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ABSTRACT 

Relating Sonic Velocities, Minimum Horizontal Stress, and Natural Fracture Distribution 

to Stimulation Efficiency during Completion of the Marcellus Shale MIP-3H 

Unconventional Well, West Virginia, USA 

 

Kaitlin G. Evans 

Log data from the Marcellus Shale Energy and Environment Laboratory (MSEEL) was acquired 

along the lateral of the MIP-3H well. This unconventional shale-gas well was completed within 

the Marcellus Shale just above the Cherry Valley Limestone, a thin limestone member separating 

organic rich units of the Marcellus. The geomechanical moduli, Poisson’s Ratio (PR) and 

Young’s Modulus (YME), were generated using compressional and shear sonic logs to indicate 

zones of increasing brittleness for each of the 28 stages along the 6124 ft. (1867m) horizontal 

lateral. Brittle reservoir rock is more readily fractured during hydraulic stimulation than more 

malleable rock. Stages with geomechanically homogeneous clusters were more likely to have 

evenly distributed energy during stimulation. Natural fractures formed during maturation of the 

Marcellus Shale are interpreted to have initiated during the Permian and are distributed along the 

wellbore. The contrast between calcite and shale in Schlumberger Quanta Geo logs facilitated 

fracture identification, and 1600 calcite-filled and a few open pre-existing fractures were 

recognized along the horizontal portion of the well. Research conducted suggests that all pre-

existing fractures are reactivated during hydraulic stimulation and contribute to the complex 

fracture network. Because these fractures are reactivated during the hydraulic fracturing process, 

natural fracture intensity and distribution within stages can impact the efficiency of stimulation. 

Minimum horizontal stress (Shmin) is an important factor to consider in the completion process. 

Cluster placement at locations of equal or similar Shmin allows for fracturing fluid to more evenly 

disperse across all perforations. Hydraulic stimulation data were obtained with the use of a fiber 

optic cable. The distributed acoustic sensing (DAS) data allows for a comparison of the energy 

distribution during stimulation. Comparing geomechanical properties of individual stages to the 

apparent stimulation efficiency shown in the DAS data can result in improved methods of well 

completion. This would lead to more geologic approaches to stage and perforation completion 

rather than geometric. Increased stimulation efficiency could increase production and estimated 

ultimate recovery from unconventional shale-gas reservoirs.  
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1.  Introduction  

Unconventional shale reservoirs are a major producer of natural gas and in 2018 represented 

69% of total U.S. dry natural gas production (EIA, 2019). Unconventional shale hydrocarbon 

systems have resulted in an abundant natural gas energy supply, and with continued research and 

exploration efforts, production efficiency from these reservoirs will continue to improve. Natural 

gas production, primarily from shale gas, is forecasted to continue to increase through 2050 

(EIA, 2020).  Efforts to improve production efficiency are important as it is estimated that only 

about 25% of dry gas is recovered from unconventional shale gas wells (Zoback and Kohli, 

2019). Creation of artificial permeability in horizontal wells through an induced fracture network 

is critical to the development of shale-gas reservoirs. Because of this, efficient fracturing of 

completion stages is an important factor for economic production of the source rock.  

Unconventional shale reservoirs are unique in that they are the source rock, reservoir rock, and 

trap for the petroleum system, and factors resulting in improved economic production of these 

reservoirs have remained somewhat of a mystery and are termed a statistical play. King (2014) 

indicates that economic production from shale wells varies significantly with one third 

uneconomic, one third only economic when gas prices are high, and one third producing so well 

they make up for the lack of production in the previous two thirds with no real explanation as to 

why. Traditional reservoir evaluation and conventional production methods have proven to be 

inadequate; simply perforating and pumping massive hydraulic fracture treatments into 

formations containing natural gas is often inefficient and does not consistently yield economical 

results (Grieser and Bray, 2007). Targeted horizontal drilling of gas-rich zones in core areas and 

geologic “sweet spots” is only one component of extracting natural gas from shale reservoirs and 

does not completely mitigate the statistical nature of shale gas. Research into other factors such 
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as pre-existing fractures and faults or reservoir pore pressure potentially contributing to 

completion and production efficiency is essential for effective development of unconventional 

shale resources.   

 Analyzing the varying geomechanical properties of individual hydraulic fracturing stages within 

an unconventional shale well is one method of increasing the efficiency of natural gas extraction. 

Geomechanical properties, such as rigidity and brittleness, are useful when identifying reservoirs 

more susceptible to fracture stimulation and can contribute to a better understanding of the 

relationship of “fracability” to completion efficiency and the subsequent production. Observing 

stage stimulation efficiency may lead to overall improvement in well production. The goal of this 

research is to better understand the geomechanical properties resulting in more effective 

completion techniques for unconventional shale-gas wells that contribute to improved hydraulic 

fracturing stimulation and subsequent natural gas production.  

