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Abstract 

 

Blind Image Denoising using Supervised and Unsupervised Learning 

 

Surekha Pachipulusu 
 
 
Image denoising is an important problem in image processing and computer vision. In real world 

applications, denoising is often a pre-processing step (so-called low-level vision task) before image 
segmentation, object detection and recognition at higher levels.  Traditional image denoising algorithms 
often make idealistic assumption with the noise (e.g., additive white Gaussian or Poisson). However, the 
noise in the real-world images such as high-ISO photos and microscopic fluorescence images are more 
complex.  Accordingly, the performance of those traditional approaches degrades rapidly on real world 
data. Such blind image denoising has remained an open problem in the literature. 

 
In this project, we report two competing approaches toward blind image denoising: supervised 

and unsupervised learning. We report the principles, performance, differences, merits and technical 
potential of few blind denoising algorithms. 

 
Supervised learning is a regression model like a CNN with a large number of pairs of corrupted 

images and clean images. This feed-forward convolution neural network separates noise from the image. 
The reason for using CNN is its deep architecture for exploiting image characteristics, possible parallel 
computation with modern powerful GPU’s and advances in regularization and learning methods to train. 
The integration of residual learning and batch normalization is effective in speeding up the training and 
improving the denoising performance. Here we apply basic statistical reasoning to signaling 
reconstruction to map corrupted observations to clean targets 

 
Recently, few deep learning algorithms have been investigated that do not require ground truth 

training images. Noise2Noise is an unsupervised training method created for various applications 
including denoising with Gaussian, Poisson noise. In N2N model, we observe that we can often learn to 
turn bad images to good images just by looking at bad images. An experimental study is conducted on 
practical properties of noisy-target training at performance levels close to using the clean target data. 
Further, Noise2Void(N2V) is a self-supervised method that takes one step further. This is method does 
not require clean image data nor noisy image data for training. It is directly trained on the current image 
that is to be denoised where other methods cannot do it. This is useful for datasets where we cannot find 
either a noisy dataset or a pair of clean images for training i.e., biomedical image data.  
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Chapter 1 

Introduction 

 
Image processing has a number of applications including image segmentation, object 

detection, image classification, video tracking and image restoration. Especially, denoising is an 

important branch in image processing and can be used an example of growth in image processing 

tools in recent years. In real world applications, denoising is often a pre-processing step (so-called 

low-level vision task) before image segmentation, object detection and recognition at higher 

levels. A passive approach to improve image quality is one that lags behind improvements in 

imaging hardware, awaiting better sensor technology of acquisition devices. Recent improvement 

in hardware and imaging systems made the digital cameras appear everywhere. Though the 

hardware development improved the quality of image, image degradation is unavoidable due to 

several factors. Those factors exist during image acquisition process and in its post processing. 

The process of image denoising to reconstruct the high-quality image from noisy observation is 

still an active topic in the area of computer vision. It still holds its importance in the real time 

applications like medical image analysis, digital photography, High ISO images, MRI, remote 

sensing, surveillance and digital entertainment field.  

 

In this report, we consider a typical blind image denoising problem, which is to remove 

unknown noise from noisy images. Our extensive experiments demonstrate that irrespective of 

noisy data training, there are methods that not only exhibit high effectiveness in image denoising 

tasks but also benefited by efficiently implementing GPU Computing. 

 

1.1 Motivation 

 
Researchers expose that deep learning technologies have obtained enormous success in 

the field of image denoising. Several deep learning algorithms refers properties of image 

denoising to propose wise solution methods that are embedded with multiple hidden layers and 

connection to deal better. Recently, discriminative learning-based algorithms have received 

attention and are studied to a large extent because of their high denoising performance. 
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Most of the previous image denoising algorithms focus on additive white gaussian noise 

(AWGN). However, the real-world image denoising problem with advancing of the computer vision 

techniques. In this report, we consider a blind image denoising problem which removes unknown 

noise from a given real-world noisy images with a single model and produce visually pleasant 

images. Most of the blind denoising algorithms have shown the limited quality of restored images 

because they lose the fine image details due to over-smoothing which results in visually 

unpleasant images. Several deep learning algorithms are implemented to overcome this problem 

to restore noise free images by improving the visual quality. We review the principles, 

performance, differences, merits, shortcomings and technical potential of few blind denoising 

algorithms (DnCNN, Noise2Noise, Noise2Void). The potential challenges and directions of deep 

learning are also discussed in this report. 

 
 

1.2 Digital Images 

1.2.1 Noise Modelling for Real-world noisy images 

 
Image analysis is defined as inspecting images for the purpose of recognizing objects and 

judging their importance. Various mathematical procedures are applied to this data in a technique 

called Image processing. Through this technique we can enhance image which in turn can be 

used to perform some of the analysis and detection tasks. Image processing is uses computers 

to execute image processing algorithms on digital images to fulfil tasks like Image enhancement, 

acquisition and pre-processing. As there is an increase in the availability of fast computers and 

signal processors, digital image processing is commonly used. 

 

With increase in massive production of digital images and videos often taken in poor 

conditions with noise, the need for image restoration methods has grown extensively. Regardless 

of how great the cameras are, improvement in image quality is always desirable to broaden the 

range of action. 

 

An image is often corrupted during storage, image acquisition and transmission. Image 

denoising usually removes the noise and try to retain the original image as much as possible. For 

the most part, images datasets have images contaminated with noise. Flowed instruments, 
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problems in the process of data acquisition and interference of natural phenomenon causes 

corruption in data. Consequently, noise removal has a significant role in image analysis and the 

initial step to be taken before image analysis. Therefore, image denoising algorithms play a 

necessary role to prevent noise from digital images. 

 

Noise modelling in images are usually caused due to the instruments for capturing data, 

data transmission, image quantization and sources of radiation. There are different algorithms 

available depending on the noise model and also algorithms that handle different noise models 

at the same time.  In general, natural images are expected to have additive random gaussian 

noise. Speckle noise is expected in ultrasound images whereas MRI images are affected by 

Rician noise. The statistical property of real-world noise has been studied for CCD and CMOS 

image sensors. There are five sources for real-world noise like photon shot noise, fixed pattern 

noise, dark current, readout noise, and quantization noise.  

 

1. Shot noise is the one inevitable noise due to stochastic arrival process of photons. 

This arrival of photons is modelled as the process of number of photons arriving at 

the sensor following a Poisson distribution. This noise is proportional to the mean 

intensity of the pixel and is not constant across the whole image. 

2. Fixed pattern noise includes dark current nonuniformity noise and pixel response 

non-uniformity. The pixel response non-uniformity noise has slightly different 

output level or different response for a fixed light level. Main reason for this kind of 

noise is the loss of light and color mixture in the surrounding pixels. 

3. The dark current noise is from the electronics with sensor chip and is due to 

thermal agitation when there is no light reaching the camera sensor. 

4. Read out noise is from the discretization of measured signals. This is generated in 

the process of charge-voltage conversion which is not accurate. 

5. Quantization noise is when the readout values are quantized to integers. The final 

pixel values are a discrete value of the original raw pixel values.  

 

Based on the above reasons, image denoising is the first step taken in data analysis. 

Several denoising techniques are created to compensate the data corruption. Few spatial filters 

like mean and median filters are used in the process of noise removal from noisy images. In the 

process of removing noise in digital images and smoothing the data, these spatial filters adds blur 

edges in image. This is the drawback of spatial filters. To overcome this drawback and to preserve 
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edges of the images, Wavelet Transforms are used. Wavelet transform is a powerful tool in image 

processing for its multi-solution possibilities. Due to its properties like sparsity and multi-resolution 

structure and multi-scale nature, Wavelets have a superior performance in image denoising. With 

gaining popularity in algorithms for denoising in wavelet domain were introduced. Focus was 

shifted to Wavelet transform from Spatial and Fourier transform.  

 

The goal of Image Denoising is inspecting a noisy image x = s + n and separate them into 

two components - signal image s and signal degrading noise n. It’s purpose is to remove 

unwanted noise while preserving the important features as much as possible. A typical 

assumption in image denoising is that the pixel values in signal s are not statistically independent. 

By observing the image context of an unobserved pixel will allow us to make sensible predictions 

on the intensity of the pixel. 

 

1.2.2 Microscopic Fluorescence Images 

 
The ability of fluorescence microscopy to identify and distinguish cells as cellular particles 

made it as an essential tool in the field of biomedical science. This is due to the development of 

synthetic protein called fluorophores. These fluorophores are used to target specific cellular 

objects and are characterized by individual fluorescent profile like color, emission and excitation 

wavelength.  

The process of creating a fluorescence microscopy images are followed by these 

fluorophores added to the biological samples. These fluorophores tags to each specific cellular 

object. The samples are then photographed using conventional light microscopy when the 

fluorophores present in the sample start emitting fluorescence. The emitted light is captured by 

the detector when filtering it out from the sample excitation light. With this excitation a high 

contrast fluorescent image is generated against a black background to highlight the specific object 

visible. This recorded samples in the form of photographs are generated at specific intervals ad 

specific duration as required. These photographs are used to interpret about the cellular object 

captured. 

The images captured are unable to study the cellular object due to the presence of noise 

in it. The noise in these images are due to two reasons (i) All photons excited by the fluorophores 

are not captured by the detectors. (ii) The measurement noise is observed due to imperfections 

in the imaging system. Also due to photo-toxicity and photo-bleaching, the excitation time has to 
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be limited which results in limited photon emission. All these results in a downgraded low signal-

to-noise-ratio image. The noise resulted due to loss of photons is termed as Poisson noise while 

the measurement of noise is modelled as a Gaussian process. Therefore, noise in fluorescence 

microscopy images are due to mixture of Poisson and Gaussian statistics. These photos are weak 

when compared to our photography (〜105 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙). Due to this, the optical signal in 

fluorescence microscopy is approximated to restrict a set of discrete photos and are dominated 

by Poisson instead of Gaussian that is dominated in photography.  

