 2016 as we don’t have access to the 

data before and after this period. For the sake of brevity, results and graphs can be provided upon request of the 

authors. 
11 We conduct an additional robustness check using Sentix U.S. equity market sentiment. The results are very similar 

to those for the bond sentiment showing insignificant impact of equity market sentiment on the U.S. BEIR. The IRf 

graphs can be provided upon request by the authors. 
12 Historical decomposition results and graphs are omitted to save space. 
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to the evidence that the oil sentiment is mostly driven by the oil market rather than the general 

financial market. 

[Insert Figure 10 Here] 

 We also conduct our analysis with several U.S. BEIRs maturities to further examine the 

impact on the short-term and long-term. We conduct the same analysis on the 2, 3,5 7, and 10 year 

U.S. breakeven inflation rate. Our results are robust among all of the short term time horizons.13 

The short-term U.S. BEIR (2, 3 and 5 year) show a significant impact of the overall oil sentiment 

on the inflation premium.  

1.7. Conclusion 

To our knowledge, this is the first paper that examines the impact of oil sentiment on the U.S. 

inflation premium, measured by the breakeven inflation rate (BEIR). Our main findings 

demonstrate a significant influence of investor sentiment regarding oil prices on the U.S. inflation 

premium. A positive one standard deviation shock to investor sentiment regarding oil prices results 

in a significant cumulative increase of 1.2% for the U.S. inflation premium over the following ten 

weeks. Furthermore, the institutional investor oil sentiment has a greater impact on the U.S. 

inflation premium compared to the impact of individual investor oil sentiment on the U.S. inflation 

premium, although we cannot determine whether the two are statistically different from each other. 

These results are highly significant given that the mean of the U.S. inflation premium is 0.74%. 

Additionally, we find out-of-sample evidence that overall investor sentiment regarding oil along 

with the other oil-related measures to have predictability power over the U.S. inflation premium. 

Our results could potentially benefit policymakers, managers of firms, and investors, among 

others. Monetary policymakers should take investor sentiment regarding oil as a proxy to 

 
13 For the sake of brevity, results and graphs can be provided upon request by the authors. 
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determine investors’ beliefs about potential disruptions in oil markets. In addition, firms may need 

to estimate investor oil sentiment to gauge investors’ risk appetite as it directly impacts their cost 

of capital. Finally, investors and fund managers could refine their investment strategies by 

incorporating investor sentiment regarding oil prices. 
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Table 1: Summary Statistics 

The table includes the variables used in the analysis. These variables are overall oil sentiment, 

individual oil sentiment, institutional oil sentiment, the real rate of Baltic Dry index, real return of t oil 

futures, 5-year U.S. BEIR, 1-year U.S. BEIR, and bond investor sentiment.  All variables are in weekly 

intervals. And the sample period is between July 18, 2008 – August 31, 2019. 

 

 

 Overall 

Oil Sen. 

Individual 

Oil Sent. 

Institutional 

Oil Sent. 

Real 

Rate 

of Dry 

Baltic 

Real 

Return 

of Oil 

Futures 

1-year 

U.S. 

BEIR 

5-year 

U.S. 

BEIR 

Bond Sent. 

Mean 0.02 0.01 0.03 0.00 -0.26 0.74 1.65 -0.06 

Median 0.01 0.01 0.02 0.00 0.15 0.94 1.77 -0.06 

Maximum 0.56 0.57 0.54 0.53 19.93 4.50 2.47 0.30 

Minimum -0.44 -0.47 -0.43 -0.35 -29.77 -6.17 -0.78 -0.49 

Std. Dev. 0.18 0.18 0.16 0.10 4.55 1.36 0.50 0.14 

Skewness 0.11 0.12 0.05 0.36 -0.74 -1.84 -2.24 -0.06 

Kurtosis 2.87 2.86 2.91 4.89 7.60 9.22 9.87 2.60 

         

Observations 558 558 558 558 558 558 558 558 
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Table 2: Correlations 

The table reports the correlations of the variables used in the study. The variables are overall oil 

sentiment, individual oil sentiment, institutional oil sentiment, the real rate of Baltic Dry index, real 

return of t oil futures, 5-year U.S. BEIR, 1-year U.S. BEIR, bond investor sentiment, U.S. online 

inflation index. Our sample covers the period between July 18, 2008 – August 31, 2019.  

 

 
Overall Oil 

Sen. 

Individual 

Oil Sent. 

Institutional 

Oil Sent. 

Real 

Rate of 

Dry 

Baltic 

Real 

Return of 

Oil 

Futures 

1-year 

U.S. 

BEIR 

5-year 

U.S. 

BEIR 

Bond 

Sent. 

Individual Oil 

Sent. 
0.99 1.00       

Institutional Oil 

Sent. 
0.95 0.92 1.00      

Real Rate of 

Dry Baltic 
0.08 0.08 0.06 1.00     

Real Return of 

Oil Futures 
0.56 0.55 0.56 0.10 1.00    

1-year U.S. 

BEIR 
0.16 0.18 0.06 0.06 0.15 1.00   

5-year U.S. 

BEIR 
0.11 0.13 0.03 0.05 0.16 0.81 1.00  

Bond Sent. -0.29 -0.28 -0.30 -0.04 -0.24 -0.18 -0.18 1.00 

 

 

 

 

  



25 
 

 

Table 3: Structural Variance Decompositions 

This table presents the Structural Variance Decompositions at the 5-week and 10-week horizons. we 

compute the forecast error variance decomposition from the following estimated structural VAR model 

𝑌𝑡 = 𝑐0 + ∑ 𝐴𝑗
𝑘
𝐽=1 𝑌𝑡−𝑗 + ∑ 𝐵𝑗

𝑝
𝐽=1 𝑋𝑡−𝑗 + 휀𝑡 where 𝑌𝑡 is the vector of the four weekly endogenous 

variables overall oil sentiment, real rate of the Baltic Dry Index, Brent oil future real return, and the 

U.S. 1-year BEIR, Xt is a vector of exogenous variables, and 휀𝑡 is the vector of shocks used to estimate 

the structural VAR. Our sample covers the period between July 18, 2008 – August 31, 2019.  

 

  

 5 Weeks 

 Oil Sentiment Baltic Dry Index Real Futures Return BEIR 

Oil Sentiment 1.68 0.36 97.21 0.74 

Baltic Dry 

Index 
5.95 92.82 0.99 0.24 

Real Futures 

Return 
51.82 6.24 38.27 3.67 

BEIR 11.57 1.92 9.21 77.30 

 10 Weeks 

 Oil Sentiment Baltic Dry Index Real Futures Return BEIR 

Oil Sentiment 1.70 0.54 96.81 0.95 

Baltic Dry 

Index 
7.60 89.06 2.64 0.68 

Real Futures 

Return 
50.62 7.15 37.88 4.35 

BEIR 16.95 2.19 13.10 67.75 
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Figure 1: WTI Prices and the 1-Year Breakeven Inflation Rate 
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Figure 2: Oil Sentiment 

                    This figure shows the overall oil sentiment for the period between July 18, 2008 – August 31, 2019. 

 

 

Figure 3: Real Growth Rate of Baltic Dry Index 

This figure real growth rate of the Baltic Dry Index (BDI) for the period between July 18, 2008 

– August 31, 2019. 
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Figure 4: The U.S. Online-Price Inflation Index 

The figures show the online-price inflation index (PriceStats) along the U.S. CPI (BLS), both at monthly 

frequency.14 

 

 

 

 
14 Source: The Billion Prices Project website (http://www.thebillionpricesproject.com/usa/). The graphs were accessed on Aug/2017. 

http://www.thebillionpricesproject.com/usa/
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Figure 5: The Accumulative Structural Impulse Responses for the U.S. 1-year BEIR with the Overall Oil Sentiment 

This figure shows accumulative structural impulse response functions (IRF) from the following VAR: 𝑌𝑡 = 𝑐0 + ∑ 𝐴𝑗
𝑘
𝐽=1 𝑌𝑡−𝑗 + ∑ 𝐵𝑗

𝑝
𝐽=1 𝑋𝑡−𝑗 + 휀𝑡 

where 𝑌𝑡 is the vector of the four weekly endogenous variables overall oil sentiment, real rate of the Baltic Dry Index, Brent oil future real return, 

and the U.S. 1-year BEIR, Xt is a vector of exogenous variables, and 휀𝑡 is the vector of shocks used to estimate the structural VAR. Our sample covers 

the period between July 18, 2008 – August 31, 2019. Time on the horizontal axis is in weeks. 
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Figure 6: The Accumulative Structural Impulse Responses for the U.S. 1-year BEIR with the Institutional Oil Sentiment 

This figure shows accumulative structural impulse response functions (IRF) from the following VAR: 𝑌𝑡 = 𝑐0 + ∑ 𝐴𝑗
𝑘
𝐽=1 𝑌𝑡−𝑗 + ∑ 𝐵𝑗

𝑝
𝐽=1 𝑋𝑡−𝑗 + 휀𝑡 

where 𝑌𝑡 is the vector of the four weekly endogenous variables institutional oil sentiment, real rate of the Baltic Dry Index, Brent oil future return, 

and the U.S. 1-year BEIR, Xt is a vector of exogenous variables, and 휀𝑡 is the vector of shocks used to estimate the structural VAR. Our sample 

covers the period between July 18, 2008 – August 31, 2019. Time on the horizontal axis is in weeks. 
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Figure 7: The Accumulative Structural Impulse Responses for the U.S. 1-year BEIR with the Individual Oil Sentiment 

This figure shows accumulative structural impulse response functions (IRF) from the following VAR: 𝑌𝑡 = 𝑐0 + ∑ 𝐴𝑗
𝑘
𝐽=1 𝑌𝑡−𝑗 + ∑ 𝐵𝑗

𝑝
𝐽=1 𝑋𝑡−𝑗 + 휀𝑡 

where 𝑌𝑡 is the vector of the four weekly endogenous variables overall oil sentiment, real rate of Baltic Dthe ry Index, Brent oil future return, and the 

U.S. 5-year BEIR, Xt is a vector of exogenous variables, and 휀𝑡 is the vector of shocks used to estimate the structural VAR. Our sample covers the 

period between July 18, 2008 – August 31, 2019. Time on the horizontal axis is in weeks. 
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Figure 8: The Out of Sample Forecasting Models of the U.S. 1-year BEIR 

These figures plot the IS and OOS performance of weekly predictive regressions. Particularly, these are the cumulative squared predictions errors 

of the NULL minus the cumulative squared prediction errors of the ALTERNATIVE. ALTERNATIVE is a model that relies on predictive variables 

noted above each graph. The NULL is a no predictability baseline model which is the constant expected U.S. 1-year BEIR (BEIRt =  β0  + 휀𝑡  ). 

An increase in a line indicates better performance of the ALTERNATIVE model; a decrease in a line indicates better performance of the NULL. 

The sample period covers the period July 18, 2008 – August 31, 2019. 

 

ALTERNATIVE Model 1 Equation:  𝐵𝐸𝐼𝑅𝑡 =  𝛼0 +  𝛽 𝐵𝐸𝐼𝑅𝑡−1 + 휀 ALTERNATIVE Model 2 Equation:  𝐵𝐸𝐼𝑅𝑡 =  𝛼0 +  𝛽 𝑆𝑒𝑛𝑡𝑡−1 + 휀 

  

ALTERNATIVE Model 3 Equation:  𝐵𝐸𝐼𝑅𝑡 =  𝛼0 +  𝛿 𝑂𝑖𝑙𝑡−1 + 휀 ALTERNATIVE Model 4 Equation:  𝐵𝐸𝐼𝑅𝑡 =  𝛼0 +  𝛽 𝐵𝑎𝑙𝑡𝑖𝑐𝑡−1 + 휀 
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Figure 9: The Accumulative Generalized Impulse Responses for the U.S. 1-year BEIR with the Overall Oil Sentiment 

This figure shows accumulative generalized impulse response functions (IRF) from the following VAR: 𝑌𝑡 = 𝑐0 + ∑ 𝐴𝑗
𝑘
𝐽=1 𝑌𝑡−𝑗 + ∑ 𝐵𝑗

𝑝
𝐽=1 𝑋𝑡−𝑗 +

휀𝑡 where 𝑌𝑡 is the vector of the four weekly endogenous variables overall oil sentiment, real rate of the Baltic Dry Index, Brent oil future return, and 

the U.S. 5-year BEIR, Xt is a vector of exogenous variables, and 휀𝑡 is the vector of shocks used to estimate the structural VAR. Our sample covers 

the period between July 18, 2008 – August 31, 2019. Time on the horizontal axis is in weeks. 
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Figure 10: The Accumulative Generalized Impulse Responses for the U.S. 1-year BEIR with the Bond Sentiment 

This figure shows accumulative generalized impulse response functions (IRF) from the following VAR:  VAR: 𝑌𝑡 = 𝑐0 + ∑ 𝐴𝑗
𝑘
𝐽=1 𝑌𝑡−𝑗 +

∑ 𝐵𝑗
𝑝
𝐽=1 𝑋𝑡−𝑗 + 휀𝑡 where 𝑌𝑡 is the vector of the four weekly endogenous variables bond sentiment, real rate of Baltic Dry Index, Brent oil future real 

return, and the U.S. 1-year BEIR, Xt is a vector of exogenous variables, and 휀𝑡 is the vector of shocks used to estimate the structural VAR.  Our 

sample covers the period between July 18, 2008 – August 31, 2019. Time on the horizontal axis is in weeks. 

IRF of bond sent. To bond sent. IRF of bond sent. To real rate of Dry Baltic IRF of bond sent. To the real return of oil 

futures 

IRF of bond sent. To U.S. 1-year 

BEIR 

    

IRF of the real rate of Dry Baltic To bond 

sent. 

IRF of the real rate of Dry Baltic To real 

rate of Dry Baltic 

IRF of the real rate of Dry Baltic To the 

real return of oil futures 

IRF of the real rate of Dry Baltic To 

U.S. 1-year BEIR 

    

IRF of real return of oil futures To bond 

sent. 

IRF of real return of oil futures To real rate 

of Dry Baltic 

IRF of real return of oil futures To real 

return of oil futures 

IRF of real return of oil futures To 

U.S. 1-year BEIR 

    
IRF of U.S. 1-year BEIR To bond sent. IRF of U.S. 1-year BEIR To real rate of Dry 

Baltic 

IRF of U.S. 1-year BEIR To the real 

return of oil futures 

IRF of U.S. 1-year BEIR To U.S. 1-

year BEIR 

 
   



35 
 

 

 

Essay 2. Market Inefficiencies Surrounding Energy Announcements 

 

 

2.1. Introduction 

Oil inventory announcements move energy markets. These announcements provide essential 

signals regarding the supply and demand of oil. Two of the primary energy announcements, made 

by the American Petroleum Institute (API) and the U.S. Energy Information Administration (EIA), 

occur weekly. These two public announcements provide very similar fundamental information, 

and they are closely followed by traders in financial markets. According to the efficient market 

hypothesis, fundamental public information should be immediately impounded into asset prices. 

The immediate price adjustment prevents traders from exploiting public information to make 

profitable trades (French and Roll, 1986). 

  There is no consensus regarding the efficiency of oil futures markets. While some studies 

have found that oil futures are highly efficient (Tabak and Cajueiro, 2007; Wang and Yang, 2010; 

Kristoufek and Vosvrda, 2014; Kristoufek, 2018), others have found oil prices to be less efficient 

(Shambora and Rossiter, 2007; Alvarez-Ramirez, Alvarez, and Solis, 2010). Several studies find 

evidence of informed trading before energy inventory announcements. Gu and Kurov (2018) show 

that trading prior to the EIA weekly natural gas announcements is driven by informed traders who 

rely on superior forecasting skills. Rousse and Sévi (2019) suggest that information leakage is a 

potential cause of the observed trading pattern prior to the weekly oil inventory announcements 

 

* This essay is based on a paper coauthored with Alexander Kurov.   
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released by the EIA.  

 The API oil inventory announcements are followed 18 hours later by the oil inventory 

announcements from the EIA. We use the unique sequential nature of these events to analyze the 

efficiency of oil futures markets and to explain the evidence of informed trading before the EIA 

oil announcements. We utilize the same setting to contribute to the literature on stock market 

efficiency. In addition, we construct a simple predictor that can be used to predict inventory 

surprises and pre-announcement returns. We ask the following relevant questions: (1) How do 

market conditions influence market efficiency around energy announcements? (2) Can we utilize 

public news about energy to predict inventory surprises and asset prices? (3) Can we construct an 

improved forecast of energy announcements?  

 We find that the oil futures return after the API announcements significantly predicts the 

return before the EIA announcements. This finding provides strong evidence that oil futures do 

not immediately incorporate all of the public information released by the API. Thus, our results 

indicate that the price drift before the EIA oil announcements documented by Rousse and Sévi 

(2019) can be explained by delayed adjustment to public information.  