1.1 Marcellus Shale Background 

The Marcellus Shale is a Devonian formation located within the Appalachian basin. The 

prospective area of the Marcellus covers over 114,000 square kilometers and includes 

Pennsylvania, West Virginia, Maryland, New York, and Ohio (Zagorski et al., 2017). The 

Acadian orogeny resulted in basin subsidence during the Middle Devonian and formed the 

Acadian foreland basin west of the Acadian mountains and east of the Cincinnati arch. At this 

time, eustatic sea-level rise caused a transition in Early Devonian deposition from sandstone and 

carbonate to the organic-rich mud that formed the Marcellus Shale and other Devonian shale 

units. At the time of deposition, the paleoclimate was thought to be warm with seasonally 

restricted rainfall and occasional large storms (Woodrow and Sevon, 1985; Werne et al., 2002). 
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The Marcellus Shale is the depositional result of restricted circulation and accumulation of 

organic matter, and deposition of this formation occurred over a period of 2 million years (Wang 

and Carr, 2013). This resulted in a mudstone system with high organic content and thin 

interbedded limestone. The Marcellus has 2.0-13.0 weight percent (wt. %) total organic carbon 

(TOC), 35 wt. % silica, and 25 wt.% carbonate content (Jarvie, 2012). The stratigraphy 

surrounding the Marcellus Shale is shown in figure 2a. The Marcellus is bounded below by the 

Onondaga Limestone and is overlain by the Mahantango Formation. Most of the overlying 

Mahantango Formation is a siltstone or mudstone, but the organic content is significantly lower 

than the Marcellus, which reflects a fundamental change in the depositional environment. The 

Figure 1 Reconstruction of Middle Devonian paleogeography (from Blakey, 2010). The location of the study well (MIP-
3H) is representing by the orange dot in the middle of the basin. 
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Cherry Valley Limestone is one of the thin limestone stringers that separates organic-rich units in 

the Marcellus. The MIP-3H well was drilled horizontally above the Cherry Valley, and the 

contrast between the organic-rich shale and the limestone was used to geosteer and keep within 

the target zone in the Marcellus. Evaluation of geosteering logs indicate that the lateral wellbore 

was within the targeted horizon more than 95% of lateral length. The location of the MIP-3H 

within the stratigraphy and in relation to the target zone is shown in figure 2b.  
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Figure 2 a: Middle Devonian stratigraphy in West Virginia and Pennsylvania (from Zagorski et al., 2012). b: The 
MIP-3H was kept in the target zone (green) above the Cherry Valley Limestone at the top of the lower Marcellus 

Shale. 

b 
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In northern West Virginia and southwestern Pennsylvania, the Marcellus is identified in vertical 

logs by three intervals of increased gamma ray reading greater than 300 API. In West Virginia, 

these are separated by two thin limestone beds of lower gamma-ray readings; the Cherry Valley 

Limestone is the lower bed. X-ray diffraction (XRD) results from Song et al., (2017) 

demonstrate that organic matter increases as clay content decreases with depth. This XRD data 

was used to infer the redox potential of the depositional environment during deposition of the 

Marcellus. The redox conditions of the upper Marcellus are dysoxic while the middle to lower 

Marcellus range from anoxic to slightly euxinic with an overall reducing environment indicated 

(Song et al., 2017). Figure 3 shows a map view of the MIP-3H along with the MIP-4H, MIP-5H, 

MIP-6H, and observation well of MSEEL, MIP-SW. These wells are located southwest of 

Morgantown, WV in northern West Virginia. Erosion of Carboniferous and Permian strata 

accounts for the lack of correlation between thermal index values and the current overburden 

thickness. Overburden thickness is considered the primary factor for thermal maturation of the 

Appalachian basin though fluid flow likely also had an impact. Devonian shales in West Virginia 

typically have high thermal maturity, and these high levels of thermal maturation result in the 

generation of dry gas. Conodont color alteration index (CAImax) and vitrinite reflectance 

[%Ro(mean)] values indicate that the Marcellus has reached the dry gas “window” (Repetski et 

al., 2008) which is supported by the dry gas produced from the well. The Marcellus is one of the 

most active shale-gas plays in the world, and identifying the factors contributing to economic 

production is key.  
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1.2 MIP-3H Completion 

The Marcellus Shale is an example of a shale-gas system that requires induced fracturing of 

horizontal wells to economically produce hydrocarbons. The horizontal portion of MIP-3H well, 

located southwest of Morgantown, WV, was drilled in the lower portion of the Marcellus Shale. 

This well is part of the Marcellus Shale Energy and Environment Laboratory (MSEEL) that 

works in collaboration with the operator, Northeast Natural Energy LLC., the National Energy 

Technology Laboratory of the US Department of Energy, as well as several other partners 

including West Virginia University (Carr et al., 2017).   