One can achieve a clean image by increasing the excitation power of laser or lamp. It is 

not limited by the part of light an object can receive but limited by the rate of saturation in 

fluorescence ad this fluorescence with stop once it reaches high excitation power.  

And also, one can achieve the clean image by increasing the exposure time, imaging time, 

or number of frames but this may cause photodamage. Increasing imaging time may not be 

possible due to time taken to capture the image (tens of milliseconds). 

 

All these above scenarios make it difficult to improve the fluorescence images i.e., 

converting it to clean image and is very important in the field of biomedical research. A proper 

dataset is also required in order to prove that an effective algorithm can remove this noise in 

images. Most of the existing datasets that are created using gaussian noise domination with a 

real noisy image from smart phones and digital cameras. But our algorithms have to be tested on 

the dataset with Poisson noise of microscopic fluorescence images as well. For testing the below 

algorithms, we are using a fluorescence image dataset with Poisson noise. Name of the dataset 

is Fluorescence Microscopic Dataset (FMD) for testing our blind denoising algorithms. This 

dataset consists of 12,000 real noisy microscopic images which covers confocal, two-photon, 

wide-field that represents biological samples including cells, zebrafish, mouse brain tissues. This 

image set is prepared with five different noise levels and ground truth. This FMD dataset is the 

first dataset designed from real noisy fluorescence microscopy images and designed for Poisson-

Gaussian denoising purposes.  

 

The FMD dataset that we used to test our blind image denoising algorithm are acquired 

by keeping the power of excitation lamp as low as possible for all imaging modalities like confocal, 

two-photon and wide-field. This excitation power of lamp is enough to produce a noisy image but 

enough to save the image features. To avoid pixel clipping, we manually set the camera gain to 

proper value. Although it is inevitable because of distinct biological structures with various optical 

properties to generate bright fluorescence images. To increase the difficulty of denoising task, the 
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images are taken in low excitation power with high noise level. The images with high noise level 

will allow us to generate images with low noise level by averaging them. 

 

High ISO Images 
 
Capturing the images under High ISO (International Standard Organization) which is a 

standard for sensitive rating for camera sensors enables capturing fast moving objects, record in 

dark scenes and avoid blur artifacts. Several cameras were developed in order to capture high 

ISO images. However, at high ISO conditions, shot noise and read noise will increase. The noise 

in this kind of images are due to demosaicing, white balance, JPEG compression etc., which is 

quite different from synthetic noise like Gaussian or Poisson. Using a regular denoising method 

which removes the synthetic noise cannot handle this high ISO images. 

 

MRI  
 

Capturing an MRI (Magnetic Resonance Image) can often be diminished in regions and 

tissues that has low signal to noise ratio. This is especially in the case of quantitative MRI where 

the quantitative parameters are suffered from low PSNR values. Denoising an MRI can be quite 

different that removing noise from the traditional images due to inefficiency of applying denoising 

methods to MRI examinations that can be typically 20 to 200 slices to be denoised. Quantitative 

MRI often times uses images with various contrasts and signals. This can be overcome by down 

sampling the high-resolution MRI data and discard the high-resolution information by low pass 

filtering. In this report we mention methods to address some of the concerns of using denoising 

for MRI in clinical research. 

 

Signal and Noise ratios 
 
The quality of an image can be defined by the 256 gray-level values where 255 is defined 

by while and 0 is defined by black. Signal Noise ratio is a measure of noise by its standard 

deviation σ(n) 

 

SNR = 
𝜎(𝑠)

𝜎(𝑛) 
 

 
where σ(s) is the empirical standard deviation of the signal image s. 
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where 𝑢̅ is the average grey-level value. The standard deviation can be computed by the 

noise model and parameters knows or by using an empirical formula.  

 

Peak-signal-to-noise ratio (PSNR) is the ratio between the maximum possible power of 

signal and the maximum power of corrupting noise that impacts the constancy of illustration. It is 

usually expressed in terms of logarithmic decibels. PSNR is used to measure the quality of 

reconstruction of lossy compression formats like image denoising and image compression. The 

signal s, in this case is the original image and n is the noise added to the image. This defined the 

human perception of the resultant denoised image quality. 

 

General denoising algorithms do not find a difference between minute details and noisy 

signals and remove them. Few denoising artifacts are created like blur, staircase effect, wavelet 

outliers etc., Denoising algorithms are generally based on noise models and the image model. 

Basic assumption for all the models is that noise is oscillatory whereas the image is smooth. But 

the weak point in algorithms is that image model is as oscillatory as the noise model. 

 

1.3 Development of research in image denoising 

1.3.1 Discriminative Learning based approach 

 
Image denoising is the fundamental problem in the field of image processing. Due to its 

properties like sparsity and multi-resolution structure and multi-scale nature, Wavelet transform 

has become an attractive tool for image denoising. There were several algorithms designed based 

on the Wavelet Domain in the past two decades. The focus was shifted from Spatial and Fourier 

domain to Wavelet transform. To reduce the image artifacts Multiwavelets were introduced to get 

similar results. Probabilistic models, Bayesian denoising in wavelet domain, Independent 

Component Analysis (ICA) have been explored for sparse reduction. Then there is an increase in 

high-resolution cameras, electron microscopes, and DNA sequencers are capable of producing 

several feature dimensions.  
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But by pushing the limits of these devices to take videos of ultra-fast frame rates at low 

illuminations, sequencing tens of thousands of cells simultaneously, each individual feature can 

generate noise.  Image denoising has taken a leap forward due to machine learning. However, 

they are mostly tested on synthetic noises rather than real-life images. One common assumption 

is that noise is always an Additive White Gaussian Noise (AWGN) with standard deviation. This 

is particularly true for learning based methods which require training data to improve the 

performance. Image prior algorithms play an important role in image processing when the 

likelihood is known.  

 

 
Figure 1: Timeline with a selection of representative denoising approaches 

Several algorithms have been developed in the past few decades such as sparse models, 

gradient models, Markov models and especially nonlocal self-similarity models like BM3D, LSSC, 

NCSR, WNNM. Most of the image prior methods typically suffers from a few drawbacks. Firstly, 

they involve a complex optimization problem in testing stage which makes time consuming. Thus, 

they need to sacrifice computational efficiency in order to achieve high performance. Next, these 

methods involve several manual parameters to provide boosting for denoising tasks.  To 

overcome these limitations of prior based models, discriminative learning methods are developed. 

Schmidt and Roth proposed Cascade Shrinkage Fields (CSF) that combines random field-based 

models and optimization algorithm into single learning framework. Chen et al. proposed Trainable 

Nonlinear Reaction Diffusion (TNRD) by unfolding a fixed number of gradient descent inference 

steps. Though these methods brought down the difference between computational complexity 

and denoising quality with a promising result, they are limited in capturing the full characteristics 

of image structures. Along with that several handcrafted parameters have to be designed and 

parameters are learned by stage wise greedy algorithms. Mostly, they are all trained for a specific 

model and specific noise level. 
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Later Convolution neural networks (CNN) came into the picture. It became possible to 

learn the structure, denoise the measurements and recover the signal without any prior training 

of the signal or the noise. 

1.3.2 CNN Model based approach 

 
In the last several years, deep neural networks achieved great success on various 

computer vision tasks. These networks also suggested to solve image denoising problem. 

Researchers showed that deep learning can perform better to automatically learn and find the 

features more efficiently than the manual settings. This way of estimating the parameters is 

different from a traditional approach mentioned above. Even the increase in availability of GPU 

and Big data are also essential for the development of deep neural networks. These deep learning 

models includes many layers such as convolutional layer, pooling layer, batch normalization and 

fully connected layers. Convolution neural network are said to be the most successful deep 

learning network for image processing. There are several attempts to handle Image denoising 

problem using deep neural networks. [1]Jain et al. and Seung et al. proposed an approach to use 

convolution neural networks as an image processing architecture to deal with image denoising 

problem. Their network has only 4 hidden layers and each layer uses 24 feature maps. They 

applied this approach on a set of natural images and found that these CNN’s provide comparable 

results and, in some cases, superior results than state-of-the-art wavelet and Markov random 

Field (MRF) methods. It is observed that CNN’s avoid the computational difficulties in MRF 

approaches and makes it possible to learn image processing architectures that have a high 

degree of representational power. [2]Burger et al. and Schuler et al. implemented Multi-Layer 

Perceptron (MLP) successfully for image denoising. In [3] stacked sparse autoencoder was 

adopted for handling Gaussian Noise Removal compared to [4]. In [5], a feed forward neural 

network Trainable Nonlinear Reaction Diffusion (TNRD) method was proposed by unfolding a 

fixed number of gradient descent inference steps. Based on the neural networks developed only 

TNRD and MLF achieved a comparable result with state-of-art method like BM3D. These specific 

models are trained for certain noise levels.  

Driven by the advances of using deep neural networks and working on large datasets, 

convolution neural networks show great success in handling image denoising tasks.  The 

achievements of training a neural network include gradient based optimization algorithms [6] - [7] 

[8], usage of Rectified Linear Unit (ReLU) [9], batch normalization [10] and residual learning [11].  
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1.4 Contribution 

 
For the scope of this study, few blind image denoising algorithms are chosen to study and 

evaluate based on the training speed and performance 

 

• We found that residual learning and batch normalization can benefit the CNN 

learning like increasing the training speed and boosting up the denoising 

performance.  