 Market conditions, such as liquidity and oil attention, can influence market efficiency. 

Chordia, Roll, and Subrahmanyam (2008), examine the role of liquidity in market efficiency. They 

find that the predictability of returns from past order flows decreases when liquidity is high. Akbas, 

Armstrong, Sorescu, and Subrahmanyam (2016) find that financial markets become more efficient 

when investors put more capital in mutual funds that trade on market anomalies. Furthermore, 

higher trading activity of algorithmic and high-frequency traders facilitates liquidity and price 

discovery (Hasbrouck and Saar 2013; Brogaard, Hendershott, and Riordan 2014). Therefore, high 

liquidity should facilitate the efficient incorporation of information in oil futures prices. Consistent 
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with this expectation, we find that the oil futures returns after the API oil announcements 

significantly predict the pre-EIA announcement returns only during periods of low liquidity. 

  Additionally, attention is a limited cognitive resource that investors need to allocate to 

information they believe is important (Kahneman, 1973). Thus, public information should be 

efficiently incorporated into prices when investors pay attention to it. Barber and Odean 

(2008)show that investors tend to buy stocks that they pay more attention to. Han, Lv, and Yin 

(2017) find that oil-related SVI forecasts daily and weekly oil prices in both in-sample and out-of-

sample tests. We construct an oil-related Internet search activity measure similar to the one 

described in Han, Lv, and Yin (2017). Our findings indicate that the predictive ability of the post-

API announcement oil futures return for the pre-EIA announcement return is confined to periods 

of low attention to oil.  

 Furthermore, we contribute to the debate regarding whether changes in oil prices can 

predict stock returns. Huang et al. (1996) find that oil futures are not correlated with or linked to 

the stock market, except stocks of oil companies. However, others have found that oil has a 

significant impact on stock markets depending on the type of oil shock (Chiang, Hughen, and Sagi, 

2015; Kilian and Park, 2009; Ready, 2018), the specific sectors of the stock markets (Fan and 

Jahan-Parvar, 2012), and whether the market is international or domestic (Hu and Xiong, 2013). 

We find that the opening prices of oil companies do not fully incorporate oil inventory information 

released after trading hours. The post-API announcement oil futures return is a significant 

predictor of the returns of oil companies on the following day.  

 Previous results suggest the importance of the information released by the API in shaping 

the market expectations for the EIA oil announcements the following day. Most of the literature 

evaluates the impact of EIA announcements by considering one proxy for market expectation; for 
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example, Bloomberg median consensus, as described in Halova, Kurov, and Kucher (2014) and 

Wolfe and Rosenman (2014), Reuters forecast as described in Bu (2014), or the API actual as 

described in Armstrong, Cardella, and Sabah (2017). We construct a predictor based on the 

difference between the API actual and the Bloomberg consensus forecast. The predictor has 

significant explanatory power over the pre-EIA announcement return. In addition, a simple trading 

strategy based on the predictor would generate an annualized Sharpe ratio of 0.67 in the full 

sample, and an annualized Sharpe ratio of 2.1 when the predictor has large values.  

 Finally, we employ the relative importance method to construct a combination forecast of 

the EIA oil announcements by objectively allocating weights to the Bloomberg median consensus 

and API actual (Grömping, 2006; Johnson and Lebreton, 2004; Thomas,  Zhu, Zumbo, and Dutta, 

2017). Using our combination forecast as a proxy for market expectations increases the R2 in the 

regression of oil futures returns on inventory surprises by approximately 130% compared to the 

Bloomberg consensus forecast, and by approximately 17% compared to the API actual. Hence, 

using the combination forecast to compute oil inventory surprises reduces measurement errors that 

could stem from the use of a single stale proxy for market expectations. We show that using the 

combination forecast to compute inventory surprises provides more accurate estimates that are 

closer to those generated by employing the Identification Through Censoring (ITC) technique 

proposed by Rigobon and Sack (2008). The ITC technique is employed to adjust for the bias caused 

by measurement error in announcement surprises.  

 Our study contributes to the literature in several important ways. First, we provide clear 

evidence of market inefficiency in the oil futures market using a unique setting of sequential energy 

announcements. We examine how different market conditions influence this inefficiency. Second, 

we show that a similar inefficiency is also present in the stock market. Specifically, opening prices 
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of energy stocks do not fully incorporate public information released after the market close the day 

before. Third, we show that mere public information can be used to predict inventory surprises and 

oil futures returns before the EIA announcements. This alleviates the concerns about possible 

preannouncement information leakage. Finally, we construct a combination forecast of the EIA oil 

announcements that is more accurate than other commonly used measures of market expectations. 

A similar approach may be useful in creating forecasts of other public announcements. 

2.2. Literature Review  

As mentioned above, the literature has not reached a consensus regarding the efficiency of the oil 

markets. Shambora and Rossiter (2007) employ an artificial neural network to uncover hidden 

trading patterns in the oil futures and show the possibility of superior return using the network.  

Alvarez-Ramirez, Alvarez, and Solis (2010) use detrended fluctuation analysis (DFA) to analyze 

the efficiency of the daily spot price of WTI crude oil. They find that crude oil exhibits some 

deviations from efficiency; however, their results seem to depend on the state of the economy. On 

the other hand, Wang and Liu (2010) find that the behavior of WTI at different measurement 

frequencies is consistent with informational efficiency. These results are consistent with the 

findings of Alvarez-Ramirez, Alvarez, and Rodriguez (2008). Wang and Yang (2010) use intraday 

data for crude oil, heating oil, gasoline, and natural gas futures and test the efficiency of these 

markets using several nonlinear models. They find that the crude oil and gasoline futures markets 

are efficient, but heating oil and natural gas futures show weak-form efficiency only during the 

bull market. Kristoufek and Vosvrda (2014) investigate the market efficiency in 25 commodity 

futures. They find WTI crude oil, heating oil, and coffee to be the most efficient compared to the 

other commodities. Kristoufek (2018) replicated the earlier study by Tabak and Cajueiro (2007) 

with extended data up to June 2017. The results show that the efficiency fluctuates over time for 
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both WTI and Brent crude oil but the oil market has been more efficient recently compared to the 

1990s. Furthermore, WTI oil shows stronger evidence of efficiency compared to Brent oil. 

 The literature is very sparse in regards to trading around energy announcements. Rousse 

and Sévi (2019) investigate informed trading around the EIA oil inventory announcements. They 

find some “suspicious trading” patterns before the announcements as there are significant order 

imbalances on the days of oil inventory surprises. They suggest that “the inventory level released 

by the DOE each Wednesday is known by some market participants who can benefit from their 

insider position to make money with the news.” Our paper differs from theirs in several aspects. 

First, our findings point towards sophisticated trading that is driven by mere public information 

which includes the API announcement in the day before. Second, we investigate sophisticated 

trading around both EIA and API announcements. Our findings indicate that the significant pre-

announcement drift exists only before the EIA release. This provides evidence that some traders 

have superior skills for digesting and processing public information.  

In a related paper, Gu and Kurov (2018) find evidence of informed trading, a drift in the 

right direction, before the Weekly Natural Gas Storage Report. The difference between forecasts 

of analysts with superior historical forecasting ability and the Bloomberg consensus forecast 

predicts inventory surprises and the pre-announcement returns of natural gas futures. Our paper 

differs from Gu and Kurov's (2018) study in several ways. First, we show that the oil futures return 

following the API inventory announcements is a significant predictor of the pre-EIA 

announcement returns. This is a clear violation of the weak-form market efficiency. Second, we 

examine market conditions that influence the return predictability around the release of the Weekly 

Petroleum Status Report. Third, in addition to looking at the efficiency of the oil futures market 

we show evidence of inefficiency in stocks of oil companies. 
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 The literature on the impact of macroeconomic news on asset prices is extensive.15 

However, the literature regarding energy announcements is limited. Miao et al. (2018) show that 

oil inventory announcements shocks have a significant impact on oil futures and options prices.  

Wolfe and Rosenman (2014) study the bidirectional causality of oil and gas inventory 

announcements shocks. They analyze how these shocks are transmitted from one market to the 

other. They find that the impact of gas inventory announcements on oil futures volatility is stronger 

than the effect of oil announcements on gas futures volatility. Both Miao et al. (2018) and Wolfe 

and Rosenman (2014) use the Bloomberg median consensus to proxy for the market expectation 

of the announcements. Bu (2014) uses the Reuters survey to proxy for the market expectations and 

finds that the oil inventory shocks move oil futures prices but have limited influence on volatility. 

Ye and Karali (2016) analyze the impact of both the EIA and API inventory announcements on 

crude oil futures returns and volatility. The EIA announcements shocks are measured relative to 

the API actual, whereas the API shocks measured relative to the Thomson Reuters survey. Their 

results show that both the EIA and API inventory shocks have a significant effect on returns and 

volatility. However, the effect of the API inventory shocks is smaller and shorter-lived compared 

to the effect of the EIA inventory news.  

 Armstrong, Cardella, and Sabah (2017) study the impact of the EIA oil inventory surprises 

on crude oil futures liquidity. They find that these shocks resolve uncertainty and increase 

liquidity. Chang, Daouk, and Wang (2009) investigate the impact of analyst forecast accuracy on 

the oil markets. They find that investors are able to identify good analysts and respond to their 

forecasts. Ederington et al. (2019) analyze the properties of analyst forecasts of oil and natural gas 

inventories. They find that the reaction of the daily price of oil and natural gas futures to the EIA 

 
15 Examples of studies in this area include Andersen et al., (2003), Andersen, Bollerslev, Diebold, and Vega (2007), 

Baum, Kurov, and Halova (2015), Rigobon and Sack (2004), Scholtus, van Dijk, and Frijns (2014). 
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announcements is influenced by the level of forecast dispersion. Additionally, they find that 

inventory forecasts for natural gas are more accurate compared to those for oil. 

 Halova, Kurov, and Kucher (2014) employ the identification through censoring technique 

to correct for biases in the estimates of the responses of energy futures markets to inventory news. 

They find that the bias in the OLS estimates is quite large. Linn and Zhu (2004) analyze the impact 

of the weekly gas inventory announcements on the volatility of the natural gas futures. They find 

that the announcements cause a significant increase in volatility in the 30-minute interval after the 

release. Other studies examine the impact of OPEC announcements  (Karali and Ramirez, 2014; 

Kutan and Demirer, 2010; Schmidbauer and Rösch, 2012; Spencer and Bredin, 2019). 

  To measure inventory news, it is important to choose an appropriate proxy for market 

expectations. We employ the relative importance method to construct a combination forecast 

which could accurately represent the market expectations. This methodology has been employed 

in different contexts to assess the relative importance of multiple variables (Grömping, 2006; 

Johnson and Lebreton, 2004; Thomas et al., 2017). To the best of our knowledge, the only prior 

study that uses combination forecasts to compute inventory surprises is Anatolyev, Seleznev, and 

Selezneva (2018). Our approach differs from theirs in that we do not impose any assumptions in 

allocating the weights. Furthermore, our approach is easily generalized to incorporate more than 

two forecasts. This approach to measuring market expectations can be used in other contexts such 

as macroeconomic and corporate announcements. 

2.3. Institutional Background, Data, and Variables 

Our empirical analysis centers around two major weekly oil announcements. These two 

announcements provide a unique setting because they contain similar information and are released 

on consecutive days. One of these announcements is released by the EIA. Oil companies and 
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refineries are required to participate in the weekly EIA survey and provide accurate information 

about their oil inventory by the end of each Friday.16 The EIA compiles this information and 

prepares the Weekly Petroleum Status Report. The report is usually released on Wednesdays at 

10:30 am ET. Market participants and policymakers closely follow these releases and use them to 

analyze changes in the oil supply and demand.  

 The American Petroleum Institute (API) was established by Congress and the domestic oil 

and gas industry in 1919. The institute has around 625 corporate members, and it is considered 

one of the largest associations in the oil and gas industry.17 The API releases its oil inventory report 

at 4:30 pm ET every Tuesday. These releases are reported by the traditional news media, social 

media and other media platforms (Armstrong, Cardella, and Sabah 2017). As mentioned above, 

prior research finds that the API oil inventory announcements have significant effects on oil prices 

and volatility (Ye and Karali, 2016). The API and the EIA provide similar information, and both 

are considered highly reliable. Furthermore, both EIA and API collect data from almost the same 

respondents and cover around 90% of the U.S. oil and gas industry. According to API, “API 

collects an exact copy of the data submitted to EIA. Respondents send data to API using the same 

weekly survey forms that EIA uses.”  

 Our sample period spans from January 2011 to August 2019.18 This sample period provides 

sufficient data to conduct our analysis and ensure that our results are not driven by a particular 

market regime. Due to holidays, EIA announcements occasionally take place on Thursdays instead 

of Wednesdays. In such cases, the time interval between the API and the EIA announcements may 

exceed 18 hours. In our main analysis, we exclude those EIA announcements that took place on 

 
16 The EIA information is provided on the EIA’s website at https://www.eia.gov/. 
17 The API information is available on the API’s website at https://www.api.org/. 
18 The sample period is chosen based on availability of the API actual data. 

https://www.eia.gov/
https://www.api.org/
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Thursdays.19 The resulting sample contains 385 EIA oil inventory announcements. 

We use data for the nearby WTI oil futures contracts, since they are very liquid (Chiang 

and Hughen, 2017). These futures are considered to be very efficient in incorporating public 

information. We use intraday data, which allows us to analyze trading activity and price behavior 

around the EIA and API inventory announcements. We use the oil futures data to construct the 

illiquidity measure following Amihud (2002). This illiquidity measure is defined as follows: 

 
𝐼𝐿𝐿𝐼𝑄 =  (

|𝑟𝑑,𝑠|

𝑣𝑜𝑙𝑑,𝑠
) 

(1) 

where 𝑟𝑑,𝑠 is the absolute return and 𝑑𝑣𝑜𝑙𝑑,𝑠 is the volume on day 𝑑 in period 𝑠. This measure is 

widely used in the literature (Goyenko, Holden, and Trzcinka, 2009).20  

 Da, Engelberg, and Gao (2011) use the Google Search Volume Index (SVI) and find that 

an increase in SVI can predict stock returns up to two weeks in advance. Oil attention has been 

shown to have significant predictive power for oil prices at both daily and weekly frequencies 

(Han, Lv, and Yin, 2017). We measure attention to oil prices using daily Google SVI data. We use 

the search activity for “oil” as our measure of attention to oil prices. We select the following search 

categories to capture attention to the oil market (1) Business & Industrial, (2) Energy & Utilities, 

(3) Oil & Gas.21 Moreover, we download the consensus forecasts for the EIA announcements from 

Bloomberg. We also download the U.S. oil inventory level from the EIA website.  

We construct the combination forecast according to the weights estimated by the relative 

importance analysis. This method is proposed by Lindeman, Merenda, and Gold (1981), 

henceforth LMG. Figure 1 shows the annual weights allocated to the API actuals computed based 

 
19 Our results remain significant and very similar if these announcements are included in the sample. 
20 The Amihud measure has been shown to have the largest correlation with liquidity benchmarks in commodity 

markets (Marshall, Nguyen, and Visaltanachoti, 2012). 
21 We have used several variations of search categories to ensure the robustness of our attention measure. 
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on relative importance regression using data for the previous year. We can see that the API actual 

receives weights of more than 50% throughout our sample period. Table 1 provides summary 

statistics for the main variables used in the analysis. The table shows that the means of both API 

actual and Bloomberg consensus are below the mean of the EIA actual. In addition, the mean of 

the surprises that are computed based on the combination forecast falls between the means of the 

surprises computed based on Bloomberg consensus and API actual.  

[Insert Table 1 Here]   

2.4. Results and Discussion 

As mentioned above, we use the sequence of two very similar U.S. oil inventory announcements 

to examine the informational efficiency of energy markets. In this section, we discuss our results 

and relate them to the existing literature. Rousse and Sévi (2019) find a significant drift in the 

“correct” direction before the EIA oil inventory announcements. They attribute this drift 

potentially to leaked news. Gu and Kurov (2018) ascribe a similar drift before the EIA natural gas 

inventory announcements to superior forecasting. Consistent with these studies, Figure 2 shows a 

price drift in the oil futures before the EIA oil inventory announcements. Below, we provide 

evidence that processing mere public information explains much of this preannouncement drift. 

Figure 3 shows no evidence of statistically significant drift prior to the API oil inventory 

announcements, which is consistent with the API oil inventory surprises being less predictable 

compared to the EIA inventory news.22 

[Insert Figures 2 and 3 Here] 

 
22 We use the Thomson Reuters survey as a proxy for market expectations for the API announcements because the 

results of this survey are usually released at about 2 pm ET on the announcement days (Ye and Karali, 2016). The 

cumulative average returns are very similar when we use the Bloomberg consensus as a proxy for market expectations.  
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2.4.1. Predicting Returns Before the EIA Inventory Announcements 

We begin by testing whether the information contained in the API inventory announcements is 

efficiently incorporated in oil futures prices. The efficient market hypothesis posits that prices 

reflect all public information. Therefore, earlier returns should not predict subsequent returns. 

