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Abstract 

 

 

 

A Flight Sensory-Motor to Olfactory Histamine Circuit Mediates Olfactory Processing of 

Ecologically and Behaviorally Natural Stimuli  

 

 

 

Samual P. Bradley 

 

 

 

Environmental pressures have conferred species specific behavioral and morphological traits to 

optimize reproductive success. To optimally interact with their environment, nervous systems 

have evolved motor-to-sensory circuits that mediate the processing of its own reafference. Moth 

flight behavioral patterns to odor sources are stereotyped, presumably to optimize the likelihood 

of interacting with the odor source. In the moth Manduca sexta wing beating causes oscillatory 

flow of air over the antenna; because of this, odorant-antennal interactions are oscillatory in 

nature. Electroantennogram recordings on antennae show that the biophysical properties of their 

spiking activity can effectively track odors presented at the wing beat frequency. Psychophysical 

experiments using Manduca show that when odors are pulsed, as opposed to presented as a 

continuous stream, detection and discrimination thresholds are lowered. In this study, we 

characterized histamine immunoreactivity in the thoracic ganglia and brain of Manduca. We 

generated antibodies for and characterized the distribution of the histamine B receptor, the first 

known antibody for this receptor protein. Our results show an elaborate pair of neurons projecting 

from the mesothoracic ganglion to the brain, including axon innervation of the antennal lobe and 

antennal mechanosensory and motor centers. Additionally, histamine B receptor labeling 

overlapped with a subset of GABAergic and peptidergic local interneurons. Next, we 

characterized the response properties of these cells within the context of fictive flight behavior 

and found a tonic increase in activity. Furthermore, disrupting this circuit, with surgical ablation 

and pharmacology, disrupts antennal lobe projection neurons from entraining to odors presented 

at a natural 20 Hz frequency, as well as behavioral measures of detection and discrimination 

thresholds. Finally, we characterized the relationship between motor patterns/behaviors, and 

circuit structure of this pair of histamine immunoreactive neurons. Specifically, presence of MDHn 

axon collaterals entering the antennal lobe is correlated with olfactory-guided target approach 

behaviors in crepuscular and nocturnal moths who require stereotyped zigzagging and wing 

beating behaviors for locating an olfactory target have axonal ramifications in the antennal lobe. 

This study is the first characterization of a motor to olfactory corollary discharge circuit in 

invertebrates and may represent the first characterization of a higher order corollary discharge 

circuit in an invertebrate model. 
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I. Literature Review 
 

 

The forces driving evolution have afforded various strategies to optimize fitness. For example, 

plants evolved the ability to convert, with the help of energy from the sun, carbon dioxide and 

water into sugars they use for the production of cellular energy; or single celled organisms evolved 

cilia to facilitate movements through their environment to find food. Alternatively, animals evolved 

nervous systems that govern more complex behaviors that facilitate survival and reproduction. 

These complex networks of cells evolved with cnidarians just prior to bilaterala species of more 

complex animals, with sponges and placozoans being the only species of animal without one 

(Holland, 2003). Nervous systems provided a basis for selection that increased fitness by allowing 

the sensing of stimuli coupled with complex coordinated motor behaviors. This strategy has 

shown a high level of persistence over species and generations, but the details of how nervous 

systems function remains one of the most sought-after questions in science. Here we take an 

evolutionary and neuroethological approach towards neural computation where aspects of the 

animal’s environmental niche and their behavioral state mediate the processing of sensory stimuli. 

 

Affordances and active sensing 

Agents navigating the environment are directly beholden to that environment, as well as the 

sensory receptors that determine the type of information that can enter the nervous system. 

Though animals are rarely stagnant; they often are mobile while they sense their environment. 

Even stationary predators like frogs require visual tracking with their eyes which govern their 

ability to catch flies. So, it’s not just the environmental features available as determined by the 

world's features and the agent's sensory receptors, but the complicated working relationship 

between the environment and the agent. For example, consider the case of a moth and a flower. 

Odor plumes emanating from a flower are random in nature; volatiles move through the air with 

the help of the wind whose strength and direction is relatively unpredictable from moment to 
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moment. Likewise, the flight patterns of a fruit fly evading the pursuit of a dragonfly is also chaotic 

and difficult to predict from moment to moment. And yet the flying moth and dragonfly get their 

reward at a high rate of success. Both cases, as we will see, require stereotypical behaviors that 

increase the reliability of successful goal-driven behaviors in a chaotic environment. In 1979, JJ 

Gibson (1979) expounded his theory of nervous system functioning by changing the discussion 

toward the interaction of the agent and the environment. In doing so, he used the term affordance. 

In his view, the environment “offers” something to the animal, and how the animal and the 

environment is “complementarity”.  

 

An example demonstrating the concept of affordances is dynamic touch or haptic perception. This 

is the process of extracting information from grasping and manipulating objects independent of 

visual input. Here the contraction and distortion of muscles and tendons needed to support the 

object, the pressure changes of your fingertips, and the force on your wrist and arm as they fight 

the effect of gravity on the object (Gibson, 1962; Chemero, 2011). Perhaps more impressive is 

the ability of humans to determine the length of a rod-like object based solely on one form of 

haptic perception. In these studies, experimenters shielded individuals from the bar and were 

instructed to grasp the bar in the middle. The only manipulations the subjects could perform was 

to rotate the bar with respect to their wrist. Subjects were then instructed to turn a wheel which 

shortened or lengthened a piece of string as an estimate of its length. Subjects were remarkably 

accurate at determining the length of the rod. The authors reasoned that the rotational inertia of 

the object when manipulated provided sufficient information for length determination (Fitzpatrick 

et al., 1994). 

 

Haptic perception is also an example of active sensing where the perceptual processes are 

modulated by the animal’s behavior (Wachowiak, 2011). Though others have described all 

movement or action effectively active sensing (Feldman, 2016). This phenomenon appears 
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throughout animals and across sensory domains and is another relation between the animal and 

the environment. One interesting example is the act of sniffing in mammalian olfaction. Mammals 

use inhalation through the nasal cavities for respiration which happens to be the same necessary 

mechanism that governs the flow of odorant molecules to the nasal cavity so that they can bind 

to olfactory receptor neurons in the olfactory epithelium. Important here is that motor system 

action is necessarily linked to the ability to process sensory information. Behavioral studies show 

that mice produce stereotypical sniff behaviors in response to novel odor stimuli. Additionally, sniff 

frequency is dependent on the behavioral demands of the animal. For example, the details of goal 

directed behavior shows variable effects on changes in sniff frequency (Wesson et al., 2008) with 

different response patterns of the major outputs of the olfactory bulb, the mitral and tufted cells, 

in response to sniff frequency changes (Verhagen et al., 2007). Additionally, while the details are 

lacking, there exist serotonergic projections from the Raphe nucleus which also modulates 

respiration and hence inhalation motor patterns (McClean and Shipley, 1987). 

 

Dragonfly prey capture 

One recent example examining the role of movement and sensing information is the invertebrate 

dragonflies. Dragonflies are some of the most ancient insect species. They are vivacious 

predators of other insects and show a remarkable ability to track and catch their prey. These 

highly visual insects show quick reflexes darting towards a chaotic moving fly; gathering their food 

in their hairy arms before indulging in their catch. There are various mechanisms governing this 

ability, though it does appear to use an interception technique. In this particular interception 

technique, the dragonfly works to maintain the placement of the prey on the retina. These insects 

have a specialized set of 8 pairs of neurons that project from the visual system to the flight and 

leg motor neurons in the prothoracic, mesothoracic and metathoracic ganglia. These cells are 

driven by small object motion sensitive cells in the retina that respond to objects approximately 

the size of their prey and as they move across their visual field. This direct connection and given 



4 
 

their large diameter axons represent a fast yet reasonable explanation for their behavior (Olberg 

et al., 2000; Gonzalez-Bellido et al., 2013). These hypotheses suggest that visual sensory 

information drives reactionary motor movements that maintain stable prey foveation. By 

comparison, consider a tracking behavior called continuous pursuit in Land and Collett (1974), 

where they found houseflies participating in chasing behavior is modeled by action reaction type 

mechanisms. Here the visual system detects the flight course of the leading fly, and the tracking 

fly alters its path to mimic the twists and turns of the leading fly (Olberg et al., 2000).  

 

However, other research in this area suggests that these mechanisms are not consistent with the 

flight behavior of dragonfly prey capture. As Mischiati and colleagues (2015) suggest, the speed 

and complexity of maneuvers for successful prey capture is beyond what sensory feedback can 

provide. In their study, they measured head and body movements in response to animal “capture” 

of computer-generated prey. Their study suggested that the timing of head and body movements 

are inconsistent with parallel navigation. This is most notably seen in the uncorrelated nature of 

prey movement and dragonfly movements. These studies found that instead the dragonfly 

exhibits a stereotyped body alignment directly under the prey which it then homes in upon. These 

body movements would cause apparent drift of prey on its retina. However, the dragonfly rotates 

its head in the opposite direction to cancel this apparent motion. Furthermore, it does so by 

keeping the prey directly over the fovea on its head as it rotates; this occurs instantaneously with 

body movements suggesting that compensation is not from sensory feedback but rather from an 

internal model of body movement. While the neural circuitry responsible for transmitting this 

information is unknown, this represents an example of how the nervous system functions to 

synchronize its behavior with its environment to optimize behavioral goals. 
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What you will find in here 

In the following study, we investigate a circuitry that connects flight sensory motor neurons to the 

olfactory system. In chapter 1 we show a detailed characterization of a pair of histamine-

immunoreactive neurons. These cells have their cell bodies in the dorsal mesothoracic ganglia 

and ascend to the deutocerebrum with a small subset of axon collaterals that penetrate the 

antennal lobe. An antibody made against the Manduca histamine B receptor shows a widespread 

distribution of a small number of local interneurons who modulate antennal lobe activity. These 

ascending histamine immunoreactive cells are present in the larvae of Manduca although their 

detailed structure differs between larva and adult as well as there being no evidence of histamine 

B receptor labeling within the antennal lobe in particular, suggesting these cells play different 

functional roles at different stages of the animals life cycle. 

 

We propose that this circuit mediates the ability of this species to process high frequency natural 

stimuli possibly set up by wing beating behavior. Specifically, we hypothesize that 1) disrupting 

this circuit will decrease the ability of antennal lobe neurons to track natural stimuli, and 2) a 

functional circuit from the thoracic ganglia to the olfactory system is complete in night flying 

Lepidoptera and not in day dwelling Lepidoptera and other insect species. We do this by taking 

two different approaches. First, we compare the mesothoracic deutocerebrum histamine circuit 

structure across insect species. Most importantly, we show that a functional mesothoracic 

ganglion to antennal lobe circuit only exists in night flying plume tracking insects such as moths, 

but not day flying insects like butterflies. At first glance, this relationship seems counter to what 

one would expect from phylogenetic relationships with the suborder macrolepidoptera having both 

moths and butterflies and microlepidoptera also has moths and butterflies. However, flight 

behavior of these does correlate with functional circuitry. Moths who show wingbeat effects on 

antennal airflow or use wing beating (even without an apparent reason) to locate an odor source, 

possess a complete circuit to the antennal lobe.  
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Second, we use electrophysiology and neuropharmacology to determine the effects this circuit 

has on antennal lobe odor processing and behavior. In collaboration with Phillip Chapman we 1) 

first characterized the response of the mesothoracic to deutocerebrum histamine neurons to 

induced fictive flight using the octopamine agonist chlordimeoform. Chapman found that activation 

of the flight neural circuitry induced a tonic response from MDH neurons. 2) in a series of 

experiments, I and Benjamin Houot characterized the response of antennal lobe neurons to 

temporally structured odor stimulation before and after ablation of the ventral nerve cord, and 

before and after histamine and histamine receptor antagonist application to determine the 

consequence of histamine release on the antennal lobe frequency response. In these 

experiments both nerve cord ablation and histamine blockade in the brain disrupted antennal lobe 

neurons ability to track odors pulsed at wingbeat frequencies. 3) Finally, we evaluated the 

consequence of histamine function on behavioral measures of odor detection and discrimination 

thresholds. Here we found that histamine generally enhances olfactory acuity. Together these 

results suggest that the MDH circuitry optimizes odor processing within the context of odor-guided 

flight. 
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II. Chapter 1 

 

The information here is a summary of the full research article published in Bradley et al. 2015 in 

Frontiers in Neural Circuits; for more information on the methodology and the results of the study, 

see appendix A. In this chapter my personal contributions were the immunohistamine labeling in 

adult Manduca, severing the ventral nerve cord to verify antennal lobe histamine immunoreactivity 

originated in the thoracic ganglia, and the dual histamine immunolabeling with GABA, 

FMRFamide and allatotropin. 
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Introduction 

 

Manduca sexta 

The primary animal of interest in the following studies is the moth Manduca sexta. Manduca is a 

large (>5 cm wingspan) brown moth with yellow spots along its abdomen with large green larvae 

possessing a characteristic horn at its posterior end. Phylogenetically, Manduca is of the class 

insecta, the order lepidoptera and the family Sphingidae, also known as a hawkmoth and 

sometimes referred to as the Sphinx moth. The superfamily of Sphingidae is Bombycoidea which 

includes the silk moth Bombyx mori, which are in the family Noctuidae (Dai et al., 2016). 

Hawkmoths are characterized by a long thin proboscis and a characteristic hovering behavior 

while feeding on plants, including swaying back and forth to avoid predation (Kitching, 2002). This 

hovering behavior occurs 3 times in the animal kingdom, representing an interesting example of 

convergent evolution with hummingbirds and bats (Voigt and Winter, 1999). Hawkmoths and other 

sphingids show a co-evolution with Datura wrightii who’s flowers are rich in sucrose at the pit of 

long narrow tubular corollas. The flowers of this species are light in color opening at dusk and 

dawn consistent with the hawkmoths being crepuscular (Kitching, 2002).  

 

Manduca has been used as a model organism in developmental biology, neurobiology, 

immunology and flight biomechanics. Here, we are interested in the relationship between their 

olfactory system and flight mechanics, particularly the reafferent effects of wing beating on 

olfactory processing. The olfactory system of Manduca was anatomically and physiologically 

characterized starting in the 1970s. One finding was the presence of a pair of histamine 

immunoreactive neurons that project from the mesothoracic ganglia to the antennal lobe 

(Homberg 1994). Additional studies later showed these moths can learn to respond to odors with 

a feeding response which subsequently provided the means for psychophysical studies that 
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identified specific thresholds for odor detection and discrimination (Daly and Smith, 2000; Daly et 

al., 2001). 

 

The biomechanics of Manduca flight has been described previously by Willmott and Ellington 

(1997). Like all plume tracking insects, moths show a “zig-zagging” pattern as they cast in and 

out of plumes (Willis and Arbas, 1991). This casting behavior is dependent on the intermittency 

of the plume, demonstrating a tight link between a natural stimulus and the evolution of behavior 

(Willis and Baker, 1984; Baker et al., 1985). Riding atop the low frequency zig-zagging behavior 

is high frequency oscillations over their antenna. This disturbance is caused when the downstroke 

of the wingbeat forces air over the antennae (Sane, 2006) which has the capacity to affect odor 

penetration into the antenna’s sensillar array (Loudon and Koehl, 2000). Primary olfactory 

neurons can track odors that are pulsed at the wing beat frequency and pulsing decreases 

behavioral detection thresholds (Tripathy et al. 2010; Daly et al., 2013; Houot, et al., 2014). 

Together these findings suggest that Manduca evolved to process complex olfactory stimuli that 

could be structured optimally for the nervous system, but how wing action and olfaction are 

aligned is not clear. 

 

Thoracic Ganglia 

One possibility is for the animal’s flight motor systems to communicate with the olfactory system 

to modulate neural responses in real time. Ancestrally, the thoracic ganglia were composed of 3 

separate ganglia (prothoracic, mesothoracic and metathoracic ganglia anterior to posterior) with 

11 abdominal ganglia posterior to the thoracic ganglion (Niven et al., 2008). In Manduca, along 

with most other insects, the mesothoracic, metathoracic and the first 2 abdominal ganglia are 

fused into one structure. The thoracic ganglia contain motor pattern generating circuits along with 

motor neurons that control wing and leg behaviors, as well as mechanosensory and 

proprioceptive sensory cells. The mesothoracic ganglion houses the motor neurons for the 
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forewing elevator and depressor muscles (Rind, 1983), and hence drives wing beating. The 

functionality of motor circuits depends on interneurons that control the rhythmic nature to motor 

activity called central pattern generators. These cells fire continuously and rhythmically through 

reciprocally inhibiting connections, though the precise functionality of this circuitry is not clearly 

established.  

 

Olfactory processing in insects 

Olfaction, along with taste, makes up the chemosensory processing systems within the nervous 

system. Chemicals such as plant volatiles and pheromones bind to sensory receptors housed 

within the sensilla in the antenna and maxillary palps. Receptor proteins transduce bound 

molecules into an electrical impulse which is transmitted to primary olfactory processing centers, 

the antennal lobe (AL) in insects, olfactory lobe in crustaceans and olfactory bulb in mammals.  

Antennal lobe projections continue along three output tracts to the mushroom bodies and lateral 

horn in the protocerebrum. Along this pathway, odors are believed to be encoded and transformed 

into motor movements and subsequent behaviors.  

 

Odor molecules that contact the antenna diffuse through pores in the cuticle into the antennal 

lymph. Carrier proteins located in the lymph escort bound odorant molecules to receptor proteins. 

The molecule binds to the receptor and causes a conformational change in the protein, detaches 

and is inactivated by degrading enzymes. This process occurs in a very short time frame (~ 2 ms) 

and is believed, at least partially, responsible for characterizing odorant receptors as flux 

detectors (Kaissling, 2001). Odorant receptors differ between insect species both in number and 

response profile due to evolutionary pressures. The most extensive research on olfactory receptor 

neurons has been in Drosophila melanogaster. In this species, there are approximately 1200 

olfactory receptor neurons which house 61 different olfactory receptor types, each encoded by a 

distinct gene (Hallam et al., 2004; Vosshall et al., 2000). Olfactory receptors are seven 
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transmembrane domain non-selective cation channels (Sato et al., 2008) possessing a 

metabotropic component as well (Wicher et al., 2008). Approximately two thirds of olfactory 

receptors also express the coreceptor Or83b (Vosshall et al., 1999) which is required for proper 

ORN signaling in these cells (Larson et al., 2004). The response profile of olfactory receptor 

neurons is dependent on the receptors expressed in those neurons. Each receptor shows a 

particular response tuning curve to odors. Some receptors are broadly tuned whereas others 

respond to only one known ligand (Stensmyr et al., 2012); additionally, there is receptor specific 

variability in the duration of the neural response, and whether it is excitatory or inhibitory (Hallem 

et al., 2004). Individual receptor neurons can express multiple receptors and the response 

properties of these cells is a summation of both receptors. Finally, different receptors respond 

variably to changes in concentration; where some fall off sharply with a decrease in log step 

concentration and others showing remarkable sensitivity (Hallem et al., 2004). 

 

Each olfactory receptor neuron projects to the same olfactory glomerulus (Vosshall et al., 2000). 

Each olfactory glomerulus is encapsulated in glial cells that spatially and to some degree 

electrically separate different glomeruli. In the AL, ORNs synapse onto two primary olfactory 

center neurons, projection neurons (PNs) that leave and drive higher order brain centers, and 

local interneurons (LNs) which remain within the AL and form primarily inhibitory and modulatory 

connections with ORNs and PNs. One function of the local circuitry is to mediate gain control to 

presented stimuli through GABA mediated lateral inhibition to ORNs (Olsen and Wilson, 2008), 

though glutamate and the neuropeptide tachykinins also mediates lateral ORN inhibition (Ignell 

et al., 2009; Liu and Wilson, 2013). Further modeling shows that intraglomerular interactions 

selectively amplify weak inputs whereas interglomerular interactions inhibit or normalizes the 

responses to odors leading to a decorrelation of PN response patterns (Olson et al., 2010).  

 



12 
 

As mentioned, output of the AL from PNs follow three main tracts. The medial antennal 

protocerebral tract is the largest of the three. It projects information to the calyx of the mushroom 

bodies eventually terminating in the lateral horn. The lateral protocerebral tract takes the opposite 

trajectory, where the tract initially sends axon collaterals to the lateral horn and then terminate in 

the mushroom bodies. Within the mushroom bodies, PNs synapse onto multiple intrinsic Kenyon 

cells, which show sparse response profiles to odors (Perez-Orive et al., 2002). In the lateral horn, 

PNs synapse in a distinct spatial pattern. Projection neurons from a given glomerulus project to 

the same area in the lateral horn (Wang et al., 2002); with distinct lateral horn cell types receiving 

different combinations of glomerular input (Jeanne, et al., 2018). This suggests a conserved 

spatial map within the lateral horn; however, the response properties of protocerebral cells is most 

likely affected by the temporal structure of PN activity.  

 

To ensure proper responses in a variety of contexts, nervous systems must be flexible to changing 

behavioral demands. Therefore, extrinsic modulatory systems ensure that the system responds 

optimally under different behavioral contexts. Insect extrinsic modulation is mediated by aminergic 

innervation by cells releasing octopamine, serotonin, dopamine (Mercer et al., 1983) and 

histamine (Homberg, 1994), as well as several neuropeptides (most of which originating from 

intrinsic antennal lobe sources). In the antennal lobe, octopamine has been shown to enhance 

learning and memory through the VUMmx1 neuron who is driven by sucrose response cells 

(Hammer and Menzel, 1995; Hammer and Menzel, 1998) (present in Manduca (Dacks et al., 

2005)). Dopamine upregulates neural activity through cAMP (Beggs and Mercer, 2009) and 

facilitates aversive learning (Dacks et al., 2012). However, the role of histamine modulation 

remains unclear. 
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Histamine 

Beta-iminazolylethylamine was first synthesized by Windaus and Vogt in 1907 (Dale and Laidlaw, 

1910). Histamine, the common name, results from the decarboxylation of the amino acid histidine 

by histidine decarboxylase dependent on a pyridoxal 5’ phosphate (Burg et al., 1993). Hist idine 

decarboxylase is highly conserved across the animal kingdom (Burg et al., 1993; Haas et al., 

2008) and histamine shows many effects on animals from insects to molluscs to humans (Haas 

et al., 2008). In vertebrates there are 4 known histamine receptors found across the periphery 

and the central nervous system. Following histamine receptor binding, histamine detaches from 

the receptor and is metabolized via enzyme mediated methylation or glial cell mediated recycling 

(Haas et al., 2008). 

 

In the insect nervous system histamine plays a significant role in the visual system; primarily by 

transmitting information through photoreceptor release onto large monopolar cells (LMCs) in the 

lamina of the fly retina. In this scenario, histamine plays the role of glycine in the mammalian 

retina where darkness leads to constant excitation of post-synaptic LMCs and is inhibited upon 

photoreceptor exposure to light. Here, histamine acts as an inhibitory neurotransmitter mediated 

by two identified histamine receptors. Arthropod histamine receptors are ligand gated Cl- 

channels (McClintock and Ache, 1989; Hardie, 1989) sharing ~45% amino acid similarity to the 

alpha 3 subunit of the human glycine receptor (Zheng et al., 2002). The Drosophila histamine 

decarboxylase (hdc) gene shows 62% similarity to the human hdc gene with 90% amino acid 

sequence homology, including several potential phosphorylation sites. In both the meso and 

metathoracic neuromeres, there exist a pair of ascending histamine neurons to the brain, with 

additional pairs of in the abdominal ganglia that do not project to the brain. In addition, there are 

ten bilaterally projecting pairs of histamine cells in the midbrain and one in the subesophageal 

ganglion with no labeling in the protocerebrum, mushroom bodies or lateral horn. Additionally, 

there are histamine cells that have evolved in particular insects; for example, histamine 
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immunoreactive local interneurons in the AL of hymenoptera (Dacks et al., 2010). The goal of this 

first study was to characterize the ascending pair of histamine immunoreactive neurons to the 

deutocerebrum in Manduca sexta. Additionally, we show histamine receptor B immunoreactivity 

in the AL and its co-localization with the local interneuron neurotransmitter GABA and 

neuropeptides tachikynin, allatotropin and FMRFamide. 

 

Methods 

 

To accomplish the goals of this study, we used immunohistochemistry to identify the distribution 

of histamine cells in the nervous system. In this method the antigen, histamine, is injected into 

the bloodstream of another animal (here rabbit). Because histamine is normally present, it must 

be modified to engage the immune system, this is achieved by linking histamine to carbodiimide. 