• By using a single model to train for different noise levels, general image denoising 

tasks like Gaussian denoising, JPEG deblocking, denoising microscopic 

fluorescence can be achieved. 

• Based on the available training dataset and the type of image denoising task, 

different algorithms are to be performed to achieve better performance. 

• High resolution performance of deep neural networks can be achieved entirely 

without clean data based on the general-purpose deep convolution model. 

Noise2Noise algorithm removes the need for strenuous collection of clean data. 

• Comparison of results from different denoising with existing CNN training schemes 

and non-trained methods. 

 

 

1.5 Overview 

 
The remainder of this report is organized as follows. Section 2 overviews introduction of 

image denoising. Section 3 provides a supervised deep learning algorithm DnCNN. Section 4 

points out an Unsupervised algorithm Noise2Noise. Section 4 presents a self-supervised 

algorithm Noise2Void. Section 5 shows the comparative experimental results along with the 

summary and Section 6 is about future work in image denoising. 
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Chapter 2 

Supervised learning 

2.1 Introduction 

 
Supervised learning is training a model on a labelled dataset. Labelled dataset is 

something which have both input and output parameters. Supervised learning always has both 

training and validation dataset as labelled data. Supervised learning, which requires labeled 

training data, provides promising results in different computer vision tasks. However, it may be 

expensive, time consuming, or impossible to collect and label enough training data for certain 

specific tasks. 

 

 

While training any model, the dataset is divided into parts of training and testing data. The 

model is built from the training data. By learning it means that a model is created based on a logic 

of its own. Once a model is generated, then testing can be done by feeding the new data that the 

model has never seen before. Supervised Learning uses classification algorithm and regression 

algorithm to develop predictive models. Based on the given model, a prediction is generated and 

is then compared to the actual ground truth value to calculate the accuracy. 

 
There are two categories in Supervised Learning: Classification and Regression. 
 

 
Figure 2: Categories of Supervised Learning 
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Types of Supervised Learning 

Classification tasks generally predicts discrete responses. If the data has to be 

categorized, separated, tagged into specific groups or classes, then classification algorithm is 

used. These classification models classify input data into different categories. Few applications 

of classification include credit scoring apps, medical imaging and speech recognition. Also 

application that needs classification of letters and numbers or whether a tumor is benign or cancer 

causing one. These techniques mainly focus on predicting a qualitative response by analyzing 

data and recognizing patterns. 

 

Regression task is to predict continuous responses. This algorithm attempts to model a 

relationship between variables by generating a linear equation. Based on regression analysis, 

one can start making predictions. This task is typically used in predicting, forecasting and finding 

relationships. This technique is still widely used for learning. This technique is used when the 

output is real or computed values. 

 
For this report, we are considering one of the state-of-art methods in Supervised learning - 

DnCNN (Denoising Convolutional Neural networks) 

 

DnCNN is a feed-forward neural network to embrace the progress in very deep 

architecture, learning algorithm, regularization method into image denoising. Instead of learning 

a discriminative learning algorithm with image prior, we consider a simple discriminative learning 

network that separates noise from noisy image using feed forward neural network. There are 

three main reasons for using CNN 

 

CNN’s very deep architecture is effective in increasing flexibility and capacity of image 

characteristics. 

Advanced learning and regularization methods for training CNN, usage of Rectifier Linear 

Unit (ReLU), Batch Normalization and Residual Learning. 

Parallel computation using powerful GPU. 

 

These methods are adopted to fasten the speeding process, improve denoising 

performance and run time performance. 
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The proposed denoising network is a Supervised method which requires training with pairs 

of corrupted images and clean images. Along with outputting just the denoised image s, the 

proposed method is designed to predict the difference between the latent clean image and noisy 

image i.e., the residual image. It removes the clean image from the noise image with the 

operations in hidden layers. Batch normalization and residual learning is benefited from each 

other and helps in stabilizing the training performance along with speeding up the training process 

and boosting the overall performance. 

 

Though the aim of this network is to be a more effective Gaussian Denoiser, this image 

degradation model can be converted to Single Image Super-Resolution (SISR) problem by taking 

v as the difference between the original image and compressed image. Along with this JPEG 

image deblocking problem can also be handled by the same image degradation model. 

But the basic difference between these models is the noise v is much different that AWGN. 

With analyzing the connection between TNRD and DnCNN, this network is extended to handle 

the general image denoising tasks like Gaussian denoising, SISR and JPEG deblocking. 

 

2.2 Technical Background 

 
DnCNN method mainly focuses on design and learning of CNN for image denoising. The 

achievements in training a CNN includes Residual Learning, batch normalization and usage of 

modern powerful GPUs for efficient training implementation. Below is the discussion about two 

methods that are related to DnCNN. 

 
 
 

2.2.1 Residual Learning 

 
Deep learning is mostly based on the basic idea of stacking multiple layers together. With 

the growing availability of high-performance GPUs and training data, there is an increase in depth 

of network layers the training accuracy begins to decrease. To solve this performance degradation 

problem residual networks [11] are introduced. These residual networks explicitly learn residual 

mapping for few stacked layers with the assumption that residual mapping is easy to learn when 
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compared to unreferenced mapping. By utilizing such residual learning strategy, training is made 

easy and increase in accuracy has been achieved for image classification. 

 

DnCNN proposes a model that employs a single residual unit [11] in order to predict the 

image. This strategy of implementing the residual image is adopted in few low-level vision 

problems such as color demosaicing [12] and SISR [13]. For more info on residual learning, 

please refer to [11]. 

 

2.2.2 Batch Normalization 

 
Batch Normalization is to alleviate the internal covariate shift using a normalization task 

and a scale and shift before the non-linearity in each step. It is like doing a preprocessing at every 

layer of the network. This allows each layer of network to learn more independently than other 

layers. For batch normalization only two parameters are added such as standard deviation and 

mean. Only these two weights are changed for each activation instead of changing all the weights 

and losing the stability. Using this normalization in our network enjoys fast training, fast and stable 

performance and low sensitivity to initialization. 

 

Residual learning and batch normalization together improve the denoising performance 

and fast training. 

 

2.3 DnCNN training 

 
Let us consider a convolutional neural network with one image as input and other as the 

target. Each pixel in the output is influenced by certain set of pixels that influences the pixel 

prediction called receptive field 𝑥𝑅𝐹(𝑖) of input pixel. Receptive field is usually the square patch 

around the given pixel.  

 

A general CNN takes the path 𝑥𝑅𝐹(𝑖)as an input and predicts the signal 𝑠𝑖for each pixel i. 

Similarly, the denoising of an entire image can be obtained by feeding the network with 

overlapping patches. So, the CNN can be defined as  

   𝑓(𝑥𝑅𝐹(𝑖), 𝜃) = 𝑠𝑖̂ where 𝜃is the vector parameters to train  
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Any supervised network is provided with a training pairs of clean image and corrupted 

image  

(𝑥𝑗 ,𝑠𝑗) where 𝑥𝑗 is the noisy image and 𝑠𝑗 is the clean ground truth. By applying the patch 

based receptive fields around each pixel in training data pairs as (𝑥𝑅𝐹(𝑖)
𝑗, 𝑠𝑖

𝑗) where 𝑥𝑅𝐹(𝑖)
𝑗 is the 

patch around pixel i and  𝑠𝑖
𝑗 is the ground truth at same position. The loss in this method can be 

calculated as 𝑎𝑟𝑔 𝜃  𝑚𝑖𝑛∑𝑗 ∑𝑖 L(𝑓(𝑥𝑅𝐹(𝑖)
𝑗, 𝜃 ) = 𝑠𝑖̂,  𝑠𝑖

𝑗). A standard MSE loss is considered. 

 

2.4 Network Architecture of DnCNN 

 
DnCNN model handles general image denoising tasks. Generally, any CNN model 

requires specific steps for training. 

1. Network Architecture - For DnCNN, VGG network architecture [14] is modified in order to 

perform specific image denoising task and depth of network is set based on previous state-

of-art methods. 

2. Model learning - Residual learning along with Batch normalization was formulated in order 

to achieve fast and stable training and better denoising performance. 

 

2.4.1 Network Architecture 

 
For better performance and efficiency, the main task is to set a proper depth in architecture 

design. DnCNN follows the architecture of VGG network, so the size of convolution filter is set to 

3 x 3 but remove the pooling layers. As increase in the receptive field size uses the context 

information in larger image region, the receptive field of DnCNN with d is (2d+1) x (2d+1). 

 

From [1] [2], the receptive field size of neural network for denoising methods correlates 

with the patch size of an image. Very high noise level requires effective patch size to capture 

context information. Different state-of-art techniques are analyzed in order to find the effective 

patch size. This is done by fixing the noise level 𝜎 = 25. 

 

Below is a table that summarizes different methods and their patch sizes.  
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Table 1: Effective patch size of different methods with noise level 𝜎 = 25 

Methods BM3D WNNM EPLL MLP CSF TNRD 

Effective Patch size 49 x 49 361 x 361 36 x 36 47 x 47 61 x 61 61 x 61 

 
 
DnCNN is verified with the receptive field size similar to EPLL if it can compete against 

the leading denoising methods. So, the receptive field size of DnCNN is set to 35 x 35 with depth 

d = 17 for a gaussian denoising with certain noise level. 

 

Input for any DnCNN architecture is y = x + v. DnCNN adopts residual learning formulation 

to train a residual mapping ℛ(y) ≈ v. Whereas, MLP and CSF aim to learn a mapping function to 

predict latent clean image. 