Panel A of Table 2 shows that the 30-minute return of oil futures post-API release predicts the 60-

minute return of oil futures prior to the EIA oil inventory announcements.23 We find almost the 

same significant predictability of the oil futures returns in other time intervals before the EIA oil 

inventory announcements such as 30 and 90 minutes before the announcement.24 Figure 4 uses 

Welch and Goyal (2008) methodology to show significant out-of-sample predictive power of the 

post-API oil futures returns over the pre-EIA returns.25 These findings present an apparent 

violation of weak-form market efficiency.26 The information in the API announcements is not fully 

incorporated in the price immediately, perhaps because some traders delay trading on this 

information until right before the EIA announcement.27  

 A plausible explanation for the delayed incorporation of information released by the API 

could be attributed to the unique setting of our study. API oil inventory announcements are known 

to provide reliable estimates of the U.S. oil inventory level. However, the EIA announcements are 

more widely recognized and followed compared to the API announcements. Furthermore, WTI 

crude oil futures have a one-hour trading break starting at 5:00 pm ET, and when trading resumes 

at 6:00 pm the market liquidity is relatively low. These factors may contribute to delayed 

 
23 We choose 30-minute return of oil futures after the API announcement because these announcements are released 

at 4:30 pm ET and WTI oil futures do not trade from 5:00 pm to 6:00 pm ET. 
24 We use the 60-minutes interval before the EIA announcements to conduct our main analysis because it represents a 

midpoint between the other alternatives.  
25 An explanation of the Welch and Goyal (2008) method is provided in the Appendix. 
26 In a weak-form efficient market, past market data cannot be used to forecast future returns.  
27 We find no evidence of significant asymmetry in the predictability of the pre-EIA oil futures return. Specifically, 

the difference between positive post-API oil futures return and negative post-API oil futures return in predicting pre-

EIA oil futures return is not statistically significant.   
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incorporation of information in the API oil inventory announcements.  

 The Bloomberg consensus forecast of oil inventory changes is publicly available before 

the inventory announcements. However, this forecast is almost never updated after the API 

announcements. Since this forecast does not reflect the API oil inventory news, it is not an up-to-

date measure of market expectations at the time of the EIA oil inventory announcements. Hence, 

we construct a simple predictor computed as the difference between the API actual and the 

Bloomberg median consensus. The predictor represents a forecast of the surprise of the EIA oil 

inventory announcements, if one uses the widely followed Bloomberg consensus as a proxy for 

market expectations. Panel B of Table 2 and Figure 5 show that the predictor can predict the oil 

futures returns before the EIA announcements both in-sample and out-of-sample. These results 

provide further evidence of market inefficiencies as the predictor is based on public information.28 

[Insert Table 2 and Figures 4 and 5 Here]    

2.4.2. Predictability of Inventory Surprises 

We further analyze whether the EIA inventory surprises can be predicted using the post-API oil 

futures return and our predictor. Following previous studies (e.g., Halova, Kurov, and Kucher, 

2014), we compute the oil inventory surprises as the difference between the EIA actual and the 

Bloomberg median consensus divided by the level of inventory. Table 3 shows that both the post-

API oil future return and the predictor can predict the oil inventory surprises. Hence, the EIA oil 

inventory surprises are highly predictable by using public information, probably due to the fact 

that the Bloomberg forecasts of the EIA oil inventory changes are rarely updated after the API 

inventory releases. To address the potential autocorrelation in the EIA inventory surprises, we have 

 
28 As part of our robustness checks, we split the sample in two equal sub-samples and repeated the entire analysis of 

Table 2. The results in both subsamples are similar to those reported in the paper.  
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included the lags of the surprises.29 Table 3 shows that this leaves our results essentially unchanged. 

[Insert Table 3 Here]  

2.4.3. Market Conditions and Return Predictability 

Elaborating on our primary findings under different market conditions, Table 4 provides the results 

of our analysis during times with different levels of liquidity and oil attention. Liquidity plays a 

vital role in market efficiency. Green (2004) shows that price discovery surrounding the release of 

public announcements occurs through trading. Therefore, information will be incorporated into 

prices faster when the market is more liquid. Several recent studies show that sophisticated trading, 

such as high-frequency and algorithmic trading, enhances price discovery and liquidity (Brogaard 

et al., 2014; Hasbrouck and Saar, 2013).  Accordingly, we expect that as liquidity increases in the 

market, predictability driven by market inefficiencies decreases. Consistent with this view, in 

Table 4, our results indicate that the predictive power of the post-API oil futures return for the pre-

EIA oil return is significant only when the liquidity in the oil futures market is low.  

 Investor attention influences the efficiency of processing public information. Barber and 

Odean (2008) find that investors are more likely to purchase stocks that catch their attention. 

Vozlyublennaia (2014) and Dimpfl and Jank (2016), show a significant relation between investor 

attention measured by Google SVI and volatility in financial markets. Fink and Johann (2014) 

relate investor attention to different aspects of markets microstructure. They find that trading by 

all types of traders increases during high-attention days. Regression estimates in Table 4 show that 

return predictability before the EIA announcements is statistically significant only during periods 

of low attention. This indicates that the market processes the API inventory news faster when 

 
29 The optimal numbers of lags were determined using the Akaike information criterion.  
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traders pay attention to oil. 30 

[Insert Table 4 Here]  

2.4.4. Return Predictability for Energy Stocks 

We also examine if a similar market inefficiency is present in energy stocks. Oil is a primary 

production input for energy firms. Therefore, changes in oil prices represent important 

fundamental information for energy companies. The regression estimates in Table 5 show that the 

30-minute post-API crude oil futures return can be used to predict the returns of oil companies 

from the CRSP database on the day of the EIA oil inventory announcements.31 This suggests that 

opening prices of energy stocks do not fully incorporate information about oil inventory released 

after the previous stock market close. 

We also use intraday data for the NYSE ARCA Oil and Gas Index to examine how long it 

takes for energy stocks to incorporate information contained in the API oil inventory 

announcements. Table 5 shows that energy stocks incorporate this information within the first ten 

minutes of the stock market opening. This predictability is no longer significant after the first ten 

minutes of trading. Our findings support the view that oil has predictive ability for stock returns. 

In addition, the 30-minute post-EIA oil futures return has no significant predictive power over the 

NYSE ARCA Oil and Gas Index return during the time interval from 11:00 am until the stock 

market close.32 Therefore, energy stocks seem to be efficiently incorporating oil-related 

fundamental information during the trading hours. 

[Insert Table 5 Here]  

 
30 The correlation between the liquidity and oil attention measures in our sample is approximately 0.10. This low 

correlation indicates that these two market conditions are different from each other.  
31 We identify oil companies using the following SIC codes: 1300, 1310-1319, 1320-1329, 1330-1339, 1370-1379, 

1380-1382, 1389, 2900-2912, 2990-2999, 3533, 4612-4613, 5171-5172, 6792. 
32 These results are not tabulated for brevity but are available upon request. 
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2.4.5. Combination Forecast 

We want to explore how the choice of a proxy for market expectations influences the estimated 

impact of the EIA oil inventory surprises on the oil futures returns. Table 6 shows that when using 

the Bloomberg consensus forecast as the market expectations proxy yields an estimated OLS 

response coefficient of -0.24 and an R2 of 9%. In contrast, computing the EIA oil inventory 

surprises as the difference between the EIA and API actual announced values produces an 

estimated market response coefficient of -0.42 and an R2 of 18%.33 This validates the importance 

of using the information released by the API in measuring market expectations prior to the EIA 

announcements. 

As mentioned above, the Bloomberg consensus forecast does not capture changes in market 

expectations after the API inventory announcements. However, this does not rule out the 

possibility that the Bloomberg consensus forecast contains information not captured by the API 

actual. Regression estimates in Table 7 show that both the Bloomberg median forecast and the API 

actual are useful predictors of the weekly EIA inventory change. Therefore, we employ a relative 

importance method to construct a combination forecast of the EIA oil inventory announcements 

by objectively allocating weights to the Bloomberg consensus forecast and the API actual. 

Grömping (2006) provides a discussion of this approach. The LMG method decomposes the R2 of 

a multivariate regression into non-negative contributions of each independent variable. 

Furthermore, the LMG technique overcomes the potential problem that the contribution of each 

regressor depends on the order in which the regressors are added to the model. The LMG method 

achieves this by using simple averaging over all the possible orderings of the regressors. To 

describe the LMG approach, we use the same notations and steps as in Grömping (2006). For a set 

 
33 To compute the surprises, we scale the unexpected inventory changes by the level of inventory as in Halova, Kurov 

and Kucher (2014). 
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S that consist of all regressors in the model, the  R2 can be expressed as: 

 
𝑅2(𝑆) =  

𝑀𝑜𝑑𝑒𝑙 𝑆𝑆 (𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠 𝑖𝑛 𝑆)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑆
 

(2) 

Once we add an additional regressor that is in set M to the previous set S, the additional R2 can 

be computed as follows: 

 𝑠𝑒𝑞𝑅2 (𝑀|𝑆) =  𝑅2 (𝑀 ∪ 𝑆) −  𝑅2(𝑆)                                     (3) 

The number of possible orderings is the permutation of the chosen regressors 𝑥1, … , 𝑥𝑝 which are 

denoted by the tuple of indices 𝑟 = (𝑟1, … , 𝑟𝑝). The model is assumed to include multiple 

regressors, 𝑆𝑘 (𝑟), before the regressor 𝑥𝑘. The part of the R2 allocated to the regressor 𝑥𝑘 can be 

formulated as: 

 𝑠𝑒𝑞𝑅2 ({𝑥𝑘}|𝑆𝑘(𝑟)) =  𝑅2 ({𝑥𝑘} ∪ 𝑆𝑘(𝑟)) −  𝑅2(𝑆𝑘(𝑟))                            (4) 

Finally, from equation (3) we can get the LMG metric as follows: 

 LMG (𝑥𝑘) =  
1

𝑝!
 ∑ 𝑠𝑒𝑞𝑅2({𝑥𝑘}|𝑟)𝑟 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  (5) 

Table 6 shows that using the combination forecast as a proxy for market expectations 

increases the R2 of the energy announcement impact on oil futures return by approximately 130% 

compared to the Bloomberg median consensus, and by approximately 17% compared to the API 

actual. Hence, using the combination forecast to compute the oil inventory surprises reduces 

measurement errors that could stem from the use of a single proxy for market expectations.34 To 

analyze the effect of such measurement errors of the estimated market response coefficients, we 

conduct an analysis using the Identification Through Censoring (ITC) technique proposed by 

Rigobon and Sack (2008).35 Regressors are often measured with error. It is well known that this 

 
34 We have explored other proxies for market expectations including the Bloomberg top-ranked analyst forecast. We 

used the Bloomberg consensus in weeks with missing top-ranked analyst forecast. The results are almost the same as 

those obtained using the Bloomberg consensus to measure market expectations before the EIA announcements. 
35 A more detailed description of the identification-through-censoring (ITC) technique is provided in the Appendix. 
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measurement error induces a downward bias in the regression coefficients estimated with common 

techniques. The ITC methodology adjusts for such attenuation bias. Measurement errors in oil 

inventory surprises are driven by two factors. First, any proxy for expectations that does not 

incorporate all available information. Second, the EIA surveys do not cover the entire population 

of oil companies.  

 The ITC estimates of the market response coefficients are reported in Table 6. For all three 

measures of market expectations, the ITC estimates are close to -2. These estimates are much larger 

in absolute value than the corresponding OLS and robust regression estimates reported in the same 

table. These estimates are also about twice as large as the ITC estimate of the oil futures market 

response to crude oil inventory news reported in Halova, Kurov, and Kucher (2014). The larger 

ITC coefficient estimates in our study could reflect the rising importance of the U.S. in the energy 

markets. Due to the increased production of shale oil, the U.S. has become one of the largest oil 

producers in the world. Table 6 also shows that when we use the combination forecast as a measure 

of market expectations, the OLS estimate of the market response coefficient is closer to the 

estimates produced by the ITC technique compared to the OLS estimates based on either the 

Bloomberg median consensus or the API actual. Although the estimated proportion of the 

measured inventory surprise due to noise is quite large for all three measures of market 

expectations, it is smaller for the surprise based on the combination forecast compared to the 

surprises based on the other two expectation proxies. These results provide evidence that using the 

combination forecast to compute oil inventory surprises reduces measurement errors that stem 

from the use of a single stale proxy for market expectations. 

[Insert Tables 6 and 7 Here]  
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2.4.6. Economic Significance 

To examine if oil futures return predictability before the EIA oil inventory announcements can be 

used for profitable trading, we propose a simple trading strategy based on our predictor, computed 

as the difference between the API actual announced value of inventory change and the Bloomberg 

consensus forecast. The strategy involves selling (buying) oil futures contracts 60 minutes before 

the EIA announcements and closing the position 1 minute before the EIA announcement if the 

predictor is positive (negative). Table 8 shows that this trading strategy generates an approximate 

annualized Sharpe ratio of 0.67 in the full sample, and an annualized Sharpe ratio of 2.1 when the 

predictor has large values.36 We assume traders would open a futures position 60 minutes before 

the EIA announcements to be consistent with the other analyses in our study. Table 8 shows that 

this trading strategy generates substantial Sharpe ratios if it involves establishing a position 90 or 

120 minutes before the EIA announcements. 

[Insert Table 8 Here]  

2.5. Conclusion 

This paper uses sequential energy announcements to examine how futures and equity markets 

process information. We find that the oil futures return after the weekly inventory releases by the 

American Petroleum Institute (API) predicts the oil futures return before the U.S. Energy 

Information Administration (EIA) announcements on the following day. This predictability is 

statistically significant during periods of low liquidity and low attention to oil. Additionally, we 

find that the API actual and Bloomberg consensus forecasts are both useful in forecasting the 

change in oil inventory released by the EIA. We construct a predictor computed as the difference 

between the API actual and the Bloomberg median consensus. The predictor has significant 

 
36 The large values of the predictor are those in the top and bottom deciles. 
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explanatory power for oil futures returns before the EIA announcements both in-sample and out-

of-sample. A simple trading strategy using large values of the predictor to generate trading signals 

would generate an annualized Sharpe ratio of 2.1.  

We develop a combination forecast based on the API actual and the Bloomberg median 

consensus to forecast the EIA oil announcements. The combination forecast increases the R2 of the 

regression of oil futures returns on energy surprises by approximately 130% compared to the 

Bloomberg median consensus used in prior studies. Overall, our results show that asset prices do 

not instantaneously reflect new public information even in the case of widely anticipated scheduled 

announcements. Our results are useful for traders. Policymakers tasked with facilitating efficient 

price discovery in energy futures markets may also benefit from our study. For example, our results 

suggest that public announcements are more likely to be incorporated immediately into asset prices 

if they are released during regular trading hours. Furthermore, more media coverage of these 

releases would increase investor attention, which would facilitate quicker incorporation of new 

information into the prices.  
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Table 1: Summary Statistics 

This table reports summary statistics for the main variables used in the analysis. The EIA actual, 

API actual, combination forecast, and Bloomberg median consensus are in thousands of barrels. 

The predictor is computed as the difference between the API Actual and the Bloomberg median 

consensus divided by the level of inventory. The combination forecast is computed as the weighted 

average of the Bloomberg median consensus and the API actual, with the weights computed using 

the relative importance methodology described in Section 4. Post-API Return is the oil futures 

return in the 30 minutes after the API announcement. SurpriseBloomberg is the oil inventory surprise 

computed based on the Bloomberg consensus, SurpriseAPI is the oil inventory surprise computed 

based on the API actual. SurpriseCombination is the oil inventory surprise computed based on the 

combination forecast. The inventory surprises are expressed in percentage and computed as the 

difference between the EIA actual and the corresponding market expectations proxy divided by 

the inventory level. The sample period is from January 2011 to August 2019 and contains 385 

announcements.  