Following injection, the animal is bled and the antibody against the injected antigen is isolated. 

The isolated antibody is applied to an extracted and fixed nervous system tissue. A series of 

washes and sectioning of the tissue at approximately 100 μm preceded incubation of the tissue 

in the purified antibody. After a couple of days, the tissue was washed and a secondary antibody 

targeting the original antibody and who is tagged with an excitable fluorescent molecule. Tissue 

is then mounted on a microscope slide and imaged on a laser scanning confocal microscope. 

Image stacks are further analyzed in the Olympus Fluoview software, Corel Draw, Adobe 

Photoshop and Vaa3D software for image reconstruction. Given our previous knowledge of 

histamine innervation of the antennal lobe, we hypothesized that one or both of the histamine 

receptors would be expressed in antennal lobe tissue. Using rtPCR on extracted antennal lobes 

we identified weak histamine B receptor expression in this tissue. Because we did not see 

histamine A receptor expression, a polyclonal antibody against the Manduca sexta histamine B 

receptor was made. Western blot and pre-absorption assays were performed to confirm the 

specificity and legitimacy of the antibody. Receptor immunolabeling showed characteristic 
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histamine receptor immmunolabeling in the lamina of the optic lobe with no labeling when 

preabsorbing the antibody to the target peptide sequence. Finally, a single band was seen in 

western blot analysis; together, this information suggests that the specificity against the peptide 

sequence from the histamine receptor is exclusive. Manduca larval nervous systems were also 

analyzed for the MDH neurons with methodology similar to that described above. An additional 

study was performed where we cut the ventral nerve cords in moths to ablate/kill the axons of the 

histamine cells and left for 6 days. Here, we sought to verify the thoracic ganglia origination of the 

histamine projections to the antennal lobe. 

 

Results 

 

Two large histamine immunoreactive neuron cell pairs were found in each the mesothoracic and 

metathoracic neuromeres. These cells send a large primary neurite dorsally and medially before 

turning orthogonally and projecting to the lateral part of the ganglion. Projections extend anteriorly 

through the prothoracic neuromere and neck connective towards the subesophageal ganglion 

and brain, terminating in the deutocerebrum. This conclusion was validated by performing a set 

of “lesion experiments”. First, the ventral nerve cord was severed; second, the metathoracic 

neuromeres were sectioned from the rest of the CNS in vivo approximately 6 days prior to 

immunolabeling. This work showed no remaining labeling in the antennal lobe following sectioning 

above mesothoracic neuromere but not below it indicating that the HA cells that ramify the AL are 

in the mesothoracic neuromere. The wide projecting fibers within the mesothoracic ganglion 

suggests that these cells receive a variety of inputs and the blebby nature of the more lateral 

processes within the mesothoracic ganglion suggests that histamine may be released locally in 

the thoracic ganglia though this remains to be confirmed.  
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To further understand the nature of the MDH circuit, we examined the immunoreactivity of the 

histamine B receptor in Manduca antennal lobes. We confirmed the selective expression of the 

histamine B receptor in the antennal lobe using RT-PCR (and found no band for the histamine A 

receptor). Our results demonstrate widespread histamine B receptor expression throughout 

glomeruli in the antennal lobe. Given the widespread distribution of GABA immunoreactivity in the 

antennal lobes we co-labeled antennal lobe tissue for the MsHisClB and GABA and found a 

subset of these GABAergic cells also labeled for the histamine B receptor. Additionally, we 

considered the co-immunolabeling of MsHisClB and the neuropeptides FMRFamide and 

allatotropin. We found that one local interneuron for each allatotropin and FMRFamide co-labeled 

with the histamine B receptor. Together this suggest a complex functionality of this circuitry. 

 

Finally, in Manduca larvae, the MDH neurons appear to be present with clear labeling of a pair of 

histamine cells in the thoracic ganglia and projections all the way to the larval antennal center. 

However, there is no evidence of MsHclB receptor labeling in the larval antennal center, and 

hence there is no complete circuit. This suggests that the MDH cells in the larval nervous system 

serve a different function, assuming that they have a larval function, which has yet to be 

established. 

 

Conclusion 

 

The current study intended to characterize a histamine immunoreactive circuit in the moth 

Manduca sexta. Here we found that there was a pair of large cells that originated in the 

mesothoracic ganglia which houses the flight sensory motor centers. These cells project to the 

deutocerebrum and terminate in the antennal lobe and the antennal mechanosensory and motor 

centers. We found that the circuit is complete given histamine B receptor expression in antennal 

lobe tissue. Furthermore, the 16 neurons appear to remain local to the antennal lobe and are 
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predominantly inhibitory as all but one co labeled for GABA suggesting that one consequence of 

activation of the MDHns is suppression of an inhibitory network within the antennal lobe. Together 

these results suggest that Manduca sexta uses information from the flight sensory motor centers 

to disinhibit information processing in the AL, most likely during odor guided flight. Subsequent 

studies were performed to first evaluate the generality of this circuit across the insects and then 

to adequately address the functional/computational role of this circuitry and what this type of 

circuitry means for active sensing modalities.  
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III. Chapter 2  

 

The information here is a summary of the full research article published by Chapman et al., 2018 

in the Proceedings of the National Academy of Sciences; for more information on the methodology 

and results of the study see Appendix B. In this study, I personally performed the experiments 

where we “broke” the histamine circuit by severing the ventral nerve cord or bath application of 

histamine receptor antagonist, cimetidine. Finally, I facilitated the histamine circuit’s function by 

bath applying histamine to the antennal lobe.   
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Introduction 

 

A brief history of motor to sensory circuitry 

Perceptions of the world are often believed due to sensations driven by stimuli originating in the 

environment. However, agents in the world are not static. Movement through the environment 

distorts the sensory landscape and, not surprisingly, the motor centers driving these movements 

affect the relevant sensory system. Historically the notion of action guiding perception dates to 

pre-Socratic thinkers who believed that the eye emits light which is subsequently reflected back 

to the eye which then results in a perception. In the 19th century, George Steinbuch provided the 

first description of a behavioral process that required motor innervation. He believed that the 

ability to tactically identify objects depended on the motor signals that governed reaching and 

grasping (Grusser, 1995).  

 

While the prominent psychologist and philosopher William James believed an important role for 

motor circuits affecting perception, a detailed explanation from neuroscientific terms was not until 

a review by Von Holst and Mittelstaedt (1950). In this review the authors were interested in 

reinterpreting experiments widely believed explained by the dominant theory of the time, the reflex 

hypothesis. Here sensory information activates sensory receptors which drive a chain of neural 

responses ending in a behavior. Inherent in this theory was the constant dependence of behavior 

with the environment despite many counterexamples of persistent behavior following sensory 

system decoupling. Von Holst and Middlestaedt believed that an efference copy signal of an 

action command signal is copied and sent to the affected sensory system where it interacts with 

the incoming reafferent stimulus.  
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More generally, circuits of this nature are called corollary discharge circuits and are found in many 

animals (Crapse and Sommers, 2008). In the following, we will discuss a diversity of neural 

processes that use corollary discharge, starting by explaining very simple efference copy circuits 

that directly inhibit the activity of specific sensory cells; in particular reflex inhibition in 

Caenorhabditis elegans and auditory filtration in the cricket. Second, we will examine saccadic 

eye movement corollary discharge circuits in fruit flies and rhesus monkeys, and finally we will 

look at other higher order corollary discharge circuits that govern learning in songbirds and gain 

modulation in weakly electric fish.  

 

Efference copy circuits mediating reflex inhibition and auditory filtration 

A simple but elegant example of a corollary discharge circuit is found in crickets. Crickets (and 

katydids) use stridulation to generate auditory signals for communication; a trait believed to date 

back 150 million years ago, with 2000 current species. Song function varies from calling and 

courtship behaviors to territorial and aggressive songs between males (Alexander, 1962). To 

produce the sounds necessary for the song, crickets open and close their wings while scraping 

them together. During the closing of the wings, a pick like structure (plectrum) on the left-wing 

brushes over a comb like structure (file) on the right-wing producing syllables of vibrations with a 

characteristic frequency. These vibrations cause the harp (or mirror in katydids) on the wing to 

resonate and amplify the songs (Alexander, 1962; Jordan et al., 2010). The motor patterns and 

muscles required to produce opening and closing are controlled by descending signals from the 

brain that drive rhythmic motor patterns to produce species specific songs (Elliott, 1983; Hedwig, 

2000). This adaptation of song production, however, came with a cost. If the cricket is singing the 

intensity of the sound it produces (~100 db at the harp) will overwhelm the auditory system making 

it challenging to hear other sounds emanating from the outside world. In order to maintain auditory 

sensitivity to its surroundings, a copy of the motor signal drives a single neuron, corollary 

discharge interneuron (CDI), that projects to and effectively and selectively filters out the ability 
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for auditory cells in the prothoracic ganglion to transmit auditory stimuli produced by stridulation 

(Poulet and Hedwig, 2002; 2003; 2006). In doing so the crickets auditory system remains acute 

to other relevant sounds. The CDI neuron has extensive branching in each of the thoracic and 

abdominal ganglia as well as the brain, suggesting that it may influence other behaviors as well 

(Poulet and Hedwig, 2006); though here a single neuron is responsible for optimizing sensory 

processing in the context of a behaving animal. 

 

Sensory filtration systems like this are found in some of the simplest nervous systems. For 

example, the roundworm Caenorhabditis elegans has 302 neurons (White et al., 1986) but 

nevertheless shows a forward circuit, which predicts the occurrence of a reafferent stimulus and 

suppresses behavioral responses to it. These worms have a reflexive escape response to contact at 

either the anterior or posterior end of the worm (Chalfie et al., 1985). However, movement should 

activate mechanosensors at the leading end, and hence the worm should be perpetually moving back 

and forth with continuous activation of the reflex response. A corollary discharge circuit projecting from 

the neural centers driving movement inhibits the escape response reflex and hence the worm 

continues forward (Chalfie et al., 1985; Oulette et al., 2018). These examples show simple neural 

circuits whose function is to optimize sensory processing by selectively inhibiting reafferent 

stimuli. However elegant a solution these examples show, there are other corollary discharge 

circuits whose function is more complex.  

 

Corollary discharge circuits mediating saccades and visual processing 

Reafferent stimulus cancellation is more complex in drosophila saccadic eye movements. Unlike 

vertebrates who use oculomotor behaviors that shift the retinal eye field location, Drosophila and 

other insects move their heads to shift their gaze (Collett and Land, 1975; Bender and Dickenson, 

2006). While flying they rotate their heads and bodies in the yaw, pitch and roll planes, and as 

such are able to view more of the world. A recent study dissected the role of the horizontal and 



22 
 

vertical systems in the drosophila retina. Here three distinct subsets of cells respond to optic flow 

stimuli. The horizontal system is comprised of 3 cells on each side, and the vertical system has 6 

cells separated into three groups (Scott et al., 2002). Each of the three groups responds to a 

different plane of rotation. Motor signals driving yaw movements innervate Hs cells, roll is Vs(1-

3) cells, and pitch is Vs(4-6) (Schnell et al., 2010; Kim et al., 2015; 2017). Saccadic head 

movements in the yaw plane show suppression of optic flow responses in Hs cells with medium 

suppression of Vs(4-6) with almost no suppression to the pitch detecting Vs(1-3) cells (Kim et al., 

2017). Collectively, these cells optimize visual processing with body movement specific 

innervation of motion sensing cells in three dimensions. Similar saccadic suppression circuits 

exist in other insect species as well (Zaretsky and Rowell, 1979). 

 

Saccadic eye movements in primates also serve as an example of a higher order corollary 

discharge circuit (Crapse and Sommer, 2008), where movement detecting cells aren’t simply 

inhibited during motor movements (though they do (Bremmer et al., 2009)). Rhesus monkeys use 

saccadic eye movements to scan a scene; however, in addition to filtering out potential optic flow 

information, they optimize information processing while scanning a scene by predicting the spatial 

location of focus. When doing so, a corollary discharge circuit projects from the superior colliculus, 

an area known for controlling ocular motor behaviors, to the frontal eye field, an area known to 

control visual sensitivity in a retinotopic fashion, and projects through the thalamus (Sommer and 

Wurtz, 2002;). The circuit shifts the frontal eye fields selective attention to the future field 

immediately prior to eye movements to the target (Colby and Goldberg, 1992; Umeno and 

Goldberg, 1997). Disrupting this thalamic circuit causes a disruption of visual responsiveness in 

frontal eye field neurons (Sommer and Wurtz, 2006). This suggests that optimal visual processing 

in the context of saccadic eye movements is predicated on a corollary discharge circuit that 

updates the visual processing centers in anticipation of a change in visual attention, however the 

behavioral consequences of this disruption is not known. 
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Corollary discharge circuits mediating learning and gain modulation 

An efference copy circuit has been proposed in learning motor movements in the cerebellum with 

a similar learning mechanism also seen in birdsong learning. Songbirds, such as canaries and 

zebra finches, sing to communicate. Young male birds learn the song of their fathers and/or 

nearby conspecific males. To learn a new song, birds complete an overlapping, two stage 

process. The first process is referred to as imprinting. In this stage young birds listen to fellow 

adult birds and in the process the brain encodes the song. The second stage, the bird attempts 

to vocalize their song and in the process compares what he sung to the template copy of the song 

imprinted in the nervous system (Brainard and Doupe, 2000). In order to accomplish this task, 

one group has proposed a corollary discharge model to overcome delay constraints inherent in 

auditory feedback models. Here motor centers that drive song production send an efference copy 

signals to cells that project to sensory centers who process auditory feedback information (Troyer 

and Doupe, 2000). 

 

Relevant to the current study is a corollary discharge circuit which enhances sensory processing 

during active sensing processes. One circuit that appears to have some of these features is the 

electrosensory system in weakly electric fish. These fish take advantage of the conducting 

medium of water to emit and receive electrical signals that serve as a means to navigate their 

environment and communicate with other members of the species. These fish have specialized 

electroreceptors which transduce electrical signals in the water and project to the electric lateral 

line lobe for processing. The sensory receptors that project to the electric lateral line lobe synapse 

onto efferent cells that project information to other brain regions, and inhibitory Purkinje like cells 

(MG). These species have been model systems for many things, not least of which is to study 

corollary discharge circuits. The command signals that generate the electric organ discharge are 

copied and sent to the electric lateral line lobe to inform the sensory system of the previous 

discharge. The role of this corollary discharge is believed to be two-fold. One is to distinguish 
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signals generated from other sources and reafferent signals (Bell, 1981; Crapse and Sommers, 

2008). The second is to selectively amplify and or degrade electrical signals in different cell types 

within the electric lateral line lobe. Experimenters found differential responses to corollary 

discharge signals with type I MG cells showing an excitatory response, and type II MG cells 

showing an inhibitory response. This corollary discharge circuit shows a different effect than 

others found in the animal kingdom but may represent the closest comparison to the proposed 

studies (Mohr et al., 2003) in that the consequence of corollary discharge and have a net 

upregulation in a behavioral context. 

 

Here we demonstrate an enhancement of reafferent stimulus response in the olfactory system of 

the moth Manduca sexta that is mediated by a corollary discharge circuit emanating from flight 

sensorimotor centers. In particular, we show that the previously described circuit shows tonic 

activation, and whose firing rate is correlated with fictive flight behavior. This input to Manduca’s 

olfactory system modulates the ability to process high frequency natural stimuli encountered 

during odor guided flight as pharmacological and surgical disruption of this circuit decreases the 

ability to track rapidly pulsed odors. This disruption also decreases olfactory acuity as measured 

by psychophysical assays of detection and discrimination. 

 

Methods 

 

All studies were performed on Manduca sexta adults between 4 and 7 days eclosion. First, to 

determine the relationship between wing motor function and the histamine cells, whole cell 

recordings were made with sharp electrodes in intact animals from the dorsal side of the 

mesothoracic ganglion with MDH identity determined by dye injection at the recording site. 

Simultaneously, suction electrode recordings of nerve IIN1b that controls forewing elevator and 

depressor muscles. Recordings were performed in the presence of chlordimeform an octopamine 
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agonist, which activates flight central pattern generators and hence is termed fictive flight. Spike 

trains were analyzed in Spike2 and Matlab software. 

 

Next, to determine the impact of the histamine cells action on antennal lobe function, antennal 

lobe recordings were performed using multi-unit electrodes in whole body preparation. Odors 

used in this study were the ketones hexanone and octanone. Manduca has previously been 

shown to be able to discriminate these odors and analysis of population responses show 

significant differences in population activity. Odors were presented continuously and as pulse 

trains during trials preceding and following one of three treatments; application of a histamine 

receptor antagonist or severing of the neck connective including the MDH neuron axons to disrupt 

histamine function, or conversely by application of histamine. Pharmacological treatments were 

later washed with physiological saline to determine if any effects could be rescued. In ablation 

studies, moths were again presented with continuous and pulsed stimuli, this time before and 

after severing the ventral nerve cord. Nerve cord ablations were performed blindly and 

approximately half the experiments served as controls where the ventral nerve cord was not cut 

(sham cut experiments).  Multi-unit spike trains were sorted offline using MClust software and 

further analyzed in Matlab for their ability to entrain to temporally structured stimuli.  

 

Finally, to determine the consequence of histamine function on olfactory acuity, behavioral studies 

assaying olfactory detection and discrimination threshold were performed on moths trained using 

the same odors as above using Pavlovian conditioning paradigm. Restrained moths were 

presented with an odor followed by a sucrose reward. Moths have the ability to learn odors, and 

trained odors served as instruments to measure detection and discrimination thresholds. Moths 

were tested using an ascending dilution series such that detection thresholds could be determined 

by statistical comparison with responses to blank odor cartridges. Animal antennal lobes were 
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either pico-injected with inert saline as an injection control or saline with the histamine receptor 

antagonist cimetidine.  

 

 

Results 

 

The mesothoracic ganglion houses the neurons responsible for the central pattern generators 

that drive the patterned wingbeat behavior, proprioceptive neurons that respond to wing 

displacement, and motor neurons that drive muscle contractions responsible for flight. The MDH 

neuron is an interneuron with large diameter cell bodies sitting on the dorsal side of the 

mesothoracic ganglion. MDH cells shows tonic spontaneous activity with an increase in firing rate 

in response to chlordimeform application that is correlated with a concurrent increase in nerve 

afferent IIN1b. 

 

Antennal lobe population responses can discriminate closely related odors. Additionally, the 

biophysical properties of at least a subset of cells allow bursting firing patterns at high frequencies 

consistent with reafferent stimuli experienced during odor guided flight. Severing the ventral nerve 

cord showed a reduction in this ability as measured by power spectral density. Furthermore, 

application of histamine increased pulse tracking fidelity while the histamine receptor antagonist 

cimetidine reduced pulse tracking ability. These results are consistent with the hypothesis that 

the mesothoracic to deutocerebral circuit facilitates the processing of natural stimuli. Finally, 

psychophysical measures of olfactory detection and discrimination show that more odor is 

necessary when the histamine circuit is blocked suggesting that the functionality of this circuit is 

behaviorally relevant to the animal in that it normally enhances sensitivity presumably during flight. 
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Conclusions 

 

The preceding set of experiments represent the first detailed characterization of the physiological 

consequences of a corollary discharge circuit an olfactory system. Additionally, there are two 

pieces of evidence to suggest that this would be the first higher order corollary discharge circuit 

in an invertebrate. First, the response of the MDH neurons to fictive flight is tonic. If this system’s 

function was to filter out the periodic reafferent stimulus, one would expect the response would 

also be periodic and synchronized to the wing beat. Second, disrupting this circuit through ablation 

and pharmacological means disrupts antennal lobe processing of the reafferent stimulus. Along 

with histamine bath application’s up-regulation of this ability, it appears this system is exploiting 

the periodicity induced by wing beating to enhance odor-guided behavior; this is consistent with 

increased detection thresholds in subjects whose antennal lobes are pico-injected with the 

histamine antagonist cimetidine. 
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IV. Chapter 3 

 

The information here is a summary of the full research article published in Chapman et al., 2017 

in Proceedings of the Royal Society B; for more information on the methodology and the results 

of the study, see appendix C. In this study, I personally performed the immunolabeling for M. 

sexta, P. rapae, B. mori, P. appalachiensis, L. archippus, G. molesta, G. mellonella, G. lurida, T. 

molitor, and caddisflies.  
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Introduction 

 

Insect Ecology 

To understand how the nervous system functions, it is necessary to understand the behaviors 

and behavioral drivers of the organism. These behaviors are shaped by the collection of food 

resources, oviposition sites and mates available to the individual with remarkable examples of 

evolved traits. Flowering plant evolution and success was dependent on the presence of insects 

who provide pollination in exchange for sucrose and amino acids. There exist multiple examples 

of coevolution between plants and insects with unique behaviors and morphologies to support 

their interactions. 

 

A dramatic example of this is the Madagascar sphinx moth whose proboscis extends 30 cm in 

order to get to the pit of Angraecum sesquipedale an orchid with a foot-long nectary (Kritsky, 

1991). In this case, the flowers provide nectar to animals who are large enough to pollinate the 

plants, and large insects, particularly those who hover, require large amounts of energy and 

therefore seek flowers that have large amounts of nectar (Price, 1997). Another example is the 

mating behavior of two butterfly species of the genus Heliconius. Heliconius cydno has iridescent 

wings which reflect mostly polarized light, while Heliconius melpomene does not have iridescent 

wings and does not reflect polarized light. In a clever experiment using various light filters, 

butterflies exposed to female H. cydno, shows reduced mate approach behavior in H. cydno 

compared to H. melpomene when the filter blocked polarized light. This suggests that reflected 

polarized light drives mating behavior in these butterfly species (Sweeney et al., 2003).  

 

Behavioral differences between moths and butterflies 

Nervous systems cost an enormous amount of energy to maintain, and hence efficiency in neural 

architecture is a significant evolutionary constraint. If a given neural center is large, it is reasonable 
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to assume that the given neuropil processes information very relevant to the animal. One example 

of this is the pheromone system in moths and other insects. Here, moths and other species that 

rely heavily on pheromones for mating behavior, devote a significant portion of their olfactory 

systems to process these chemicals. Other species such as butterflies that rely less on 

pheromones, have smaller regions dedicated for pheromone processing. These two groups of 

Lepidoptera also show dramatic differences in flight behavior. Manduca shows rhythmic and 

characteristic scalloping while it is flying through the environment. Here they beat their wings a 

few times as they thrust forward and upward and glide as they drift lower toward the ground 

(Stevenson et al., 1995). Butterflies comparably fly quite chaotically with less rhythmic wing 

beating behavior.  

 

Interestingly, there are at least two moths who show stereotyped behaviors consistent with 

Manduca’s, Bombyx mori and Grapholita molesta. Bombyx mori is a model species of moths who 

make silk. Humans have selectively bred these moths to maximize silk production and in doing 

so has made flight impossible. However, when approaching a female calling with pheromones, 

they will still continually beat their wings until they reach their target on foot. In fact, removing the 

wings so that air disturbances caused by the wing beating are absent while leaving locomotion 

intact, eliminates the moth’s ability to find their target (Obara, 1979). Grapholita molesta is a 

relatively distantly related moth that flies through its environment tracking pheromone plumes; 

however, it mates with females on a tree branch, and while tracking on foot continues to beat its 

wings. These examples show a robust behavior in the absence of an apparent functional need 

suggesting that the behavior of these animals is important to their functioning in ways other than 

their primary function (i.e. flight), most likely, by altering the sensory experience. In the context of 

the present study, one would think that the neural circuitry responsible for processing this type of 

information would be conserved across species solving a common problem while being lost in the 
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more closely related butterfly species, which have different behavioral ecologies and hence 

different demands on the nervous system.  

 

Comparison of peripheral olfactory system appendages 

Some of the most apparent species-specific differences in olfaction stem from specific differences 

beginning in the olfactory periphery. Differences in antennal morphology are apparent across 

different insect species, whereas some species of the Lepidoptera have extravagant antennae, 

Drosophila’s antenna (for example) is quite small. Insect olfactory receptor neurons can express 

multiple receptor types in a single cell, and most olfactory receptors have the co-receptor Orco 

that is also expressed. Without a functional Orco protein, the receptor neuron does not show 

normal responses to odors (Krieger et al., 2003; Larrson et al., 2004). However, one species, the 

Hessian fly Mayetiola destructor shows different response properties to Orco natural ligands and 

forms non-functional receptor complexes in Drosophila (Corcoran et al., 2018) suggesting a 

possible diversity in orco function. While there are ionotropic receptors in the insect olfactory 

system, most ORNs express receptors of a large family of proteins that are similar to G-protein 

coupled receptors (Robertson et al., 2003). 