 

From residual mapping, we have x = y - ℛ(y). The MSE for clean image and estimated 

image from noisy input is treated as the loss function to learn trainable parameters θ in DnCNN.  

 

 
 

θ trainable parameters 

represents N pairs of clean and noisy training pairs. 
 

 
Figure 3: Proposed architecture of DnCNN 
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Deep Architecture 
 

There are three layers in the architecture, shown in the above figure. 

1. Conv + ReLU: 64 filters of size 3 x 3 x c are used to generate 64 feature maps and ReLU 

is used for nonlinearity. C is the number of color channels (c = 1 for gray images; c = 3 for 

color image). 

2. Conv + BN + ReLU: 64 filters of size 3 x 3 x 64 are used and batch normalization is added 

between convolution and ReLU 

3. Conv: c filters of size 3 * 3 * 64 are used to reconstruct the output. 

 

This DnCNN has 3 main features, done residual learning is adopted to learn ℛ(y) and 

batch normalization is incorporated to speed up the training process and boost denoising 

performance. By adding ReLU with Conv, this network separated the noisy image from the hidden 

layers. This is similar to the iterative noise removal strategy adopted in different methods like 

WNNM and EPLL. 

 

Boundary Artifacts 
 
The image deconvolution often produces undesirable artifacts in deconvolved images. 

These boundary artifacts depend on the type of deconvolution method involved. The output image 

size should be the same as input image, leading to boundary artifacts. In DnCNN method, zeros 

are directly padded to input image before convolution to make sure that feature map of the middle 

layer has the same size as the input image.  By this simple padding strategy boundary artifacts 

are avoided. 

 

2.4.2 Model Learning 

 
Generally, networks can train wither the original mapping or residual mapping. When the 

noisy image y is more like the latent clean image x, residual image y is much easier to be 

optimized. Original mapping is closer to identity mapping than the residual mapping and residual 

learning is more suitable for image denoising. 
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Below graph shows the average PSNR values obtained using these learning formulations 

with/without batch normalization and with/without residual learning. It is adopted in two gradient 

based optimization algorithms: SGD and Adam. 

 

 
Figure 4: The Gaussian denoising results of four specific models under two gradient-based optimization algorithms, 
i.e., (a) SGD, (b) Adam, with respect to epochs. The four specific models are in different combinations of residual 
learning (RL) and batch normalization (BN) and are trained with noise level 25. The results are evaluated on 68 

natural images from Berkeley segmentation dataset. 

It is observed from the graph in both SGD and Adam algorithms, the combination of 

Residual learning and batch normalization yields the best result. We can conclude by saying 

instead of optimization algorithms, it is the combination of residual learning and batch 

normalization that increases the denoising performance of the network. Residual learning and 

batch normalization, both benefit from each other for Gaussian Denoising.  

 

To sum up, the combination of residual learning and batch normalization can speed up 

and stabilize the training process and also boost the denoising performance. 

 
 

2.4.3 DnCNN with unknown noise levels 

 
Most of the state-of-art denoising techniques like Multi-Layer Perceptron, TNRD are all 

trained for specific noise levels. When applied to Gaussian denoising for a dataset with unknown 

noise level dataset is provided, the common way is to first estimates the noise level of the image 

and then apply the denoising algorithm. This affects the accuracy of the denoising algorithm due 

to noise estimation.  
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DnCNN in connection with TNRD, even if the noise is not gaussian or noise level is 

unknown in a distributed network, we can still obtain the residual mapping with the existing 

gradient descent inference step. So, it doesn’t depend on whether the noise is Gaussian or non-

Gaussian noise distribution like SISR and JPEG deblocking. In [15], it is demonstrated by 

extending the algorithm providing the dataset with unknown noise level ranging from σ ∈ [0, 55] 

to train a DnCNN algorithm. The given algorithm was able to denoise the test set without noise 

level estimation. Due to this functionality, DnCNN is considered as a single model to solve three 

specific tasks like Blind Gaussian denoising, SISR and JPEG deblocking. Several experiments 

are conducted by providing Gaussian noise dataset with unknown noise level, JPEG images with 

different quality factors to train the DnCNN network.  

 

Extensive experiments on DnCNN denoising network with given noise level yields better 

results than state-of-art technologies like BM3D, TNRD. Even with the unknown noise levels, 

DnCNN results can still outperform BM3D and TNRD trained for a specific noise level. Moreover, 

DnCNN can be effective in training a single denoising network for general image denoising tasks 

like blind Gaussian denoising network, SISR and JPEG deblocking with different quality factors. 

 

2.5 DnCNN with Microscopy Fluorescence Images  

 
Traditional denoising methods often make idealistic assumption with the noise like 

Gaussian or Poisson noise. But noise in real-world such as high-ISO photos and Microscopic 

fluorescence are much more complex. Microscopic fluorescence images are not only much 

noisier than photography, but Poisson noise is the dominant noise source. A desirable effective 

denoising algorithm is required to get clean fluorescence microscopic images. DnCNN can 

perform better performance than many other denoising algorithms such as BM3D with unknown 

noise level.  
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Finally, the contributions of DnCNN denoising is summarized as below 

1. An end-to-end CNN network is proposed which adopts the residual learning strategy 

instead of directly estimating the latent clean image from noisy observation. 

2. Residual learning and batch normalization benefit the CNN by speeding up the training 

and increasing the denoising performance. DnCNN with certain noise levels outperforms 

the state-of-art methods in terms of visual quality. 

3. We can train a single DnCNN network to solve general image denoising tasks like blind 

Gaussian denoising, SISR and JPEG deblocking. 

 

Experimental results for real, synthetic and microscopic fluorescence can be discussed in 

section V.  
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Chapter 3 

Unsupervised Learning 

 
Unsupervised learning is a type of machine learning algorithm, which is used to draw an 

inference from the unlabeled data. This method cannot be applied directly to regression or 

classification problem but can be used to discover the underlying structures of image data. 

Expensive and time-consuming task to generate training labelled data promises the potential of 

unsupervised learning algorithms.  

 

Challenges of unsupervised learning algorithm includes the underlying structure of a 

dataset, summarizing and grouping it most usefully and how to effectively represent data in 

compressed format when an unlabeled data is provided. 

 

Compared to supervised learning, it is not always easy to come up with a metric that how 

well an unsupervised learning is working. Performance is always subjective and domain specific. 

Unsupervised learning tasks include clustering into groups and reducing dimensionality to 

compress data while maintaining the structure. Task of clustering is to group data points such that 

similar data points stay in a cluster and dissimilar datapoint stay away. Examples of clustering 

includes K-means clustering and hierarchical clustering. Dimensionality reduction is about 

reducing the complexity of the data while keeping the relevant structure possible. Two common 

practice techniques in dimensionality reduction is principal component analysis (PCA) and 

singular value decomposition (SVD). 

 
Noise2Noise algorithm is considered, which is an unsupervised learning for training a 

neural network. In this algorithm we use the statistical reasoning to signal data to map corrupted 

objects to clean images. According to this method, it is possible to learn to restore images by only 

looking at noisy examples. 

 

3.1 Introduction 

 
Lehtinen introduced Noise2Noise training where pairs of corrupted images are used for 

training a network. It was observed that when certain statistical conditions are achieved this 
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network maps corrupted image pairs to output the average image. For large group of images, the 

target is a per-pixel statistics such as mean, median or mode over the stochastic process.  

Therefore, this Noise2Noise model can be supervised which used the noisy data by choosing the 

suitable loss function to recover the denoised image. This method eases the pain of collecting the 

noisy-clean pairs. This method still requires at least two independent realizations of the corrupted 

images. 

 

Reconstructing a signal from noisy corrupted images is an important field of statistical data 

analysis. Recent advances in neural networks is to avoid using the traditional supervised learning 

approach and learn mapping corrupted observations to clean versions. A convolutional neural 

network is trained with a large number of pairs (𝑥𝑖̂, 𝑦𝑖) of corrupted noisy images𝑥𝑖̂ and clean 

targets 𝑦𝑖 by minimizing the empirical loss. 

 

𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝜃

∑𝐿(𝑓𝜃
𝑖

(𝑥𝑖̂, 𝑦𝑖))  

 

Where 𝑓Өis a parametric family of CNN mappings 

L is a Loss function 

We use 𝑥̂ ~ p (𝑥̂,𝑥𝑖) which is random variable distributed according to the clean target. In 

this data model, training data includes pairs of short and long exposure images, incomplete or 

complete magnetic resonance images, microscopic fluorescence images, synthetic scenes etc., 

This algorithm provides advances in Gaussian denoising, JPEG deblocking and text removal. 

These results are compared with the state-of-art supervised methods like BM3D and DnCNN. At 

times it outperforms the supervised learning methods or likelihood models which uses labelled 

data for few sets of images in image denoising.  

 

3.2 Technical background 

 
Assume having a set of unreliable room temperatures (y1, y2, y3...). Common 

methodology to estimate the right room temperature is to find the smallest average deviation from 

the set of given temperatures with minimum loss. Function for loss L 

 
𝑎𝑟𝑔𝑚𝑖𝑛⏟    

𝜃

𝐸𝑦{𝐿(𝑧, 𝑦)} 
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Loss L1 (Least Absolute Deviations) function used to minimize the error that is the sum of 

the absolute differences between noisy and clean observations.  

 
L1LossFunction = ∑ |𝑛

𝑖=1 𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| 

  
Loss L2 (Least Square Errors) function used to minimize the error that is the sum of all 

the squared differences between noisy and clean observations. 