 

Variable N Mean St. Deviation Minimum Maximum 

EIA Actual 385 307.81 4588.46 -12788 14400 

API Actual 385 191.11 4614.72 -12400 14200 

Predictor 385 -0.01 1.02 -3.34 2.86 

Combination Forecast 385 199.38 3703.36 -9560.56 13116.67 

Post-API Return 385 0.003 0.51 -2.36 2.01 

Bloomberg Median Consensus 385 178.74 2256.5 -4261 2240 

SurpriseBloomberg 385 0.025 0.98 -2.80 2.75 

SurpriseAPI 385 0.031 0.76 -1.99 2.06 

SurpriseCombination 385 0.026 0.70 -2.31 1.88 
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Table 2: In-sample Predictability of Pre-EIA Oil Futures Returns 

Panel A reports estimates for the following model: 𝑅𝑡
𝐸𝐼𝐴 = 𝛼 + 𝛽1𝑅𝑡−1

𝐴𝑃𝐼 + 휀𝑡, where 𝑅𝑡
𝐸𝐼𝐴 is the oil 

futures return from 60 min before to 1 min before the EIA announcement and 𝑅𝑡−1
𝐴𝑃𝐼  is the oil 

futures return in the 30 minutes after the API announcement. Panel B reports estimates for the 

following model: 𝑅𝑡
𝐸𝐼𝐴 = 𝛼 + 𝛽1𝑃𝑡 + 휀𝑡, where  𝑃𝑡 is computed as the difference between the API 

Actual and the Bloomberg median consensus divided by the level of inventory. Panel C reports 

the estimates for the following model: 𝑅𝑡
𝐸𝐼𝐴 = 𝛼 + 𝛽1𝑅𝑡−1

𝐴𝑃𝐼 + 𝛽2𝑃𝑡 + 휀𝑡. The sample period is from 

January 2011 to August 2019 and contains 385 announcements. The regressions are estimated 

using (1) OLS with the White (1980) heteroskedasticity consistent covariance matrix and (2) Yohai 

(1987) MM weighted least squares procedure robust to outliers. Standard errors are shown in 

parentheses. *, **, and *** indicate statistical significance at 10%, 5%, and 1% levels, 

respectively. 

 

Panel A Post-API Return 

 OLS Robust Regression 

Slope 0.17*** 

(0.04) 

0.14*** 

(0.05) 

Intercept 0.002 

(0.02) 

-0.01 

(0.02) 

R2 0.04 0.02 

Panel B Predictor  

 OLS Robust Regression 

Slope -0.06*** 

(0.023) 

-0.05** 

(0.02) 

Intercept -0.0002 

(0.02) 

-0.01 

(0.02) 

R2 0.02 0.01 

Panel C Post-API Return and Predictor 

 OLS Robust Regression 

Post-API Return 0.16*** 

(0.06) 

0.13** 

(0.05) 

Predictor -0.02 

(0.03) 

-0.01 

(0.03) 

Intercept 0.0001 

(0.02) 

-0.01 

(0.02) 

R2 0.04 0.02 
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Table 3: Predictability of Oil Inventory Surprises 

Panel A reports the estimates for the following model: 𝑆𝑡 = 𝛼 + 𝛽1𝑅𝑡−1
𝐴𝑃𝐼 + ∑ 𝛽𝑛𝑆𝑡−𝑛

𝐿
𝑛=1 + 휀𝑡, 

where 𝑆𝑡 is the EIA oil inventory surprise for day t and 𝑅𝑡−1
𝐴𝑃𝐼 is the return of the oil future contracts 

in the 30 minutes after the API announcement. Panel B reports the estimates for the following 

model: 𝑆𝑡 = 𝛼 + 𝛽1𝑃𝑡 + ∑ 𝛽𝑛𝑆𝑡−𝑛
𝐿
𝑛=1 + 휀𝑡, where 𝑃𝑡 is computed as the difference between the 

API Actual and the Bloomberg median consensus divided by the level of inventory. 𝑆𝑡 is computed 

as the difference between the EIA oil inventory change and Bloomberg median consensus divided 

by the level of inventory. The optimal number of lags was determined using the Akaike 

information criterion. The sample period is from January 2011 to August 2019 and contains 385 

announcements. The regressions are estimated using OLS with the White (1980) 

heteroskedasticity consistent covariance matrix. Standard errors are shown in parentheses. *, **, 

and *** indicate statistical significance at 10%, 5%, and 1% levels, respectively. 

 

Panel A Without Lags of Surprise L=1 

Intercept 0.03 

(0.04) 

0.02 

(0.04) 

Post-API Return -0.92*** 

(0.09) 

-0.95*** 

(0.09) 

R2 0.23 0.24 

Panel B Without Lags of Surprise L=2 

Intercept 0.03 

(0.035) 

0.03 

(0.035) 

Predictor 0.68*** 

(0.03) 

0.69*** 

(0.035) 

R2 0.51 0.51 



58 
 

Table 4: Predictability of Pre-EIA Oil Futures Return under Different Market Conditions 

This table reports estimates for the following model: 𝑅𝑡
𝐸𝐼𝐴 = 𝛼 + 𝛽1𝑅𝑡−1

𝐴𝑃𝐼 + 휀𝑡 where 𝑅𝑡
𝐸𝐼𝐴 is the 

oil futures return from 60 min before to 1 min before the EIA announcement, 𝑅𝑡−1
𝐴𝑃𝐼  is the oil 

futures return in the 30 minutes after the API announcement. We split the sample into high and 

low for each of the following market conditions: liquidity and SVI oil attention. High is defined 

as above the median and low is defined as below the median. The sample period is from January 

2011 to August 2019 and contains 385 announcements. The regressions are estimated using OLS 

with the White (1980) heteroskedasticity consistent covariance matrix. Standard errors are shown 

in parentheses. *, **, and *** indicate statistical significance at 10%, 5%, and 1% levels, 

respectively. 

 

 Liquidity Oil Attention 

 Low High Low High 

Post-API Return 0.20*** 

(0.07) 

0.10 

(0.07) 

0.22*** 

(0.05) 

0.10 

(0.086) 

Intercept 0.01 

(0.04) 

-0.01 

(0.03) 

-0.01 

(0.02) 

0.03 

(0.05) 

R2 0.05 0.01 0.06 0.01 
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Table 5: Predicting Returns of Energy Stocks 

The first column reports estimates for the following model: 𝑅𝑡
𝐶𝑅𝑆𝑃 = 𝛼 + 𝛽1𝑅𝑡−1

𝐴𝑃𝐼 + 휀𝑡, where 𝑅𝑡
𝐶𝑅𝑆𝑃 is 

the full day return of all oil companies in the CRSP database on the days of the EIA announcements and 

𝑅𝑡−1
𝐴𝑃𝐼  is the oil futures return in the 30 minutes after the API announcement. The second and third columns 

report estimates for the following model: 𝑅𝑡
𝑁𝑌𝑆𝐸 = 𝛼 + 𝛽1𝑅𝑡−1

𝐴𝑃𝐼 + 휀𝑡, where 𝑅𝑡
𝑁𝑌𝑆𝐸  is the return of the 

NYSE ARCA Oil and Gas Index on the days of the EIA announcements in the specified time window. 

The sample period for the estimation in the first column is from January 2011 to December 2018 and 

contains 354 announcements. The sample period for the estimations in columns 2 and 3 is from January 

2011 to August 2019 and contains 385 announcements.  The regressions are estimated using OLS with 

the White (1980) heteroskedasticity consistent covariance matrix. Standard errors are shown in 

parentheses. *, **, and *** indicate statistical significance at 10%, 5%, and 1% levels, respectively. 

  

 CRSP Oil Companies NYSE ARCA Oil and Gas Index 

Time Interval Open – Close 9:30 am – 9:40 am 9:40 am – Close 

Slope 0.28*** 

(0.01) 
0.13*** 

(0.04) 

0.13 

(0.11) 
 

Intercept -0.09*** 

(0.01) 
-0.01 

(0.02) 

-0.03 

(0.056) 
 

R2 0.01 0.026 0.003  
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Table 6: Response of Oil Futures Prices to Oil Inventory Announcements 

This table reports estimates for the following model: 𝑅𝑡 = 𝛼 + 𝛽1𝑆𝑡 + 휀𝑡, where 𝑅𝑡  is the oil 

futures return from 5 minutes before to 10 minutes after the EIA announcement and 𝑆𝑡 is the oil 

inventory surprise. The inventory surprise is computed as the difference between the EIA actual 

and a market expectation proxy, divided by the inventory level. The Bloomberg consensus 

forecast, the API actual, and the combination forecast are used to proxy for market expectations in 

columns (1), (2), and (3), respectively. The combination forecast is computed using the relative 

importance method proposed by Lindeman, Merenda, and Gold (1981). The inventory surprises 

are expressed in percentage terms. The regressions are estimated using (1) OLS with the White 

(1980) heteroskedasticity consistent covariance matrix and (2) Yohai (1987) MM weighted least 

squares procedure robust to outliers and (3) the identification-through-censoring (ITC) technique 

proposed by Rigobon and Sack (2008). The sample period is from January 2011 to August 2019 

and contains 385 announcements. Standard errors are shown in parentheses. *, **, and *** indicate 

statistical significance at 10%, 5%, and 1% levels, respectively.  

 

 
(1) 

Bloomberg 

(2) 

API 

(3) 

Combination Forecast 

 OLS 

Slope -0.24*** 

(0.04) 

-0.42*** 

(0.05) 

-0.49*** 

(0.05) 

𝑅2 0.09 0.18 0.21 

 Robust Regression 

Slope  -0.16*** 

(0.03) 

-0.25*** 

(0.03) 

-0.31*** 

(0.03) 

𝑅2 0.06 0.08 0.11 

 Identification-Through-Censoring (ITC) 

Slope -2.03*** 

(0.43) 

-1.89*** 

(0.24) 

-1.89*** 

(0.26) 

Pseudo-𝑅2 0.97 0.95 0.94 

Proportion of measured 

surprise due to noise 
88% 78% 74% 
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Table 7: Predicting the EIA Announcements using the Bloomberg Consensus and API Actual 

This table reports estimates for the following model 𝐸𝐼𝐴 𝐴𝑐𝑡𝑢𝑎𝑙 = 𝛼 + 𝛽1𝐵𝐶 + 𝛽2𝐴𝑃 + 휀𝑡,  
where EIA actual is the weekly released EIA oil inventory change, BC is the Bloomberg median 

consensus, and AP is the API actual. The regressions are estimated using (1) OLS with the White 

(1980) heteroskedasticity consistent covariance matrix and (2) Yohai (1987) MM weighted least 

squares procedure robust to outliers. The sample period is from January 2011 to August 2019 and 

contains 385 announcements. Standard errors are shown in parentheses. *, **, and *** indicate 

statistical significance at 10%, 5%, and 1% levels, respectively.  

 

 OLS Robust Regression 

Intercept (𝛼) 0.11 

(0.13) 

-0.037 

(0.14) 

BC (𝛽1) 0.38*** 

(0.07) 

0.43*** 

 (0.07) 

AP (𝛽2) 0.69*** 

(0.03) 

0.69*** 

(0.04) 

𝑅2 0.65 0.50 
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Table 8: Performance of Trading Strategy based on Predictor 

This table reports the annualized Sharpe ratio of the following trading strategy: selling (buying) 

oil futures contracts 60 or 90 or 120 minutes before the EIA announcements and closing the 

position 1 minute before the EIA announcement if the predictor is positive (negative). The 

predictor is computed as the API Actual minus the Bloomberg median consensus divided by the 

level of inventory. The large values of the predictor are defined as the upper and lower deciles. 

The Sharpe ratio is computed by dividing the sample mean return by the sample standard deviation. 

The annualized Sharpe ratio is computed based on per-event Sharpe ratio times the square root of 

the average number of events per year. The sample period is from January 2011 to August 2019 

and contains 385 announcements.  

 

Window Full Sample (N=385) Large Values (N=77) 

(-60 min, -1 min) 0.67 2.1 

(-90 min, -1 min) 0.62 1.05 

(-120 min, -1 min) 0.54 1.19 
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Figure 1: Weights Allocated to the API Actual in the Combination Forecast 

This figure shows the weights allocated to API actuals in constructing the combination forecast 

based on the relative importance method proposed by Lindeman, Merenda, and Gold (1981) and 

estimated separately for each year. The remaining weight in the combination forecast is allocated 

to the Bloomberg consensus forecast. The period is from January 2011 to August 2019 and 

contains 385 announcements.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2011 2012 2013 2014 2015 2016 2017 2018 2019



64 
 

Figure 2: Cumulative Average Return of Oil Futures before EIA Oil Announcements 

This figure shows the cumulative average return (CAR) of the nearby oil futures contract around 

the releases of the weekly Oil Storage Report. In order to aggregate CARs for positive and negative 

surprises, we invert the sign of returns for positive surprises as in Bernile, Hu, and Tang (2016).  

The inventory surprise is computed as the difference between the EIA actual and the Bloomberg 

median consensus, divided by the inventory level. Only observations with inventory surprises in 

the top and bottom deciles are used. The sample period is from January 2011 to August 2019 and 

contains 77 announcements. 
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Figure 3: Cumulative Average Return of Oil Futures before API Oil Announcements 

This figure shows the cumulative average return (CAR) of the nearby oil futures contract around 

the releases of the weekly American Petroleum Institute (API). In order to aggregate CARs for 

positive and negative surprises, we invert the sign of returns for positive surprises as in Bernile, 

Hu, and Tang (2016). The inventory surprise is computed as the difference between the API actual 

and the Thomson Reuters survey, divided by the inventory level. Only observations with inventory 

surprises in the top and bottom deciles are used. The sample period is from January 2011 to August 

2019 and contains 77 announcements. 
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Figure 4: Out-of-Sample Predictability of Pre-EIA Oil Futures Returns using Post-API Oil 

Futures Returns 

This figure plots out-of-sample (OOS) performance of a weekly predictive regression using the 

methodology proposed by (Welch and Goyal 2008b). Particularly, these are the cumulative 

squared predictions errors of the NULL minus the cumulative squared prediction errors of the 

alternative. The alternative model is 𝑅𝑡
𝐸𝐼𝐴 = 𝛼𝑡 + 𝛽1𝑅𝑡−1

𝐴𝑃𝐼 + 휀𝑡, where 𝑅𝑡
𝐸𝐼𝐴 is the oil futures return 

from 60 minutes before to 1 minute before the EIA announcement, 𝑅𝑡−1
𝐴𝑃𝐼  is the oil futures return 

in the 30 minutes after the API announcement. The sample period is from January 2010 to August 

2019 and contains 385 announcements. The NULL uses the recursively estimated mean of the pre-

EIA oil futures return. An increasing line indicates better performance of the alternative model. A 

decreasing line indicates better performance of the NULL. The blue band represents the equivalent 

of a 95% confidence interval and is constructed according to the MSE-T critical values from 

McCracken (2007). 
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Figure 5: Out-of-Sample Predictability of Pre-EIA Oil Futures Returns using the Predictor 

This figure plots out-of-sample (OOS) performance of a weekly predictive regression using the 

methodology proposed by (Welch and Goyal 2008b). Particularly, these are the cumulative 

squared predictions errors of the NULL minus the cumulative squared prediction errors of the 

alternative. The alternative model is 𝑅𝑡
𝐸𝐼𝐴 = 𝛼𝑡 + 𝛽1𝑃𝑡 + 휀𝑡, where 𝑅𝑡

𝐸𝐼𝐴 is the oil futures return 

from 60 minutes before to 1 minute before the EIA announcement, and 𝑃𝑡 is computed as the 

difference between the API Actual and the Bloomberg median consensus divided by the level of 

inventory. The sample period is from January 2010 to August 2019 and contains 385 

announcements. The NULL uses the recursively estimated mean of the pre-EIA oil futures return. 

An increasing line indicates better performance of the alternative model. A decreasing line 

indicates better performance of the NULL. The blue band represents the equivalent of a 95% 

confidence interval and is constructed according to the MSE-T critical values from McCracken 

(2007). 

 

 
 



68 
 

Appendix A: Essay 2 

I. Identification-Through-Censoring 

In a part of our analysis, we use the identification-through-censoring (ITC) technique proposed by 

Rigobon and Sack (2008). The ITC technique is employed to adjust for the bias that stems from 

measurement error in the inventory surprises. The measurement error could be due to two reasons. 

First, our measures of market expectations are imperfect, as they do not incorporate all relevant 

information available at the time of the announcement. Second, the actual released value of the 

inventory change is not precise, since it does not cover the entire population of oil companies.37 

We use several proxies for market expectations, which helps to shed some light on the sources of 

measurement error in the inventory surprises. The effect of inventory news on oil futures can be 

estimated using the following simple regression model:38 

 𝑅𝑡 =  𝛾𝑧𝑡 + 휀𝑡 

           𝑧𝑡 = ∆𝐼𝑡 − 𝐸𝑡−𝜏[∆𝐼𝑡] 
(A.1) 

where 𝑅𝑡 is the oil futures return computed in the specific intraday window around the 

announcement, 𝑧𝑡 is the inventory surprise calculated as the difference between the actual change 

of inventory level, ∆𝐼𝑡, and the proxy for the market expectations of that inventory change, 

𝐸𝑡−𝜏[∆𝐼𝑡]. As mentioned above, 𝑧𝑡 is measured with error. Therefore, it can be represented as: 

 𝑧𝑡 =  𝑧𝑡
∗ +  𝛿𝑡, (A.2) 

where 𝛿𝑡 is the measurement error and 𝑧𝑡
∗ is the “true” inventory surprise. In a regular OLS 

estimation, the impact of inventory surprises on returns is represented as follows:  

 
37 The EIA oil inventory survey usually covers about 90% of the population of oil companies, which leaves about 10% 

not surveyed. This may cause some noise in the estimates of the change in oil inventory. This issue is discussed at 

https://www.api.org/products-and-services/statistics/api-weekly-statistical-bulletin.  
38 For a more detailed discussion of the ITC technique in the context of energy inventory announcements, see Halova 

et al. (2014). 

https://www.api.org/products-and-services/statistics/api-weekly-statistical-bulletin
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   𝑅𝑡 =  𝛾𝑧𝑡 + 𝑣𝑡,                    

𝑣𝑡 = 휀𝑡 − 𝛾𝛿𝑡. 