  

As mentioned in Chapter one, olfactory receptor neurons can show a wide range of response 

profiles and tunings. The species Drosophila sechellia lives on the island of Seychelles off the 

eastern coast of Africa. This species shows an appetitive behavior to the odors of the morinda 

fruit, whereas other species of drosophila have an aversive response. Dopamine is a necessary 

chemical for laying eggs and sechellia flies have low levels of dopamine because of a genetic 

mutation. The morinda fruit shows high levels of L-DOPA which when consumed increases female 

dopamine levels (Lavista-llanos et al., 2014). In this fly’s antenna an entire sensillum has been 

devoted to receptor cells expressing a receptor which only responds to an odor specific to the 

morinda fruit. Given the close relation to Drosophila melanogaster, this represents a unique 
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specialization in this drosophilid species (Dekker et al., 2006). Examples of more rapid 

evolutionary change in the chemosensory periphery exist in German cockroaches. In the recent 

past humans have built traps to kill cockroaches in their house using sugar as the appetitive 

stimulus for the roaches. Within a quick evolutionary time frame these species show a response 

in receptors that normally respond to the bitter chemical caffeine become responsive to glucose 

leading to an aversive behavior from sugary food sources (Wada-Katsumata et al., 2013).  

 

Comparison of antennal lobes and higher order processing areas 

In addition to the olfactory periphery, the central olfactory system also can show dramatic 

differences in structure and size. Again, given the high metabolic cost of nervous system tissue, 

antennal lobe sizes differ with moths and bees having rather large olfactory systems, and 

dragonflies have greatly reduced olfactory processing centers, though they do display odor-

dependent behaviors during prey capture (Piersanti, et al., 2014). Within the antennal lobes there 

are species specific differences in local circuitry, with projection patterns to higher order 

processing centers, and centrifugal modulation projecting to it.  Local interneurons also differ in 

the neurotransmitter content (excitatory or inhibitory) and in their branching patterns. Intrinsic and 

extrinsic modulatory cells have complex innervation patterns in both the glomeruli they innervate 

and the pattern of innervation therein. For instance, in Manduca different modulatory systems 

may synapse onto different neural subtypes, with serotonin cell morphologies suggesting 

modulation of projection neurons and local interneurons, while dopamine cell morphologies 

suggesting modulation of projection, local and receptor cells (Lizbinski et al., 2016). These 

differences represent unique adaptations to optimize sensory processing in the context of 

ethological pressures.  

 

There are three major output tracts from the antennal lobe to the lateral horn and mushroom 

bodies. These tracts also show species differences where in many insect species, the lateral tract 
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does not terminate in the mushroom bodies like they do in moths, bees, flies, and ants (Martin et 

al., 2011). The lateral antennal protocerebral tract in honeybees has been shown to be a parallel 

processing example along with the medial antennal protocerebral tract (Rossler and Brill, 2013). 

In this study the experimenters showed that biologically relevant odors caused activity in each 

tract; however, the medial antennal protocerebral tract show narrow tuning responses to odors 

and the lateral antennal protocerebral tract show broad tuning profiles, suggesting each tract may 

have separate functions (Rossler and Brill, 2013). 

 

A recent interesting example of a species-specific environment-driven neural pathway was found 

in Drosophila melanogaster. In addition to having a dedicated pathway for pheromones, they have 

dedicated olfactory receptor neurons tuned to the molecule geosmin which is produced by fungi 

and bacteria. These olfactory receptor neurons respond strongly and selectively to geosmin and 

then projects to an individual glomerulus in the antennal lobe. This is the only known odor to which 

this glomerulus responds and then leaves the AL projecting to the mushroom body calyx and 

lateral horn. This molecule is known as a strong innate avoidance molecule for drosophila and is 

so much so that it has a dedicated circuitry found across most drosophilid species (Stensmyr, et 

al., 2012). These examples show how the olfactory nervous system is evolutionarily plastic to 

environmental and species-specific demands. In this vein, the following comparative study was 

intended to examine the phylogenetic distribution of axon projections of the histamine 

immunoreactive neurons in insects and particularly the Lepidoptera and show a relationship 

between behavioral repertoire and evolutionary changes in neuroanatomic circuitry via co-option.  

 

Methods 

 

 

The animals used in this study were Manduca sexta, Bombyx mori, Idia aemula, Papilo 

appalachiensis, Limenitis archippus, Pieris rapae, Theatops californiensis, Grapholita molesta, 
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Galleria mellanella, Gyna lurida, Tenebrio molitor, Trichoptera, Drosophila melanogaster, and 

Amblyomma americanum phylogenetically extending 250 million years. Within Lepidoptera, we 

had four moth species and three butterfly species with an outgroup of Trichoptera (caddisflies). 

Among the four moth species Bombyx and Manduca are macrolepidoptera while Galleria and 

Grapholita are microlepidoptera; this is significant because the macrolepidoptera moth species 

are phylogenetically more closely related to butterflies than to the microlepidoptera species.  

 

To determine the anatomical structure of a pair of histamine immunoreactive neurons in the 

antennal lobe, we used immunohistochemistry. We used a rabbit anti-histamine antibody to 

identify histamine localization within the brain and thoracic ganglia of each species, and a mouse-

anti bruchpilot antibody to identify glomeruli of the antennal lobe. The protein bruchpilot is found 

at all synapses in the drosophila brain; given the high synaptic density of glomeruli, labeling 

outlines neural structures including the antennal lobe and its glomeruli. Each antibody was tagged 

with a second immunoflourescent antibody. Brains were imaged on an Olympus laser scanning 

confocal microscope. Images were analyzed in Fluoview software, Corel Draw and Adobe 

Photoshop.  

 

Results 

 

 

Immunohistochemical examination of histamine showed conservation of the pair of MDHns in the 

mesothoracic ganglia that ascend to the brain. The MDHns were observed in all species studied, 

with the exception of ticks, suggesting that this circuitry has ancient origins in arthropods. 

Antennal lobe innervation by the MDH neurons on the other hand, was restricted to moths and 

caddisflies. Given the absence of histamine labeling in the antennal lobes of butterflies and its 

presence in microlepidopteran moths and caddisflies suggests this circuit has lost its function in 

butterflies most likely due to lack of necessity or demand. The absence of MDHn projections to 
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the antennal lobes of all other insect species studied but the persistence of projections to other 

brain regions suggests that the MDHns have been co-opted for an olfactory function in night flying 

and plume tracking insects.   

 

Conclusion 

 

 

Understanding the phylogenetic relationship between nervous system structures and behaviors 

can elucidate neural processing principles. Given the metabolically demanding nature of nervous 

system tissue, circuitries not providing behavioral advantages are often lost or restructured to 

serve a different purpose. Here we showed that a histamine immunoreactive circuit, connecting 

flight sensory motor centers in the mesothoracic ganglia to the brain, exists in distantly related 

arthropods. Additionally, we showed that this circuits’ morphological innervation of the AL was 

restricted to night flying, plume tracking moths and caddisflies, but not in more visually guided, 

day flying butterflies. Together these findings suggest a conserved circuit whose detailed 

projection patterns depend on the animal’s behavioral repertoire. 

  



36 
 

V. Discussion 

 

The studies described in this dissertation have demonstrated a neural circuit projecting from the 

flight sensory motor centers in the mesothoracic ganglion to the deutocerebrum, including the 

antennal lobe whose disruption leads to deficient odor processing and behavior. Motor to sensory 

circuits are often discussed within the context of internal models or corollary discharge circuits. 

The results we obtained herein describe a structurally and functionally novel corollary discharge 

circuit. For one, current invertebrate models have not shown a corollary discharge circuit one 

would classify as higher order (See Crapse and Sommer, 2008). Lower order corollary discharge 

circuits are like the examples described in Chapter 2 where reafferent information is filtered out 

through efference copy signals. Higher order corollary discharge circuits are believed to enhance 

more complicated cognitive tasks such as sensory stability (as seen in Rhesus monkey saccades) 

or learning (songbirds). While higher order corollary discharge circuits have not been 

characterized in invertebrates, it is worth pointing out that dragonflies may have a circuitry 

mediating prey capture (Mischiati et al., 2015). Second, our example shows an enhancement of 

processing natural periodic stimuli. Previous vertebrate models have not shown something akin 

to this type of mechanism. On the one hand, it appears as though the motor system is predicting 

the occurrence of temporally structured stimuli, but it uses this information to sharpen the periodic 

response by increasing the power of AL neuron responses at 20 Hz.  

 

The functionality of any neural circuit is due to many interacting factors; one being the nature of 

the receptors binding the released neurotransmitter. Insects possess two histamine receptor 

types, HisClA and HisClB (Gisselman et al., 2002, Zheng et al., 2002), both of which are ligand 

gated chloride channels (McClintock and Ache, 1989; Hardie, 1989). Each receptor is homomeric 

with two genes coding for two subunits HisCl-aplha1 and HisCl-alpha2 (Gisselmann et al., 2002). 

These receptors are members of the large cys-bridge superfamily of ligand-gated ion channels 
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comprised of four transmembrane domains (Gisselmann et al., 2002). This is in direct contrast to 

the four histamine receptors in vertebrates that are seven transmembrane domain G-protein 

coupled metabotropic receptors.  

 

HisClA and HisClB receptors have physiological differences in their response properties, as well 

as their role in processing sensory information. Transfected S2 cells with homomeric HislA 

receptors shows lower sensitivity to bath applied histamine than homomeric HislB receptors or 

heteromeric receptors with much more sensitivity seen with heteromeric receptors (Pantazis et 

al., 2008). In knockout flies for HisClA receptors electroretinogram ON/OFF responses were 

abolished, whereas in HisClB receptor knockouts retinal responses were increased (Pantazis et 

al., 2008; Yusein et al., 2010), while wild type flies, in the presence of ivermectin (a histamine B 

receptor agonist) showed an increase in peak amplitude and onset latency of the OFF response 

(Yusein et al., 2008). Given the anatomical segregation of receptor expression patterns of these 

two receptors, it is not surprising that they show different response profiles to light. As of now it is 

unclear what the computational effect of HisClB receptors have on light processing. However, it 

may be involved in gain control of photoreceptor responses to light (Kupenova and Yusein-

Myashkova, 2012); where this could be affected in various ways such as histamine concentration 

in photoreceptors or ion distributions (see discussion above). In R7 and R8 photoreceptor cells, 

HisClB receptors appear to mediate opponent processing of color through R7/R8 reciprocal 

inhibition (Schnaitmann et al., 2018). On a longer timescale, it appears as though the HisClB 

receptors on R7/R8 photoreceptors, along with HisClA receptor activity, is also sufficient to 

synchronize rest/wake cycles with light dark cycles (Alejevski et al., 2019). Additionally, it is 

reasonable to question whether the responses of histamine receptors are sensitive to any other 

endogenous ligands. In the butterfly Papillo xuthus both HisClA and HisClB receptors showed 

physiological responses to GABA as well as histamine. While the effect of GABA was on the order 

of 100 times less sensitive, the synergistic effect of both GABA and histamine was significantly 
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stronger than to GABA or histamine alone (Akashi et al., 2018). Given the widespread distribution 

of GABA throughout the nervous system including the lamina, the effect and computational 

consequences of this complex system is unclear.  

 

Pulse tracking does not occur on a spike by spike basis but rather each ‘ON’ epoch corresponds 

to multiple spikes referred to as a burst. From a computational perspective these bursts relay 

information in a more reliable fashion with increased neurotransmitter release per cycle. Analysis 

of Kenyon cells in the mushroom bodies show sparse responses and high projection neuron to 

Kenyon cell convergence (Perez-Orive et al., 2002). If the projection neurons transmitting this 

information are both bursty and coherent (at least for some duration of the burst cycle), then the 

reliability of the responses of these cells would be increased particularly at lower concentrations. 

This would also be consistent with the effect of pulsing odors decreasing false positive rates (Daly 

et al., 2013).  

 

While the function of the Manduca’s MDH circuitry is difficult enough, what purpose these cells 

play in other insects is even more fleeting. What purpose would wing sensory-motor information 

be for the midbrain of the butterflies? Though no answer will be given, the “supermodel” system 

of Drosophila melanogaster provides a different answer to that found in Manduca. To entice 

female flies to mate, male flies will sing courtship songs. They do so by vibrating their wings (von 

Philipsborn, et al., 2011). Using optogenetics our lab has demonstrated that specific activation of 

the MDH neurons reduces courtship singing behavior.  

 

Conclusions  

Odor plumes are random stochastic stimuli in space and time as air forces move emitted odor 

molecules. To minimize the uncertainty of stimuli, animals have developed various actions to 

influence stimulus sampling. Manduca generate a relatively low frequency oscillation in space as 
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they cast back and forth through the plume, and a high frequency oscillation in airflow over the 

antenna caused by successive wing beat cycles. Examination of the casting behavior suggests 

that these animals are “homing” in on the stimulus; this is common among olfactory search 

behavior in mammals as well as invertebrates. The reason for the high frequency oscillation is 

not entirely clear but is consistent with sniffing in that it drives an oscillation in airflow over the 

olfactory sensory array. Though behavior studies in Manduca examining the effects of pulsed 

stimuli show a reduction in false positive rates (less unwarranted responses to odorless stimuli) 

compared to continuous stimuli; this effect mediates the decrease in detection thresholds seen in 

these studies. This along with increased separation of population odor responses suggests that 

motor behaviors increase the accuracy of odor processing.  

 

Additionally, Chapters 1 and 2 described a circuit that connects the neural centers governing flight 

behavior to the olfactory system, whose disruption leads to a decrease in ability for antennal lobe 

pulse tracking cells to follow the high frequency stimuli. Thus, this circuit facilitates the ability to 

process its reafferent stimulus possibly by changing the global state of the antennal lobe. 

Observation of the antennal lobe local field potentials in response to circuit histamine receptor 

disruption is an increase in 20 Hz frequency content, this is in contrast to the inconsistent with 

decrease in pulse tracking among pulse tracking cells decrease. Additionally, histamine 

application, while increasing pulse tracking, decreases 20 Hz frequency content in local field 

activity. One mechanism seen in signal processing theory consistent with this seemingly 

contradictory finding is stochastic resonance. This is the phenomena where a weak oscillation in 

increased noise levels facilitates the processing detection of temporally structured subthreshold 

signals. It does so by periodically increasing the likelihood of a signal detection event spike 

occurring when close to threshold because the weak signal summates with the oscillation. It is 

important to note that noise levels were not assessed rather just the 20 Hz component of antennal 

lobe activity. Together then, it appears as though the animal’s actions lead to an increase in 
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accuracy in natural odor processing with an internal signal that modulates the ability of the system 

to detect an external signal, based on the state of the animal. 

 

The research contained in the previous three chapters explain the anatomical, physiological and 

evolutionary nature of a novel and unique motor-to-sensory circuit. In particular, we show 

evidence for how an animal's ecological constraints impart evolutionary changes to nervous 

system structure which affords optimal stimulus, sensory system, and internal state interactions. 

The details of these interactions are unknown and represent an interesting experimental model 

for how nervous systems function. We suggest this research is significant as it may provide an 

opportunity to understand motor- to- sensory circuits specifically, and more generally, test general 

theories of how nervous systems function. 
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Abstract 

Neural circuits projecting information from motor to sensory pathways are common across sensory 

domains. These circuits typically modify sensory function as a result of motor pattern activation; 

this is particularly so in cases where the resultant behavior affects the sensory experience or its 

processing. However, such circuits have not been observed projecting to an olfactory pathway in 

any species despite well characterized active sampling behaviors that produce reafferent 

mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In 

this study we characterize a circuit that connects a flight sensory-motor center to an olfactory 

center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir) 

neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe 

(AL) glomeruli. Furthermore, within the AL we show that the Manduca sexta histamine B receptor 

(MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic LNs, which 

broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar 

larvae; however, the absence of MsHisClB-ir in the larval antennal center (LAC) indicates that the 

circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight 

behavior. Although the functional consequences of this circuit remain unknown, these results 

provide the first detailed description of a circuit that interconnects an olfactory system with motor 

centers driving flight behaviors including odor-guided flight.  

Introduction 

Animals exhibit stereotypical search behaviors in pursuit of potential food sources or 

mating partners. More specifically, some animals employ sampling strategies where rhythmic 

motor patterns optimize the interaction between stimuli and their affected sensory systems. 

Consequently, many of these motor systems project to and modulate how sensory systems process 

this information. For example, saccadic eye movements allow us to focus on objects despite having 

a fast adapting visual system (Martinez-Conde et al., 2006). Here the neural circuits driving these 

small movements also send a signal canceling the perception of a moving scene, therefore 

affording proper behavioral responses to other stimuli in the environment (Zaretsky and Rowell, 

1979; Ross et al., 2001). Other motor to sensory circuits have been shown to amplify self-induced 

communication signals (Mohr et al., 2003), inhibit reflex responses (Chalfie et al., 1985) and are 

involved in sensory/motor planning (Sommer and Wurtz, 2002; Brainard and Doupe, 2000). While 

work in other sensory systems have made significant progress in characterizing motor to sensory 

circuits (Crapse and Sommer, 2014), it is not clear whether such circuits are present in the olfactory 

system.  

When tracking odors, animals typically exhibit behaviors, such as sniffing, that 

periodically structure olfactory stimuli (Halpern, 1983). Each sniff cycle draws odor-laden air into 

the nasal cavity during inhalation and forces air out during exhalation, thus imposing a temporal 

structure on air/olfactory receptor interactions that persists in the absence of odor (Adrian, 1942; 

Kepecs et al., 2007). In this manner, sniffing couples reafferent mechanical stimuli with odor 

stimuli resulting in a temporally structured stimulus that improves physiological (Verhagen et al., 

2007), and presumably behavioral performance. In the moth Manduca sexta, wing beating causes 

high frequency oscillations in airflow over the antennae in a manner analogous to sniffing (Sane 

and Jacobson, 2006). These periodic signals have a potentially strong effect on odor-receptor 

interactions in moths (Loudon et al., 1994; Loudon and Koehl, 2000) and are effectively tracked 
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by antennal and antennal lobe (AL) neurons (Tripathy et al., 2010). This implies that at least part 

of the temporal structure of encoding neuron activity is driven by time-dependent fluctuations in 

stimulus concentration (Christensen et al., 1998; Daly et al., 2011), driven by wing-beating. 

Simulating wing-beating effects on odor exposure by pulsing odor stimuli at wing beat frequencies 

increases separation of neural ensemble representations for different odors (Houot et al., 2014) and 

enhances behavioral performance in psychophysical assays of olfactory acuity (Tripathy et al., 

2010; Daly et al., 2013). While AL neurons can track pulsed stimuli when the neck connective is 

intact (Houot et al., 2014), AL neurons are unable to do so when using isolated head preparations 

(Tripathy et al., 2010; Christensen et al., 1998). This suggests that the AL receives input from 

flight sensorimotor centers that affects the temporal fidelity with which the AL encodes odors 

(Christensen et al., 1998; Tripathy et al., 2010). However, relatively little is known about neural 

circuits connecting flight sensory-motor centers and the AL.  

There is limited data describing input from flight sensory-motor centers to the ALs of 

Manduca. This circuit consists of a single pair of histamine (HA) immunoreactive neurons that 

project from the mesothoracic ganglion (MsG) and bilaterally innervate both ALs and the antennal 

mechanosensory and motor center (AMMC; Homberg, 1994; Homberg and Hildebrand, 1991). 

The purpose of this study was to provide a detailed morphological description of these 

mesothoracic to deutocerebral histaminergic neurons (MDHn) and to identify candidate post 

synaptic targets. Using immunohistochemistry, we found that the MDHns ramify in a subset of 

ventral glomeruli in the AL, the AL isthmus, and the coarse neuropil. A subset of GABAergic LNs 

along with one FMRFamide-ir and one allatotropin-ir (ATR-ir) local interneuron express the 

Manduca homologue of the histamine B receptor subtype (MsHisClB) and thus represent 

candidate postsynaptic targets of the MDHns. Furthermore, although the MDHns are present in 

larvae and survive metamorphosis there is no expression of the MsHisClB receptor in larval 

antennal center (LAC) neurons until after pupation has occurred, suggesting the MDHns only 

affect olfactory processing in adults. The MDHns therefore represent a novel circuit that provides 

a potential source of information from a flight sensory-motor integration system to the olfactory 

system. 

Materials and Methods 

Animals 

Animals were raised using a standard diet (Bell and Joachim, 1976) and rearing procedures 

(Tripathy et al., 2010). Adult moths were kept in brown paper bags and placed in an incubator 

(Percival Scientific Inc.; 166VLC8) where they were exposed to a 16/8 reverse light dark cycle set 

to 25°C and 75% humidity. Approximately 10 male or female moths aged 3-9 days were used for 

all experimental groups. For larval studies, stage 5 instar larvae were dissected with trachea 

removed. Ten larval nervous systems were used for developmental experiments. 

Immunohistochemistry 

Immunolabeling was performed as described previously (Dacks et al., 2010) on both 

sectioned and whole-mount brains depending upon the preparation. For HA immunolabeling, 

brains were placed in a 4% N-3-dimethylaminopropyl-N’-ethylcarbodiimide (Sigma Aldrich, 

03449) pre-fixative for 3-4 hours at 4°C, before being fixed overnight in 4% paraformaldehyde 
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(Electron Microscope Sciences, 15710) in 1% phosphate buffered saline (PBS; Sigma Aldrich, 

SLBC5890) at 4°C. For the MsHisClB antibody, brains were placed in 4% paraformaldehyde 

(Electron Microscopy Sciences, 15710; pH 7.3-7.5) at 4°C overnight. Following fixation, brains 

were washed in PBS (pH 6.9). For sectioned tissue, adult brains and ganglia were embedded in 

5% agarose (Sigma Aldrich, SLBJ3744V) and sectioned between 50 and 250 µm (depending on 

the antibody) using a Leica VT 1000S vibrating microtome. The tissue was washed in PBS with 

0.5% Triton™-X100 (PBST; Sigma Aldrich, 110M0009V), blocked for 1 hour with 2% IgG-free 

bovine serum albumin (BSA; Jackson Laboratory, 001-000-162) and incubated in primary 

antibody in blocking solution with 5mM with sodium azide (PBSAT; Fisher Scientific, S2271). 

Brains were washed and blocked as above, then incubated in secondary antibody (1:1000 Alexa 

488, 546, or 633 in PBSAT; Alexa fluor®; Lifescience Technologies) overnight at room 

temperature except for experiments using MsHisClB and/or GABA in which tissue was incubated 

at 4oC. SYTO 59 (a nuclear label; Invitrogen™; S11341) was used to outline the LAC. Tissue was 

washed several times in Tris Buffered Saline (TBS; Bio-Rad, 170-6435) and the tissue was 

incubated in 1:10,000 SYTO 59 in Tris-HCl (Fisher Scientific, BP153 for 60 minutes before 

mounting. All tissue was washed in PBST and PBS, then run through an ascending glycerol (Sigma 

Aldrich, BCBN3647V) series (40%, 60% and 80%) and mounted in Vectashield® (Vector 

laboratories, ZA1222). For whole-mount preparations, tissue was run through an ascending 

ethanol (Sigma Aldrich, SHBF6704V) dilution series (30%, 50%, 70%, 95%, and 100%) for 10 

minutes each (after the PBS wash), a 1:1 ethanol methyl salicylate solution for 15 minutes, and 

finally mounted in 100% methyl salicylate (Fisher Scientific, MFCD00002214). All primary 

antibody information (including dilutions used, manufacturer, host-species, immunogen and 

RRID) is included in Table 1. 