 

L2LossFunction = ∑ (𝑛
𝑖=1 𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2  

 
For L2 loss, the minimum is found at the arithmetic mean of the observations. Whereas, 

for L1 loss the optimum is at the median of the observations. 

 
z = 𝐸𝑦{𝑦} 

 

Statistically, summary estimation using loss functions is an ML estimation by calculating 

a loss function as a negative log. Training neural networks is a kind of point estimation procedure. 

Observe a training example with a task for set of input-target pairs (𝑥𝑖 , 𝑦𝑖), where 𝑓𝜃(𝑥) 

 
𝑎𝑟𝑔𝑚𝑖𝑛⏟    

𝜃

 𝐸(𝑥, 𝑦){𝐿(𝑓𝜃(𝑥), 𝑦)} 

 
Removing the dependency of input data and using a trivial learned scalar, it reduces to 

(2). This whole training task is turned out to be minimization problem at every given sample. (4) 

is now equivalent to  

 
𝑎𝑟𝑔𝑚𝑖𝑛⏟    

𝜃

𝐸𝑥{𝐸𝑦|𝑥{𝐿(𝑓𝜃(𝑥), 𝑦)}} 

 
This minimize problem is solved using the point estimation problem for each given input 

sample. Thus, this property of loss is inherited into neural network training. 

 

The usual process of training input-target pair is manipulated by mapping each input to 

multiple values instead of 1:1 mapping from input to target. It can be explained by an example. In 

any super resolution task over images, the low-resolution image can be explained by several high-

resolution images as the exact positions and orientations are lost in decimation. p(y|x) is the highly 

complex distribution of low-resolution images. So, training a network with low- and high-resolution 

images using L2 loss, the neural network learns to average all the edges results spatial blurriness 

for the network prediction. This can be defined as learned discriminator functions as losses. 
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This property of the trained neural network has an unexpected benefit. One of the 

properties of L2 minimization is that the estimation of a target remains unchanged even when the 

input is changed with random number whose value matches the target.  From equations (3) and 

(5), we can say that the equations remain unchanged even if distribution of input and output are 

changed as the arbitrary distributions having the same expected values. We can corrupt the 

training data of neural network with zero-mean noise without change in the learning data.  From 

equation (1), we can say that input and targets are now from a noisy image such that the 

unobserved clean target is E{𝑦𝑖̂|𝑥̂} = 𝑦𝑖. We do not need any explicit p(noisy|clean) or p(clean) to 

train a neural network when we have the data distributed accordingly. 

 
With the above information, image restoration tasks can be solved using the corrupted set 

of images instead of clean targets. A long exposure, noise-free photo in low light photography is 

the average of several short, independent, noise exposures. This can be an example of getting 

expensive or potentially long exposure photographs by removing the photon noise using pairs of 

noisy images. Similar observations can be made with l1 losses as well. 

 

3.3 Noise2Noise Training 

 
Training a Noise2Noise is different than traditional method that can be denoised without 

any ground truth data available. Pairs of noisy images (𝑥𝑗 , 𝑥′𝑗) are inputs for Noise2Noise method. 

𝑥𝑗  = 𝑠𝑗 + 𝑛𝑗 and 𝑥′𝑗  =𝑠𝑗+𝑛′𝑗 

 

Where  𝑛𝑗 and 𝑛′𝑗are noise components and are independent samples from the same 

distribution. Patch based perspective is again applied on training data pair (𝑥𝑅𝐹(𝑖)
𝑗, 𝑥′𝑗 𝑖)  

𝑥𝑅𝐹(𝑖)
𝑗 extracted from noisy input 𝑥𝑗  

𝑥′𝑗 𝑖 is noisy target from 𝑥′𝑗 at position i 

 

Similar to traditional method, parameters are tuned to reduce the training loss just that 

noisy target is different from ground truth provided in traditional method. Though the mapping is 

learned from noisy target, the Noise2Noise method will still provide a clean image as output. The 

important fact is the expected value of noisy input is same as the clean image. 
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3.4 Deep Architecture 

 
Two different architectures were used in Noise2Noise to determine that clean targets are 

unnecessary in this application. 

1. RED30 

2. U-Network 

3.4.1 RED30 

 
A baseline state-of-art method called “RED30” is used for few experiments. It is 

constructed a 30-layer hierarchical residual network with 128 feature maps. To train this network, 

IMAGENET dataset has been used. We obtain 256 X 256-pixel crops drawn from 50k images 

with different noise level ranging from σ є [1,50]. 

In this blind denoising network, the RED30 has to estimate the noise level while removing 

it. Experiments with different datasets like BSD300, SET14, KODAK has been performed. When 

compared with the state-of-art BM3D method, RED30 achieves ~0.7dB better results and the 

denoising performance still hold good.  

3.4.2 U-Network 

 
U-network is used for much deeper network and is roughly 10 times faster training speed 

and still achieves similar results.  

 

The network architecture consists of contracting path and expansive path. The contacting 

path typically have a convolutional network consisting of repeated application of 3x3 convolutional 

networks followed by 2x2 max pooling operation with a stride of 2. Every step in the down 

sampling we double the number of feature channels. Expansive path contains up sampling of 

feature channels that halves the number of feature channels, a concatenation with the cropped 

feature map and two 3x3 convolutions followed by ReLU. Altogether there are 18 convolutional 

layers. 

Except for the first experiment, this application uses U-Net for rest of them. All the basic 

text removal and noise removal with RGB images the output channels are set up n = m = 3. 

For Monte Carlo denoising with input as RGB pixel color, 3D vector per pixel n = 9, m= 3. 

MRI reconstruction experiments are done using n = m = 1. 
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This network does not have batch normalization, dropouts or other regularization 

techniques. Training is done with ADAM. Experiments were conducted with a learning rate of 

0.001. 

 

NAME 𝑁𝑜𝑢𝑡 Function 

INPUT 
ENC_CONV0 
ENC_CONV1 
POOL1 
ENC_CONV2 
POOL2 
ENCCONV3 
POOL3 
ENC_CONV4 
POOL4 
ENC_CONV5 
POOL5 
ENC_CONV6 
UPSAMPLE5 
CONCAT5 
DEC_CONV5A 
DEC_CONV5B 
UPSAMPLE4 
CONCAT4 
DEC_CONV4A 
DEC_CONV4B 
UPSAMPLE3 
CONCAT3 
DEC_CONV3A 
DEC_CONV3B 
UPSAMPLE2 
CONCAT2 
DEC_CONV2A 
DEC_CONV2B 
UPSAMPLE1 
CONCAT1 
DEC_CONV1A 
DEC_CONV1B 
DEV_CONV1C 

n 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
96 
96 
96 
96 
144 
96 
96 
96 
144 
96 
96 
96 
144 
96 
96 
96 
96 + n 
64 
32 
m 

 
Convolution3×3 
Convolution3×3 
Maxpool2×2 
Convolution3×3 
Maxpool2×2 
Convolution3×3 
Maxpool2×2 
Convolution3×3 
Maxpool2×2 
Convolution3×3 
Maxpool2×2 
Convolution3×3 
Upsample2×2 
Concatenate output ofPOOL4 
Convolution3×3 
Convolution3×3 
Upsample2×2 
Concatenate output ofPOOL3 
Convolution3×3 
Convolution3×3 
Upsample2×2 
Concatenate output ofPOOL2 
Convolution3×3 
Convolution3×3 
Upsample2×2 
Concatenate output ofPOOL1 
Convolution3×3 
Convolution3×3 
Upsample2×2 
Concatenate INPUT 
Convolution3×3 
Convolution3×3 
Convolution3×3, linear act 

 
 

Table 2: Network architecture used in Noise2Noise.𝑁𝑜𝑢𝑡 denotes the number of output feature maps for each 
layer. Number of network input channels n and output channels m depend on the experiment. All 
convolutions use padding mode same and last layer is followed by leaky ReLU. Other layers have linear 
activation. 
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This U-Net architecture achieves performance on biomedical image segmentation 

applications like microscopic fluorescence images. 

 

Few experiments are conducted by adding a synthetic noise called Poisson noise to the 

image. Poisson noise is the dominant source of noise in many photographs where are zero-mean 

noise is signal independent and hard to remove it. Training is done with L2 loss and by varying 

the noise magnitude. Dark current and quantization are dominated by Poisson noise, can be 

made zero-mean and hence pose no problems for training with noisy targets.   

 

Monte Carlo Rendering 
 
Monte Carlo is a path tracing method in computer graphics for rendering three-

dimensional images such that the illumination is real. In this process physically accurate 

renderings are generated. This is the random sequence of scattering lights connecting light 

source, virtual sensors and their radiance in the possible paths. It is constructed such that intensity 

at each pixel is the sampling to the zero-mean. But there are very few sampling techniques that 

suits this distribution. Some effects like lighting, scene configuration vary from pixel to pixel and 

results in rare distributions and bright outliers. 

 

All this effect makes it difficult to remove noise from images compared to Gaussian and 

Poisson. This Noise2Noise not only has luminance values but also the texture color and normal 

vector of surface visible at each pixel. 

 

This combination of unbounded luminance and non-linearity is a problem in denoising. If 

the denoiser is trained to output a luminance values, a standard MSE loss will be dominated by 

outliers. Or if the denoiser is trained to output a tone mapped values, the nonlinearity would make 

the output image different from the expected clean image. This nonlinearity problem with tone 

mapped outputs exists with the metrics MSE which is used to measure the quality of HDR images. 

This is resolved by considering the denominator of the gradient to be zero to achieve the correct 

output values. It is observed from our experiments that it is always better to use tone mapped 

inputs instead of HDR images. This retains the target denoised as the expected value. This 

network is trained with a set of 860 architectural images. It takes more time to render these images 

on a NVIDIA tesla GPU.  
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3.4.3 MRI Images 

 
Magnetic Resonance Images have a set of biological tissues that are essential by 

sampling the Fourier transform. Recent changes in MRI techniques depends on the principle of 

compressed sensing. They underestimate the k-space Fourier transform and apply non-linear 

reconstruction in a suitable transform domain. 