(A.3) 

However, the coefficient 𝛾 is biased since the regressor is correlated with error term. We 

can express the OLS estimate of the response coefficient as: 

 𝛾𝑂𝐿𝑆 = 𝛾 (1 −  
𝜎𝛿

2

𝜎𝑧∗
2 + 𝜎𝛿

2). 
(A.4) 

This means that the OLS estimator is biased downwards. Rigobon and Sack (2008) argue 

that dealing with the measurement error bias presents an identification problem. They suggest this 

problem can be solved by noting that the measurement error is “censored” in periods with no 

announcements. In such periods both the “true” inventory surprise 𝑧𝑡
∗ and the measurement error 

𝛿𝑡 are zero. Using returns in the same intraday interval on the day before the announcement, 𝑅𝑡−1, 

the model parameters can be estimated using the generalized method of moments (GMM) based 

on the following set of moment conditions: 

 𝑣𝑎𝑟(𝑅𝑡−1) =  𝜎2, 

𝑣𝑎𝑟(𝑅𝑡) =  𝛾2𝜎𝑧∗
2 +  𝜎2,             

𝑣𝑎𝑟(𝑧𝑡) =  𝜎𝑧∗
2 +  𝜎𝛿

2, 

𝑐𝑜𝑣(𝑅𝑡, 𝑧𝑡) =  𝛾2𝜎𝑧∗
2 . 

(A.5) 

Solving these equations produces the following estimator of the market response 

coefficient: 

 𝛾 =  
𝑣𝑎𝑟(𝑅𝑡)−𝑣𝑎𝑟(𝑅𝑡−1)

𝑐𝑜𝑣(𝑅𝑡,𝑧𝑡)
.             (A.6) 

For returns on non-announcement days, we use the same intraday interval (from 10:25 am 

to 10:40 am) as the interval used to measure the returns around the announcement. 

 We compute the following pseudo-𝑅2 statistic to compare the explanatory power of the 
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ITC estimation with that of the OLS: 

pseudo-𝑅2  = 1 −  
𝜎2

𝑣𝑎𝑟(𝑅𝑡)
 (A.7) 

 Intuitively, the pseudo-𝑅2 captures the fraction of return variance described by the model. 

We estimate the variance of the structural shocks 휀𝑡 using non-announcement returns. Therefore, 

equation (A.7) assumes that inventory surprises fully explain the post-announcement increase in 

the variance of returns.  

II.  Out-of-Sample Forecasting 

Several studies show that the predictors that seem to perform well in-sample may lose their 

predictive power out-of-sample (e.g., Welch and Goyal 2008). Hence, we conduct an out-of-

sample predictability analysis for our main empirical findings. We use the same methodology as 

in Welch and Goyal (2008). The benchmark model (Null) is the recursively estimated mean of the 

pre-EIA oil futures return. Subsequently, we compare the benchmark model with the following 

alternative predictive regression: 

 𝑌𝑡 = 𝛼0 + 𝛼1𝑋𝑡−1 + 휀𝑡 (A.8) 

where 𝑋𝑡−1 is either the post-API oil futures return or the predictor, which is computed as the 

difference between the API actual and the Bloomberg consensus forecast divided by the level of 

inventory. The performance of the predictive regression is evaluated by computing the difference 

between the cumulative squared predictions errors of the Null and the cumulative squared 

prediction errors of the Alternative. If this difference is positive, it means the Alternative performs 

better than the Null, and if it is negative it means the Null has better predictive ability than the 

Alternative. 
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Essay 3. The Impact of Oil Shocks on Sovereign Default Risk* 

 

 

3.1. Introduction 

The significant influence of oil on the performance of domestic and global markets is well 

documented in the literature (see, for e.g., Nandha and Faff, 2008; Ready, 2018; Sim and Zhou, 

2015; You, Guo, Zhu and Tang, 2017). Hamilton (2008) finds that the price of oil is one of the 

essential factors that triggered each recession since World War II. In a similar vein, Kilian and 

Park (2009); Kilian (2008, 2009); and Ready (2018), show the substantial impact of both oil supply 

and demand shocks on several economies and financial markets. Governments usually try to offset 

the influence of oil shocks using multiple channels, such as monetary policy, fiscal policy, trading 

policies, among others (Hamilton and Herrera, 2004; Kilian and Lewis, 2011). However, the 

solvency of these governments could be adversely affected, which raises concerns about their debt 

default risk (Chuffart and Hooper, 2019; Shahzad, Naifar, Hammoudeh, and Roubaud, 2017). In 

this paper, we investigate the impact of daily oil shocks on changes in the spreads of sovereign 

credit default swaps (CDS). 

There are several ways in which the price of oil can affect economies, and in particular the 

solvency of governments. For oil-importing and oil-exporting countries, the solvency of 

governments could be mainly influenced through changes in their current and future potential tax 

revenue, and through changes in the perception of their solvency risk. In the case of oil-importing 

 
* This essay is based on a paper coauthored with Ann Marie Hibbert.   
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countries, oil shocks affect governments’ tax revenue through several channels. Volatility and 

changes in the price of oil have pronounced effects on the cost of production and inflation, which 

in turn, influences governments' tax revenue as taxable income for both firms and individuals is 

affected (Cologni and Manera, 2008; Thoresen, 1982). Moreover, an increase in oil price can 

adversely impact the productivity of firms, and the potential output at any given level of capital 

for countries (Cunado and Perez De Gracia, 2005). Additionally, fluctuation in oil prices may 

increase economic uncertainty, leading to a decrease in irreversible corporate investments and 

foreign direct investments, which will potentially impact governments' tax revenue (Clark, 1996). 

In the case of oil-exporting countries, changes in oil prices will have a substantial impact on export 

revenues, fiscal balances, and government expenditure (Chuffart and Hooper, 2019). Hence, the 

sustainability of public finances and the financial soundness of oil exporters would change with 

oil shocks, which in turn affect the cost of insuring against default on sovereign debt. Finally, one 

would expect the perception of solvency risk to be altered for both oil-importing and oil-exporting 

countries since oil shocks have a significant impact on economies and financial markets (Kilian 

and Park, 2009; Kilian, 2009; Ready, 2018).  

Our main objective is to comprehensively analyze the impact of oil shocks on the perceived 

default risk of major oil-exporting and importing countries. Ready (2018) proposes a model to 

classify oil shocks. One benefit of this classification system is that it allows us to disentangle the 

oil supply and demand shocks at a higher frequency (daily) than was previously possible. We 

employ this classification and investigate the respective impact of supply and demand shocks on 

sovereign default risk, as proxied by changes in their CDS spreads. We hypothesize that how each 

type of shock affects a country’s default risk will depend on whether the country is a major oil 

importer or exporter. For example, a demand shock would most likely have a direct impact on the 
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economies of oil exporters but an indirect impact, (i.e via prices) on the economies of major oil 

importers. Conversely, a supply shock would more likely have an immediate (delayed) impact on 

net oil exporters (importers). 

In line with our main hypothesis, we first investigate the impact of oil supply and demand 

shocks on changes in the sovereign CDS spreads of (i) major oil-importing countries as proxied 

by a sample of G10 countries, and (ii) a sample of major oil-exporting countries. Since prior studies 

find that the determinants of sovereign CDS spreads vary across the conditional distribution of 

spread changes (Hibbert and Pavlova, 2017; Shahzad, Naifar, Hammoudeh, and Roubaud, 2017), 

we also investigate whether the impact of oil shocks varies across the quantiles of spread changes. 

A number of prior studies have documented nonlinear impacts of oil prices on stock markets 

and economies (Kilian and Vigfusson, 2011; Zhu, Su, You and Ren, 2017; Uddin, Rahman, 

Shahzad and Rehman, 2018). Our second goal is to investigate whether the impact of oil supply 

and demand shocks varies with the state of the economy. We first use a two-state Markov regime 

switching modeling to test whether there are non-linearities in the relation between oil shocks and 

changes in sovereign CDS spreads. We also investigate whether global economic conditions or a 

country’s dependence on oil influences the relation between oil shocks and changes in sovereign 

CDS spreads. 

We make at least four important contributions to the literature that investigates the factors that 

affect changes in sovereign CDS spreads. First, we provide robust evidence that oil supply and 

demand shocks have a significant impact on changes in the CDS spread of both the G10 countries 

as well as major oil-exporting countries. Our second contribution is to show how demand and 

supply shocks affect changes in spreads across the entire distribution of CDS changes using a 

quantile regression model. For both the G10 and oil-exporting countries, we find that demand 
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shocks affect spreads across all quantiles of the CDS changes. However, supply shocks affect 

spreads in only some quantiles. In the case of the G10 countries, the impact of supply shocks is 

more important in the extreme quantiles only while in the case of the oil-exporting countries, 

supply shocks are important in both the middle and upper quantiles. These findings are consistent 

with prior studies that report significant variation in the impact of some global factors across the 

distribution of sovereign CDS spreads.  

Our findings present a different picture than previous literature as we focus on the underlying 

causes of oil movements; oil supply and demand shocks (Da Fonseca, Ignatieva and Ziveyi, 2016; 

Wegener, Basse, Kunze, and Mettenheim, 2016). The differential impact of these shocks on each 

of our samples underlines the importance of identifying the source of changes in the price of oil, 

as well as the need to acknowledge the heterogeneity in the response of net oil-importers viz-a-viz 

oil-exporters. 

 Results of our bi-variate Markov regime switching modeling show that demand shocks 

have a significant impact in both high and low volatility states for the G10 countries and oil-

exporting countries. However, the magnitude of the impact of demand shocks is almost ten times 

higher during the more volatile state. On the other hand, supply shocks have a significant impact 

only in the high volatility state for the G10 countries and oil-exporting countries. We also find that 

the cumulative impact of oil shocks, as well as the standard deviations are statistically different 

across the two states for both the G10 and oil-exporting countries. These results support the 

importance of considering the nonlinearity assumption when examining the effect of oil shocks on 

sovereign CDS.  We also show that the impact of oil shocks on CDS spreads varies with the level 

of global economic activity as proxied by an index of world industrial production (see Hamilton, 

2019). We find that both supply and demand shocks significantly affect CDS spread changes for 
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the G10 countries in low levels of global economic activity, but neither shock has an impact during 

periods of high global economic activity. For oil-exporting countries, supply shocks only 

significantly lower CDS spreads during high levels of global economic activity, whereas demand 

shocks only affect spreads during low levels of global economic activity.  

 Finally, we show that the impact of oil shocks on spread changes depends on how reliant 

the country is on oil. Specifically, we find that the magnitude of the impact of oil shocks on changes 

in CDS spreads is stronger for the G10 countries that are more reliant on imported oil. Similarly, 

we find that supply shocks only significantly impact spreads for oil-exporting countries that are 

heavily reliant on oil revenue.  

The rest of this paper is organized as follows: Section 3.2 provides a brief review of related 

literature and outlines our main research questions, Section 3.3 discusses the data, variable 

construction and provides univariate statistics, Section 3.4 describes our methodology, Section 3.5 

provides the empirical results and discussions, and Section 3.6 presents our conclusions. 

3.2. Related Literature and Research Questions 

There are two main strands of literature that are relevant to our study; first, there are those studies 

that investigate the relative importance of global versus domestic factors in explaining changes in 

sovereign CDS spreads, and the second are those studies that investigate the role of oil prices in 

explaining CDS spreads. We provide a brief review of each of these strands. 

3.2.1. Sovereign CDS Spreads: Global vs. Domestic Factors  

Longstaff, Pan, Pedersen, and Singleton (2011), one of the most widely cited papers in this area; 

study sovereign CDS for 26 different countries. They find that compared to country-specific 

factors, global market factors are more important in determining sovereign credit risk. In addition, 
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by decomposing the spreads for each country into risk-premium and default-risk components, they 

show that global factors have a more significant influence on default-risk components relative to 

the risk-premium component. In a similar vein, Pan and Singleton (2008) use CDS data for 

Mexico, Turkey and Korea and find a significant correlation between risk premiums and economic 

measures of global risk.  

 Several other studies support the significant influence of global factors on CDS spreads 

based on different regions, time periods, and empirical methodologies. For example, Augustin and 

T´edongap (2016) find that global macroeconomic factors significantly impact the full term 

structure of a geographically dispersed panel of 38 countries. Similarly, Dooley and Hutchison 

(2009) show that several financial and real economic news originating from the U.S. during the 

2007 financial crisis significantly affect sovereign CDS spreads in a sample of 14 emerging 

markets, and Oliveira, Curto and Nunes (2012) find that domestic factors greatly influence Euro-

denominated government bonds before the financial crisis, but global factors dominate during and 

after the crisis period. Furthermore, Wang and Moore (2012) employ a dynamic conditional 

correlation from a multivariate GARCH model to show that the correlation between sovereign 

CDS spreads in 38 developed and emerging countries are greatly driven by U.S. economic 

conditions. Fender, Hayo and Neuenkirch (2012) also find that emerging markets’ sovereign CDS 

are primarily driven by global and regional risk premia, and not by country-specific risk factors. 

These influences, by global and regional risk premia, are more pronounced during periods of 

economic stress than under ordinary periods.  

 There are other studies, however, that indicate the importance of domestic factors in 

determining sovereign CDS spreads. Ang and Longstaff (2013) find that local financial market 

factors influence the systematic risk of sovereign CDS for both the U.S. and Eurozone countries. 
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In addition, Beirne and Fratzscher (2013) analyze sovereign CDS spreads of 31 advanced and 

emerging economies during the European sovereign debt crisis. Their results show that, compared 

to global factors, country-specific and regional factors have more significant explanatory power. 

Afonso, Furceri, and Gomes (2012) conduct an event study to show that European Union sovereign 

bond yield and CDS spreads significantly respond to negative rating changes and outlook. 

Recently, Eichler (2014) shed light on the role of political factors in determining sovereign bond 

yield in 27 emerging markets during the period between 1996 and 2009. Their findings show that 

elections and the degree of democracy have limited influence on sovereign bond yield, whereas 

governance quality and parliamentary systems substantially affect sovereign bond yield.  

3.2.2. Oil as a Global Factor 

There is a body of literature that analyzes the interaction between oil and CDS. More closely 

related to our study are those that investigate the impact of oil on sovereign CDS spreads. An 

example is that of Chuffart and Hooper (2019), who use a Time-Varying Transition Probabilities 

Markov Switching model to analyze the impact of oil price and volatility on the CDS of Russia 

and Venezuela. They find that oil return has a significant impact on the CDS spread of Venezuela 

only during turbulent economic periods. In addition, they show that oil return significantly 

influences the CDS of Russia in all regimes (but) only before adding global factors.  

A few studies have made the distinction between oil-exporters versus oil-importers. For 

example, Naifar, Shahzad, and Hammoudeh (2017) show that oil price volatility more significantly 

affects sovereign CDS spreads of oil-rich countries than other major global regions such as the G7, 

BRICS, Council of Europe (CE), Asia, and North America (NA). Pavlova, Boyrie, and Parhizgari 

(2018) investigate the dynamic spillover of crude oil prices and volatilities on sovereign CDS 

spreads for oil-exporting countries. Their findings suggest that the spillover effects of the oil 
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market to sovereign CDS spreads, changes over time and is only significant for some countries. 

Similarly, Wegener, Basse, Kunze, and von Mettenheim (2016) use a VAR-GARCH model and 

find that positive oil price shocks lower the CDS spreads of Brazil, Malaysia, Norway, Qatar, 

Russia, Saudi Arabia, the United Kingdom, the United States of America and Venezuela. In terms 

of predictability, the empirical findings of  Shahzad, Naifar, Hammoudeh and Roubaud (2017) 

posit that oil volatility predicts sovereign CDS in different quantiles for the GCC and the other oil-

exporting countries.39 

 Unlike prior studies, we are the first to conduct a robust analysis of the impact of daily oil 

supply and demand shocks on the sovereign CDS spreads of major oil-exporting and oil-importing 

countries. Specifically, our four main hypotheses are: 

H1: Oil supply and demand shocks affect daily changes in the sovereign CDS spreads of oil-

importing and oil-exporting countries. 