Antibody Manufacturing and Characterization 

Rabbit anti-histamine 

The HA antiserum was raised against synthetic HA conjugated via a carbodiimide linker 

to succinylated keyhole limpet hemocyanin. Control studies showed that the antibody had no cross 

reactivity with L-histidine or L-histidine containing peptides, and pre-adsorbing the antiserum with 

the HA conjugate eliminates labeling (Immunostar histochemical histamine antiserum 

specification sheet) as did an RNAi knock down of histidine decarboxylase in Drosophila (Melzig 

et al., 1996). Finally, pre-adsorbing the HA antiserum against keyhole limpet hemocyanin alone 

did not eliminate HA labeling in Bombus impatiens (Dacks et al., 2010). Pre-adsorption controls 

in Manduca tissue were performed by incubating the rabbit anti-HA antiserum for 24hrs in 

blocking solution (1mg/ml BSA in PBSAT) with HA (Sigma Aldrich, H7250) at a ratio of 10:1 

HA:antiserum. Non-pre-adsorbed controls in which rabbit anti-HA antibody was incubated in 

parallel under identical conditions resulted in immunolabeling (Fig. 1A; n=5) whereas 

preadsorbing the antibody abolished all staining in Manduca optic lobe tissue (Fig. 1B; n=5).    

Mouse anti-bruchpilot 

Bruchpilot (Brp) is homologous to the protein ELKS/CAST in mammals and functions as 

a structural protein at presynaptic active zones (Wagh et al., 2006). The Brp antiserum was raised 

against Brp and western blots showed two bands for two isoforms of the Brp protein in Drosophila 

(Wagh et al., 2006). Brp labeling was absent in Brp mutants (Kittel et al., 2006) and has been 
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shown to bind to amino acid sequence 1390-1740 (Fouquet et al., 2009). The Brp antiserum 

produced a single band at the predicted weight for the Manduca homologue of Brp in western blots 

using Manduca brain tissue (Lizbinski, et al., In Press). The purpose of using the anti-Brp antibody 

in this study was to highlight the boundaries of neuropil, rather than to make any conclusions about 

the distribution of the Manduca homolog of Brp. 

Mouse anti-GABA 

GABA antiserum was raised against GABA coupled to BSA with glutaraldehyde. Controls 

show that the antibody was highly specific to GABA and did not react with other amino acid BSA 

conjugates (Abcam data sheet). Pre-adsorption controls were performed by incubating the mouse 

anti-GABA antiserum for 24hrs in blocking solution (1mg/ml BSA in PBSAT) with GABA 

(Sigma Aldrich, cat # A2129) at a ratio of 10:1 GABA:antiserum. Non-pre-adsorbed controls in 

which mouse anti-GABA antibody was incubated in parallel under identical conditions resulted in 

strong immunolabeling (Fig. 1C; n=5) whereas preadsorbing the antibody abolished all staining in 

Manduca AL tissue (Fig. 1D; n=5).  

Rabbit anti-FMRFamide 

FMRFamide antiserum was provided by Dr. Eve Marder and was raised against synthetic 

RF-amide coupled to bovine thyroglobulin with glutaraldehyde (Marder et al., 1987). Preadsorbing 

the antiserum against synthetic FMRFamide eliminated labeling in larval Manduca nervous tissue 

(Witten and Truman, 1996). 

Rabbit anti-allatotropin 

Allatotropin (ATR) antiserum was provided by Dr. Jan Veenstra and raised against purified 

ATR coupled to thyroglobulin using glutaraldehyde (Veenstra and Hagedorn, 1993). ELISA did 

not show cross reactivity with 100 pmol corazonin, vasopressin, leucokinin IV, or proctolin, but 

did show significant immunoreacitivity to the truncated 6-13 analogue of Manduca ATR (Veenstra 

and Hagedorn, 1993). Preadsorbing the antiserum against ATR eliminated immunolabeling in 

Manduca tissue (Utz et al., 2007). 

Rabbit anti-MsHisClB 

To determine the amino acid sequence of the Manduca homologue of the HA B-type 

receptor (MsHisClB), we used the Manduca genome (Agricultural Pest Genomics Resource 

Database: (www.agripestbase.org) to perform a forward protein BLAST analysis of the 

Drosophila melanogaster histamine B-type receptor (HisClB) amino acid sequence 

(ACA13298.1). The top match from the Manduca genome had an e-value of 0.0 (Msex2.04603-

RA). We then reverse blasted this sequence from the Manduca genome into the Drosophila 

genome in NCBI and the first 3 matches were Drosophila HisClB isoforms (NP_650116.2, 

NP_731632.1 and NP_001163591.1), all of which had e-values of 0.0. The next highest match 

from the Drosophila genome was the HisClA receptor (otherwise known as “ora transientless”; 

NP_524406.1) which is the other of the two histamine receptor types in Drosophila (Zheng et al. 

2002) and had e-values of 3e-148 which is consistent with both histamine receptor types having 

high sequence homology (Zheng et al. 2002; Jones et al 2010). To ensure that there were not two 

predicted amino acid sequences from the Manduca genome with high sequence homology to the 

http://www.agripestbase.org/
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Drosophila HisClB receptor, we took the amino acid sequence from the Manduca genome with 

the second highest e-value for the Drosophila MsHisClB (Msex2.04216-RA; e-value = 1e-119) 

and ran a BLAST analysis of this sequence in the Drosophila genome. The BLAST analysis 

resulted in an e-value of 7.37e-158 for the Drosophila ora transientless indicating that the Manduca 

protein with the next closest sequence similarity to Drosophila HisClA was likely not the 

MsHisClB homologue. Figure 1E is a sequence alignment of the Manduca HisClB receptor 

(MsHisClB) with the sequences for known histamine B receptors from Drosophila melanogaster 

(ACA13298.1), Apis meliferia (ABG75740.1), and Nasonia vitripennis (ACZ51422.1) (Jones et 

al., 2010) using the EMBL-EBI Clustal omega tool (Sievers et al., 2011; 

http://www.ebi.ac.uk/Tools/msa/clustalo/).  

Custom affinity purified antibodies were generated in rabbit (Bethyl laboratories) using 

Cys-VNPDIELPQLD as the immunogenic sequence. The immunogenic sequence was highly 

conserved across D. melanogaster, A. mellifera and N. vitripennis (Fig. 1E).  For western blots, 

adult brains were placed in Bolt™ LDS Sample Buffer (Life Technologies, B0007, Life 

Technologies) with protease inhibitor cocktail (Research Products International, P50900) and 

DNase I (Invitrogen, 18068-015) and kept on ice for homogenization with a pestle. Samples were 

heated in a water bath for 10 minutes at 95°C. We used the Novex® Bolt™ Gel Electrophoresis 

System (Life Technologies) with Tris-Glycine SDS Running Buffer at 165V for 2.5 hours and 

Bolt™ 4-12% Bis-Tris Plus Precast Gels (BG04120BOX) to resolve proteins. We used the iBlot® 

Gel Transfer Device (Life Technologies, IB1001) program P0 (20 V for 1 min, 23 V for 4 min, 25 

V for 2 min) to transfer proteins to nitrocellulose membranes (nitrocellulose iBlot® Transfer 

Stacks, Life Technologies, IB3010-01). The WesternBreeze® Chromogenic Western Blot 

Immunodetection Kit (WB7105, anti-rabbit) protocol was used to detect proteins. Images of 

membranes were taken with FluorChem Q using Alpha View Analysis Software. The amino acid 

sequence of the MsHisClB receptor has a predicted molecular weight of 36kDa (ExPASy 

Bioinformatics Resource Portal: http://web.expasy.org/compute_pi/) and the western blot resulted 

in a single band at the predicted molecular weight of 36kDa (Fig. 1F). Histamine is the primary 

neurotransmitter of arthropod photoreceptors (Hardie, 1989; Stuart, 1999) and the HisClB receptor 

is expressed by glial cells in the lamina of Drosophila (Pantazis et al., 2008). Consistent with this, 

we observed a band of MsHisClB labeling in the lamina (Fig. 1G). Pre-adsorbing the MsHisClB 

antibody in a 10:1 antigenic peptide to antibody solution eliminated all labeling (Figure 1H). Pre-

adsorption controls were run concurrently with samples incubated in antibody that had not been 

pre-absorbed with the antigenic peptide (Fig. 1G), but otherwise treated identically. Scan settings 

were increased slightly for preadsorbed tissue so that autoflourescence outlined brain structures. 

Finally, RT-PCR of the insect histamine A receptor showed no band at the predicted height for the 

receptor suggesting that the MsHisClB receptor is the only HA receptor expressed in AL tissue.  

Direct fluorescent tagging of primary antibodies 

Both neuropeptide antibodies (anti-FMRFamide and anti-ATR) and the MsHisClB 

receptor antibody were produced in rabbit hosts. Therefore, to double label using the neuropeptides 

and the rabbit anti-MsHisClB antibodies we directly fluorescently tagged each primary antibody 

using the APEX antibody labeling kit (Life Technologies, A10468 488, A10475 for 647; Woo et 

al., 2010). This method covalently bonds the IgG antibody to a fluorescent label, and therefore 

eliminates cross reactivity of secondary antibodies with primary antibodies raised in the same 

animal. To remove contaminants, the labeling tip was hydrated with 100 uL of wash buffer to 

http://web.expasy.org/compute_pi/
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which 10-20 ug of IgG antibody is added and eluted with a syringe: 10 uL of MsHisClB, and 1 uL 

of both FMRFamide and ATR antibody respectively. This solution was then combined with 

reactive dye (either Alexa 488 or Alexa 647) containing 2uL of DMSO and 18 uL of labeling 

buffer. This solution then incubated for 2 hours at room temperature. The solution was washed 

with 50 uL of buffer and eluted through the tip. Finally, 40 uL of elution buffer is eluted through 

the tip and mixed with 10 uL of neutralization buffer to yield a final volume of ~50 uL of solution. 

This solution was then diluted in 350 uL of PBSAT and tissue was incubated for 48 hours at 4°C.  

Retrograde dye fills of AL PN output tracks  

Two to three day old moths were restrained with dental wax and the head capsule was opened. 

Once opened, dextran-Texas Red dye (ThermoFisher, D-1863) was injected into either the 

mushroom bodies or lateral horn (the two projection fields of AL PNs). Animals were kept alive 

for 2-3 days post injection and were fed sugar water to ensure that they survived. After 2-3 days, 

animals were sacrificed and ran through the HA staining protocol described above. 

Ablation Studies 

To definitively demonstrate that the MDHns are the sole source of HA to the AL, lesion 

experiments were performed to ablate ascending HA-ir fibers from the MDHns or more posterior 

HA-ir neurons in the metathoracic and abdominal ganglia. At 1-3 days post-eclosion the 

connective between the sub-esophageal zone (SEZ) and the prothoracic ganglion was lesioned to 

destroy all ascending input to the brain from the thoracic and abdominal ganglia (including the 

MDHns; see dashed line in Fig. 2D) or the divide between the mesothoracic and metathoracic 

ganglia was cut to destroy all ascending cells posterior to the mesothoracic ganglia (MsG; 

including pairs of HA cells in the metathoracic ganglia and the first two abdominal ganglia; see 

dashed line between the MsG and the MtG in Fig. 2F). Moths were fed sugar water each day 

following the ablation to increase survival rates. After 8 days, the brains were dissected for 

immunolabeling for HA-ir and brp-ir. For the ablation of the connective between the prothoracic 

ganglion and SEZ we used 6 moths in which we cut the connective between the prothoracic 

ganglion and the SEZ and 6 sham operated moths.  Successful ablation was verified by a lack of 

HA-ir in the remnants of the connective, while sham ablation (when the connective was not cut) 

was verified by the presence of HA-ir in the remnants of the connective. For the ablation of the 

boundary between the mesothoracic and metathoracic ganglia, successful ablation was verified by 

a lack of HA-ir fibers in the mesothoracic ganglion that originate from the more posterior ganglia. 

In 10 moths, 2 moths resulted in the successful elimination of the ascending fibers from the 

metathoracic ganglion, but this did not result in loss of HA-ir in the AL.  

Confocal Microscopy 

Optical stacks were acquired using an Olympus Fluoview FV 1000 confocal microscope. 

All scans were taken with either a 20X or 40X oil lens. Confocal planes were stacked with 

optimized step sizes for the given objective (1.79 um for 20X and 0.54 um for 40X) in the Fluoview 

viewer software (FV10-ASW Version 04.00.02.09). All images were scanned at either 512x512 

or 1024x1024 pixel resolution. Cell body counts and size measurements were performed in 

Fluoview. Corel Draw (Version 13.0.0.576) was used to organize figures. Vaa3D (Peng et al., 
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2010) was used to generate 3D reconstructions of confocal stacks that could be rotated to resolve 

the degree to which structures physically overlap.  

Results 

Two HA immunoreactive cells project from the MsG to the AL 

Although motor-to-sensory circuits have been extensively characterized in many sensory 

systems, there is a dearth of detailed descriptions of input from motor to olfactory centers. The 

purpose of this study was to extensively characterize the structure, candidate targets and 

development of a motor-to-olfactory circuit. In Manduca a pair of HA-ir cells (the MDHns) project 

from the MsG to the AL (Homberg, 1994). However, there is very little known about the fine 

morphological details of MDHns in either the MsG or the AL. Furthermore, nothing is known 

about the potential targets of the MDHns or their development through metamorphosis. Figure 2 

shows the MDHns in the nervous system including the brain (Fig. 2A), entering the AL (Fig. 2B), 

entering the SEZ from the neck connective (Fig. 2C), in the neck connective (Fig. 2D), in the 

prothoracic ganglion (Fig. 2E), and in the MsG (Fig. 2F; n=54).   

The large MDHn cell bodies (~60µm in diameter) are located on the ventral surface of the 

MsG (Fig. 3A) near the intersection of the sagittal and coronal midlines, and extend large primary 

neurites to the dorsal MsG (Fig. 3A; n=30). In the dorsal MsG, the MDHns produce a radial planar 

sheet of processes, with occasional sparse innervation of the ventral MsG (Fig. 3B). Each MDHn 

extends a single axon ipsilaterally through the prothoracic ganglion and SEZ (Fig. 2E, 3A, 3B), 

and bilaterally arborizes in the ventral AL (Fig. 2A; 4A). To determine the extent to which the 

MDHns innervate the AL, we used the BRP antibody to delineate glomerular boundaries and 

immuno-labeled for HA. Varicose HA-ir processes extensively innervate a subset of ventral 

posterior glomeruli (Fig. 4A,B; n=21) and extend sparsely into the ventral posterior coarse neuropil 

of the AL. Reconstructing and rotating the confocal image stack confirms that the HA-ir processes 

both encapsulate and innervate the glomeruli (Fig. 4C,D). There is not much known about the 

ventral glomeruli in Manduca other than CO2 being processed in the LPOG (Guerenstein et al., 

2004), therefore why the MDHns are restricted to this area of AL is unclear. 

 In addition to the MDHns, HA-ir neurons in the metathoracic and first abdominal ganglia 

(Fig. 2F) extend processes to the brain via the cervicothoracic connectives. The processes of these 

HA-ir from other ganglia intertwine with those from the MDHn in the prothoracic ganglia (Fig. 

2E), making it difficult to definitively ascribe the HA-ir processes in the AL as belonging 

exclusively to the MDHns. Furthermore, there are ~20 pairs of HA-ir neurons in the SEZ and 

protocerebrum of Manduca (Homberg and Hildebrand, 1991). To demonstrate that the HA-ir 

processes in the AL originate from the MDHns, we performed two ablation experiments (Fig. 

4E,F). In the first experiment, we cut the cervicothoracic connective between the prothoracic 

ganglion and brain in adult moths and kept the moths alive for 8 days. This protocol eliminates 

HA-ir processes arising from cells in the thoracic and abdominal ganglia (including the MDHns), 

but leaves the processes from other HA-ir neurons in the brain intact (notice HA-ir ventral to the 

AL outlined by dotted line with no HA-ir overlapping with BRP-ir outlining glomeruli). Ablation 

of thoracic and abdominal sources of HA-ir was confirmed via elimination of HA-ir entering the 

ventral SEZ. Ablating the cervicothoracic connective eliminates all HA-ir in the AL (Fig. 4E) 

indicating that the HA-ir processes in the AL originate from the ventral nerve cord, posterior to 
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the cut site. It is possible that cutting the cervicothoracic connectives indirectly affects other HA-

ir neurons in the brain, which might contribute to AL HA-ir processes we observe. However, we 

find no evidence to support this notion. In the second ablation experiment, we lesioned the thoracic 

ganglia at the boundary between the metathoracic ganglion and MsG. This ablates all ascending 

HA-ir processes posterior to the MDHns (i.e. the HA-ir cells in the metathoracic and abdominal 

ganglia) but leaves MDHn processes intact. These experiments show that after ablating the cells 

posterior to the MDHns that there is still HA-ir in the AL (Fig. 4F). Together these experiments 

suggest that the MDHns are the exclusive source of the HA-ir processes in the AL.  

The MsHisClB receptor is expressed in a subset of GABAergic LNs, one FMRFaminergic 

LN and one allatotropinergic LN. 

 To determine the candidate targets of the MDHns, antibodies were generated against the 

Manduca homolog of the HA B-type receptor (MsHisClB; Fig. 1 and see Methods). Insects 

possess two HA receptor types, HisClA and HisClB (Gisselman et al., 2002; Zheng et al., 2002), 

both of which are ligand-gated chloride channels (McClintock and Ache, 1989; Hardie, 1989). 

Each receptor is homomeric with two genes coding for the two subunits HisCl-α1 and HisCl-α2 

(Gisselmann et al., 2001). These receptors are members of the large cys-bridge superfamily of 

ligand-gated ion channels comprised of four transmembrane domains (Gisselmann et al., 2001). 

The MsHisCIB antibody produces extensive labeling in the lamina of the optic lobes of Manduca 

where histaminergic photoreceptors terminate (Fig. 1G) which is consistent with HisClB receptor 

expression by glial cells in the lamina of Drosophila (Pantazis et al., 2008). Within the AL, 

MsHisClB-ir was observed in every glomerulus, which was surprising as the MDH neurons only 

innervate a set of ventral glomeruli. The MsHisClB antibody produces only a single band in 

western blots at the predicted height for the MsHisClB receptor (Fig. 1F; n=5) and all labeling is 

eliminated by pre-adsorption with the immunogenic sequence (Fig. 1G,H; n=6), making it unlikely 

that this antibody is labeling additional proteins. It is however, possible that the MsHisClB-ir 

reflects distribution of the MsHisClB receptor during transport throughout the cell as opposed to 

distribution of the receptor at functional synapses. 

 In the AL we observed 11 (± 0.81 SEM, from 3 moths) and 9.3 (±0.43 SEM, from 3 moths) 

MsHisClB-ir cell bodies in males and females, respectively, in the lateral cell cluster (Fig. 5A). 

The sex differences observed may be due to neurons that project to the macroglomerular complex 

in males, as we see widespread labeling therein (Fig. 5A). We observed two classes of MsHisClB 

labeled cells differing in cell body size. In each AL there were 1-2 larger MsHisClB-ir cells (23.98 

um ± 0.73 SEM diameter; n=10) with the remainder having smaller cell bodies (14.79 um ± 0.52 

SEM diameter; n=10). LN cell bodies are found only in the lateral cell cluster and fall within in 

two populations based on cell body size being either ~12 ums or ~20 ums in diameter (Hoskins et 

al., 1986) whereas we calculate an average PN cell body size of 8.16 um (± 0.16 SEM) from our 

retrogradely filled PNs, thus the size of MsHisClB-ir cell bodies is consistent with LNs. 

Furthermore, we do not observe any MsHisClB-ir processes within any of the AL output tracts 

(Fig. S1A) and there are no HA-ir processes innervating any of the AL output tracts (Fig. S1B). 

The MsHisClB-ir neurons collectively branch in every glomerulus (Fig. 5A; n=37), again 

consistent with the MsHisClB receptor being expressed by LNs, rather than PNs. To further 

functionally characterize these MsHisClB-ir cells, we co-labeled for several transmitters, including 

GABA (Hoskins et al., 1986), FMRFamide (Homberg et al., 1990), and ATR (Utz et al., 2006). 

All but one MsHisClB-ir labeled neuron was GABA-ir (Fig. 5B; n=19) with one cell co-labeled 
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for MsHisClB and FMRFamide and one cell co-labeled for MsHisClB and ATR (Fig. 5E,H 

respectively; n=5,10 respectively). Together these results suggest that any influence of the MDHns 

on AL processing is exerted via a population of GABAergic and peptidergic LNs. The expression 

of the MsHisClB receptor by AL neurons and the MDHn being the sole source of HA-ir in the AL 

suggests that the MDH neurons provide some form of input to the AL. This does not, however, 

imply that the MDH neurons do not also provide input to circuitry within the MsG.  MsHisClB 

receptor is also expressed within the MsG (S2), however both the MDHns and HA-ir neurons from 

the metathoracic and abdominal ganglion (Fig. 2F) innervate the MsG, suggesting that HA also 

plays a role in network function within the MsG.  

MDHns survive metamorphosis but the LAC lacks MsHisClB expression. 

There are many neurons that survive metamorphosis, often being repurposed to take on 

new tasks to match the dramatic changes in behavioral demands between the larval and adult life 

stage. In Manduca, motor neurons survive metamorphosis, but their morphology and biophysical 

properties are altered dramatically to allow them to take on life-stage specific tasks, for instance, 

transitioning from participating in walking motor programs as larvae to flying motor programs as 

adults (Duch and Levine 2000). Given that odor-guided flight is an adult specific behavior, we 

predicted that the MDHns would either not be present or the MsHisClB-ir would not be expressed 

in the LAC. Similar to adults (see Fig. 3A), fifth instar larvae have a pair of large HA-ir cells in 

the MsG that ascend to the brain (Fig. 6A). As in adults, the cell bodies are also located ventrally 

near the intersection of the sagittal and horizontal midlines of the MsG, with a single axon 

ipsilaterally projecting up each connective. Furthermore, the HA-ir processes also radiate in all 

directions in the dorsal MsG as in the adult. Because the LAC does not express BRP-ir, we used 

Syto-59 to label the nuclei of cell bodies that surround the LAC (Fig. 6B,C) as a means of 

highlighting the boundaries of this brain region. In the larval brain, HA-ir is most abundant in the 

tritocerebrum (Fig. 6B; dash line) just ventral and lateral to the larval LAC (small dotted line) with 

a small amount of HA-ir entering the LAC (n=17). This suggests that the MDHns are present and 

project to the olfactory system of larval Manduca. However, there are no MsHisClB-ir neurons 

within the LAC, despite the presence of MsHisClB-ir collaterals in the tritocerebrum (Fig. 6C; 

n=6). This suggests that while the MDHns provide sparse innervation of the LAC, they likely do 

not play a functional role in the larval olfactory system, at least via the MsHisClB receptor, 

although it is possible that the MsHisClA receptor is expressed there. What role this circuit would 

play in the larval olfactory system is not clear as the larva do not fly, but there could be information 

pertaining to walking patterns. 

Discussion 

Animals use a variety of behavioral strategies to optimize internal representations of the 

external world, including repetitive motor patterns that alter stimulus structure. Nervous systems 

have concurrently evolved circuits that provide information to sensory systems about impending 

behaviors that will affect sensory input. Although this has been well-documented in many sensory 

systems, very little is known about neural circuits projecting from neural centers governing odor-

guided behaviors to olfactory networks. The goal of this study was to characterize a novel sensory-

motor to olfactory circuit that projects from flight sensory-motor centers to the primary olfactory 

processing center in insects. We found that the MDH circuit provides the only source of HA to the 

AL and affects a small but diverse population of widely projecting LNs in adult Manduca (Fig. 7). 
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Our data suggest that the MDHns provide histaminergic inhibitory input to the AL that could 

modify olfactory processing within the context of flight or other MsG mediated activity such as 

walking patterns. 

The MDHn processes project laterally across the MsG (Fig. 3A), yet are most dense in the 

dorsal MsG (Fig. 3B), suggesting that while they may integrate information from both sides of the 

animal, they are likely to interact with cells that are restricted to the dorsal aspect of the MsG. The 

MsG contains wing and leg motor neurons, sensory afferents, CPG components and modulatory 

neurons some of which occupy specific MsG regions. The dendritic fields of wing elevator and 

depressor motor neurons are located in the dorsal region of the MsG in Manduca (Rind, 1983) 

whereas most of the sensory afferents from the wings are localized in both the dorsal and ventral 

MsG in a closely related species of hawkmoth, Agrius convolvuli (Ando et al., 2011). In addition, 

there are a population of non-spiking, GABAergic local interneurons that project to the dorsal side 

of the MsG of the locust (Watson and Burrows 1987), and populations of octopaminergic 

(Stevenson et al. 1992), serotonergic and dopaminergic neurons (Claassen and Kammer, 1986) 

that project throughout the MsG. The extensive branching of the MDHns in the MsG suggests that 

these neurons interact with one or more components of the MsG. The potential cumulative effect 

of multiple inputs onto MDHns makes understanding the input to this neural circuit challenging. 