 

This regression problem is trained with a convolutional neural network by a pair of noisy 

images with L2 loss as the Fourier transform is linear. And for additional improvement we apply 

Fourier transform on the frequencies of the input and then transforming it back to the domain by 

applying inverse transform before computing the loss. This process is trained end to end. IXI brain 

MRI dataset is used to train this network. For simulating the spectral sampling, we draw random 

samples from the FFT of the images in the dataset. Hence this is applied on a real valued with 

FFT built in support. Very high restoration can be observed when training this network with the 

noisy data. 

3.5 Noise2Noise on Microscopic Fluorescence images 

 
A noise2Noise model is trained with a noisy image and outperforms many state-of-the-art 

supervised methods on Poisson noise which need a clean and noisy image pairs. FMD dataset 

is trained with the noise2Noise network which dominates in Poisson noise for two-photon and 

confocal microscopy images and wide-field microscopy with Gaussian noise. This method shows 

better performance than with few traditional methods trained with real noisy images. For working 

with FMD dataset, few estimation parameters are required like scaling coefficient and Gaussian 

noise variance. Then the training is performed with Noise2Noise denoising algorithm with the 

above parameters. Noise2Noise network is trained with different noise levels with samples of 

randomly selected mini batches for 400 epochs. This training may take less than 1ms when run 

on a GPU that enables real time denoising up to 100 frames per second. This outperforms several 

traditional denoising methods.  With such performance in denoising an image and high speed, 

Noise2Noise method can efficiently benefit real time noisy microscopic fluorescence imaging. 

This training confirms that Noise2Noise model has similar performance as DnCNN without 

providing any clean images.  These results show us that the deep learning denoising algorithm 

that are trained with FMD dataset outperforms other methods by large margin in all the different 

modalities and noise levels.  
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Chapter 4 

Self-Supervised learning 

 

4.1 Introduction 

 
Several architectures have been developed in order to remove noise from images by 

applying deep learning. Architectures like U-nets, residual networks, residual dense networks 

have been introduced. These models are trained as a Supervised model with noisy images as 

input and clean images as output. The above networks are trained to remove different kinds of 

noise in the images. Self-supervised learning is a kind of machine learning technique which is a 

promising alternative where tasks are developed that allow models to learn without explicit 

supervision and help to perform the task of denoising. Major benefits of using this self-supervised 

technique is increasing data efficiency like achieving comparable or better performance without 

labelled data or reinforcement learning.  

 

This field of self-supervised learning is rapidly increasing, and performance of these 

methods is comparable to the fully supervised models. This kind of learning does not need access 

to clean image targets or pairs of noisy images. This can be applied in situation when the data is 

difficult to acquire or is really an expensive task. There are several algorithms designed based on 

this self-supervised learning approach by employing a blind spot network in receptive fields. This 

significantly improves aspects like image quality and training efficiency. The results obtained by 

such algorithms are comparable with the denoising methods that handle Gaussian noise, Poisson 

noise and impulse noise.  

 
Lehtinen introduced Noise2Noise as a method that removes the need for having a noisy-

clean image pairs which eases data collection significantly, large collection of poor images is still 

required. Observation according to this method states that when a certain statistical condition is 

met, a network designed to map impossible corrupted images to corrupted image learns to output 

the average image. This restoration model can be supervised using noisy data by choosing the 

appropriate loss function to recover the statistic of interest. The motivation behind introducing this 

Self-supervised model, how much can we learn by looking at the pairs of corrupted images. Based 
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on several experiments on Noise2Noise model with different noise types we can say only minor 

concession s in denoising performance are necessary. It was also identified that all the 

parameters in denoising algorithm need not be known in advance. In case when the ground truth 

is physically unavailable, Noise2Noise can still enable the training of the denoising algorithm. 

However, this algorithm requires two images capturing the same content with independent noises. 

 
Along with these advantages, Noise2noise have few other drawbacks.  

1. Noise2Noise requires pairs of noisy images. 

2. Gathering such image pairs with constant s is possible only for static scenes. 

 

To overcome these limitations of an unsupervised network Noise2Noise, a new algorithm 

is introduced. Noise2Noise is a self-supervised algorithm that required neither clean-noisy image 

pair or nor noisy image pairs. 

 

4.2 Technical Background 

 
Noise2Void is designed by inspiring from the Noise2Noise algorithm. This algorithm needs 

no image priors, but just uses individual noisy image as training data by the assumption that the 

corruption is zero-mean and independent between pixels. Noise2Void is a self-supervised method 

that overcomes the high-quality denoising models and can be trained without availability of clean-

noisy image pairs. Unlike Noise2Noise or any other traditional denoising method, Noise2Void can 

be applied to data that have neither noisy-clean image pairs or noisy image pairs are available. 

For designing this method a few basic assumptions were made. 

 

1. Signal in an image is not pixel-wise independent. 

2. The noise in an image is conditionally pixel-wise independent when the signal s is given. 

 

We used BSD68 dataset along with FMD dataset in order to check the performance of 

Noise2Void. These results are in turn compared to other unsupervised algorithm like Noise2Noise 

and traditional algorithm with supervised learning like DnCNN. Though Noise2Void might not 

outperform other methods which are trained with clean-noisy image pairs or noisy image pairs, 

but the results are comparable and outperforms with few noise levels. 
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This algorithm is also applied to FMD Microscopic Fluorescence dataset which cannot be 

applied to traditional denoising algorithms due to lack of clean images. Even Noise2Noise cannot 

be applied to few of the datasets since datasets are not available. This helps us better understand 

the practical importance of Noise2Void method.  

 

Noise2Void method is based on blind-spot network where the center pixel is not included 

in the receptive fields. In this way we can use the same image for both training and testing. Since 

the center pixel is not considered in receptive fields, using the same image is similar to using 

different noisy image. This method is termed as self-supervised method as the same image is 

used to predict the clean image without separate training data.  

 
Contributions for this method includes 

 

• Introduction of an approach which requires a body of single noisy image in order to train 

a denoising network. 

• Comparing the results of self-supervised network to traditionally approached supervised 

learning and unsupervised learning. 

• A detailed description of the efficient implementation of Noise2Void method.  

 

These deep learning methods are trained for extracting information from ground truth and 

then apply this model to the test data. In [1], Jain applied the convolution neural networks for 

denoising images. They used the set-up of denoising the regression task and the network tries to 

minimize the loss between the predicted image and the ground truth image provided. Later in [17],        

Zhang introduced a state of the art denoising results by introducing denoising convolutional neural 

networks based on the idea of residual learning. In this method, the CNN not only predict the 

clean image but instead noise at every pixel was determined. This allows to train the denoising 

CNN with different ranges of noise levels. Their architecture is distributed with several pooling 

layers. Then a complimentary very deep encoder-decoder architecture has been developed in 

[18] for the purpose of denoising task. This network also uses the residual learning but introduces 
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skip connections between corresponding encoding and decoding modules. This network also 

uses a single CNN for different noise levels.  

In  [18], Tai used recurrent persistent memory units as part of the above architecture. [19] 

is based on the task of image restoration in microscopic fluorescence data. For this purpose, pairs 

of several low and high frequency images are collected. This data collection can be difficult as 

the biological samples should not move in between the exposures. Noise2Void uses this method 

as the starting point, including their U-Net architecture. 

N2V is applied on [17] and [18] as their architecture requires noisy input at each pixel. This 

input is masked in N2V when the gradient is calculated. 

 

4.2.1 Internal statistics method in Noise2Void 

 
Internal statistics method will not be trained on ground truth instead it is directly applied 

on the test image where required information is extracted. Noise2Void follows this internal 

statistics method and enables the training directly on a test image. Like [20], N2V is a classic 

denoising algorithm that predicts pixel values based on the noisy surrounding 

 

BM3D is classic example of Internal Statistics method. It’s idea is based on the idea that 

noisy images usually contain repeated patterns of data. This method performs denoising by 

grouping similar patterns and filtering them. But this approach has high computational cost during 

training. This is overcome by Noise2Void method since computation is performed only during 

training. Once the network is trained, it can filter out similar patterns in any number of images. 

 

Deep image prior is also a method which shows that the CNNs resonates with the 

distribution of natural images and it can be used for image restoration without any additional 

training. This network produces a regularized denoised image as output. 

 

Finally, this Noise2Void is followed using [21] where the network might not be used for 

denoising, but it trains a neural network to predict the unseen pixel based on its surroundings. 

This network is trained to predict the probability distribution for each pixel for regression task. 

However, Noise2Void differs in structure of receptive fields which masks the central pixel in a 

square receptive field. 
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4.2.2 Image formation model 

 
A noisy image is composed of x = s + n and its disjoint distribution  

 

p(s, n) = p(s)p(n|s) 

 

Where p(s) is the arbitrary distribution where i and j are two pixels within a certain radius 

p(𝑠𝑖| 𝑠𝑗) ≠ p(𝑠𝑖) 

 

The pixels of 𝑠𝑖are not statistically independent. Assume the conditional distribution  

p(n|s) = ∏𝑖 p(𝑛𝑖|𝑠𝑖) 

Here the pixel values of 𝑛𝑖is conditionally independent when signal is given. Assume the 

noise is zero-mean 

𝐸[𝑛𝑖] = 0 which leads to 𝐸[𝑥𝑖] = 𝑠𝑖 

If multiple images with same signal were provided with different noises and realizations 

the result would be equal to ground truth. 