H2: The impact of oil supply and demand shocks varies across the conditional distribution of sovereign 

spread changes. 

H3: The relation between oil supply and demand shocks and sovereign spread changes is state-

dependent. 

H4: The relation between oil supply and demand shocks and sovereign spread changes varies with the 

country’s dependence on oil. 

 
39 Some studies also investigate the impact of oil on corporate CDS spreads. See for example, Guo, Chen, and Huang 

(2011); Lahiani, Hammoudeh, and Gupta (2016); and Dai and Serletis (2018).  
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3.3. Data, Variable Construction and Univariate Statistics 

3.3.1. Sovereign CDS 

Sovereign credit default swaps (CDS) are financial contracts providing insurance for investors 

whendebt issuers default on their outstanding debts. Buyers of these contracts pay a premium in 

order to receive a contingent payment, which becomes due if the contractually stated event 

materializes (Longstaff, Pan, Pedersen, and Singleton, 2011). These premiums are usually quoted 

in basis points per notional value of the contracts. Each CDS has five main contractual features: 

(1) the debt issuer (e.g., sovereign entities in our study), (2) the outlined obligations, (3) the term 

of the contract, (4) a specified value for the notional principal, and (5) the potential events that 

prompt contingent payments. To investigate the impact of oil supply and demand shocks on 

sovereign default risk, we use the CDS of a sample of G10 countries and four major oil-exporting 

countries. The G10 countries included in our sample are the United States, the United Kingdom, 

France, Germany, Italy, Japan, Belgium, Netherlands, Sweden, and Switzerland.40 The oil-

exporting countries included in our sample are Russia, Iraq, United Arab Emirates (UAE), and 

Kazakhstan. These countries are selected based on two criteria: (1) they are among the largest oil-

exporting countries,41 and (2) Bloomberg provides data on their five-year CDS spreads.  

Appendix A provides the level of government debt for each of the countries in our sample, 

for the period from 2009 to 2018. In Panel A, we report the summary statistics of the level of 

government debt in billions of U.S. dollars. The U.S. and Japan have the highest mean sovereign 

debt of approximately 1.76 and 1.1 trillion dollars, respectively. In order to put the level of 

 
40 We do not include Canada as its CDS data is available only from the end of 2017.  
41 More information on the size of the oil exports for these countries is at https://www.cia.gov/library/publications/the-

world-factbook/rankorder/2242rank.html. 

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2242rank.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2242rank.html
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government debt into perspective, we report the percentage of debt to GDP in Panel B. Japan has 

the highest mean percentage of debt to GDP of 226.86%, followed by 125.52% for Italy.  

[Insert Panels A and B of Appendix A Here]  

We use the 5-year CDS for each of the countries in our sample as they are among the most 

liquid sovereign CDS. The sample period is from July 2009 to December 2018 for the G10 

countries, and from February 2011 to December 2018 for the oil-exporting countries. The start of 

the sample period is based on the availability of the data in Bloomberg. The sovereign CDS spreads 

are highly sensitive to changes in the solvency of countries. For instance, Greece faced substantial 

financial difficulty, which resulted in Greece missing its scheduled 1.55 billion euro payment on 

June 30, 2015. The 5-year sovereign CDS spread of Greece skyrocketed approximately five-fold 

from 1443.51 basis points on June 29, to 6739.21 basis points on June 30 (See Figure 1). 

[Insert Figure 1 Here]  

Figure 2 plots the evolution in spreads for each country in our sample. There is a spike in 

the CDS of most of the European countries between 2011 and 2012. This is approximately the 

time of the European debt crisis. In addition, there is a spike for both Russia and Iraq around the 

year 2015, which is just after the plunge of oil prices. 

[Insert Figure 2 Here]  

3.3.2. Oil Shocks Data and Variable Construction 

We follow Ready (2018) in constructing the oil shocks and so we use the same data. In order to 

construct the oil shocks, we need three variables: (1) daily prices of the one-month NYMEX - 

Light Sweet Crude Oil contract from the EIA website, (2) the World Integrated Oil and Gas 

Producer Index from Thomson Reuters Database, and (3) the CBOE volatility index (VIX) from 
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the CBOE website. The simple intuition behind this approach is that oil-producing firms are 

affected by demand shocks but have a natural hedge against supply shocks. A supply disruption 

that causes an oil price increase would offset the negative impact of the decrease of oil supply. 

According to this setup, demand shocks are defined as “the portion of contemporaneous returns of 

a global index of oil-producing firms which is orthogonal to unexpected changes in the log of the 

VIX index” (Ready, 2018). In addition, supply shocks are defined as “the portion of 

contemporaneous oil price changes which is orthogonal to demand shocks as well as to innovations 

in the VIX” (Ready, 2018).  

 We use similar notation as in  Ready (2018) to explain the method to construct the shocks. 

As mentioned before, this approach classifies oil shocks into supply, demand, and risk shocks by 

decomposing the change in oil prices. Supply shocks, 𝑆𝑢𝑝𝑝𝑙𝑦𝑡, demand shocks, 𝐷𝑒𝑚𝑎𝑛𝑑𝑡 and 

risk shocks 𝑣𝑡 are assumed to be orthogonal and defined as follows: 

𝑋𝑡 =  ⌈

∆𝑝𝑡

𝑅𝑡
𝑃𝑟𝑜𝑑

휁𝑉𝐼𝑋𝑡

⌉, 𝑍𝑡 =  ⌈
𝑆𝑢𝑝𝑝𝑙𝑦𝑡

𝐷𝑒𝑚𝑎𝑛𝑑𝑡

𝑣𝑡

⌉, A ≡ ⌈
1 1 1
0 𝑎22 𝑎23

0 0 𝑎33

⌉    (1) 

The identified shocks in matrix A are mapped into observable variables as follows: 

𝑋𝑡 = 𝐴𝑍𝑡      (2) 

To achieve the objective of imposing orthogonality, we satisfy: 

𝐴−1 ∑ (𝐴−1)𝑇 =  [

𝜎𝑠𝑢𝑝𝑝𝑙𝑦
2 0 0

0 𝜎𝑑𝑒𝑚𝑎𝑛𝑑
2 0

0 0 𝜎𝑣
2

]𝑋      (3) 

𝛴𝑋 represents the covariance matrix of the observable 𝑋𝑡, and 𝜎𝑆𝑢𝑝𝑝𝑙𝑦, 𝜎𝐷𝑒𝑚𝑎𝑛𝑑 , 𝜎𝑣  are the 

volatilities of the identified shocks. This procedure can be considered a simple renormalization of 



82 
 

the standard orthogonalization that is employed to define the structural shocks in a SVAR 

framework.  In addition, we aggregate the shocks to sum up to the total change in the oil price.  

3.3.3. Other Variables 

Our choice of control variables is motivated by prior studies, discussed in Section 2 (Chuffart and 

Hooper 2019; Hibbert and Pavlova 2017; Longstaff, Pan, Pedersen, and Singleton,  2011). The 

control variables can be categorized into two groups. The first group includes two domestic 

variables: (1) St. Return is the daily return for each country’s stock market, and (2) FX Rate is the 

change in the exchange rate for each country’s currency against the U.S. dollar. Appendix B list 

the respective index that we use for each country’s stock market. In the case of the U.S., we use 

the Trade Weighted U.S. Dollar index, which is “a weighted average of the foreign exchange value 

of the U.S. dollar against a subset of the broad index currencies”42. The second group consists of 

variables intended to capture global factors. These include: the change in the TED spread 

(∆TedRate) the change in the CBOE volatility index (ΔVIX), the S&P 500 index return (S&P500), 

the change in the Euro Stoxx 50 Volatility index (ΔV2X), the change in the German 10-year Bond 

yield (ΔGerman Bond), the change in the effective Federal Fund rate (ΔFedFund), the change in 

the European Repo rate (ΔEuro Repo), and the change in the 10-year U.S. Treasury yield 

(ΔTreasury).43 The data for all control variables is from Bloomberg. 

 To measure global economic activity, we use the monthly industrial production index for 

the OECD and six other major countries (Brazil, China, India, Indonesia, the Russian Federation, 

and South Africa).44 Hamilton (2019) highlights the superiority of this index compared to other 

 
42 More information on the index is at the Federal Reserve Bank of St. Louis website. 
43 We take first differences for all the variables other than the returns variables as they have a unit root based on the 

Augmented Dickey-Fuller test. 
44 The data is from Professor James Hamilton’s website: https://econweb.ucsd.edu/~jhamilton/#publications. 

Baumeister and Hamilton (2019) extend the original index to the present. 

https://econweb.ucsd.edu/~jhamilton/#publications
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alternative indexes of real economic activity. To measure each country’s oil dependency, for the 

G10 countries, we use the ratio of energy imports to total domestic energy; a higher ratio indicates 

a higher dependency. We use the ratio of oil rents to GDP to differentiate between high and low 

oil revenue dependency for the oil-exporting countries. The data for the two proxies of the 

country’s oil dependency is from the World Bank database.  

3.3.4. Univariate Statistics 

In Panels A and B of Table 1, we report summary statistics for the daily sovereign CDS spread 

changes over our sample period. We provide results for the G10 countries in Panel A, and in Panel 

B, we provide similar analysis for the oil-exporting countries. For the G10 countries, we see that 

Italy experiences the highest average spread change, while Sweden has the lowest. Among the oil-

exporting countries, Iraq has the highest mean change in spreads, whereas UAE has the lowest. 

Comparing the results in Panel A to those in Panel B shows that the spread change of the oil-

exporting countries are largely more volatile than those of the G10 countries. In Panel C of Table 

1, we report summary statistics for the control variables used in our multivariate analyses discussed 

in Section 4. All of our data series are well behaved, with values similar to those reported in prior 

studies. 

[Insert Table 1 Here]  

 We report the correlation between all the countries’ CDS spread changes in Panel A of 

Table 2. The correlation between spread changes for countries in the same region is relatively high. 

For instance, the correlation between the CDS of Germany and France is 0.79, and that between 

the Netherlands and Belgium is 0.69, with both being highly statistically significant. In Panel B 

we report the correlation between all our control variables. The correlation between almost all the 
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control variables is moderately low. Furthermore, the correlation between the oil shocks and all 

the control variables is very low.   

[Insert Table 2 Here]  

3.4. Methodology  

 3.4.1. Main Regression Model 

We start our baseline analysis by using the following regression model to test our first hypothesis 

∆𝐶𝐷𝑆𝑖,𝑡 =  𝛽0,𝑖 + 𝛽1∆𝐶𝐷𝑆𝑖,𝑡−1 + ∑ 𝛽2,𝑗𝐷𝑂𝑀𝐸𝑆𝑇𝐼𝐶𝑗,𝑖,𝑡 + ∑ 𝛽3,𝑗𝐺𝐿𝑂𝐵𝐴𝐿𝑗,𝑡

𝑚

𝑗=1

+

 

𝑛

𝑗=1

 

𝛾𝐷𝑒𝑚𝑎𝑛𝑑𝑡−1 +  𝛿𝑆𝑢𝑝𝑝𝑙𝑦𝑡−1 +  휀𝑖,𝑡     (4) 

where ∆𝐶𝐷𝑆𝑖,𝑡 is the daily change in spreads of countries denoted by i over days denoted by t, 

∆𝐶𝐷𝑆𝑖,𝑡−1 is the one-day lagged change in spreads, included to allow for any autocorrelation in 

spread changes, 𝐷𝑂𝑀𝐸𝑆𝑇𝐼𝐶𝑗,𝑖,𝑡  is the set of domestic control variables denoted by j for each 

country denoted by i, and 𝐺𝐿𝑂𝐵𝐴𝐿𝑗,𝑡 is the set of global control variables denoted by j, described 

in Section 3.3. Our main variables of interest are 𝐷𝑒𝑚𝑎𝑛𝑑𝑡−1, the one-day lagged shock to the 

demand side of oil, and 𝑆𝑢𝑝𝑝𝑙𝑦𝑡−1, the one-day lagged shock to the supply side of oil, both 

constructed based on Ready’s (2018) method described briefly in Section 3.2. We estimate the 

model in (4) using both pooled ordinary least squares as well as a panel regression model separately 

for the sample of G10 countries and for the oil-exporting countries. We report standard errors that 

are robust to heteroscedasticity and clustered at the country level to account for serial dependency 

for the panel regression model with country and year fixed effects to control for heterogeneity 

across countries and years, respectively.  
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3.4.2. Quantile Regressions 

To test our second hypothesis, we follow Koenker (2004) who develops the panel data model for 

quantile regression. Koenker (2004) starts the model with a classical linear random-effects model: 

𝑦𝑖𝑡 =  𝑥𝑖𝑡𝛽 +  𝛼𝑖 +  𝑢𝑖𝑡     (5) 

In our context, 𝑦𝑖𝑡 is the daily change in the CDS spread, t is the daily observation for each country 

i, and 𝛼𝑖 is intended to represent unobserved heterogeneity across countries that is not captured by 

the control variables in the model. The conditional quantile functions of the response of the ith 

country in day t is given by: 

𝑄𝑦𝑖𝑡
(𝑞|𝑥𝑖𝑡) =  𝛼𝑖 + 𝑥𝑖𝑡𝛽(𝑞)     (6) 

According to this formula, the conditional quantiles for the dependent variable are affected by the 

pure location shift 𝛼𝑖. The effects of 𝛼𝑖 are not allowed to depend on the quantile of interest, q, 

however the covariates 𝑥𝑖𝑡 are allowed to. The model in expression (6) can be estimated 

simultaneously for several quantiles by solving the following model: 

𝑚𝑖𝑛
(𝛼, 𝛽)

 ∑ ∑ ∑ 𝑤𝑘𝜌𝑞𝑘(𝑦𝑖𝑡 −  𝛼𝑖 − 𝑥𝑖𝑗𝛽 (𝑞𝑘))𝑇
𝑡=1

𝑛
𝑖=1

𝑝
𝑘 = 1   (7) 

where 𝜌𝑞(𝑢) = 𝑢(𝑘 − 𝐼(𝑢 < 0)) represents the piecewise linear quantile loss function of 

Koenker and Bassett (1978). According to Koenker (2004), equation (7) can be iteratively solved 

by a sequence of diagonally weighted least squares steps using Cholesky factorization. Expression 

(7) can be rearranged to present the panelized version as: 

𝑚𝑖𝑛
(𝛼, 𝛽)

 ∑ ∑ ∑ 𝑤𝑘𝜌𝑞𝑘 (𝑦𝑖𝑡 −  𝛼𝑖 − 𝑥𝑖𝑗𝛽 (𝑞𝑘)) +  𝜆 ∑ ⌊𝛼𝑖⌋𝑛
𝑖=1

𝑇
𝑡=1

𝑛
𝑖=1

𝑝
𝑘 = 1   (8)  
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Based on Koenker (2004), we get an estimate of the model purged of the fixed effects as λ →

 ∞ the 𝛼�̂� → 0. 

3.4.3. Markov Switching  

To test our third hypothesis, whether the impact of supply and demand shocks on sovereign CDS 

is state-dependent, we develop a Markov-switching panel model. Asea and Blomberg (1998) is 

one of the first papers that employ the Markov-switching panel model. Their approach was later 

extended by several other papers such as Cermeño (2002), Chen (2007), and Zhu et al. (2017). We 

follow Zhu et al. (2017) since they conduct a very similar analysis to ours. Starting with the model 

in expression (4), we construct the bivariate Markov-switching panel model as: 

∆𝐶𝐷𝑆𝑖,𝑡 =  𝛽0,𝑖,𝑠𝑡
+ 𝛽1∆𝐶𝐷𝑆𝑖,𝑡−1 + ∑ 𝛽2,𝑗𝐷𝑂𝑀𝐸𝑆𝑇𝐼𝐶𝑗,𝑖,𝑡 + ∑ 𝛽3,𝑗𝐺𝐿𝑂𝐵𝐴𝐿𝑗,𝑡

𝑚

𝑗=1

+

 

𝑛

𝑗=1

 

𝛾𝑠𝑡
𝐷𝑒𝑚𝑎𝑛𝑑𝑡−1 +  𝛿𝑠𝑡

𝑆𝑢𝑝𝑝𝑙𝑦𝑡−1 +  휀𝑖,𝑡                               (9) 

Specifically, our aim is to allow the impact of 𝐷𝑒𝑚𝑎𝑛𝑑𝑡−1, and 𝑆𝑢𝑝𝑝𝑙𝑦𝑡−1 to be dependent on the 

regime 𝑆𝑡 at time t.  This state-dependent impact is captured by the coefficients, γst
 and δst

. 