Single neurons releasing multiple neurotransmitters alone can have state dependent effects on 

network output (Nusbaum et al., 2001; Swensen and Marder, 2000). Furthermore, this complexity 

is compounded when considering the MDHns impact a heterogeneous population of AL LNs. 

Arthropod HA receptors are ligand gated Cl- channels (McClintock and Ache, 1989; 

Hardie, 1989) sharing ~45% amino acid similarity to the alpha3 subunit of the human glycine 

receptor (Zheng et al., 2002), thus the effect of HA on MsHisClB expressing LNs is likely 

inhibitory in nature. Within the AL there are ~300 LNs that belong to a diverse set of subtypes 

based on morphology, neurotransmitter content and physiological response properties (Chou et al., 

2011; Reisenman et al., 2011). These LNs mediate diverse processing mechanisms such as lateral 

inhibition for gain control (Olsen and Wilson, 2007). In addition, these widely branching LNs 

activate metabotropic receptors whose effects occur on longer and more variable time scales than 

ionotropic receptors. Therefore the overall network effect of MDHn activity is variable in both the 

spatial and temporal domain making this circuit difficult to characterize. One potential mechanism 

would be suppression of GABA, FMRFamide and ATR release by select LNs within the AL. 

Theoretically, decreasing the influence of these predominantly inhibitory LNs could act to 

disinhibit the inhibitory AL local network, which could lead to a refinement of PN activity. While 

the role this refinement has on AL output activity is not clear, it could be in response to the rapid 

oscillatory nature of the stimulus experience which is driven in part by wing-beating (Sane and 

Jacobson, 2006). Finally, while invertebrate sensory-motor to sensory circuits typically function 

to filter reafferent stimuli, we suggest that it is unlikely that the MDHns function in this manner 

because non-olfactory responses persist in fully intact preparations (Tripathy et al., 2010). 

Therefore, it may be that MDHn activity indirectly refines PN spatiotemporal response patterns to 

modify the information output to higher order processing centers during flight. Indeed evidence 

suggests that the fine temporal structure of AL/OB output patterns contain substantial information 

about odor identity (Rebello et al., 2014; Staudacher et al., 2009; Daly et al., 2004). However, 

future studies investigating both the activity patterns of MDHns during flight behavior and the 

consequences of HA release on AL response properties are necessary to confirm this hypothesis.  
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Many active sampling behaviors rapidly sample the sensory field providing discrete epochs 

of input to a sensory system; for example, micro-saccadic eye movements mentioned above. In 

addition, the details of temporally structured reafference may be dependent on the behavior of the 

animal. For instance, when exposed to a novel stimulus mice and rats increase their sniff 

frequencies (Wesson et al., 2008a; Kepecs et al., 2007) and sniff frequency modulation is 

dependent on the specifics of the behavioral task such as free exploration, detection, and 

discrimination (Wesson et al., 2008b). Insects also show stereotyped active sampling behaviors 

that are temporally structured. Bombyx mori require wing beating to track pheromone plumes 

despite their inability to fly (Obara, 1979) and male oriental fruit moths continue to fan their wings 

as they track a calling female even though their final approach is on foot (Baker and Carde, 1979). 

 From a whole nervous system perspective, it is perhaps not surprising that network-specific 

processing of information must be adjusted based on inputs from many disparate networks. It is 

becoming increasingly apparent that networks receive input from a large number of different 

sources and thus must integrate a variety of ongoing contexts. The mammalian Raphe nuclei 

provide widespread serotonergic input, yet they also receive input from many other brain areas 

(Dorocic et al., 2014; Liu et al, 2014; Weissbourd et al 2014). More specifically, the olfactory 

systems of animals receive a variety of inputs from other brain regions including serotonergic 

(Kent et al., 1987; McLean et al., 1987; Dacks et al., 2006), dopaminergic (Dacks et al., 2012), 

cholinergic (Macrides et al., 1981; Mandairon et al., 2006), octopaminergic (Dacks et al., 2005, 

Sinakevitch et al., 2005; Sinakevitch and Strausfeld, 2006; Dacks and Nighorn, 2011) and 

GABAergic (Nunez-para et al., 2013; Garcia-Llanes et al., 2010) cells all of which modify sensory 

processing within different, sometimes competing contexts. Our data support the hypothesis that 

olfactory processing in Manduca may also be adjusted within the context of ongoing activity in 

the MsG via the histaminergic MDHns. 
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Figure legends 

Figure 1. Characterization of the histamine (HA) GABA and Manduca sexta histamine B receptor 

(MsHisClB) antibodies. (A) HA labeling in control animals where the antibody was not pre-

adsorbed. Arrow head highlights HA labeling that enters the ventral and medial AL (for all panels 

outlined with a dashed line). (B) HA labeling in the antennal lobe (AL) is abolished after the HA 

antibody was pre-adsorbed with a 10:1 HA to antibody solution.(C) GABA labeling remains in 

control animals where the antibody was not pre-adsorbed with GABA. (D) GABA labeling in the 

AL is abolished after the GABA antibody was pre-adsorbed with a 10:1 GABA to antibody 

solution. For each panel the same dorsal lateral axis is used. (E) Amino acid sequence alignment 

of the histamine B receptor subunits of Manduca sexta (MsHB; Msex2.04603-RA), Drosophila 

melanogaster (DmHB; ACA13298.1), Apis mellifera (AmHB; ABG75740.1) and Nasonia 

vitripennis (NvHB; ACZ51422.1). Asterisks indicate sequence identity across all 4 species.  Bold 

font indicates the immunogenic peptide sequence from Manduca that was used to generate the 

MsHisClB antibody. (F) Western blot using MsHisClB receptor antibody on Manduca brain tissue 

resulted in a single band at the predicted molecular weight (36 kDa) of the MsHisClB protein. (G) 

Frontal section of optic lobe depicting MsHisClB-ir in the lamina (as labeled by an asterisks). (H) 

Pre-adsorption with the immunogenic peptide sequence eliminates all labeling in the lamina. Scale 

bars = 50 µm. D=dorsal, L=lateral, A=anterior. 

Figure 2. MDH neurons project from the mesothoracic ganglia to the AL of Manduca sexta. (A) 

Frontal view of HA-ir labeling in a whole mount brain preparation. Hatched line outlines the AL 

boundary. (B) Saggital view of a HA-ir process entering the AL (bracket). (C) Frontal view of 

HA-ir processes entering the SEZ from the cervicothoracic connective. Notice that 4 pairs enter 

the SEZ. (D) HA-ir processes in the cervicothoracic connective. Brackets highlight three HA-ir 

processes. (E) Horizontal view of the HA-ir processes in the prothoracic ganglia. Notice 4 pairs 

ascending from here as well. (F) Horizontonal view of HA-ir in the MsG, the metathoracic ganglia, 

and the first two abdominal ganglia. Each SEZment has a pair of HA-ir cell bodies located in the 

medial third of their respective ganglia. (G) Schematic of the Manduca nervous system 

highlighting the MDHns (green). Hatched boundary indicates the MsG. All scale bars = 100 um. 

AL=antennal lobe; ef=esophageal foramen; SEZ=sub-esophageal zone; CTC=cervicothoracic 

connective; PtG=prothoracic ganglia; MsG=mesothoracic ganglia; MtG=metathoracic ganglia; 

ab1=abdominal ganglion 1; ab2=abdominal ganglion 2. 

Figure 3. MDH neurons processes radiate laterally throughout the MsG, but are primarily restricted 

to the dorsal aspect. (A) Horizontal view of the MSG showing two cell bodies  with each cell 

projecting out one side of the ganglia.  (B) Sagittal section of the MsG shows two large HA-ir cells 

with cell bodies (white arrow head) situated ventrally and a radiating dendritic field dorsally with 

the axon (black arrow) projecting up the connective between the mesothoracic and prothoracic 

ganglia. White dotted line indicates the boundary between the mesothoracic and metathoracic 

ganglia. Arrow indicates MDHn cell body in each image. All scale bars = 100 µm. 

Figure 4. The MDH neurons provide the sole source of HA-ir input to the ALs. (A) Saggital section 

of the AL with HA-ir (green). Bruchpilot (Brp) (magenta) outlines glomeruli of the AL. Dotted 

line outlines the posterior boundary of the AL. Scale bar = 100 um. (B) High magnification view 

of inset from (A). Highly varicose HA-ir processes innervate 4-6 ventral posterior glomeruli. Scale 

bar = 50 um. (C) Rotation of image (A) about the y-axis showing HA still overlapping with BRP 
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labeling.  (D) Rotation of image (A) about the x-axis again showing HA overlapping with BRP 

labeling, collectively confirming that HA ramifies glomeruli. (E) Frontal section showing that HA-

ir is absent in the AL following ablation of the cervicothoracic connective. Scale bar = 100 um. 

(F) Sagittal view of HA-ir in the AL following ablation between the MsG and the metathoracic 

ganglia in which the lesioning of metathoric HA-ir neuron axons was confirmed. Asterisks 

indicates MDHn cell bodies. Dashed lines indicate boundary of AL in E and F. Scale bars = 50 

um.  

Figure 5. Within the AL the MsHisClB receptor is expressed by a subset of GABAergic LNs and 

one FMRF-amidergic and one ATRergic LN. (A) MsHisClB (green) and GABA (magenta) co-

labeling in the lateral cell cluster of the AL. MsHisClB-ir is expressed in all AL glomeruli. Scale 

bar 100 um. (B) GABA-ir and MsHisClB-ir expression in the lateral cell cluster. (C), (D). Inset 

from (B) highlights a single large MsHisClB-ir cell body that does not express GABA. (E) 

FMRFamide-ir (cyan) and MsHisClB-ir (green) expression in the lateral cell cluster.  (F), (G) Inset 

from (E) highlights a single large cell body that expresses both MsHisClB-ir and FMRFamide-ir. 

(H) ATR-ir (orange) and MsHisClB-ir (green) expression in the lateral cell cluster.  (I), (J) Inset 

from (H) highlights a single large cell body that expresses both MsHisClB-ir and FMRFamide-ir. 

All scale bars = 50 um unless otherwise noted. 

Figure 6. The MDHns survive metamorphosis, but the MsHisClB receptor is not expressed in the 

larval antennal center (LAC). (A) Horizontal view of HA-ir in the 5th instar larval MsG shows 

highly similar cell morphology and radiation patterns of fine processes as in the adult MsG. (B) 

HA-ir in the larval brain (green) shows extensive branching in the tritocerebrum (dash-dot line), 

but very little innervation in the LAC (dashed line). Syto-59 (magenta) highlights the boundary of 

the tritocerebrum and LAC. (C) MsHisClB-ir (green) is present in the tritocerebrum, but not in the 

LAC.  LAC and tritocerebrum highlighted with Syto-59 (magenta) as in (B). All scale bars = 100 

um. 

Figure 7. Schematic of the proposed MDHn circuit. (A) Manduca with overlaid nervous system 

cartoon. (B) Schematic of the MDHn cells from the thoracic ganglia to the AL. Only one cell is 

shown in detail with processes radiating in the MsG, a small process in the prothoracic ganglion, 

projecting up the cervicothoracic connective, a branch to the AMMC, and bilateral projections to 

each AL. (C) MDHn projection entering the ventral AL (green) along with the proposed AL 

circuitry. For the sake of simplicity, only the processes from MsHisClB-ir expressing neurons 

(green outline) are shown. MsHisClB-ir GABAergic (pink with green outline) and peptidergic 

(cyan or orange with green outline for FMRFamide and allatotropin, respectively) LNs ramify 

each glomerulus. Other cell types are also present including PNs (open circles), GABAergic LNs 

(pink circles with black outlines), ATR LNs (orange circles with black outline), and FMRF LNs 

(blue circles with black outline). AL=antennal lobe; oe=esophageal foramen; SEZ=sub-

esophageal zone; CTC=cervicothoracic connective; PtG=prothoracic ganglia; MsG=mesothoracic 

ganglia; MtG=metathoracic ganglia; ab1=abdominal ganglion 1; ab2=abdominal ganglion 2. 
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Tables 

Table 1. Primary antibodies used in this study 

Antigen Immunogen Manufacturer, 

host, monoclonal 

vs. polyclonal 

Catalog 

# 

RRID Dilution 

used 

Histamine 

(HA) 

Synthetic histamine 

coupled to 

succinylated keyhole 

limpet  

hemocyanin with 

carbodiimide linker 

 

Immunostar, 

Rabbit, 

polyclonal 

22939 AB_572245  1:500 

 

 

 

Bruchpilot 

(BRP) 

Bruchpilot peptide 

sequence (1390-

1740) from head 

homogenate 

DSHB, Mouse, 

monoclonal 

Nc-82 AB_2314866 1:50 

Manduca sexta 

Histamine B 

receptor 

(MsHisClB) 

Histamine B 

receptor peptide 

sequence 

(VNPDIELPQLD) 

Bethyl 

Laboratory 

(custom), Rabbit, 

polyclonal 

N/A N/A 1:5000 

γ-aminobutyric 

acid (GABA) 

Purified GABA 

conjugated to BSA 

Abcam, Mouse, 

monoclonal 

ab49675 AB_880138 1:500 

Allatotropin 

(ATR) 

Allatotropin coupled 

to thyroglobulin with 

glutaraldehyde 

Dr. Jan Veenstra, 

Rabbit, 

polyclonal 

N/A AB_2313973 1:8* 

FMRF-amide 

(FMRF) 

Synthetic FMRF-

Amide coupled to 

bovine thyroglobulin  

with gluteraldehyde 

Dr. Eve Marder, 

Rabbit, 

Polyclonal 

N/A AB_572232 1:8* 

* See fluorescent tagging subsection of the methods for details. 
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Abstract: 

Nervous systems must distinguish sensory signals derived from an animal’s own movements 

(reafference) from environmentally derived sources (exafference). To accomplish this, motor 

networks producing reafference transmit motor information, via a corollary discharge circuit 

(CDC), to affected sensory networks, modulating sensory function during behavior. While CDCs 

have been described in most sensory modalities, none have been observed projecting to an 

olfactory pathway. In moths, two histaminergic neurons (MDHns) project from flight 

sensorimotor centers in the mesothoracic neuromere to the antennal lobe (AL) where they 

provide the sole source of histamine (HA), but whether they serve a CDC function is unknown. 

We demonstrate that MDHn spiking activity is positively correlated with wing motor output and 

increased prior to bouts of motor activity, suggesting that MDHns communicate global locomotor 

state (consistent with a “higher-order” CDC), rather than providing a precisely timed motor copy. 

Within the AL, HA application sharpened entrainment of PN responses to odor stimuli 

embedded within simulated wing beat induced flows, whereas MDHn axotomy or AL HA 

receptor (HA-r) blockade reduced entrainment. This finding is also consistent with higher order 

CDCs, as the MDHns enhanced rather than filtered entrainment of AL PNs. Finally, HA-r 

blockade increased odor detection and discrimination thresholds in behavior assays. These 

results establish the MDHns as a higher order CDC that modulates AL temporal resolution, 

enhancing odor-guided behavior. The MDHns thus appear to represent a novel higher order 

CDC to the olfactory pathway of an insect, the unique nature of this CDC highlights the 

importance of motor-to-sensory signaling as a context-specific mechanism to finetune sensory 

function. 

Acknowledgements: We thank Mark Willis for fruitful discussions during the course of this 

research and Sadie Bergeron and Gary Marsat for comments on this manuscript. This research 

was supported by NIH DC009417 to KCD and AFOSR FA9550-17-1-0117 to KCD and AMD.  

Significance: Across vertebrates and invertebrates, corollary discharge circuits (CDCs) project 

to and inform sensory networks about an animals’ movements, which directly impact sensory 
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processing. Failure of CDCs likely underlie sensory hallucinations in schizophrenia, Parkinson’s 

disease and dyspnea, highlighting the fundamental importance of CDCs for successfully 

interpreting sensory cues to adaptively interact with the external world. Ultimately, 

understanding the role of CDCs in integrating sensory motor function will be vital to understand 

these diseases, but mechanistically little is known about how CDCs function. CDCs have been 

identified in most sensory domains except olfaction. Our findings indicate that a histaminergic 

CDC enhances the ability of the olfactory system to more precisely encode stimulus temporal 

structure, resulting in enhanced olfactory acuity. 

Introduction:  

As animals locomote, their motor actions can directly affect sensory function, causing self-

induced, or “reafferent”, sensory neural responses. Unchecked, reafference can interfere with or 

otherwise influence the experience of externally derived or “exafferent”, sensory cues. 

Furthermore, behaviors causing reafference can be an integral component of active sensory 

sampling strategies. For instance, saccadic eye movements continually shift the retinal image in 

a ballistic fashion to interrogate the visual environment and yet visual experience is perceived 

as stable. This visual stabilization likely occurs because the superior colliculus sends 

information about eye movement commands to the frontal eye field of the cortex[1]. Such motor-

to-sensory pathways are referred to as corollary discharge circuits (CDCs), which are a class of 

forward circuits that specifically provide information about motor activity to sensory systems, 

allowing them to account for behavior-induced effects on sensory function. CDCs can provide 

precisely timed facsimiles of motor commands (i.e., an efference copy) to modulatory-like 

signals that represent current or pending changes in behavioral state [2]. While all CDCs 

provide motor information to sensory systems, they can be further classified based on their 

functional consequences on sensory processing. CDCs that filter out reafferent inputs or inhibit 

sensory-driven reflexes [e.g. 3, 4] are classified as lower order CDCs, while those that predict, 

stabilize, facilitate sensory signal analysis, or sensory motor learning [e.g. 5, 6] can be classified 

as higher order CDCs[2]. Given their fundamental role in sensory-motor interactions, evidence 

of CDCs have been observed in vision[2, 5–7], hearing [4, 8, 9] and the sensing of body 

posture[10, 11], and their failure likely underlies sensory hallucinations in schizophrenia[12], 

Parkinson’s disease[13] and dyspnea[14]. Indeed, CDCs have been characterized to some 

degree in nearly every sensory domain except olfaction, and to date no higher order CDC has 

been described in any invertebrate nervous system.  

Like eye saccades in vertebrates, active olfactory sampling behaviors such as sniffing, antennal 

and tongue flicking, and wing beating are periodic[15]. These active sampling behaviors 

increase air flow and turbulence around the olfactory epithelium, inducing a mechanosensory 

component to olfactory neural responses observable even in the absence of odor[16–19]. In the 

hawkmoth Manduca sexta and other related insects, wing beating, in addition to casting back 

and forth through odor plumes, are an important component of active odor sampling 

behavior[20–22]. Wing beating can generate substantial oscillatory airflow over the 

antennae[23] and vibrates the antennae at the wing beat frequency during flight[24]. This 

implies that during odor-guided flight, olfactory sensory neurons on the antennae are 

periodically exposed to odorant molecules in higher velocity flows induced by wing beating, 

presumably enhancing odor-receptor interactions[21]. Far from hindering moths, periodic odor 

stimulation is readily tracked by both local interneurons (LNs) and projection neurons (PNs) of 

the antennal lobe (AL; the primary olfactory network)[25]. Pulsed delivery of odors elicits more 
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distinctive AL odor representations relative to continuous odor stimulation[18], and appears to 

be required for several moth species to track and locate odor sources[20, 26, 27]. In theory, the 

ability to track odors presented at the wing beat frequency could arise from purely feedforward 

mechanisms[28]. However, AL neural tracking of stimuli presented at wing beat frequencies 

requires neural connectivity between flight motor circuits in the thoracic neuromeres and the 

AL[25], suggesting that motor centers may directly influence the temporal resolution of the 

olfactory system. The only known connection between the flight motor pattern generating 

centers and the olfactory system in M. sexta is a single pair of mesothoracic to deutocerebral 

histaminergic (HA) neurons (MDHns); these cells represent the exclusive source of HA in the 

AL[29, 30]. Within each AL of M. sexta, ~16 predominantly GABAergic LNs express the HA-B 

receptor (MsHisClBr) and collectively these LNs ramify all AL glomeruli whereas the HA-A 

receptor was not observed[30]. In arthropods, there are only two known HA receptors, both of 

which are inhibitory ionotropic Cl- channels[31–33], suggesting that MDHns disinhibit the AL 

network when active.  

Adult M. sexta primarily fly to locomote and use their legs to grasp objects that they land upon, 

this suggests that MDHn function primarily relates to flight behavior. Consistent with this, the 

MsHisClBr is not expressed within the larval antennal center[30], despite the MDHns being 

present and projecting to these centers across all larval stages. This implies that that this circuit 

only becomes functional in adults and takes on a flight related role. In most insects, the MDHns 

project to the sub esophageal zone and antennal mechanosensory and motor center (AMMC). 

However, in nocturnally active plume tracking insects like caddisflies[34] and moths, the MDHns 

innervate the AL as well[35]. Interestingly, this circuit appears to have been lost in closely 

related butterflies[35], which are diurnal and differ from moths in their flight mechanics and 

relative reliance on visual, rather than olfactory cues. The MDHns are therefore excellent 

candidates for a CDC between flight sensory motor centers in the ventral nerve cord and the 

olfactory system in the moth brain, however neither their function during flight nor their 

functional role in olfactory processing and odor-guided behavior is known.  

Here we demonstrate that the MDHns function as a higher order, flight-to-olfactory CDC. We 

show that MDHn spiking activity is positively correlated to the ongoing level of wing motor output 

and increased MDHn spike rate precedes bouts of motor output. Furthermore, increasing AL HA 

enhances entrainment to olfactory stimuli presented at the wing-beat frequency, while disrupting 

AL HA-r function or removing MDHn input reduces entrainment. Finally, disruption of AL HA-r 

function decreases olfactory acuity in behavioral detection and discrimination threshold assays. 

Collectively, these results lead to the conclusion that during flight, the MDHns which likely 

disinhibit the AL network, upregulate AL entrainment to the stimulus temporal structure thereby 

enhancing olfactory acuity in behavioral assays. MDHns therefore do not filter the effects of 

wing beat induced sensory reafference from the neural response as would be the case in a 

lower order CDC. Rather, the MDHns upregulate the ability of the olfactory system to entrain to 

the temporal features of the odor stimulus and enhance the ability of moths to both detect and 

discriminate between odors. While several studies in insects have characterized different neural 

circuit mechanisms that coordinate modulation of sensory processing with changes in 

behavioral state[8, 36], our results appear to represent a novel higher order motor-to-olfactory 

CDC. 
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Results:  

MDHn activity is positively correlated with forewing motor output. The MDHns arborize 

throughout the dorsal aspect of the mesothoracic neuromere, which along with the metathoracic 

neuromere, house flight central pattern generating circuitry, including wing sensory input[37–

39]. To characterize the relationship between the MDHns and wing motor output, we developed 

an approach that leaves the entire central nervous system intact, exposing the mesothoracic 

neuromere where all sensory motor nerves emanating from the thoracic neuromeres were 

sectioned for stability; this also allowed us to make intracellular recordings from individual 

MDHns while simultaneously recording forewing depressor and elevator motor neuron output 

from the trunk IIN1b fiber using a suction electrode[40] (Fig. 1A). Intracellular electrode 

guidance to MDHns was visually blind, but spike shape and a tonic firing pattern guided 

selection of specific cells for recording. Each recorded cell was dye filled, and HA-

immunolabeling was used to confirm that an MDHn was recorded (Fig 1B).  

All recorded MDHns (N=5) produced highly stereotyped spike waveforms and were tonically 

active even in the absence of motor output (Fig 1C). In 4 of the 5 animals we were able to the 

hold intracellular recording long enough to induce wing motor output via bath application of 

chlordimeform (10-5 M) an effective and selective octopamine agonist known to reliably induce 

fictive flight in insects, including M. sexta[37]. In all cases MDHn tonic spike frequency was 

positively correlated with the presence and strength of wing motor output (Fig. 1C-G). This 

correlation could indicate that the MDHns receive input from motor circuitry or that 

chlordimeform directly affects the MDHns in parallel with motor circuitry. However, increases in 

MDHn firing rate were coupled to individual brief bouts of wing motor output (Fig. 1C), 

suggesting that MDHn activity was coupled to motor output per se and not necessarily 

chlordimeform application. This also suggests that MDHns were driven by network components 

that produce and regulate the initiation and cessation of wing motor output. In cases where wing 

motor output increased or otherwise remained tonically active on a time scale of minutes, MDH 

activity increased in coordination with gradual increases in motor output (Fig. 1D). Mean 

normalized spike rate of both MDHn and IIN1b were positively correlated across all recordings 

(Fig. 1E) and manually segmenting recordings into epochs of wing motor output versus 

“quiescence” (SI Methods) demonstrated a significant increase in MDHn spike rate during wing 

motor output (Fig. 1F). Thus, the activity of MDHns represents a corollary of wing motor output.  