 

4.3 Noise2Void Training 

 
In Noise2Void, both the training and test samples are derived from the single noisy image 

𝑥𝑗 . We simply extract a patch from the training data and treat it as an input and its center pixel as 

target, N2V will learn to identify by mapping the value at the center of the input patch to the output.  

 

In Spite of training the network with a clean image, training N2V using a single noisy image 

is still possible. This learning algorithm has an architecture with some special receptive fields. In 

N2V algorithm we assume the receptive field 𝑥𝑅𝐹(𝑖)for the network have a blind spot in the 

center.  
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Figure 5: Conventional neural network along with the blind-spot network.(a) In a conventional neural network, the 

prediction for each pixel depends on the square patch of the input pixel known as receptive field of the pixel. Training 
a network with such noisy image as input and target, the network will degenerate and simply learn the identity. (b) In 
a blind-spot network, the receptive fields of each pixel excluded the center pixel to learn its identity. This will remove 

the pixel wise independent noise when trained on same noisy and target image. 

 

This CNN prediction is affected by all its square patch pixels except the center pixel at 

very location. This type of network is termed as bind-spot network. Bind-spot network can be 

applied with any of the algorithms like traditional or Noise2Noise using the clean target or noise 

target. Since the center pixel is it considered, the network will have slightly less information for 

prediction. So, the accuracy of the network can be a bit less when compared to the regular 

network. However, this can still perform better as it is removing only one pixel out of the entire 

receptive fields. 

The main advantage of using a blind spot network is it becomes difficult to learn the identity 

of the center pixel. From our basic assumption that the noise is pixel-wise independent, the 

neighboring pixels will have no information about the noisy pixel. This becomes difficult to produce 

an output better than apriori expected value (zero-mean for noisy pixel). However, the signal still 

contains statistical dependencies. Because the this the network can still predict the signal by 

looking at the neighboring pixels. As a result, blind-spot network will allow us to find the input and 

target patch from the same noisy image. 

 
Figure 6: Blind-spot masking scheme used in Noise2Void Training.(a) Noisy training image (b) A randomly selected 

pixel (blue rectangle) is chosen and intensity is copied over to create blind-spot (red and striped square). It is used as 
input for training. (c) target patch corresponding to selected pixel. Original input with unmodified values is also used 

as target. Loss is calculated for blind spot images that are masked.  
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We have to train this network further by minimizing the empirical loss. 

 

𝑎𝑟𝑔𝜃𝑚𝑖𝑛∑∑𝐿(𝑓(𝑥𝑅𝐹(𝑖)
𝑗

𝑖𝑗

;  𝜃), 𝑥𝑖
𝑗) 

We should note that the target is same in Noise2Noise as well as Noise2Void which is 

extracted from the second noisy image. By comparing it with Noise2Noise, both the targets have 

equal signal and the noise is independent samples from the same distribution. Blind spot network 

can be trained by only using individual noisy images. A new scheme has been proposed to mask 

the center pixel and randomly select any pixel from the neighboring pixels such that it effectively 

prevents the network to learn the identity.  

 

4.4 Network Architecture 

 
Noise2Void uses U-Net architecture to which batch normalization is added before each 

activation function. CSB Depp framework, a toolbox for Content Aware Image Restoration (CARE) 

is the basis for its implementation. In this network we process an entire patch to calculate the 

gradients for single noisy image.  

 

In a given noisy training image, they extract a random patches of size 64x64 pixels, which 

are greater than receptive field size. Within each patch few random pixels are selected, and 

different masking techniques are used in order to avoid clustering.  Different masking techniques 

include Uniform Pixel Selection (UPS), Gaussian(G), Gaussian Fitting(GF), Gaussian Pixel 

Selection(GPS) with different kernel size, loss functions and features are applied.  
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Figure 7: U-net architecture with 32x32 as the lowest resolution. Blue box denote a multi-channel feature map. 
Channels are denoted on top of the box. White box denotes the copied feature maps. X-y size is denoted at lower edge 
of the box. 

 
 
This network is trained for 200 epochs with each epoch containing 400 gradient steps. An 

on-the-fly random sub-patch(64x64) extraction is performed. Validation loss is calculated similar 

to training loss for any traditional and Noise2Noise losses. They use the randomly selected 

masked pixels for calculating the validation loss. Simultaneously gradients are calculated while 

ignoring the predicted image. This training is done using keras pipeline with specialized loss 

function zero for all the selected pixels. 

 

The receptive fields for training are selected based on the CARE framework. With a kernel 

size of 3x3 and depth 2, the receptive field size is set to be 22x22 pixels. With a kernel size of 

5x5, receptive field size is set to 40x40. Different masking methods with different kernel sizes are 

applied on the network to check the performance of the network. BSD68 dataset is used in order 

to test different settings and different variants of the masking scheme. For few schemes the loss 

is calculated using Mean Absolute Error instead of Mean Square Error. 
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4.5 Noise2Void on Microscopic Fluorescence Images 

 
For microscopic images, Noise2Void method is unfortunately not competitive with models 

that are trained with clean image data or noisy image data. So, by combining this with some 

suitable description of noise, a complete probabilistic noise model with per-pixel intensity 

distribution is generated. With this model we can obtain a noisy signal and true signal in every 

pixel. This method is applied on FMD dataset with broad range of noise and achieved competitive 

results in state-of-the-art supervised methods. In self-supervised methods like Noise2Void the 

assumptions are that the images are pixel wise independent and the true intensity of the pixel can 

be predicted from the blind-spot network mentioned above. The second assumption is not fulfilled 

for microscopic image data and this needs some improvement for the existing model. 

 

This problem of self-supervised networks is addressed by Laine et al. in [22] by assuming 

the Gaussian noise model and predicting its intensity per pixel. This can be applied to other noise 

models as well and it was described well in PN2V.This model combines a general model that can 

be represented as histogram and distribution of pixel intensities is represented by a set of 

predicted samples. MMSE is used to estimate the final prediction and it consistently outperforms 

other supervised techniques. 

 

Instead of using the idea of masking, PN2V trains the CNN to describe the probability 

distribution. By integrating over all the possible clean signals, the probability of observing a pixel 

the pixel value when the surrounding receptive fields are given can be considered as an 

unsupervised learning task. The loss function in this method is considered from the interpreted 

as independent samples and drawn from p(𝑠𝑖|𝑥𝑅𝐹(𝑖); 𝜃). This summation needs to be performed 

on a GPU. Minimal mean Squared Error is used to find sensible estimates for every pixel based 

on the probabilistic model by weighing the predicted samples with the observed likelihood and 

calculating the average. 

 

This model is applied on the FMD dataset with different samples and different imaging 

conditions. This method uses the arbitrary noise model by analyzing the available set of images 

with the same noise. PN2V is challenging in low-light conditions where noise is the typical limiting 

factor for analysis.  
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Chapter 5 

Comparison of Results and Summary 

 
In this section, we will present the experimental settings and results of our image denoising 

methods and compare them for real, synthetic and microscopic fluorescence images. 

 

Experimental settings for DnCNN 
 

Datasets used: Set14, BSD68, CBSD68, LIVE1 

For Gaussian denoising with unknown noise level, we followed 400 images of patch size 

50 x 50 to train a single DnCNN model for blind Gaussian denoising. 128 x 3000 patches are 

cropped to train the model. 

 

 
 

Figure 8: The left is the ground-truth, middle is the noisy image corrupted by AWGN, the right is the denoised image 
by DnCNN. Average PSNR (dB)/SSIM with Noise Level 25 on BSD68 dataset is 30.4358/0.8618. 

 

 
In addition to gray scale image denoising, we also trained the blind image denoising 

network DnCNN with 432 color images of Berkeley Segmentation Dataset. And CBSD68 for the 

purpose of testing. The noise levels are set in the range of [0, 55] and 128 x 3000 patches of size 

50 x50 are cropped for training this model and is referred as CDnCNN 
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Figure 9: The left is the ground-truth, middle is the noisy image corrupted by AWGN, the right is the denoised image 
by DnCNN. Average PSNR (dB)/SSIM with Noise Level 35 on CBSD68 dataset is 31.5531/0.8190. 

 

DnCNN is to learn a single model for three general imaging denoising tasks like Blind 

Gaussian denoising, SISR (Single Image Super Resolution) and JPEG deblocking. All these 

images are given as input to the network with different downscaling factors, quality factor. Totally 

we generated 128 x 8000 image patch pairs for training. We refer this training as DnCNN-3. 

 

 
Figure 10: The left is the ground-truth, middle is the noisy image corrupted by AWGN, the right is the denoised image 
by DnCNN. Average PSNR (dB)/SSIM with Noise Level 25, Upscaling Factor 3, Quality Factor 20  on BSD68 dataset 
is 32.17/0.8995. 

 

Experimental settings for Noise2Noise 
 

Datasets used: ImageNet, BSD300, SET14 and KODAK 

 

We train our Noise2Noise network using 256 x 256 pixels crops drawn from 50k images 

in the IMAGENET dataset. A randomized standard deviation of [0, 50] is used for each training 

sample where the network has to estimate the magnitude of noise before removing it. No batch 

normalization, dropout or other regularized techniques are used. Training was done using ADAM. 
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The number of input and output channels for the colored BSD dataset is n = 3, m = 3. KODAK 

dataset is used as a validation dataset. 

Learning rate of 0.0003 is kept constant during the training and the same is used for all 

the experiments with Noise2Nosie. 

 

 
Figure 11: The left is the ground-truth, middle is the noisy image corrupted by AWGN, the right is the denoised image 
by Noise2Noise. Average PSNR (dB) on BSD dataset is 32.88 

Table 3: Below is the average PSNR observed when the network is trained with different noise and different 
denoising methods. 