 The transition probability matrix for St, which is an unobservable two-regime Markov 

process, is given by:  

P = (
𝑝11 𝑝21

𝑝12 𝑝22
)                                                        (10) 

where 𝑝𝑖𝑗= p (𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖), with ∑ 𝑝𝑖𝑗
2
𝑗=1 = 1 for regime i (i = 1,2). We also assume that the 

regime switching process follows a first-order Markov chain. We estimate the model with two 

states, state-dependent regression oil shocks’ coefficients, and state-dependent volatility for the 
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error process. Specifically, the Markov-switching model is estimated using student t distribution 

as it improves the stability of the regimes.  

  To measure the accuracy and fit of the Markov-switching model, we follow Ang and 

Bekaert (2002) and compute the regime classification measure (RCM): 

RCM = 100 𝑆2  
1

𝑇
 ∑ ∏ 𝑃𝑗,�̃�

𝑆
𝑗=1

𝑇
𝑡=1                                               (11) 

RCM is the average of the product smooth probabilities p, and S is the number of states. The RCM 

ranges between 0 and 100, where 0 indicates that the Markov-Switching model perfectly classifies 

regimes and 100 indicates the model’s failure to classify regimes. Hence, low RCM values are 

better than high RCM values.  

3.5. Results and Discussion  

3.5.1. The Impact of Oil Shocks on Sovereign CDS Spreads  

In this section, we discuss the results of our empirical tests of hypotheses 1 and 2. We start with a 

discussion of the results for the model in Equation (4). Table 3 provides results separately for the 

G10 countries and the major oil-exporting countries. We find consistent results between the pooled 

OLS regression model and the panel model with fixed effects for both groups of countries.45 For 

the G10 countries, demand shocks significantly lower the spreads of the sovereign CDS. A positive 

demand shock leads to a decrease in spreads of about 0.12 basis points. These results are consistent 

with the view that positive demand shocks are indicators of healthy economies (Kilian, 2009; 

Ready, 2018). Thus, we find generally that demand-driven movements of oil prices lower the 

sovereign default credit risk of oil-importing countries. Conversely, supply shocks increase the 

 
45 In unreported results, we estimate a panel regression model without fixed effects. Also, we estimate a panel 

regression model without control variables other than the oil supply and demand shocks. The results, available upon 

request, are consistent with those reported. 
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spreads of the G10 CDS. A one unit positive supply shock results in a significant 0.04 basis points 

increase in spreads. Supply shocks cause an almost immediate increase in uncertainty regarding 

oil supply, which increases spreads of G10 countries.46 

The results for the major oil-exporting countries show that both oil supply and demand 

shocks lower the spreads of the sovereign CDS for the oil-exporting countries. The finding that a 

demand shock causes a decrease in spreads for oil exporters is intuitive since an increase in demand 

for oil is good news for oil exporters. Similarly, a supply shock, consistent with a decrease would 

likely lead to an increase in prices and would have a favorable impact on the economies of oil 

exporters, resulting in lower spreads. Thus, both shocks mainly convey good news for those 

countries.47  

[Insert Table 3 Here]  

Table 4 reports estimates of the quantile regression model for the G10 countries and the 

major oil-exporting countries. The low quantile indicates low default risk, whereas the upper 

quantile indicates a high default risk. In Panel A of Table 4, we find that demand shocks affect 

spreads across all the quantiles for the G10 countries. However, supply shocks have a relatively 

limited influence in the middle quantile of the spreads. Hence, the supply-driven oil movements 

mostly affect spreads at the tails of default risk. These findings are consistent with the literature 

that shows a significant impact of oil during turbulent periods of sovereign debt (Chuffart and 

Hooper, 2019). The results for the oil-exporting countries, reported in Panel B of Table 4 show 

 
46 In unreported results, we estimate a panel regression without Italy, in the case of G10 countries, as the standard 

deviation of its CDS spread is large compared to that for other countries (see Table 1). We also estimate a panel 

regression without the U.S. as its dependence on imported oil has been changing. The results, available upon request, 

are consistent with those reported. 
47 In unreported results, we estimate a panel regression without Iraq, in the case of oil-exporting countries, as the 

standard deviation of its CDS spread is quite large compared to that for other countries (see Table 1). The results, 

available upon request, are consistent with those reported. 
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that demand shocks have a significant effect across the entire conditional distribution of spread 

changes, but the supply shocks mostly impact the upper quantiles. These results indicate that 

supply shocks mainly impact spreads when the default risk is high. However, supply shocks seem 

to have a limited effect on the left tail of the distribution of spread changes, i.e. when there is low 

default risk.  

[Insert Table 4 Here]  

 Together the results so far provide evidence in support of Hypotheses 1 and 2. Specifically, 

both oil supply and demand shocks affect changes in spreads of the G10 countries and major oil-

exporting countries. CDS spreads decrease due to oil demand shocks for both the G10 countries 

and oil-exporting countries. In contrast, oil supply shocks increase the spreads of the G10 

countries, but reduce the spreads of oil-exporting countries. Furthermore, the effect varies across 

the conditional distribution of spread changes for these countries.  

3.5.2. Regime Switching Model and Other Tests  

The nonlinearity of oil prices and shocks have been the subject of extensive discussions in the 

energy literature (Kilian and Vigfusson, 2011; Zhu, Su, You and Ren, 2017; Uddin, Rahman, 

Shahzad and Rehman, 2018). In this section, we first investigate whether the impact of oil shocks 

that we report in the previous sub-section is state-dependent, i.e. we test our third hypothesis. State 

1 is the low volatility state and State 2 is the high volatility state, as measured by the variance in 

each respective state. We confirm (in unreported results) that the cumulative impact of oil shocks 

and the states’ standard deviations (sigmas) are different between the two states. In addition, the 

RCM values for both the G10 countries and oil-exporting countries, reported in Table 5, confirm 

that the model fits the data very well. Figure 3 graphs the smoothed probabilities of the high 

volatility state for each group of countries. For most of our sample period, the probability of 
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spreads being in the high volatility state is largely consistent with major world events. 

Furthermore, the probability of spreads being in high or low volatility states for each group of 

countries is very similar. An exception is the period from around 2015-2016 when only the spreads 

of the oil-exporting countries were largely in a high volatility state. 

[Insert Table 5 and Figure 3 Here]  

Table 6 provides results for the bivariate Markov-Switching model given in equation 9. 

For both the G10 countries and oil-exporting countries, demand shocks have a significant influence 

on spreads in both high and low volatility states, while supply shocks impact spreads only in the 

more volatile state. Furthermore, both demand and supply shocks have a larger impact on spreads 

in the more volatile state. For instance, a positive demand shock leads to a significant 0.07 basis 

point decrease in spreads of the G10 countries in the low volatility state whereas it leads to a 

significant 0.66 basis point decrease in spreads in the highly volatile state. The results in Table 6 

also show that within each state, the magnitude of the impact of both supply and demand shocks 

is significantly greater for the oil-exporting countries compared to the G10 countries. Together 

these results are in support of our third hypothesis that the impact of oil shocks on sovereign spread 

changes is state-dependent.   

[Insert Table 6 Here]  

 We also examine the influence of economic conditions and the countries’ oil dependence 

on the relation between oil shocks and changes in spreads. In Table 7, we show that oil shocks 

have a significant influence on spreads only during low economic activity periods. These results 

indicate that the G10 countries are more prone to the effect of oil shocks during times of economic 

downturns. On the other hand, we find that supply shocks lower the spreads of oil-exporting 
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countries only during high economic activity. The demand for oil would be elevated during periods 

of high global economic activity, thus, a disruption in oil supply would likely result in a significant 

increase in oil price which potentially has positive consequences for oil exporters. We find that 

demand shocks lower the spreads of oil-exporting countries only during periods of low economic 

activity. When the global economy slows down, oil exporters most likely will be negatively 

affected. Hence, an increase in the oil price due to demand shocks during these adverse periods 

would deliver good news for oil exporters as they likely need additional revenue.  

[Insert Table 7 Here]  

 Finally, we analyze the influence of the countries’ oil dependency on the relation between 

oil shocks and changes in sovereign spreads. We use the ratio of energy imports to total domestic 

energy use to differentiate between high and low oil imports dependency for the G10 countries. 

The results in Panel A of Table 8 show that the magnitude of the influence of oil shocks on spreads 

is greater for countries that are highly dependent on imported oil. These results are of great 

importance for policymakers, institutions and portfolio managers in the G10 countries. The debate 

regarding the reliance on imported and conventional oil may benefit from the results of this study. 

For oil-exporting countries, we use the ratio of oil rents to GDP, to differentiate between high and 

low oil revenue dependency. The results for the oil-exporting countries in Panel B of Table 8 show 

that supply shocks affect only countries that are heavily reliant on oil revenue. 

[Insert Table 8 Here]  

3.6. Conclusion 

In this paper, we examine the effect of oil shocks on sovereign CDS spreads. Our sample of 

countries consists of the G10 countries and major oil-exporting countries. Using the recently 

developed classification of oil shocks by Ready (2018), we provide robust evidence that oil 
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demand shocks lower the spreads of the sovereign CDS for both the G10 countries and the oil-

exporting countries, with the effect of oil demand shocks being significant across all quantiles for 

both groups of countries. On the other hand, oil supply shocks increase the spreads of the G10 

countries, but lower the spreads of oil-exporting countries, with the impact concentrating in the 

upper quantiles of spreads. We also test for nonlinearity by employing two-state Markov-switching 

modeling and find the significant influence of oil shocks mostly concentrates in a highly volatile 

state.  In addition, the impact of oil shocks on the changes of CDS spreads is sensitive to the global 

economic conditions and to the country’s dependence on oil. 

 Our results are beneficial for governments, corporations, and international organizations. 

The sensitivity of the sovereign CDS spreads to oil shocks underlines the importance of designing 

and structuring hedging strategies against this type of risk. Governments may benefit from the 

results in this study as they consider their reliance and exposure to oil shocks Moreover, our study 

underscores the importance of assessing the nonlinearity between sovereign CDS and global 

determinants such as oil shocks.  
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Appendix A: Essay 3 

I. Summary Statistics of each Country’s Sovereign Debt 

The level of each country’s government debt is from the World Bank database and the percentage 

of debt to GDP is from the IMF database. The sample period is from 2009 – 2018. 

 Panel A – Government Debt in Billion of USD  

  N Mean Std. Dev. Min Max 

Belgium 10         518.2          31.6          482.1          570.6  

France 10      2,479.4        177.0       2,232.9       2,733.1  

Germany 10      2,679.7        254.5       2,408.0       2,994.9  

Italy 10      2,587.2        149.3       2,411.3       2,836.0  

Japan 10    11,870.0     1,242.9     10,166.0     14,205.4  

Netherlands 10         523.5          50.6          473.3          605.9  

Sweden 10         213.2          22.9          175.9          258.5  

Switzerland 10         282.7          21.8          238.8          304.9  

United Kingdom 10      2,237.0        333.7       1,525.5       2,640.2  

United States 10    17,600.9     2,862.0     12,527.2     21,375.4  

Iraq 10          91.1          17.0           74.1          113.8  

Kazakhstan 10          27.1           9.1           11.8           40.4  

Russia 10         232.9          60.8          121.0          331.7  

UAE 10          66.8           6.7           61.0           79.1  

 

Panel B – Government Debt as a Percentage of GDP 

  N Mean Std. Dev. Min Max 

Belgium 10 103.7 2.8 99.5 107.5 

France 10 92.5 5.6 83.0 98.4 

Germany 10 73.8 6.9 61.7 82.3 

Italy 10 125.5 7.9 112.5 132.2 

Japan 10 226.9 12.7 201.0 237.1 

Netherlands 10 61.5 5.3 52.4 68.0 

Sweden 10 40.4 2.6 37.2 45.0 

Switzerland 10 42.7 1.0 40.5 44.1 

United Kingdom 10 82.6 7.7 63.7 87.9 

United States 10 101.6 6.2 86.7 106.8 

Iraq 10 51.1 17.2 32.0 87.4 

Kazakhstan 10 15.3 4.9 10.2 21.9 

Russia 10 13.6 2.5 9.9 16.4 

UAE 10 19.0 2.7 15.5 24.1 
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Appendix B: Essay 3 

I. Stock Exchanges 

This table reports the stock exchanges used to compute the domestic stock market return variable 

(St. Return) in our analyses. 

Country Stock Exchange 

USA Dow Jones  

UK FTSE 100 

France CAC 40 

Germany DAX 

Italy FTSE MIB 

Japan Nikkei 225 

Belgium BEL 20 

Netherlands AEX 

Sweden OMX Stockholm 30 

Switzerland Swiss Market Index 

Russia MXRU Russia stock 

Iraq Iraq Stock Exchange (ISX) 

UAE Abu Dhabi Securities Market General Index 

Kazakhstan Kazakhstan Stock Exchange Index KASE 
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Table 1: Summary Statistics of CDS Spread Changes 

This table presents summary statistics of the variables used in the analyses. Panels A and B summarize 

the daily CDS spread change for the G10 countries and the major oil-exporting countries, respectively, 

and Panel C summarizes the control variables. Spreads are reported in basis points. St. Return is the 

daily return for each country’s stock market, FX Rate is the exchange rate for each country against the U.S. 

dollar. TedRate is the TED spread, VIX is the CBOE volatility index, Oil Realized Volatility is the square 

root of the sum of squared five-minute returns of oil futures prices. V2X is the Euro Stoxx 50 Volatility 

index, Oil price is the one-month price of oil future contract, Demand is a shock to the demand side of oil, 

Supply is a shock to the supply side of oil, both shocks constructed based on Ready’s (2018) method. 

S&P500 is the S&P 500 index return, German Bond is the German 10-year Bond yield, FedFund is the 

effective Federal Fund rate, Euro. Repo is the daily rate of the European Repo, Treasury is the 10-year U.S. 

Treasury yield. A list of the countries’ stock market is provided in Appendix A. The sample period is 

from July 2009 to December 2018 for the G10 countries and from February 2011 to December 2018 

for the major oil-exporting countries. The oil-exporting countries are Russia, Iraq, UAE, and 

Kazakhstan.  

Panel A – Daily Change of CDS Spread for G10 Countries 
       N Mean Std. Dev.     Min    Max 

All 24,754 -0.004 3.68 -72.50 109.00 

Belgium 2,476 -0.010 4.59 -57.52 37.14 

France 2,476  0.002 3.16 -30.28 23.30 

Germany 2,476 -0.007 1.54 -14.50 11.13 

Italy 2,476  0.051 9.27 -72.50 109.00 

Japan 2,476 -0.009 1.97 -17.36 19.28 

Netherlands 2,476 -0.012 1.78 -14.41 15.44 

Sweden 2,476 -0.018 1.22 -7.76 8.69 

Switzerland 2,470 -0.020 1.75 -17.06 43.73 

UK 2,476 -0.012 1.61 -17.92 13.66 

USA 2,476 -0.005 1.26 -10.47 12.47 

 

 

Panel B – Daily Change of CDS Spread for Oil-Exporting Countries 

  N Mean  Std. Dev.          Min        Max 

All 8,180 0.017 10.02 -105.09 304.78 

Iraq 2,059 0.079 16.93 -105.09 304.78 

Kazakhstan 2,059 -0.039 6.46 -51.41 51.31 

Russia 1,981 0.037 8.27 -88.41 66.96 

UAE 2,059 -0.016 2.18 -14.84 13.79 
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Table 1: (Continued) 

Panel C – Control Variables 

 

  N Mean Std. Dev. Min Max 

St. Return 24,165 0.023 1.278 -13.923 12.195 

ΔFX Rate 24,747 0.001 0.188 -3.940 3.300 

ΔTedRate 24,330 0.000 0.015 -0.080 0.090 

ΔVIX 24,700 0.000 1.593 -12.940 20.010 

ΔV2X 24,299 -0.015 1.640 -10.937 12.783 

Demand 24,700 0.000 0.972 -5.764 3.949 

Supply 24,700 -0.001 1.575 -7.742 8.236 

S&P500 Return 24,720 0.045 0.924 -6.663 4.741 

ΔGerman Bond 24,760 -0.001 0.043 -0.257 0.229 

ΔFedFund 24,760 0.430 0.001 0.023 -0.150 

ΔEuro. Repo 24,660 0.460 0.000 0.013 -0.250 

ΔTreasury 24,760 2.490 0.000 0.049 -0.200 
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Table 2: Correlation Between the Main Variables 

Panel A reports the correlation between changes in the 5-year sovereign CDS spread for each of the countries in our sample and Panel 

B reports the correlation between the explanatory variables used in the analyses. St. Return is the daily return for each country’s stock 

market (described in Appendix A), FX Rate is the exchange rate for each country’s currency against the U.S. dollar. TedRate is the TED 

spread, VIX is the CBOE volatility index, S&P500 is the S&P 500 index return, V2X is the Euro Stoxx 50 Volatility index, German 

Bond is the German 10-year Bond yield, FedFund is the effective Federal Fund rate, Euro. Repo is the daily European Repo rate, 

Treasury is the 10-year U.S. Treasury yield. Demand is a shock to the demand side of oil, and Supply is a shock to the supply side of 

oil, both shocks constructed based on Ready’s (2018) method. Correlations in bold are significant at the 5% level or higher.The sample 

period is from July 2009 to December 2018 for the G10 countries and February 2011 to December 2018 for the oil-exporting countries. 