MDHn activity could provide two types of information about wing motor output. MDHn 

spiking activity could be a precise efference copy of wing motor function (indicative of a lower-

order CDC), or rather than encoding precise wing movement, MDHn spiking activity could 

reflect the current behavioral state of the flight motor network (observed in higher order CDCs). 

Cross-correlation analysis revealed no temporally precise spiking relationships between the 

recorded motor output fiber and MDHn (Fig. 1G). Rather, MDHn activity preceded bouts of 

motor activity by approximately 100 ms and the correlation between MDHn and IIN1b spiking 

was only evident when data was smoothed across 25 ms or more (Fig. 1G), indicating that 

MDHn spiking activity and flight motor output were correlated on a slower timescale. Thus, while 

MDHn and wing motor output appear to be driven by an at least partially overlapping circuitry, 

the MDHns do not represent a precise efference copy per se. This is further supported by the 

observation that in all MDHn recordings, there was persistent tonic spiking in the absence of 

motor output. Thus, MDHns appear to encode changes in behavioral state. 
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Antennal lobe neural entrainment to stimulus temporal structure is modulated by 

histamine. MHDns increase their spiking activity during wing motor output, thus it stands to 

reason that HA release in the AL increases as well. We next asked whether HA release from the 

MDHns, which are the exclusive source of HA in the AL of M. sexta[30], affects neural 

responses to temporally patterned odor stimulation that simulates the periodic flow effects 

induced by wing beating[23]. We therefore used extracellular tetrodes to record simultaneously 

from multiple individual AL neural units[41] while stimulating the antenna with a single odorant 

(either 2-hexanone or 2-octanone). Odor was presented in blocks of five 500 ms long 20 Hz 

pulse trains using a 50% duty cycle (i.e. 25 ms on and 25 ms off) and 10 sec between each train 

of a block. This was repeated every two minutes for 30 min. After the first block, the moth 

received one of the three treatments. On average 18-22% of AL neural units within each group 

entrained to odor pulse trains (Fig. 2A). Based on their spiking characteristics, these units can 

be putatively classified as PNs[42]. First, to disrupt HA function, we bath applied the HA-r 

antagonist cimetidine (500 µM; Fig. 2Ai). In many units that were initially able to entrain to 20 Hz 

pulsed stimuli, cimetidine application decreased their ability to entrain to stimulus temporal 

structure. For example, the unit depicted in Figure 2A ii, initially responded reliably to all ten 

pulses of the pulse train across all 5 repeats as indicated by 10 prominent peaks in the inset 

histogram. After cimetidine application, the same unit failed to reliably entrain to the stimulus; it 

failed to respond to the first two pulses then consistently responded to three, perhaps 4 

subsequent pulses. To evaluate the ability of units to entrain to the 20 Hz pulse trains, we 

calculated power spectral densities for each unit in response to each stimulus block, then 

calculated the integrated power from 18-22 Hz[25]. Cimetidine application significantly 

decreased the mean integrated power across units over time indicating that, relative to time 

matched controls, the ability of units to entrain to pulsed odor had degraded within 6 minutes of 

application (Fig. 2Aiii). If blocking HA-r function reduces the ability of AL neurons to entrain to 

pulsed stimuli, it stands to reason that removing input from the sole source of HA in the AL (the 

MDHns[30]) should have the same effect. Therefore, our second approach was to sever the 

neck connective in a second group of moths, thus axotomizing the two MDHn axons therein 

(Fig. 2Bi). As with cimetidine application, we observed that in moths where the neck connectives 

were cut, units that were initially able to reliably track pulsed odor were less able to track over 

time relative to time-matched sham surgery controls (e.g. Fig. 2Bii). Across the population this 

manifest as a significant reduction in integrated power around the pulsing frequency within 16 

min (Fig. 2Biii). It is important to note that entrainment across the population was not completely 

lost in either case. Rather, there was a loss of responses to individual pulses of a train (Fig. 2A ii 

inset red box) and/or the relative degradation in ability of the cell to produce discrete bursts to 

individual pulses separated by interstitials with no spiking (see Fig. 2Bii, before vs after). Finally, 

if disrupting the MDH circuit degrades the temporal fidelity of odor encoding, bath application of 

HA should have the opposite effect. Therefore, in a final group of moths HA (50 µM) was bath 

applied during pulsed odor stimulation (Fig. 2Ci). Within 4 minutes of initiating HA application, 

the ability of individual units within the ensemble to entrain to the stimulus temporal structure 

increased and in some instances, units that did not initially entrain to odor pulses were recruited 

into the population of entrained units (e.g. Fig. 2Cii). Across the population, we observed a 

significant increase in mean integrated power at the pulsing frequency relative to controls (Fig. 

2Cii). This HA-induced increase in power only occurs at the pulse frequency and does so as the 

overall population spiking response to the pulse trains increases as well (SI Fig. 1). These 

results collectively indicate that MDHn release of HA within the AL enhances entrainment to the 
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stimulus temporal structure as opposed to filtering out the reafference. This again supports the 

notion that this circuit be classified as a higher order CDC[2]. 

Olfactory acuity is histamine dependent. The capacity for the olfactory system to guide 

behavior is fundamentally dependent on its ability to detect and identify (i.e. discriminate) 

important odors. Simulating wing beat induced flows enhances both separation of neural 

representations of different odors[18] and olfactory acuity in behavioral assays[25, 43]. 

Therefore, we predict that because this CDC enhances odor processing it will likewise enhance 

behavioral measures of odor detection and discrimination. Two behavioral assays were used to 

determine if HA circuit function contributes to the detection and discrimination of odors (see SI 

Methods and Materials). Both assays were based on a well-established Pavlovian olfactory 

learning approach[44–49] where moths were first conditioned (for detection assays) or 

differentially conditioned (for discrimination assays) to respond to target odors. Twenty-four 

hours post conditioning, moths were randomly assigned into drug or control injection treatments 

and tested in a blind format. Based on initial control experiments (See SI Fig. 2), an effective 

dose of ~1 nl of 50 µM cimetidine was injected into each AL. Fifteen minutes following injection, 

moths were challenged with a blank stimulus then a series of increasing concentrations of the 

conditioned odor to determine the concentration at which they detected the odor as measured 

by a significant increase in conditioned feeding response relative to the response to blanks. 

Both groups acquired the conditioned response (Fig 3A). However, tests subsequent to injection 

indicated that cimetidine injected moths displayed an order of magnitude higher detection 

threshold relative to controls (Fig. 3B). This was replicated using a different HA-r antagonist, 

ranitidine (see SI Materials and Methods, SI Results and SI Fig. 3). Collectively, these results 

suggest that HA within the AL enhances olfactory sensitivity.  

As detection is a prerequisite for identification[45, 48], it stands to reason that increased 

detection thresholds would also impact the moths ability to identify target odors. Here we 

observed that discrimination thresholds also increased when HA-r function was blocked. Moths 

in both drug treated, and control groups learned to differentially respond to the CS+ and CS- 

odors (Fig. 3C). Again, 24h after conditioning, moths were injected with either cimetidine or the 

saline vehicle, this time in a double-blind format. We then tested with both the CS+ and CS- 

odors across a dilution series of increasing concentration to determine the odor discrimination 

threshold, the lowest odor concentration at which moths responded significantly more to the 

CS+ relative to the CS- (i.e. a “conditioned differential response”; see SI methods). The 

discrimination threshold for saline injected moths occurred at an odor concentration of 0.1 

µg/2µl, but when injected with cimetidine, a significant differential response was observed at 

10.0 µg/2µl. Thus, disruption of HA-r function decreases both the ability to detect (Fig. 3B) and 

identify (Fig. 3D) odors.  

 

Discussion:  

Nervous systems must coordinate sensory with motor network function to adjust sensory 

processing based on planned and ongoing motor activities. CDCs are one class of neural 

circuits that provide information about motor output to sensory pathways to optimize sensory 

processing within the context of specific behaviors. CDCs can be broadly classified into two 

categories, “lower-order” and “higher-order”, defined based on the functional consequence they 

have on their target sensory pathway[2]. Lower-order CDCs directly inhibit the reafference with 
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precisely timed spikes that gate sensory signals[4]. Higher-order CDCs on the other hand, can 

activate hundreds of milliseconds prior to the onset of a behavior and can modulate the state of 

a sensory network to accommodate imminent changes in behavior[9]. Furthermore, higher order 

CDCs do not block or filter the reafferent sensory input, rather they exploit the reafferent input to 

facilitate sensory processing[2]. Our results indicate that the MDHns are a higher-order CDC 

that functions to disinhibit the AL in advance of imminent motor actions of the wings, enhancing 

the ability of the AL to entrain to the stimulus temporal structure. MDHn firing rate increases just 

prior to and during wing motor output, but is not synchronous with IIN1b motor neuron spiking, 

suggesting that the MDHns do not provide precise information about the timing of motor output 

(i.e. an efference copy), but rather they appear to represent the broad behavioral state of flight.  

The input signals that drive MDHn activity remain unknown though the list of candidates is 

relatively small and includes sensory afferents from the wings, legs and thorax; central neurons 

that mediate motor patterns; and the motor neurons themselves. Sensory afferents are unlikely 

to drive MDHns as our approach was to cut all thoracic sensory afferent (and motor) fibers; this 

occurred ~45 min prior to recording. Furthermore, in M. sexta, MDHn local processes within the 

mesothoracic neuromere are restricted to its dorsomedial aspect[30], while sensory afferents in 

a closely related moth species predominately innervate its ventrolateral aspect[39]. However, 

we cannot rule out the possibility that sensory input to the pterothoracic ganglia normally 

contributes to MDHn activity in intact animals. Additionally, MDHn activity precedes wing motor 

output, making it unlikely that motor output drives their activity either. Thus, our anatomical and 

physiological data suggest that these cells are centrally (as opposed to peripherally) driven. 

The ability of the olfactory system to track odor timing is highly dependent on LNs that control a 

variety of network-wide coding features including the transient nature of PN responses[50, 51]. 

LNs therefore represent an elegant target for CDCs to regulate a sensory network. Pulse 

tracking is only weakly present in antennal field recordings in M. sexta but dominates AL local 

field potentials and spiking in at least some PNs. Furthermore, pulse tracking is both odor- and 

GABA- dependent, which implies lateral interactions clarify this periodic signal[25]. Thus, while 

GABA mediates pulse tracking in PNs, our current results suggest that the MDHns modulate 

this ability, and that LNs are the most likely target. Indeed, arthropods express just two HA-rs, 

both of which are ionotropic Cl- channels[31–33] and the AL of M. sexta, the MsHisClB receptor 

is expressed exclusively by ~16 GABAergic AL LNs which broadly ramify the entire AL[30]. This 

implies that during flight, increased MDHn activity inhibits this subpopulation of inhibitory LNs. 

While the postsynaptic targets of these 16 LNs are unknown, the consequence of HA signaling 

is enhancement of the AL network to encode the temporal structure of olfactory stimuli at the 

level of PN output. This in turn enhances detection and identification at the level of sensory 

perception. Given that mammalian sniffing behavior produces the same physical flow effects as 

wing beating, it stands to reason that an analogous system might facilitate olfaction in 

mammals.  

If the MDHns sharpen AL entrainment to pulsed stimuli, how might this result in enhanced 

behavioral performance in the psychophysical assays of olfactory sensitivity and acuity? 

Primary olfactory networks are spontaneously active and noisy. Superimposed upon olfactory 

network dynamics are weak mechanosensory-driven oscillatory dynamics produced by active 

sampling behaviors like sniffing [16, 17] and wing beating[23, 24]. While AL neurons can be 

entrained to pulses of clean air[18, 25], moths do not respond to these clean air pulse trains in 

behavioral assays (relative to the same duration continuous clean air stimulus), and thus 
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oscillating mechanosensory responses from the AL are behaviorally subthreshold. However, 

pulsed odor stimuli are more easily detected in behavioral detection threshold assays than 

continuous stimuli[25, 43], suggesting that antennal and AL mechanosensory responses which 

are time-coupled and summate with odor-evoked activity, may facilitate stronger odor 

responses. Our results suggest that the MDHns fine tune AL entrainment to oscillating airflow 

while the moth is in flight and actively seeking odor sources, rather than canceling out these 

weak mechanosensory oscillations as would be the case for a lower-order CDC.  

Taken together, we demonstrate that the MDHns represent an olfactory CDC that enhances 

olfactory processing presumably during flight. The MDHns interconnect flight motor-centers and 

the olfactory system, are active during wing motor output which results in enhanced the 

temporal fidelity of AL neurons and odor-guided behavior of moths. Thus, the MDHns meet the 

criteria of a CDC. Furthermore, the MDHns appear to function as a “higher-order” CDC to the 

AL as their activity sharpens temporal entrainment to the stimulus. Thus, the MDHns likely 

influence the ability of the AL network to track odor timing and facilitate assembly of a salient 

“olfactory image”. Given that odor-guided behavior in M. sexta is performed primarily during 

flight and the MDHns originate in a flight sensory and motor pattern generating center, we 

propose that the MDHns optimize olfactory function within the context of odor-guided flight. 

Finally, given their ubiquity across insects[35] and their projections into multiple additional 

sensory processing centers, we have only begun to understand the multimodal nature of 

MDHns role in coordinating wing motor actions with sensory processing. 

Materials and Methods 

SI Materials and Methods detail all experimental procedures. Briefly, intracellular recordings of 

MDHns were made in “CNS intact” preparations that exposes the pterothoracic ganglion and 

lesions only nerves emanating from the pro, meso and metathoracic neuromeres to eliminate 

muscle contraction near the recording site. Multiunit studies of AL neural spiking responses to 

pulsatile stimuli were performed using a fully intact preparation described in[49]. Putative PNs 

are identified on spiking characteristics[42]. Equal ratios of males and females were used for all 

behavior pharmacology experiments. All behavioral pharmacological methods and 

psychophysical assays have been previously detailed[45, 47, 48]. 

SI Materials and Methods 

Subjects 

For all experiments, male and female M. sexta were reared in-house using documented 

methods[44]. At pupal stage 17, individuals were isolated in brown paper bags and placed in an 

incubator with a 16/8 reverse light/dark cycle, at 25°C, and 75% RH. Bags were checked daily; 

those with newly eclosed adult moths were dated. All subjects were kept in the incubator ~5-7 

days post-eclosion before use.  

Stimulus Delivery System 

A custom built olfactometer and exhaust system was used, which has been previously 

described and characterized[43]. Air was provided from a centralized supply line, passed 

through a 500cc Drierite cartridge (Indicating Drierite, mesh 8; Drierite: 23025) then purified 

using a charcoal filter made from a 500cc Drierite cartridge filled with granular 20-60 mesh 

activated charcoal (Sigma-Aldrich: C3014). Airflow was controlled using a 150-mm direct 
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reading flowmeter with an aluminum/sapphire float (Cole-Parmer: 1-010293). Filtered air was 

then passed through a 3-way valve (The Lee Co., LFAA1200118H). In behavioral experiments 

this valve was controlled by a programmable logic chip (PLC; Direct Logic, DL-05). For AL multi-

unit experiments, valves were controlled via opto-isolated TTL signals from the data acquisition 

computer and software (below). In either case, filtered air normally enters the valve then passes 

out the normally open exit port. Upon activation, air is shunted to a second normally closed 

output port that directs the airflow to an odor cartridge made from borosilicate glass attached to 

luer fittings with a ~1.7 ml internal volume. Odors were applied to small piece of Whatman No. 1 

filter paper and inserted into the cartridge. During olfactory conditioning and for the initial dose 

response studies, the odor cartridge was place approximately 10 cm from the moth to create a 

more distributed plume from the olfactometer. In this case, output from the olfactometer to the 

animal only occurred when the valve was actuated and air passed through the cartridge. For all 

other experiments, both the normally open and normally closed lines were then tied into two 

arms of a T-fitting, which provided a constant stream of airflow over the antenna via the third 

arm of the T-fitting; this approach reduces the overall flow dynamics caused by valve actuation 

into an amplitude range consistent with what is driven by wing beating[23, 43]. In this case the 

third arm of the T-fitting was positioned 2-3 mm from the antenna. Effluent from the T-valve was 

removed by an exhaust port positioned behind the animal on the downwind side of the odor 

delivery stage. Each exhaust port was unique to the constraints of the staging for specific 

experiments but all produced an ambient airflow of 0.3 m/s at the position of the antenna and 

was calibrated using a hotwire anemometer (Fisher Scientific).  

Dual intracellular/extracellular recordings 

To characterize the relationship between spiking of the MDHns and motor output to the wing 

muscles we made dual intracellular recordings of MDHns and extracellular suction electrode 

recordings of the IIN1B nerve which provides motor output to the forewing. First, the wings/legs 

of animals were removed, and animals were placed at 4˚C to slightly anesthetize them for 

mounting and surgery. A dorsal longitudinal cut was made along the thorax, and a cross 

sectional cut was made along the thoracic/abdominal line. The thorax was opened by placing 

two insect pins in the thoracic cavity, and out underneath the wing. Internal musculature and 

digestive organs blocking the ventral nerve cord were removed. A small piece of cuticle that 

rests in-between the prothoracic and pterothoracic ganglion was cut, and the musculature 

attached to the cuticle was also removed. The dorsal portion of the pterothoracic ganglionic 

sheath was carefully removed, and all peripheral nerves were cut to ensure recording stability. 

To further immobilize the pterothoracic ganglion during recording, the tip of a laboratory 

scoopula was cut so it was roughly the width of the ganglion and was placed underneath the 

ganglion with a very light upward pressure applied to the nerve cord. A custom-built borosilicate 

glass suction electrode was placed in the saline bath and a light back pressure was used to 

obtain a tight seal on the IIN1B nerve. This effectively allowed recording of gross wing motor 

output. It is possible that the axotomized sensory afferents were still active and recorded by the 

suction electrode, however, it seems highly unlikely that sensory axons could generate a 

backpropagating spike particularly after the ~45 min delay between the initial cut and the 

subsequent recording. Finally, an intracellular electrode was carefully lowered to the ganglion 

and the primary neurites of the MDHns were targeted. If a penetrated neuron displayed the 

physiological characteristics consistent with the MDHn (i.e. ~15 Hz tonic spike rate with a 0.1 

ms spike halfwidth), a separate line containing 10-5M chlordimeform HCL (Sigma-Aldrich, 

35914) in saline was switched on to activate the flight central pattern generator[37, 38], 
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activation took ~2 min. After ~10 minutes of recording time, recorded cell was filled by passing 

continuous current (0.2-2.0 MΩ) for at least 7 minutes.  

Intracellular electrodes were pulled to produce resistance between 40-100 MΩ (Sutter 

Instruments, P-2000). The tips of the electrodes were filled with Alexa Fluor 568 hydrazide 

sodium salt for microinjection (Life Technologies, A10441), and the stems were filled with 2M 

potassium acetate. Intracellular electrodes were connected to the headstage of Axoclamp 2B 

(Molecular Devices) using silver/silver chloride wire. Another silver/silver chloride wire was 

placed in the thoracic cavity as a reference electrode. The suction electrode was constructed 

with standard methods with the exception that a glass capillary tube was hand pulled over an 

open flame to create the hourglass shape necessary for a tight seal around the nerve tip. The 

suction electrode was connected to an amplifier (Model 3000, A-M Systems) by silver/silver 

chloride wire, and another silver/silver chloride wire ran along the outside of the electrode as a 

reference. Signals were digitized (Digidata 1440A: Molecular Devices) and written to an external 

hard drive (16 bit at 20 kHz Clampex, version 10.6: Molecular Devices).  

To confirm the identity of MDHns, directly after recording and filling MDHn, dissected ganglia 

were placed in a 4% N-3-dimethylaminopropyl-N’-ethylcarbodiimide (Sigma-Aldrich, 03449) for 

3-4 hours at 4˚C, and placed in 4% paraformaldehyde (Electron Microscopy Sciences, 15710) in 

1% phosphate buffered saline (PBS: Sigma-Aldrich, SLBJ3744V) overnight. Ganglia were then 

washed four times in PBS with 0.5% Triton TM X100 (PBST: Sigma-Aldrich, 110M0009V) for 15 

minutes, and stored for up to 3 weeks at 4˚C for batch processing. When enough ganglia were 

collected, brains were blocked in 5% normal goat serum (NGS: Jackson Laboratories, CAT#) for 

one hour, then placed in primary antibody solution (1:500 Rabbit-anti-HA Immunostar, 22939 in 

5% NGS and mM sodium azide (PBSAT Fisher Scientific: S2271) overnight. Ganglia were 

washed four times in PBST, blocked for an hour using the blocking solution above, and placed 

in secondary antibody solution (1:1000 Alexa Flour 488) in PBSAT overnight. Ganglia were 

washed twice in PBST for 15 minutes, then twice in PBS for 15 minutes, then ran through an 

ascending ethanol series and cleared in methyl salicylate. Images were obtained using an 

Olympus FV1000 laser scanning confocal microscope.  

Finally, data from confirmed MDHns were analyzed in MATLAB (Version R2016a) using 

custom-written scripts. Intracellular traces were binarized and compressed by a factor of 10, 

then the instantaneous firing rate was calculated. The instantaneous firing rates of all recordings 

were smoothed using gaussian smoothing windows ranging from 2 to 1000 ms. Firing rate 

changes in individual recordings that occurred over long time periods were z-score normalized, 

and MDHn and IIN1B firing rate was plotted using a scatter plot and the data was fitted using 

linear regression analysis. Epochs of wing motor output were identified by thresholding then 

determining where the first and last above threshold spikes occurred within each bout of wing 

motor output. Only bouts that had clear quiescent periods before and after each bout were 

included, rather than bouts of wing motor output that merged together, or CPG activity that was 

continuously active. Spike rates were calculated for the MDHn and IIN1B fibers between and 
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within bouts, and significant changes in spike rate were determined using t-tests (paired, 1-

tailed).  

 

Multiunit AL recordings 

To characterize the effect of HA release on odor-driven response properties of AL neurons, 

multi-unit recordings were made using standard methods[18, 25, 41, 49, 52]. Briefly, individual 

male moths were placed into 12.7 mm ID copper tubes, their heads fixed with soft molten dental 

wax. Scales were removed from the head capsule and a 2 mm2 window was opened by 

dissecting cuticle from the rostro-medial portion just in front and between the compound eyes. 

Next, the caudle section of the head capsule, where the cibarial pump muscle attaches, was 

surgically cut free and moved rostrally with muscle attached, then glued in place with LoctiteTM 

quick drying gel. A small amount of occluding trachea and vascular tissue was removed to 

expose the brain. The completed preparation was positioned on the recording stage and 

standard Manduca saline was applied to keep the brain hydrated and remove hemolymph. Next, 

a 16-channel silicone microelectrode array (2 × 2 TET; NeuroNexus Technologies, Ann Arbor, 

MI, USA) was placed into the AL along the caudal seam between the AL and the rest of the 

deutocerebrum using a motorized micromanipulator (HS6, WPI). Typical placement drives the 

tips of these probes ~600 µm in depth though precise depth was unknown because of dimpling 

and displacement of the brain as it is impaled.  

All recordings and stimulation protocols are mediated through Neuralynx Cheetah software 

driving a 32 channel Neuralynx hardware. All three experiments were carried out in separate 

groups of animals. We used a stimulation protocol which pulses odor at 20 Hz for 500 ms using 

a 50% duty cycle (i.e. 25 ms on, 25ms off for a total of 10 pulses). This pulse train was repeated 

as a block of 5 repeats with 10 sec between each repeat. The block of 5 pulse trains were then 

repeated with 2 min interstitials. Thus, every two min we collected a block of 5 pulse trains. The 

first block was presented followed by initiation of an experimental treatment. For the 

pharmacological treatments, either cimetidine (500 µM) or HA (50 µM) was bath applied starting 

immediately following the first pulse train block. In both cases drug was introduced into the 

saline drip line and the premixed dilution replaced the clean saline supply. Yoked control groups 

were treated in the same manner, but the introduced saline contained no pharmacological 

agent. For experiments in which the neck connective was severed to axotomize the MDHns, an 

initial block of pulse trains was delivered to the antennae and then iridectomy scissors were 

placed from underneath the preparation and used to sever the neck connective. This procedure 

was ~50% successful and non-successful cuts served as the sham control.  