Noise Dataset 
Average PSNR (dB) 

Noise2Noise 
Average PSNR (dB) 

DnCNN 

Gaussian BSD300 31.04 31.553 

Poisson BSD300 30.33 - 

 

Noise2Noise on MRI data 
 
Dataset used for MRI training is IXI-T1. Once the training set is downloaded, subset of this 

data is converted into training and validation sets. By default, Noise2Noise training is enabled for 

the MRI images. This network is training for 300 epochs and a learning rate of 0.0003 only on 

pairs of noisy images. 

 

 
Figure 12: The left is the ground-truth, middle is the noisy image corrupted by AWGN, the right is the denoised image 
by Noise2Noise. Average PSNR (dB) on IXI-T1 dataset is 31.61 
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Experimental settings for Noise2Void 

 
This method does not require either ground truth image or noisy image pairs as training is 

not required. But training is done on the input image itself. 

 

Noise2Void is applied on natural images, simulated biological image and microscopic 

fluorescence images. And the results of the network are compared to DnCNN and Noise2Noise. 

The network used for Noise2Void is a U-Net with depth 2 and kernel size 3 with batch 

normalization and linear activation function in the last layer. For Noise2Void training we use a 

batch size of 128 and initial learning rate of 0.0004  

A noisy image with a dimension of 1100 x 2800. This model generates a patch of 64x64 

and are divided into training and validation sets. Tis model trained with 25 epochs to execute the 

notebook faster. For better results we might increase the epoch size to 100 - 200 for training. 

Once a model is generated, prediction is done using the model created in training. 

 

 
      Figure 13:  Left is the noisy image, right is the denoised image by Noise2Void. PSNR (dB)  is 29.31 
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Denoising Microscopic Fluorescence for FMD dataset 
 
This network is implemented using Jupyter notebook where training and testing is 

performed on FMD dataset with convallaria MICE data. This experiment is done on FMD dataset 

with confocal modality. The FMD dataset is split into training and test sets, where training set is 

composed of images randomly selected from different FOVs for each image configuration and 

noise levels. 

 

Considering GPU memory constraint, the network is trained with images cropped into four 

non overlapping patches of size 256 x 256. Instead of testing with pre-train models, we re-trained 

the model with same network mentioned in the architecture with similar hyper parameters on the 

FMD dataset from scratch. 

 

DnCNN 
 

 
 

Figure 14: The left is the ground-truth, middle is the noisy image corrupted by AWGN, the right is the denoised image 
by DnCNN. Average PSNR (dB) on FMD dataset with CONFOCAL_MICE data is 34.533 

 

 
Figure 15: PSNR and MSE on the mixed test set with raw images during training. Each training epoch contains 
images of size 256 x 256. Batch normalization helps stabilize training DnCNN, residual learning help improve 
denoising. 
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Noise2Noise 
 

 
Figure 16: The left is the ground-truth, middle is the noisy image corrupted by AWGN, the right is the denoised image 
by Noise2Noise. Average PSNR (dB) on FMD dataset with CONFOCAL_MICE data is 35.47 

 

 
Figure 17: PSNR and MSE on the mixed test set with raw images during training. Each training epoch contains 
images of size 256 x 256. Batch normalization helps stabilize training Noise2Noise, residual learning help improve 
denoising. 

 

Noise2Void 
 

 
Figure 18: The left is the ground-truth, the right is the denoised image by Noise2Void. Average PSNR (dB) on FMD 
dataset with CONFOCAL_MICE data is 37.57 
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 Ground Truth Input DnCNN Noise2Noise Noise2Void 
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PSNR:31.04dB 
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IXI-T1 Does not exist 

 

Does not exist 
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Confocal
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PSNR:35.47dB 

 
PSNR:37.57dB 

Two-
Photon 
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Does not exist 

 

Does not exist Does not exist 

 
PSNR:37.57dB 

Figure 19: Results and average PSNR values obtained by DnCNN, Noise2Noise and Noise2Void trained denoising 
network. For few of the denoising methods, the datasets are not application due to unavailability of clean-noisy 
targets or noisy pairs for training. 
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Summary 

 
Denoising convolutional neural network (DnCNN) was proposed when residual learning is 

adopted in order to separate noise from clean image. DnCNN implements batch normalization 

and residual learning to speed up training speed and improve the denoising performance. This 

blind denoising method has the capacity to handle Gaussian denoising using unknown noise 

levels and also other denoising tasks like SISR and JPEG decompression with different quality 

factor. Extensive experiments were conducted on different datasets including Gray and Color 

images. These experiments show that this method works effectively with Gaussian noise than 

real-world images in biomedical sets. 

Noise2Noise method shows that a simple statistical argument leads to new capabilities in 

learning about the signal using deep neural networks. It is always possible to recover signals just 

by looking at the noisy observations and still the performance levels are equal or close to using 

clean-noisy image pairs. With the experiments conducted, we show that the high-resolution 

performance of deep neural networks can be achieved entirely without clean data. This is a benefit 

for several applications like microscopic data that do not have a collection of clean image pairs. 

The latest research on denoising noisy images is using Noise2Void. It was observed that 

this training requires only single noise image for denoising CNNs. This method is applied on 

different sets of data like general photography and fluorescence microscopy. As long as the initial 

predictions like pixel wise independent noise are met, this method can be compared to traditional 

methods and Noise2Noise networks. This can be a powerful denoising network in the field of 

biomedical imaging data like microscopic fluorescence structures.  
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Chapter 6 

Future Work 

Convolutional Blind Denoising of Real Photographs - CBDNet 
 
Deep Convolutional Neural Networks have achieved impressive results in image 

denoising with Additive White Gaussian Noise (AWGN). But their performance is limited to these 

particular noise types. These cannot be applied to real-world noisy images as the learned models 

from CNN are easy to overfit which deviates from real world noise models. In order to improve 

the ability of deep CNN denoisers, a new network has been developed to handle realistic noise 

models with real-world noisy clean image pair. Different tasks handled by this network includes 

signal dependent noise/signal processing pipeline is considered for synthetic realistic noise and 

the network is trained for real-world noisy photographs to train CBDNet.  For rectifying the 

denoising result conveniently, a noise estimation network is also included into CBDNet. 

 

Though gaussian denoising performance have been significantly improved, denoisers for 

blind noise removal for real photographs still degrades. Also, denoisers flor non-blind denoising 

also suffers from smoothing out the details in the process. This phenomenon can largely depend 

on the memorizing ability of large-scale training data. So, in this CBDNet they developed a 

convolution blind denoising network to tackle the problem with real world noisy photographs. 

Generally, the performance of a denoiser depends on the distributions of real and synthetic 

images. So, training a network with realistic noise models in blind image denoising is the major 

problem. In CBDNet assumption, Poisson-gaussian distribution is considered as an alternative 

for AWGN raw noise modeling. And also, in-camera processing also increases the complexity of 

noise.  Therefore, CBDNet considers both gaussian Poisson noise as well as in-camera 

processing into consideration for this noise model. In-camera processing includes demosaicing, 

gamma correction, JPEG compression etc., These processing play vital role in realistic noise 

models and achieves noticeable performance. 
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Figure 20: Illustration for CBDNet for blind denoising real-world images. 

 

This CBDNet involves two stages according to [23], one is noise-estimation subnetwork 

and other a non-blind denoising subnetwork. Generally, CNN depends on the ability of 

memorizing the training data. Existing deep denoisers like DnCNN does not work well with the 

real-world noisy images as they assume the data to be AWGN while the real noise distribution is 

much different from that. But these models have high memorization ability to learn the real noise 

models. Therefore, noise models play a crucial role in the denoising performance. Noise model 

in CBDNet considers Gamma correction, demosaicing and JPEG compression in order to 

generate synthetic noisy image which is similar to real world noisy images. 

This architecture includes noise estimation 𝐶𝑁𝑁𝐸and non-blind denoising subnetwork 

𝐶𝑁𝑁𝐷 . A noisy observation y is input for 𝐶𝑁𝑁𝐸  which generates the noise level map with network 

parameters. This noise level map is of the same size as the input y estimated with a fully 

convolutional network. 𝐶𝑁𝑁𝐷  takes both y and noise level input map as input to generate the 

denoising result.  

Structure of 𝐶𝑁𝑁𝐸  

 

• 5-layer fully convolution network without pooling and batch normalization. 

• Conv2D (32, (3,3), activate = ReLU) 

Structure of 𝐶𝑁𝑁𝐷  

 

• 16-layer U-Net architecture (input: y and noise level input map) 

• With symmetric skip connection, strided convolutions and transpose convolutions 

• Filter size 3*3 and ReLU nonlinearity is applied after every layer except the last one. 
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This network provides better results when compared to the DnCNN for real-world images due 

to the realistic noise models which includes Gaussian and ISP pipeline to make the model learn 

the synthetic images applicable to real-world noisy images. And also, its performance can be 

increased by including both synthetic and real images for training the network. 

 

Experiments 
CBDNet is trained with real-world noisy image datasets like NC12, DND and Nam. 

Observed results for Real-world images by applying CBDNet 

 

 
Figure 21: Denoising results of a real-world noisy image using CBDNet 

 
This CBDNet is tested on microscopic fluorescence images from FMD dataset, no 

comparable results are obtained for this kind of images. 

 

 
Figure 22: Denoising results of microscopic fluorescence images using CBDNet 
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In my future work, I would like to study about the CBDNet and also modify the non-blind 

denoising network/noise-estimator in order to analyze the performance with microscopic 

fluorescence images.  
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