Panel A – The Correlation Between Daily Changes in Sovereign CDS Spreads 
 USA UK France Germany Italy Japan Belgium Netherlands Sweden Switzerland Russia Iraq UAE 

UK 0.23             

France 0.21 0.65            

Germany 0.22 0.69 0.79           

Italy 0.17 0.55 0.70 0.59          

Japan 0.13 0.34 0.33 0.37 0.31         

Belgium 0.22 0.64 0.80 0.74 0.70 0.31        

Netherlands 0.21 0.6 0.71 0.72 0.58 0.34 0.69       

Sweden 0.23 0.52 0.56 0.57 0.45 0.28 0.56 0.57      

Switzerland 0.08 0.40 0.35 0.39 0.25 0.26 0.36 0.38 0.31     

Russia 0.13 0.34 0.35 0.35 0.36 0.35 0.33 0.32 0.25 0.17    

Iraq 0.02 0.08 0.09 0.07 0.09 0.11 0.07 0.05 0.06 0.03 0.13   

UAE 0.14 0.29 0.28 0.32 0.28 0.35 0.29 0.29 0.22 0.19 0.40 0.09  

Kazakhstan 0.14 0.37 0.38 0.40 0.36 0.36 0.38 0.37 0.29 0.19 0.65 0.12 0.43 
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Table 2: (Continued) 

 

Panel B – The Correlation Between the Explanatory Variables Used in the Analyses 

 

 St. Return FX Rate TedRate VIX V2X 
S&P 

500 

German 

Bond 
FedFund 

Euro. 

Repo 
Treasury Demand 

ΔFX Rate -0.050           

ΔTedRate -0.030 -0.024          

ΔVIX -0.460 -0.080 0.004         

ΔV2X -0.620 -0.075 0.001 0.570        

S&P500 Return 0.570 0.082 -0.029 -0.830 -0.540       

ΔGerman Bond 0.390 0.072 -0.040 -0.280 -0.380 0.350      

ΔFedFund -0.024 0.004 0.049 0.014 0.004 -0.020 0.010     

ΔEuro. Repo 0.010 -0.001 -0.008 -0.010 0.010 0.020 0.030 -0.001    

ΔTreasury 0.310 0.145 -0.070 -0.360 -0.340 0.440 0.630 0.020 0.020   

Demand 0.020 0.010 0.030 -0.020 0.050 0.030 0.001 -0.023 -0.030 0.030  

Supply 0.010 -0.010 -0.020 0.010 -0.010 0.000 0.020 0.030 0.010 0.010 0.000 
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Table 3: Pooled and Panel Regressions  

This table reports the estimates for a pooled OLS regression model and a panel regression model with 

fixed effects of the following model: 

∆𝐶𝐷𝑆𝑖,𝑡 =  𝛽0,𝑖 + 𝛽1∆𝐶𝐷𝑆𝑖,𝑡−1 + ∑ 𝛽2,𝑗𝐷𝑂𝑀𝐸𝑆𝑇𝐼𝐶𝑗,𝑖,𝑡 + ∑ 𝛽3,𝑗𝐺𝐿𝑂𝐵𝐴𝐿𝑗,𝑡

𝑚

𝑗=1

+

 

𝑛

𝑗=1

 

𝛾𝐷𝑒𝑚𝑎𝑛𝑑𝑡−1 +  𝛿𝑆𝑢𝑝𝑝𝑙𝑦𝑡−1 +  휀𝑖,𝑡 

ΔCDSi,t is the daily change in sovereign CDS spread of countries denoted by i over days denoted by 

t, and  ΔCDSi,t-1 is the one day lagged change in spreads. DOMESTICj,i,,t  is the two control variables 

included for each country: the daily return on each country’s stock market (St. Return), and the daily 

change in the exchange rate of each country’s currency against the U.S. dollar (ΔFX Rate). GLOBALj,t 

is the set of global control variables: the daily change in the CBOE volatility index (ΔVIX ), the daily 

S&P 500 index return (S&P500 Return), the daily change in the German 10-year Bond yield 

(ΔGerman Bond), the daily change in the effective Federal Fund rate (ΔFedFund), the daily change 

in the European Repo rate (ΔEuro. Repo), the daily change in the 10-year U.S. Treasury yield 

(ΔTreasury), the daily change in the TED spread (ΔTedRate), and the change in the Euro Stoxx 50 

Volatility index (ΔV2X). Demandt-1 is the one day lagged shock to the demand side of oil, and Supplyt-

1 is the one day lagged shock to the supply side of oil, both shocks constructed as in Ready (2018). 

We report results separately for the G10 countries (excluding Canada) and for a sample of major oil-

exporting countries. The major oil-exporting countries include Russia, Iraq, UAE, and Kazakhstan. 

(We exclude ΔTedRate and ΔV2X from our oil-exporters model.) We report robust standard errors in 

parentheses below each estimate. ***, **, * indicate significance at the 1%, 5%, and 10%, respectively. 

The sample period is from July 2009 to December 2018 for the G10 countries and from February 

2011 to December 2018 for the oil-exporting countries.  
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Table 3: (Continued) 

 G10 Countries  Oil-Exporting  Countries 

 Pooled 

OLS 
 Panel  Pooled 

OLS 
 Panel 

Intercept -0.005  0.223**  -0.004  0.386** 
 (0.021)  (0.068)  (0.121)  (0.120) 

ΔCDSi,t-1 0.122***  0.121***  -0.088***  -0.089 
 (0.028)  (0.012)  (0.012)  (0.051) 

St. Returni,t -1.106***  -1.106*  -0.013  -0.013 
 (0.055)  (0.523)  (0.008)  (0.015) 

∆FX Ratei,t -0.592***  -0.584*  0.070**  0.070 
 (0.088)  (0.282)  (0.031)  (0.088) 

∆VIXt 0.024  0.024  0.097  0.096 
 (0.047)  (0.060)  (0.139)  (0.077) 

S&P500 

Returnt 
0.233***  0.229  -1.529***  -1.527** 

 (0.072)  (0.268)  (0.254)  (0.461) 

ΔGerman 

Bondt 
-10.991***  -11.026**  -14.443***  -14.279** 

 (1.086)  (4.420)  (3.702)  (3.203) 

ΔFedFundt -1.642**  -1.609**  -6.329  -5.956** 
 (0.647)  (0.606)  (5.292)  (1.663) 

ΔEuro. Repot -6.928  -7.171**  3.589  3.601 
 (4.316)  (3.014)  (7.699)  (2.136) 

ΔTreasuryt -1.001  -0.956  0.798  0.828 
 (0.857)  (0.848)  (3.609)  (3.677) 

ΔV2Xt 0.001  0.002     

 (0.027)  (0.098)     

ΔTedRatet 1.710  1.607     

 (1.389)  (1.030)     

Demandt-1 -0.114***  -0.121***  -1.292***  -1.287** 
 (0.030)  (0.023)  (0.128)  (0.374) 

Supplyt-1 0.036**  0.035**  -0.151**  -0.149** 
 (0.014)  (0.011)  (0.074)  (0.034) 

Country FE No  Yes  Yes  No 

Year FE No  Yes  Yes  No 

R2 0.21  0.21  0.05  0.05 
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Table 4: Quantile Regression Model of Daily Spread Changes 

This table reports estimates for a quantile regression daily changes in sovereign CDS spreads on oil 

demand and supply shocks. DOMESTICj,i,t and GLOBALj,t are the set of control variables described 

in Table 3 and in the text. Demandt-1 is the one day lagged shock to the demand side of oil, and 

Supplyt-1 is the one day lagged shock to the supply side of oil, both shocks constructed as in Ready 

(2018).  Panel A includes all the G10 countries except for Canada, and Panel B includes Russia, Iraq, 

UAE, and Kazakhstan. We report robust standard errors in parentheses below each estimate. ***, **, * 

indicate significance at the 1%, 5%, and 10%, respectively. The sample period is from July 2009 to 

December 2018 for the G10 countries and from February 2011 to December 2018 for the oil-

exporting countries. 

Panel A: G10 Countries 

                                                                           Quantile      
 0.25 0.50 0.75 

Intercept -0.685*** -0.014** 0.656*** 
 (0.017) (0.005) (0.016) 

ΔCDSi,t-1 0.066*** 0.066*** 0.092*** 
 (0.023) (0.017) (0.021) 

Demandt-1 -0.097*** -0.059*** -0.080*** 
 (0.013) (0.006) (0.008) 

Supplyt-1 0.013** 0.003 0.017** 
 (0.005) (0.004) (0.006) 
    

DOMESTICj,i,t   YES YES YES 

GLOBALj,t YES YES YES 

 

Panel B: Oil-Exporting Countries 

Quantile 
 0.25 0.50 0.75 

Intercept -2.318*** -0.097* 2.801*** 
 (0.217) (0.057) (0.239) 

ΔCDSi,t-1 0.007 0.014* 0.029*** 
 (0.018) (0.008) (0.008) 

Demandt-1 -0.458*** -0.338*** -0.641*** 
 (0.104) (0.043) (0.116) 

Supplyt-1 0.002 -0.041** -0.082* 
 (0.041) (0.016) (0.045) 

DOMESTICj,i,t YES YES YES 

GLOBALj,t YES YES YES 
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Table 5: Transition Probabilities, Expected Duration and other Indicators  

This table reports transition probabilities of a Markov Switching panel regression model of daily 

changes in CDS spreads on oil demand and supply shocks. The transition probabilities are reported 

as 𝑃𝑖𝐽. The expected duration of being in state i are reported as 𝐷𝑈𝑖 i.e., DU1 for state 1 and DU2 for 

state 2. Sigma 1 and Sigma 2 are the standard deviation of state 1 and 2, respectively. The maximized 

log-likelihood value is denoted as LL. The RCM is the regime classification measure. The G10 

sample includes all the G10 countries except for Canada, and the Oil-exporting countries sample 

includes Russia, Iraq, UAE, and Kazakhstan. ***, **, * indicate significance at the 1%, 5%, and 10%, 

respectively. The sample period is from July 2009 to December 2018 for the G10 countries and from 

February 2011 to December 2018 for the oil-exporting countries. 

 

  

 P11 P12 P21 P22 DU1 DU2 Sigma 1 Sigma 2 LL RCM 

G 10 0.97 0.03 0.10 0.90 32.15 9.98 0.82*** 7.2*** -44,187.83 0.002 

Oil-

Exporting 

Countries 

0.94 0.06 0.19 0.81 16.2 5.15 2.58*** 20.11*** -20,505.46 0.005 
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Table 6: Markov Switching Panel Model 

This table reports estimates of a Markov Switching panel regression model of daily changes in 

sovereign CDS spreads on oil demand and supply shocks. DOMESTICj,i,t and GLOBALj,t are the set 

of control variables described in Table 3 and in the text. Demandt-1 is the one day lagged shock to the 

demand side of oil, and Supplyt-1 is the one day lagged shock to the supply side of oil, both shocks 

constructed as in Ready (2018). The G10 sample includes all countries except for Canada, and the 

major oil-exporting countries’ column includes the following countries: Russia, Iraq, UAE, and 

Kazakhstan. ***, **, * indicate significance at the 1%, 5%, and 10%, respectively. The sample period is 

from July 2009 to December 2018 for the G10 countries and from February 2011 to December 2018 

for the oil-exporting countries. 

 

State 1  G 10  Exporting Countries 

     

Demandt-1       -0.072***      -0.259*** 

  (0.007)  (0.047) 

Supplyt-1  0.007   -0.031 

   (0.004)  (0.026) 

DOMESTICj,i,t  YES  YES 

GLOBALj,t  YES  YES 

State 2  G 10  Exporting Countries 

     

Demandt-1       -0.658***       -2.484*** 

  (0.092)  (0.428) 

Supplyt-1     0.114*      -0.532** 

  (0.063)  (0.261) 

DOMESTICj,i,t  YES  YES 

GLOBALj,t  YES  YES 
 

  



104 
 
 

Table 7: The Effect of Global Economic Conditions on the Relation Between Soverign CDS 

Spreads and Oil Shocks 

 

This table reports estimates for a panel regression model of daily changes in sovereign CDS spreads 

on oil demand and supply shocks based on the level of global economic activity. DOMESTICj,i,t and 

GLOBALj,t are the set of control variables described in Table 3 and in the text. Demandt-1 is the one 

day lagged shock to the demand side of oil, and Supplyt-1 is the one day lagged shock to the supply 

side of oil, both shocks constructed as in Ready (2018). We use the industrial production index to 

differentiate between high and low global economic activities (Hamilton, 2019). High and low global 

economic activities are defined as above and below the industrial economic index’s median. Panel A 

provides results for above median global economic activity and Panel B provide similar analysis for 

below-median global economic activity. The G10 sample includes all countries except for Canada, 

and the major oil-exporting countries’ column includes the following countries: Russia, Iraq, UAE, 

and Kazakhstan. ***, **, * indicate significance at the 1%, 5%, and 10%, respectively. The sample 

period is from July 2009 to December 2018 for the G10 countries and from February 2011 to 

December 2018 for the oil-exporting countries. 

 

Panel A: Above-Median Global Economic Activity 
  G 10  Exporting Countries 

     

Demandt-1  -0.056  -0.442 

  (0.031)  (0.199) 

Supplyt-1  0.023         -0.286*** 

  (0.020)  (0.047) 

DOMESTICj,i,t  YES  YES 

GLOBALj,t  YES  YES 

 

 

Panel B: Below-Median Global Economic Activity 

  G 10  Exporting Countries 

     

Demandt-1       -0.207***    -1.502** 

  (0.062)  (0.316) 

Supplyt-1       0.046**   0.094 

  (0.019)  (0.103) 

DOMESTICj,i,t  YES  YES 

GLOBALj,t  YES  YES 
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Table 8: The Effect of Countries’ Oil Dependency on the Relation Between Soverign CDS 

Spreads and Oil Shocks 

 

This table reports estimates for a panel regression model of daily changes in sovereign CDS spreads 

on oil demand and supply shocks based on the country’s reliance on oil imports/revenues. 

DOMESTICj,i,t and GLOBALj,t are the set of control variables described in Table 3 and in the text. 

Demandt-1 is the one day lagged shock to the demand side of oil, and Supplyt-1 is the one day lagged 

shock to the supply side of oil, both shocks constructed as in Ready (2018). For the G10 countries 

(reported in Panel A), we use the ratio of energy imports to total energy domestic use to differentiate 

between high and low imported oil dependency. For the oil-exporting countries (in Panel B), we use 

the ratio of oil rents to GDP to differentiate between high and low oil revenue dependency. The G10 

sample includes all countries except for Canada, and the major oil-exporting countries’ column 

includes the following countries: Russia, Iraq, UAE, and Kazakhstan. ***, **, * indicate significance at 

the 1%, 5%, and 10%, respectively. The sample period is from July 2009 to December 2018 for the 

G10 countries and from February 2011 to December 2018 for the oil-exporting countries. 

 

Panel A: G10 Countries 

 
 

Panel B: Oil-Exporting Countries 

 

  Dependence on Oil Imports 

  Above-Median  Below-Median 

     

Demandt-1        -0.188***  -0.150*** 

  (0.030)  (0.014) 

Supplyt-1        0.054**  0.027** 

  (0.022)  (0.011) 

DOMESTICj,i,t  YES  YES 

GLOBALj,t  YES  YES 

  Dependence on Oil Revenues 

  Above-Median  Below-Median 

     

Demandt-1     -0.517*       -1.102*** 

  (0.292)  (0.076) 

Supplyt-1       -0.142**   -0.140 

  (0.068)  (0.095) 

DOMESTICj,i,t  YES  YES 

GLOBALj,t  YES  YES 
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Figure 1: Greece Sovereign CDS Spread Level from May 2013 to December 2017 
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Figure 2: Sovereign CDS Spread Levels  

This figure graphs the 5-year sovereign CDS spread for the G10 countries (excluding Canada) 

from July 2009 to December 2018 and the 5-year sovereign CDS spread for our sample of oil-

exporting countries (Russia, Iraq, UAE, and Kazakhstan) from February 2011 to December 2018. 
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Figure 2 (Continued) 

Panel  B - Oil-Exporting Countries 

0

200

400

600

800

1000

1200

1400

Iraq

0
50

100
150
200
250
300
350
400

Kazakhstan

0

100

200

300

400

500

600

700

Russia

0
20
40
60
80

100
120
140
160

UAE

 

 

  



109 

 
 

Figure 3: Smoothed Probabilities for the High Volatility State from the Bivariate Markov-

Switching Model 
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