Unitary spike trains were sorted in a semi-automated manner using MClust[53]. Clusters of 

spikes were initially identified using the KlustaKwik (K. Harris) algorithm and manually inspected 

and cleaned. Final retention of clusters as single unit spike trains for further analysis was based 

on standard descriptive statistics including ISI histograms, Peak by channel by time plots, and 

which are automatically calculated in MClust.    

Analysis: In order to determine the ability of the recorded AL unitary population to entrain to 

individual pulses in each pulse train, we used a previously described method whereby the 

integrated power around the pulse frequency (20 +/-2 Hz) was calculated, then averaged across 

units, animals and pulse trains for each 2 min step in time[18, 25]. Welch’s method of power 

spectral density was used on binarized spike train data. For parametric analysis and display, 



89 
 

mean and standard error at each 2 min step were calculated in MS Excel for each experimental 

and corresponding control group and normalized to their respective initial integrated power by 

dividing power at time = x by power at time = 0, where ‘x’ is the specific 2 min time interval. As 

the control data for the two pharmacological treatments were identical, we pooled these results 

for statistical analysis. 1-tailed t-test comparison of experimental and control group means at 

each sequential step in time was used to identify onset of experimentally induced increase or 

decrease in tracking ability of the recorded population (p<0.01).  

 

Behavior-pharmacology  

Subject Preparation: Three studies were performed to determine whether HA-r function 

contributes to behavioral olfactory acuity. We first identified an optimal pharmacological 

antagonist and dosage, we then characterized both detection and discrimination thresholds to 

pulsatile odor stimulation while disrupting AL HA-r function. In all cases, approximately equal 

numbers males and females were assigned to experimental and control conditions and standard 

injection and testing protocols were used[48, 54]. Moths were inserted head first into 4 cm long 

aluminum tubes (1.2 cm ID) with the head protruding out and above a ~1 cm2 tab at the top of 

the tube. The head was immobilized to the tab with tape to stabilize it for surgery and injection. 

Scales on the head capsule were removed with forceps and compressed air. Small openings 

were made in the cuticle of the head capsule to the right side of the sagittal midline and on the 

anterior edge of the contralateral eye using an insect mounting pin. Teflon coated silver wire 

electromyographic (EMG) electrodes were then inserted through the openings contacting the 

cibarial pump muscle (a feeding muscle) and the contralateral eye (as a reference). Electrodes 

were connected to an amplifier (DAM 50, WPI Inc.). Amplified EMG signal was output to a 

loudspeaker and oscilloscope to monitor expression of conditioned feeding responses. A small 

amount of adhesive (Loctite™) was applied to each electrode to keep the electrodes in place 

during the subsequent surgery and injection process. Electrode circuit impedance was tested 

using a low voltage impedance meter (FHC) to confirm adequate electrode placement; only 

preparations with a circuit impedance in the range of 0.1-0.9 MΩ were used. Finally, the 

proboscis was extended and threaded through a 4 cm length of tubing (Tygon; 1.27mm ID) 

leaving the distal tip of the proboscis exposed to apply sucrose solution (the unconditioned 

stimulus). This tubing was then attached to the larger tube with soft dental wax.  

Olfactory Conditioning Protocols: For all behavioral experiments, moths were conditioned to 

respond to test odorants using well-established Pavlovian-based olfactory conditioning 

protocols[44]. These protocols produce a conditioned feeding response that can be used to 

assess behavioral detection[47] and discrimination thresholds[45]. For the conditioning phase of 

all experiments, subjects were placed in the conditioning stage ~10 cm down wind of the 

olfactometer nozzle and the olfactometer output came only from the odor line. For each 

conditioning trial, the conditioning stimulus (a cartridge with 3 μl of undiluted odor) was 

presented continuously for 4 sec. Three seconds into the odor stimulation, a 0.75 M sucrose 

solution was applied to the partially extended proboscis, also for 4 sec. For detection threshold 

experiments, each animal received 6 odor-food conditioning trials, each separated by 6 min. On 

each trial, animals were scored for the presence or absence of feeding activity in response to 

CS presentation based on either movement of the proboscis or an increase in EMG activity of 

the feeding muscle observed on the oscilloscope and loudspeaker. During conditioning trials, 

conditioned responses were recorded if feeding activity occurred during the first 3 s of odor 
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presentation, prior to application of sucrose solution. For discrimination threshold assays, a two-

odor differential conditioning protocol was used and consisted of 12 trials total; 6 CS+ (odor 

paired with 0.75 M sucrose solution) and 6 CS- (odor only) trials. Two pseudorandom 

sequences of the CS+ and CS- trials were used to avoid stimulus sequence effects: 1) + - - + - + 

+ - + - - + and 2) - + + - + - - + - + + -. Furthermore, both odorants (2-hexanone and 2-octanone) 

were used as the CS+ and CS- odors in separate but equally sized subgroups to 

methodologically control for odor-dependent effects. Counterbalanced data was pooled by CS+ 

and CS- for analysis and display. Again, a six min inter-trial interval was maintained between 

trials as above and the presence of conditioned feeding responses were recorded by trial for 

both odors. Post conditioning, all animals were placed back into the incubator at 25°C, and 75% 

RH, then tested 24 hrs later. 

Surgery and Injection Protocols: Prior to testing, both ALs were surgically exposed for injection 

using standard protocols[48]. To expose the ALs a ~2 mm2 piece of cuticle was removed from 

the anterior portion of the head capsule. Just posterior to this opening, a patch of cuticle with the 

cibarial pump muscle attached was then sectioned, leaving the muscles attached. This section 

was moved forward into the previously removed cuticle exposing the antennal lobes. A small 

drop of Loctite™ adhesive was used to hold the repositioned muscle and cuticle in place, 

allowing the muscle to function approximately normally. Some minor trachea obstructing direct 

access to the ALs was also removed. During surgery and post injection, the exposed brain was 

periodically given 3-4 droplets from a syringe of pH buffered Manduca physiological saline to 

clear any hemolymph accumulation and keep the brain hydrated. Next, a sharp quartz 

intracellular electrode (P2000 Sutter Instruments) was sheared at the tip to produce an ~10 µm 

ID injection needle, filled with the desired solution, then fitted to a General Valve Pico Spritzer II 

pressure injector. Each injection needle was calibrated to produce ~1 nl droplets. Recalibration 

was performed between each injection to ensure proper dose delivery. If the injection needle 

clogged or broke, such that actual dose was potentially incorrect, the animal was excluded, and 

the needle replaced.  

 

Testing Protocols 

To determine the most effective minimum dose and pharmacological agent, a dose response 

study was performed for two HA antagonists. Testing was conducted 15 minutes post injection 

based on multi-unit results (above) which indicated that this was sufficient time for the drugs 

produce changes in network function. Moths were conditioned, then assigned to one of 8 drug 

treatment groups (n = 60/group or 360 total moths), or a matched saline control group for each 

drug treatment type that was randomly collected in tandem (n = 60/group or 120 total moths). 

Moths from control groups were injected with PH buffered Manduca physiological saline. Moths 

in drug treatment groups were injected with a dilution of one of two HA h-2 receptor antagonists: 

cimetidine (CIM; 50 μM, 5 μM, 0.5 μM; Sigma-Aldrich) or ranitidine hydrochloride (RAN; 50 μM, 

5 μM, 0.5 μM; Sigma-Aldrich), dissolved in the physiological saline. The highest antagonist 

dilution was well below previously documented concentrations associated with the emergence 

of secondary effects[55]. In all cases, two individuals carried out the experimental protocols; one 

person injected and a second person, blind to the injection contents, tested moths for 

conditioned responses to the test panel. All moths were tested first with an odor blank then 

across a log-step dilution series of the CS (2-hexanone) from 0.001 - 10 μg odor diluted in 2 μl 

mineral oil, dilutions were calculated based on density. For these first dose response studies, 
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each test stimulus was presented a 4 s continuous stream of odor presented ~10 cm from the 

antennae and at a measured flow of 275 ml/min. After testing, each test subject received a 

small drop of 0.75 M sucrose solution to confirm that the animal could elicit a feeding response 

and establishes that a lack of feeding response was not due to an inability to behave. Based on 

these dose-response results, we selected a single h-2 antagonist and dose for subsequent 

experiments (cimetidine, 50 µM).  

To determine the role of AL HA-r function on olfactory sensitivity, we used a detection threshold 

assay[43, 47] where odor was pulsed to simulate wing beating induced flows. All animals were 

conditioned, injected then tested with the same dilution series as described above but for the 

following exceptions. First, odor was interleaved into clean air and delivered as a 20 Hz pulse 

train for a total of 4 s using a 10:40 ms odor:air duty cycle. Second, the odor nozzle was 

positioned ~2-3 mm from a single antenna, which was restrained with small spring coil. Third, 

the out flow of the odor delivery nozzle was lowered to 30 cm/s to replicate previously measured 

wing beat induced axial inflows past the antenna caused by wing beating in tethered moths[23]. 

The olfactometer produces approximately the same amplitude of flux in flow as wing beating as 

well as oscillating odor concentrations[43]. Moths were assigned to either a 50 μM cimetidine, or 

a saline control group (n=60/group); we used a double-blind injection and testing protocol.  

Finally, to determine the effect of HA-r function on olfactory acuity, we performed a 

discrimination threshold assay, which has been detailed previously[47]. Here two odors 2-

hexanone (Sigma 98% pure) and 2-octanone (Sigma 98% pure) were used. Again, animals 

were injected and tested 24 h post conditioning as described for the detection threshold assay, 

though in this case testing was over a dilution series of two odors and ranged from 10-100ug in 

2 uL of mineral odor. All moths were tested first with a pulsed odor blank, then with pulsed odor 

across the log-step dilution series of both CS+ and CS-.  

 

Statistical Analysis  

Behavioral data were analyzed in SAS using the general linear modeling (GLM) procedure[56]. 

GLM has the advantage of hierarchically partitioning variance components, thus providing a 

more stringent statistical test. Each drug treatment group was compared individually against a 

methodologically matched control group. Here, we hierarchically partitioned variance associated 

with the main effect of odor concentration, drug treatment, age, and sex as well as their 2 and 3-

way interactions with a significance value of p< .05. Note that the only variable of interest was 

the treatment by concentration interaction for the detection threshold study and the 

reinforcement by treatment by concentration interaction for the discrimination threshold studies. 

These interaction terms explicitly evaluate the effect of the drug treatment on the odor 

concentration-response function. Post-hoc analyses were then performed using one-tailed 

paired t-tests to statistically identify detection and discrimination thresholds by specific statistical 

comparison as previously described[43, 45, 47]. Here detection threshold was defined as the 

lowest concentration of odor that produced a significant increase in conditioned response 

probability over the response to blanks (p< .01). Discrimination threshold was defined as the 

lowest concentration for which there was a significant differential response between the CS+ 

and CS- (p< 0.01). All inset regressions for conditioning data are 2nd order polynomial functions 

to highlight acquisition of the CR. All test results are displayed with inset 3 rd order polynomial 

regressions to highlight the odor concentration-response functions. 
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A one-tailed paired t-test was used to statistically identify detection and discrimination 

thresholds by specific statistical comparison as previously described[43, 45, 47]. Here detection 

threshold was defined as the lowest concentration of odor that produced a significant increase 

in conditioned response probability over the response to blank stimuli (p< .01). Discrimination 

threshold was defined as the lowest concentration at which there was a significant differential 

response between the CS+ and CS- (p< 0.01). All inset regressions for conditioning data are 2nd 

order polynomial functions to highlight acquisition of the CR. All test results are displayed with 

inset 3rd order polynomial regressions to highlight the odor concentration-response functions. 

 

Supplemental Behavioral Results  

The goal of the behavior pharmacological studies was to determine the role of HA on olfactory 

function. The MDHns are the exclusive source of HA to the ALs[30], thus our approach was to 

train moths to elicit a conditioned feeding response to target odors, pharmacologically block HA-

r activation using focal injections, then compare detection thresholds as a function of 

pharmacological treatment. In our first series of experiments we conditioned four groups of 

moths to respond to 2-hexanone then tested using standard 4 sec continuous stimuli. Figure 

S1A displays acquisition curves for these groups, which include three concentrations of 

cimetidine groups and a saline-vehicle injected control group. Mean response values for the 

acquisition phase were normalized according to the initial responsiveness to the blank stimulus 

for each group. Note that inset regression lines indicate that acquisition of a conditioned feeding 

response to odor occurred at approximately the same rate and to the same degree across 

groups.  

Cimetidine: First, to evaluate the effect of increasing cimetidine dose we statistically compared 

the saline control group to each drug dose group. Results established that the higher two doses 

of cimetidine significantly reduced responses to odor overall (SI Fig.1B; n=60/group; p< 0.01). 

Next, to evaluate differences in concentration response as a function of drug treatment we used 

general linear modeling. This model was significant (GLM; n=60/group; p<.001) and explained 

approximately 35% of the variance in conditioned feeding response. Importantly we observed a 

drug treatment by odor concentration interaction (p= 0.014) indicating different concentration 

response functions and possibly different detection thresholds. Post hoc comparison of CR 

probability for each odor concentration to the blank for both the drug treated and matched 

saline-vehicle control group indicated a significantly higher detection threshold for the drug 

treated group for the highest drug dose (50 μM cimetidine; Fig. 1C). However, no differences 

detection threshold was found at the lower two dosages (Fig. 1D and 1E). Across all 

experimental and control groups, the detection threshold was determined to be 1 μg, except for 

the 50 μM cimetidine treatment which was one log step higher.  

Ranitidine: By comparison SI Figure 2 displays acquisition and dose response functions for 3 

concentrations of ranitidine-injected groups along with their matched control groups. Responses 

during acquisition were normalized to the initial responsiveness for each group (Fig 2A). Inset 

regression lines indicate that all groups acquired the conditioned responses at the 

approximately same rate and to the same degree. To evaluate the effect of dose, we again 

statistically compared the saline control group with each drug dose. Results established that 

only the highest dose of ranitidine significantly reduced responses to odor overall (SI Fig. 2B; 

n=60; p< 0.05). The general linear model explaining variation in conditioned response 
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probability between groups during detection threshold testing was significant (p<.0001) and 

explained approximately 37% of the variance. We again found a significant interaction of drug 

treatment by odor concentration (p< 0.05). We then compared detection thresholds for each 

treatment experimental and control group. SI Figure 2C displays an increased detection 

threshold for the 50 μM treatment group (paired t-test; n=60; p<.01). This analysis also indicated 

an increase in detection threshold for the 5 μM injected moths (Fig. 2D; paired t-test; n=60; 

p<.01). By comparison, the 0.5 μM treatment group, produced the same detection threshold of 1 

μg/ 2μL as the control groups. Taken together with the cimetidine experiment these results 

indicate a generalized disruption of olfactory sensitivity when injecting competitive HA h-2 

receptor antagonists into the AL.  
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Figure legends 

Figure 1: MDH activity is correlated with flight motor patterns. (A) Schematic of key components 

of the moth CNS including the antennal lobes (AL), subesophageal zone (SEZ) and antennal 

mechanosensory and motor center (AMMC) and the pterothoracic ganglion (PTG) which 

includes the fused mesothoracic and metathoracic neuromeres. Also highlighted is our 

experimental approach, which included the simultaneous intracellular recording of an MDHn 

(blue) and suction electrode recording of the IIN1b nerve fiber (red) while wing motor output is 

driven from the flight central pattern generator  via bath applied chlordimeform (50 µM). (B) HA 

immunolabeling (green) of the MDHns with the intracellularly recorded MDHn filled with Alexa 

568 (magenta). Inset below zoom of two distinct cell bodies labeled. Left: both laser channels. 

Center: Alexa 568 channel showing a single filled cell body and primary neurite. Right: HA 

channel showing the two cell bodies and primary neurites of the MDHn pair. Complete spatial 

overlap confirms the recording was of an MDHn. (Ci) Superimposition of the smoothed 

instantaneous spike rate of the recorded MDHn (blue) and the raw extracellular recording of the 

IIN1b fiber (red). Inset dashed rectangle highlights the time sample shown in (Cii) which shows 

the raw spike trains for both traces. Note that the MDH spike rate always increases just prior to 

and during bouts of wing motor output. (D) Plot of z-score normalized spike rate for MDH (blue) 

and IIN1b (red) across 10 min of continuous recording demonstrating that as IIN1b activity 

increases over time, so too does MDH spike rate (r = 0.71). (E) Scatterplot of z-score 

normalized spike rate of MDH and IIN1b. Inset linear regression (n = 4 recordings/738 points; R2 

= 0.09, r= 0.30). (F) Mean spike rate from epochs where the IIN1b was quiet versus producing 

wing motor output from the recording highlighted in C. Inset error bars represent the standard 

error. Inset statistical comparisons between states indicates corresponding significant increase 

in both IIN1b and MDH (Welch’s t-test; n = 8 recording segments; p < 0.05). (G) 

Crosscorrelation between MDH and IIN1b firing rates using Gaussian smoothing windows 

ranging in width from 2 ms to 1000 ms. Note that for smoothing widows within typical spike 

integration times (2-5 ms) there is no correlation between measures.   

Figure 2: HA enhances entrainment of AL PNs to rapidly pulsed odor. To evaluate the effect of 

MDHn HA release on the ability of AL PNs to entrain to pulsed stimuli, we performed three 

experiments, each in separate groups of animals. For all experiments, multi-channel electrodes 

were placed into the AL and multi-unit recordings were made while the ipsilateral antenna was 

stimulated with a block of five 500 ms long stimulation at 20 Hz pulse trains every two minutes 

for a total of 15 presentations. After the first block of pulse trains animals were challenged with 

an experimental treatment. (A) In the first group, to disrupt HA-r function we bath applied 50 µM 

cimetidine (CIM) in saline vehicle continuously over the course of the experiment. (B) In the 

second group of animals, to remove intrinsic HA input from the MDHn’s the neck connective 

was cut thereby axotomizing the MDHns. (C) in the last group of animals, direct bath application 

of HA (50 µM) in saline vehicle was used to simulate increased MDHn output during flight. 

Columns (A-C): (i) Schematic of each experiment. (ii) Exemplar peristimulus rasters (top) and 

histograms (bottom) for the baseline responses (before) and during/after treatments. (iii) Mean 

integrated power from 18-22 Hz by time across all recorded neurons that entrained to the 

pulsed odor at some point during each experiment. Error bars represent the standard error. 

Results plotted as a function of time since treatment. Power was normalized by dividing mean 

power from each block by the mean baseline (pre-treatment block) power. Inset arrows 

indicated the first block where there was a significant difference in power between experimental 

and control treatments (Welch’s t-test for two samples with unequal variance; p<0.05). Inset 
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regressions are second order polynomials. Inset red rectangle (Aii) highlights the loss of 

responses to the first two pulses as a consequence of cimetidine relative to pre-treatment.  

 

Figure 3: HA-r blockade disrupts behavioral measures of olfactory acuity. (A) Acquisition of the 

conditioned feeding response to a single odor (2-hexanone) as a function of conditioning trial for 

groups of moths in the detection threshold assay. Twenty-four hours later, one group of moths 

was bilaterally injected with either 50 µM cimetidine (CIM) in saline vehicle or the saline vehicle 

without drug (Saline) in a blind manner then tested. (B) Conditioned feeding response as a 

function of odor concentration for the CIM and Saline groups. Inset open and filled arrowheads 

indicate detection threshold concentrations, for the Saline and CIM groups respectively, as 

defined by the lowest concentration odor yielding a significant increase in response relative to 

the blank (1-tailed paired t-test; n = 60; p < 0.001. (C) Acquisition of the differential conditioned 

feeding response to the CS+ and CS- stimuli for CIM and saline injected groups. Moths were 

first differentially conditioned to one of the two odorants (2-hexanone or 2-octanone). Both odors 

were used as the CS+ and CS- in separate but equally sized groups to counterbalance odor-

dependent effects; for display, data was pooled by CS+ and CS-. (D) Discrimination index ((CS-

)-(CS+)) displayed by concentration for the CIM and Saline injected groups. Inset open and 

filled arrowheads indicate discrimination threshold, the concentration at which there was a 

significant differential response to the CS+ and CS- odors using 1-tailed paired t-tests (saline 

controls: p = 0.03; n = 46; CIM injected: p = 0.05; n = 43). All inset regression lines are 3rd order 

polynomials and all error bars represent the standard error. 

Supplemental Figure Legends 

SF1: HA increases PN entrainment and overall spiking response magnitude. Results based on 

22 units recorded in 3 moths from the multiunit study. (A) Mean raw power spectral densities 

from pulses responses recorded over thirty minutes. For display purposes, we collapsed the 15 

timesteps of the 30 min experiment into five time periods (i.e. three steps/period). Shown are 

frequencies from 5-50 Hz. (B) The same mean power spectra displayed in A but normalized by 

the mean power within each period to correct for broad global changes in power. Note that in 

either case, power at the pulsing frequency consistently goes up primarily at the pulsing 

frequency and this power systematically increases over the 30 min course of the experiment. 

(C) Mean spike rate during the 600 ms duration of the pulse driven response. Inset asterisks 

indicate a significant increase in spike rate during the response as compared to the initial 

response (1-tailed matched sample t-test; p < 0.05). (D) Mean spontaneous spike rate of the 

same population of units during the 600 ms preceding each pulse train. Note that initially, odor 

responses drove fewer spikes than were spontaneously evoked. 

SF2: Bilateral cimetidine injection increases detection thresholds. (A) Acquisition of a 

conditioned feeding response to an odor (2-hexanone) as a function of six consecutive forward 

paired odor-food conditioning trials. Inset are 2nd order polynomials for each treatment, error 

bars are standard errors and for clarity shown only for the control group. (B) Mean conditioned 

feeding response to odor during the test phase of the experiment as a function of drug dose 

(control data excluded) and collapsed across odor concentration. Inset letters indicate 

significant changes in conditioned feeding response to odor (one tailed paried t-test; p<0.05). 

(C-E) Conditioned feeding response as a function of odor concentration for saline vehicle 

control (saline) vs saline vehicle with cimetidine (CIM). Inset regressions are 3rd order 
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polynomial functions. Open and closed arrows indicate detection threshold for saline control and 

CIM injected groups respectively. (C) 50 µM CIM; (D) 5 µM CIM; (E) 0.5 µM CIM.  

SF3: Bilateral ranitidine injection increases detection thresholds. (A) Acquisition of a conditioned 

feeding response to an odor (2-hexanone) as a function of six consecutive forward paired odor-

food conditioning trials. Inset are 2nd order polynomials for each treatment, error bars are 

standard errors and for clarity shown only for the control group. (B) Mean conditioned feeding 

response to odor during the test phase of the experiment as a function of drug dose (control 

data excluded) and collapsed across odor concentration. Inset letters indicate significant 

changes in conditioned feeding response to odor (one tailed paried t-test; p<0.05). (C-E) 

Conditioned feeding response as a function of odor concentration for saline vehicle control 

(saline) vs cimetidine (CIM) in saline. Open and closed arrows indicate detection threshold for 

saline and CIM injected groups respectively. Inset regressions are 3rd order polynomial 

functions. (C) 50 µM CIM; (D) 5 µM CIM; (E) 0.5 µM CIM.  
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ABSTRACT 

Nervous systems evolve in a variety of ways to adapt to shifts in behavioral ecology. One form 

of adaptation is neural exaptation in which neural circuits are co-opted to perform additional 

novel functions. In this study, we describe the co-option of a pair of motor-to-sensory 

histaminergic neurons into an additional sensory processing network to support odor-guided 

behaviors. Many moths beat their wings during the approach to an odor source, even if not 

flying. Wing beating can cause strong oscillations of airflow around the antennae that temporally 

structure odor plumes. Behaviors that cause self-induced sensory stimulation often impose 

selective pressures that influence neural circuit evolution, specifically fostering the emergence 

of corollary discharge circuits. A candidate corollary discharge circuit in Manduca sexta was 

previously identified, consisting of a pair of mesothoracic to deutocerebral histaminergic 

neurons (MDHns), each projecting from the mesothoracic ganglion bilaterally to both antennal 

lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the 

olfactory system with a corollary discharge, comparative immunohistochemistry reveals that the 

MDHns innervate the ALs of advanced and basal moths, but not butterflies, which rely more 

heavily on vision rather than olfaction and have distinctive flight patterns. Characteristic 

anatomical features of the MDHns reveal that ancestral neurons likely arose in crustaceans and 

in many species the cells innervate mechanosensory areas of the brain, but not the olfactory 

system. We therefore propose that the ancestral function of the MDHns was to provide 

information about self-induced stimulation of the antennae and that the MDHns were exapted to 

provide this information to the olfactory system in moths. The MDHns therefore represent an 

example of architectural exaptation, in which identified neurons that originally provided 

information about motor output to mechanosensory regions have been co-opted to provide 

information to an additional neural network.  

 

INTRODUCTION 

Exaptation is a core feature in the development of new phenotypic traits, allowing pre-existing 

traits to be co-opted to take on new or additional roles. There are numerous examples of 

exaptations involving the co-option of genes (1, 2), body appendages (3, 4), and behaviors (5, 

6). For instance, the co-option of the teleost gas bladder into lungs, and lobe fins into limbs 

supported the conquest of land by tetrapods (7). Feathers are another commonly cited example 

of exaptation; originally thought to support thermoregulation, they were exapted to produce 

thrust during flight (8-10). While there are several examples of exaptation in the nervous system 

in general (11, 12) the cellular and neural circuit basis for nervous system exaptation are poorly 

understood. For example, primitive insect wings originated from tracheal gills present on all 

body segments (13), yet the specific changes that occurred within motor networks to allow flight 

motor control in present-day insects remain to be identified. However, as traits such as 

appendages are co-opted to take on additional functions the neural networks associated with 

these structures are likely also co-opted for use in this new function. 

Subtle cellular and molecular changes to individual neural networks can produce distinct 

changes in network dynamics and behavioral output. Many evolutionary changes in the nervous 

system arise from adapting biophysical and synaptic properties to alter network dynamics. This 

has been most notably demonstrated in networks that produce rhythmic output such as central 

pattern generators (14-26). In addition to changes in biophysical and synaptic physiology, 
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exaptations can also involve changes in neural architecture, such that neurons can be co-opted 

to innervate neural networks to which they did not project in the ancestral state. Architectural 

changes have the potential to modify existing brain regions to perform new functions (12). In 

theory, the exaptation of circuitry could provide an existing network with additional information to 

enhance processing. Although there is evidence for neural exaptation within the context of 

entire brain regions (27), very little is known about the potential for neural exaptation at the level 

of individual neurons. In this study, we used comparative neuroanatomy to describe an example 

of architectural neural exaptation at the level of a pair of identified neurons. We demonstrate 

that histaminergic neurons from a motor-to-mechanosensory circuit found throughout the 

arthropods was co-opted to serve additional olfactory function in moths. This trait was 

subsequently lost in butterflies in correlation with changes in flight biomechanics and sensory 

dominance from olfaction to vision for locating food sources. This suggests that co-option of 

neural circuits at the level of individual neurons can result as a byproduct of behavior-specific 

natural selection.  

 

METHODS 

Animals 

Insect species used in this study were either collected near Morgantown, WV, reared at WVU 

from eggs or donated. Manduca sexta were raised and maintained on a standard artificial diet 

as previously described (28). Bombyx mori were purchased from Mulberry farms (Fallbrook, 

CA), and also raised on standard artificial diet. Idia aemula were collected in Morgantown, WV 

with the assistance of Dr. John Boback. Pieris rapae and Theatops californiensis were 

purchased from Carolina Biological Supply Co. (Burlington, NC). Papilio appalachiensis were 

collected in Morgantown, WV (Coppers Rock State Park). Limenitis archippus were collected in 

Morgantown, WV. Grapholita molesta were provided by Dr. Mark Willis (Case Western Reserve 

University). Galleria mellonella, Gyna Lurida, Tenebrio molitor and Oncopeltus fasciatus were 

provided by Dr. George Keeney (The Ohio State University). Caddisflies from family 

Limnephilidae were provided by Kathy Kyle Stout (Wildscape Inc.). Drosophila melanogaster 

were raised on standard medium at 22-25˚C. Amblyomma americanum were provided by Dr. 

Timothy Driscoll (West Virginia University). At least 6 individuals were used for each species.     

Immunocytochemistry 

Histamine labeling was performed as previously described (29, 30). Brains and thoracic ganglia 

were dissected, either separately or connected for experiments. Post-dissection, brains were 

fixed in a 4% solution of N-3-dimethylaminopropyl-N’-ethylcarbodiimide (Sigma-Aldrich, 03449) 

in phosphate buffered saline (PBS, pH 6.9; Sigma-Aldrich, P-5368) at 4˚C between 2-6 hours 

depending on tissue volume (e.g. 2 hours for D. melanogaster, 6 hours for M. sexta). Tissue 

was then fixed in a 4% solution of paraformaldehyde (Electron Microscopy Sciences, 15710) in 

0.01M PBS overnight. Post-fixation, brains were washed in PBS. For sectioned tissue, brains 

were embedded in 5% agarose (Sigma-Aldrich, SLBJ3744V) and sectioned between 100 and 

150µm using a Leica VT 1000S vibratome. The tissue was washed in 0.5% Triton™-X100 

(PBST; Sigma-Aldrich, 110M0009V), blocked in 2% bovine serum albumin (BSA; Jackson 

Laboratory, 001-000-162) for 1 hour. Brains were then incubated in 1:50 mouse anti-bruchpilot 

(Developmental Studies Hybridoma Bank, nc82) with 2% BSA in PBST at 4˚C for 5 days before 

adding 1:500 Rabbit anti-histamine, and incubating for another two days. The histamine 
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antibody was raised against histamine conjugated to succinylated keyhole limpet hemocyanin 

via carbodiimide and this antibody shows no cross-reactivity keyhole limpet hemocyanin alone 

(30). Preadsorption with histamine also eliminates labeling (31). Finally, in D. melanogaster, 

histidine decarboxylase mutants lack histamine immunolabeling using this antibody (32). 

Following primary antibody application, tissue was washed in PBST, then blocked (as above), 

and incubated in 1:1000 Alexa 488, or 546(Alexa Flour®; Thermo Fisher Scientific A-11008, A-

11030). Tissue was washed in PBST and PBS. For sectioned brains, tissue was run through an 

ascending glycerol (Sigma-Aldrich, BCBN3647V) series (40%, 60%, and 80%) and mounted in 

Vectashield® (Vector laboratories, Za1222). For whole mounts, tissue was run through an 

ascending ethanol (Sigma-Aldrich, SHBF6704V) series (30%, 50%, 70%, 95%, and 100%) for 

10 minutes; tissue was placed in a 1:1 solution of ethanol and methyl salicylate for 15 minutes, 

then 100% methyl salicylate for 15 minutes, then mounted in Permount® (Fisher Scientific, 

SP15-500). 

Optical Imaging Acquisition and Analysis 

Fluorescent tissue was viewed with a laser scanning confocal microscope (Olympus FV1000) 

equipped with red/green HeNe, and argon lasers. Images were acquired using either a 20x or 

40x magnification optical objective.  Distance between confocal planes were optimized for the 

objective (1.79 um for 20X and 0.54 um for 40X) using Fluoview software (FV10-ASW Version 

04.00.02.09). Pixel resolution was adjusted to compensate for the size of each specimen 

between 1024 x 1024 to 2048 x 2048 pixels. Images were only modified for contrast 

enhancement. Figures were organized in CorelDraw (Version X4). 

   

RESULTS 

In Manduca sexta, the MDHns branch extensively within the mesothoracic ganglion and project 

ascending axons to innervate the subesophageal zone (SEZ), antennal mechanosensory and 

motor center (AMMC) and AL (31, 33) (Fig., 1A). However, while histaminergic neurons in the 

MsG of cricket (34, 35), locust (36) and Drosophila (32, 37) project ascending axons into the 

AMMC, they do not innervate the AL. This suggests that while the MDHns may be present in 

many insect taxa, they do not necessarily innervate the olfactory system. Differences in wing 

beating mechanics across insect species result in different effects on odor plumes (38, 39) and 

in M. sexta, the olfactory system is able to track odors pulsed at the wing-beat frequency (40, 

41). We therefore hypothesized that MDHn innervation of the AL arose due to selective 

pressures associated with a need to process odors carried by flight-induced air flow oscillations 

during plume tracking.  We used a comparative approach to determine when over evolutionary 

time the MDHns began to innervate the AL and if this trait was lost with the evolution of different 

flight biomechanics.  

(a) MDHn Innervation of the AL is Specific to Caddisflies and Moths. 

To determine whether MDHn AL innervation was specific to M. sexta (Sphingidae), we 

examined the MDHns in Bombyx mori (Bombycidae), a closely related species with similar wing 

beating frequency and mechanics (42, 43).  Both moths belong to the superfamily Bombycoidea 

and B. mori, although flightless, must beat their wings while walking to successfully track odor 

plumes (44). The MDHns have a distinct, consistent morphology that, in combination with HA-

immunolabeling allow their identification between species. In M. sexta, MDHn somata were 
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located ventrally and send primary neurites dorsally where they project radially throughout the 

MsG (Fig. 1B) In addition, the MDHns project a single axon that ascends via the ventral nerve 

cord to the brain. HA-ir was present in the ALs of M.sexta in several ventral glomeruli (Fig. 1C). 

The MDHns in B. mori possessed nearly identical morphology with ventrally located cell bodies, 

dorsal radial MsG projections and axons that ascend to the brain (Fig 1D). Similar to M. sexta, 

HA-ir was present in the AL of B. mori in several ventral glomeruli (Fig. 1E). To determine the 

phylogenetic distribution of AL innervation by the MDHns in the Macrolepidoptera further, we 

examined Idia aemula (Erebidae), the powdered snout, which belongs to the superfamily 

Noctuoidea. The MsG of I. aemula contains histaminergic neurons with nearly identical 

morphology to the MDHns in M. sexta and B. mori, (Fig. 1F), including ascending projections to 

the brain and bilateral innervation of both ALs (Fig. 1G). These results together indicate that 

histaminergic neurons projecting from flight motor centers to the olfactory system are conserved 

within macroplepidopteran moths.  

Butterflies also belong to the Macrolepidoptera, but primarily use vision to locate mates and 

food (45). The flight patterns of butterflies are also much more heterogeneous than moths due 

to non-periodic wing flapping, gliding, and turn unpredictability (46). These characteristics lower 

predation risk (46), but would reduce plume tracking ability. Butterflies are relatively closely 

related to the Bombycoidea and thus make great candidates for studying the emergence of 

MDHn innervation of the AL. Due to these differences between butterfly and moth flight 

behavior, we hypothesized that diurnal, and visually guided butterflies would have no AL MDHn 

innervation. We examined the ALs and MsGs of representative species from three of the five 

total families of butterflies (Nymphalidae, Papilionidae, and Pieridae). In Pieris rapae (Pieridae), 

ventrally located MDHns in the MsG project ascending axons along the ventral nerve cord to the 

brain, and have a general architecture similar to M. sexta (Fig. 2A & B). However, in P. rapae 

there were no HA-ir processes detected in the ALs (Fig 2C). The ALs of Limenitis archippus 

(Nymphalidae) also lack HA-ir processes (Figure 2D). Finally, the MDHns of Papilio 

appalachiensis (Papilionidae) also branch radially throughout the MsG and project to the brain 

via the ventral nerve cord, but again HA-ir processes were absent within the AL (Fig 2E & F). 

These results together suggest that MDHn innervation of the AL was either lost in butterflies or 

arose in the macrolepidopteran moths.  

The Microlepidoptera are the most basal lepidopterans and are therefore ideally situated to 

determine if AL HA innervation by the MDHns had been lost in butterflies, or arose in the 

macroplepidopteran moths. To this end, we examined the MDHns of two microlepidopterans, 

Grapholita molesta (Tortricidae) and Galleria mellonella (Pyralidae), both of which walk and fan 

their wings during their final approach to an odor source (47, 48). Similar to B. mori, the MDHn 

axons of G. molesta ascend from the MsG (Fig. 3A) via the ventral nerve cord to innervate the 

ALs (Fig. 3B). This was also the case for G. mellonella (Pyralidae) (Fig. 3C & D). We next 

examined the MDHns of one species of caddisfly (Limnephilidae) as the Trichoptera are the 

closest related order to the Lepidoptera. Similar to moths, the MDHns of caddisflies have 

ventrally located cell bodies that project ascending fibers to the brain (Figure 3E) that innervate 

the ALs (Fig. 3F) These results suggest that MDHn innervation of the ALs was present in a 

common ancestor of the Lepidoptera and caddisflies, but subsequently lost in the butterflies.      

(b) MDHns are Present Throughout the Arthropods 

The olfactory systems of many arthropods species, including insects, are innervated by HA-ir 

processes from sources other than MDHns (30, 49-54), while the olfactory systems of other 
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species lack HA-ir altogether (29, 30, 32, 55). To determine when the MDHns arose, we 

performed HA immunocytochemistry on the MsG of arthropods. Drosophila melanogaster 

(Drosophilidae) possess MDHns with the characteristic radial planar projections within the MsG 

and ascending projections (Fig. 4A). However, while these ascending projections innervate the 

SEZ and AMMC, they do not enter the ALs (Figure 4B). In Tenebrio molitor (Coleoptera), 

Oncopeltus fasciatus (Hemiptera), and Gyna lurida (Blattodea), ventrally located cell bodies with 

ascending HA fibers were also observed in the MsG (Figure 4C, D & E), as is also the case for 

the maxillulary cephalic neuromere of the copepod Calanus finmarchicus (Crustaceae; (51)) and 

in the thoracic ganglia of the lobster Homarus americanus (Crustaceae; (56)). In the centipede 

Theatops californiensis, at least three pairs of histaminergic neurons were located along the 

midline of ganglia within segments bearing the second pair of legs (Fig. 4F), the equivalent to 

the mesothoracic ganglion in insects. One pair of midline cells possessed ventral cell bodies 

and ascending axons. The extent of branching of these cells within the ganglion was minimal, 

but the axons were located dorsally, consistent with all other species observed. Finally, in the 

tick Amblyomma americanum (Chelicerata; Ixodidae), dorsally and laterally located cell bodies 

were observed, and there were no ascending projections (Figure 4G), rather these cells 

projected diffusely in most neuromeres of the synganglion. In particular, we observed dense 

histaminergic innervation of the pedal, and cheliceral neuromeres, areas that process leg and 

mouthpart sensorimotor information (57). This distribution of histaminergic neurons was similar 

to that observed in the synganglia of spiders (58, 59). These neurons seem unlikely to be 

homologs of the MDHns as their cell bodies are dorsally located and reside along the lateral 

margin of the synganglion. Thus, MDHns appear to be widely distributed within the arthropods, 

and while homologous neurons are not apparent in ticks, histaminergic neurons that 

interconnect limb control and somatosensory regions appear to be a common feature of the 

arthropod nervous system. 

 

DISCUSSION 

Using a comparative approach to study specific neural circuits provides insight into how circuits 

are co-opted to perform new functions within a relatively short evolutionary time. Selective 

pressures drive neural circuit evolution. Here, we hypothesized that the presence of a circuit 

interconnecting the flight motor and olfactory systems would depend on the influence of flight 

mechanics that arose among nocturnal plume tracking insects and the impact that these 

mechanics have on the sensory field of the insect. In this study we found that a morphologically 

distinct neuron that ascends from the MsG to innervate the AL arose after the last common 

ancestor of the Diptera and Lepidoptera. This circuit was conserved across much of the 

Lepidoptera, however this trait was lost in butterflies which differ dramatically from moths in their 

behavioral ecology. Furthermore, paired, histaminergic neurons that ascend from motor centers 

in the ventral nerve cord to the brain appear to be conserved within the insects and 

crustaceans. However, in ticks (Fig. 4) and spiders (58, 59) the palpal/pedipalpal ganglia 

receive dense innervation from HA-ir neurons with dorso-laterally located somata, suggesting 

that the MDHns (which have ventromedial somata) likely arose after the Chelicerates. 

Regardless of origin, across all arthropods in this study and others, there exist histaminergic 

neurons that interconnect ganglia representing different body segments. 

Why would specific groups of insects use flight information during olfactory guided behaviors, 

but not others? Wing beating creates air turbulence, thus affecting the structure of odor plumes. 
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In M. sexta, wing beating in tethered flight creates strong oscillatory flow of air over the 

antennae that is tightly coupled to the wing beat frequency (39). Moths use odor plumes to 

locate mates, food, and oviposition sites and the mechanics of wing-beating in B. mori while 

walking (42) and M. sexta while hovering (43) are similar with respect to frequency, and wing tip 

pattern, suggesting similar impacts on odor plumes. These flight-induced oscillations in airflow 

therefore create a periodic temporal structure of ecologically important stimuli. Butterflies, 

however, have strikingly different flight mechanics from moths. While moths have a consistent 

wing beat frequency and stroke during odor-guided flight (43, 60, 61), butterflies have a much 

more stochastic wing beat, and flight path (46). Indeed, many butterflies incorporate protean 

behavior into their flight patterns which ultimately creates a flight pattern with wingbeat 

frequencies that aren’t as stable as in moths, which may be a means to avoid predation (46). 

Furthermore, although male and female butterflies produce pheromones, they are used as 

short-range cues (1-2 meters) to determine mate quality (45, 62), whereas male moths can 

track female pheromones over distances of several tens of meters (63). Although the path of the 

wing tip during each wing stroke is similar between D. melanogaster and moths (64), the wing 

beat frequency of D. melanogaster is ~190-230 Hz (65), which much higher than the  ~27-28Hz 

wing beat frequency of M. sexta (39). Furthermore, antennal responses across several insect 

species can track rapid odor concentration fluctuations (40, 66, 67), depending on species 

perhaps exceeding 100 Hz (68). Local field potentials within the AL have also been shown to 

respond to fluctuations at least up to ~70 Hz (40), well within the range of Lepidopteran wing 

beat frequencies. In addition, neural population responses from the AL of M. sexta track and 

represent olfactory stimuli optimally when odors are presented at the wingbeat frequency (41). 

This finding also corresponds to enhanced olfactory acuity as measured behaviorally (69) 

supporting the conclusion that their olfactory system has adapted to encode information that is 

embedded within a temporal structure induced by their own active sampling behavior. The 

disturbances caused by the very high frequency wing-beating in Drosophila on the other hand, 

are unlikely to be tracked by the AL, while the lower frequency disturbances induced by M. 

sexta wing beating alter the structure of odor plumes in a manner that affects odor evoked 

activity in the AL. 

Typically, across more moderate periods of evolutionary time, neural circuits change by 

dedicating more space and resources to processing stimuli that are most important for an 

ecological niche. For instance, roughly a third of the antennal lobe of male M. sexta is devoted 

to processing female sex pheromone (70-73) and cortical expansion in star-nosed moles, 

hedgehogs, and moles reflect species-specific changes in ecological niches and sensory 

appendages (74). While many examples exist of the expansion and reduction of brain areas 

over time, very few examples exist of the invasion of new brain regions by identified neurons 

that are conserved across a broad range of species. Rather than an expansion within the 

context of a pre-existing function, the innervation of the ALs by the MDHns represent an 

example of co-option of a circuit into an additional network that serves a different function. The 

appearance, and subsequent loss of MDHns innervation of the ALs suggests that individual 

neurons can be co-opted to provide input to neural networks that they do not influence in other 

species and that large changes in neural circuit architecture can be gained and lost in a 

relatively short period of time.  

We observed ascending histaminergic neurons that innervated mechanosensory regions for 

head appendages in the brains of arthropods that span ~250 million years of evolution. In D. 

melanogaster, as well as all moths and butterflies, MDHns innervate the AMMC, and even in 
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ticks, which may lack MDHn homologs, there was dense histaminergic innervation of the dorsal 

anterior portion of the synganglion which receives sensory input from the mouthparts (57). The 

conservation of this trait suggests that information about limb motor output is a critical 

component of mechanosensory network activity. The presence of interganglionic histaminergic 

neurons in the AMMC could also reflect the co-option of head appendages themselves from a 

locomotory function, to mechanosensory, and then olfactory function (75, 76). Our data suggest 

that behavioral and morphological specializations in moths resulted in the co-option of this 

circuit that provides input to a mechanosensory network in the ancestral state to also provide 

additional input to the olfactory system.        
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Figure Legends 

Figure 1 

The MDHns in Macrolepidopteran Moths Innervate the ALs. A: Schematic of MDHns (green) in 

Manduca sexta. Each MDHn innervates the SEZ and AMMC before projecting to both ALs B: 

Whole mount Manduca sexta pterothoracic ganglion immunolabeled for HA. MDHns are the 

most anterior pair of histaminergic neurons (arrow heads). C: Frontal section of Manduca sexta 

AL immunolabeled for HA (green). Bruchpilot immunolabeling delineates neuropil (magenta). D:  

Sagittal section of Bombyx mori MsG immunolabeled for HA. E: Sagittal section of Bombyx mori 

AL immunolabeled for HA (green). Bruchpilot immunolabeling delineates neuropil (magenta). F: 

Whole mount sagittal view of Idia aemula pterothoracic ganglion. G. Sagittal section of Idia 

aemula AL immunolabeled for HA (green). Bruchpilot immunolabeling delineates neuropil 
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(magenta). Bruchpilot (magenta) is used to delineate neuropil. HA-ir (green).  Scale bars = 

100µm 

Figure 2 

MDHns do not Innervate ALs in Butterflies. A: Full CNS montage of HA-ir in Pieris rapae. B: 

Whole mount sagittal view of Pieris rapae MsG. C: Pieris rapae AL showing absence of HA-ir 

(green). Bruchpilot immunolabeling delineates neuropil (magenta). D: Whole mount frontal view 

of Limenitis archippus of brain showing no AL HA-ir. HA-ir can be seen directly posterior of the 

left AL in D, however optical stacks restricted to the depth of tissue including only the AL 

demonstrate that these HA-ir processes do not enter the AL. E: Horizontal view of MsG of 

Papilio appalachiensis. F: Horizontal section of Papilio appalachiensis brain showing no HA-ir 

(green) in the AL. Bruchpilot (magenta) delineates neuropil. Scale bars = 100 µm.  

Figure 3 

The MDHns in Microlepidoptera and Trichoptera innervate the ALs. A: Whole mount horizontal 

view of Galleria mellonella MsG. B: Whole mount frontal view of Galleria mellonella brain 

showing HA-ir (green) in the AL. Bruchpilot (magenta) delineates neuropil. C: Whole mount 

horizontal view of Grapholita molesta MsG. D: Whole mount frontal view of Grapholita molesta 

brain. E: Whole mount horizontal view of caddisfly (Limnephilidae) MsG. F: Whole mount frontal 

view of caddisfly (Limnephilidae) brain showing HA-ir (green) processes within the AL 

(brackets). Bruchpilot (magenta) delineates neuropil. Scale bars = 100 µm.   

Figure 4 

MDHns are Present in the Majority of Arthropods. A: Whole mount horizontal view of the 

thoracic ganglia of Drosophila melanogaster. B: Whole mount frontal view of the brain of 

Drosophila melanogaster. No HA-ir is observed in the ALs (insets). Bruchpilot (magenta) 

delineates neuropil.  C: Whole mount horizontal view of the MsG of Tenebrio molitor 

immunolabeled for HA. D: Whole mount horizontal view of thoracic ganglia of Oncopeltus 

fasciatus immunolabeled for HA. E: Whole mount horizontal view of the MsG of Gyna lurida 

immunolabeled for HA. F: Whole mount horizontal view of the first post-cephalic ganglion in 

Theatops californiensis immunolabeled for HA. G: Whole mount horizontal view of the 

synganglion in Amblyomma americanum. Scale bars = 100 µm.   

Figure 5 

Schematic representation of the proposed evolutionary history of the MDHns. In this 

representation the MDHns originally projected from the mesothoracic ganglion (MsG; blue) to 

the sub-esophageal zone and antennal mechanosensory and motor center (AMMC/SEZ; 

lavender). In the last common ancestor of the Lepidoptera and Trichoptera, the MDHns were 

co-opted (1; Dashed MDHn branches) to innervate the antennal lobes (ALs; magenta).  The 

innervation of the ALs was lost in the butterflies (2), but maintained in macrolepidoteran moths.  
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