Figure 3 Marcellus Shale Energy and Environment Laboratory (MSEEL) just outside Morgantown, West Virginia, USA. 
Figure 3: The MSEEL site consists of four horizontal production wells operated by Northeast Natural Energy LLC. 
(MIP-3H, MIP-4H, MIP-5H, MIP-6H), two pilot holes (MIP-3 and MIP-4), a microseismic observation well (MIP-SW), 
and a grid of five surface seismometers (triangles). 

N 
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The MIP-3H is a horizontal, multi-stage well completed from toe to heel as a plugged and 

perforated well. Completion included twenty-eight stages which were separated into five groups. 

Stages one through twelve were geometrically spaced.  Enhanced engineered completion design 

was implemented for stages 13-19. Various geomechanical data acquired from well logs were 

used to optimize the stage length, cluster spacing and treatment parameters. Stages were 

strategically placed in segments with similar gamma ray, minimum horizontal stress, and natural 

fracture intensity (Anifowoshe et al., 2016). A limited entry approach was undertaken by 

decreasing the number of shots per clusters to enhance stimulation efficiency (Anifowoshe et al., 

2016).  This approach determined stage length, cluster spacing, and treatment (Carr et al., 2017).  

Fiber-optic distributed acoustic sensing data and production logging from distributed temperature 

sensing was used to determine the intensity and efficiency of stimulation as well as estimate the 

natural gas production from individual completion stages within this well. Fiber optics showed 

significant variation in energy distribution from stage to stage and that potential production from 

the individual stages ranged from less than one percent to greater than seven percent. 

2.  Material and Methodology  

Data applied in this analysis was provided by the Marcellus Shale Energy and Environment 

Laboratory (MSEEL) and their assisting corporations, including operator Northeast Natural 

Energy. The data was used to implement multiple methods of identifying and evaluating factors 

contributing to varying efficiency of stage stimulation. This analysis of geomechanical properties 

isolates factors that resulted in more successful hydraulic stimulation of completion stages in the 

MIP-3H Marcellus Shale well. The geomechanics that contribute to either high or low 

stimulation efficiency are found by comparing data obtained and analyzed to the fiber-optic 

distributed acoustic sensing (DAS) data.    
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Several logs recorded along the horizontal portion of the well include compressional sonic 

(DTCO), shear sonic (DTSM), gamma ray, and bulk density (RHOB). Logs of Poisson’s Ratio 

(PR), Young’s Modulus (YME), and minimum horizontal stress (Shmin) generate data along the 

lateral. Schlumberger’s Quanta Geo image log was used to identify pre-existing, natural fracture 

distribution, type, and orientation. Natural fractures were imaged for each stage and identified 

independently by Keith MacPhail of Schlumberger. Distributed Acoustic Sensing (DAS) fiber 

optic data were collected and used to evaluate well response to stimulation of individual stages.   

 

2.1  Minimum Horizontal Stress  

Research on the Marcellus Shale comparing geometrically completed unconventional shale-gas 

wells to wells completed using an engineered design was conducted by Walker et al., 2012. Six 

total wells were included in this analysis: three with geometrical design and three engineered. 

When determining perforation cluster placement, the engineered design considered the Shmin 

along the well bore with the goal of causing uniform breakdown of the clusters during 

stimulation. Clusters were placed in areas of similar stress, and in areas where clusters were at 

higher stress, the number of perforations was increased to facilitate breakdown of the cluster. 

The result was an average increase of 100% in the production per foot for the stimulated lateral 

and an increase of 30% in the estimated ultimate recovery (EUR) (Walker et al., 2012). In this 

analysis, the average Shmin of the reservoir at each cluster was calculated. The Shmin values for 

clusters within completion stages was compared to the energy distribution in the DAS data to 

determine how Shmin magnitude impacts the stimulation of individual stages. The data was 

viewed as a log, and a method of observing Shmin changes in a reservoir is represented by 

equation 1.  
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Eq. 1 

Shmin =  
𝑃𝑅

1 − 𝑃𝑅
∗ (𝜎 −  𝛼𝑃𝑝) 

Minimum horizontal stress is measured in pounds per square inch (psi) and is calculated using 

Poisson’s Ratio (𝑃𝑅), vertical stress (𝜎), Biot’s Coefficient (𝛼) , and pore pressure (𝑃𝑝). 

Poisson’s Ratio is a measurement of the brittleness of reservoir and is discussed later in the 

paper. Biot’s Coefficient is a measurement of the change in fluid volume within a rock in 

relation to the total change in volume and describes the relative effect of pore pressure on 

effective stress (Zoback and Kohli, 2019). In general, Biot’s Coefficient decreases with 

increasing simple effective stress (for a given pore pressure) and increases with increasing pore 

pressure (for a given simple effective stress).  

2.2  Poisson’s Ratio and Young’s Modulus  

2.2.1  Shear and Compressional Velocities  

Shear and compressional sonic logs, DTSM and DTCO, are used to calculate the shear and 

compressional sonic velocities incorporated into the geomechanical moduli equations. The shear 

and compressional velocities are calculated by taking the inverse of the shear and compressional 

sonic logs in travel time (μS). Shear velocity (Vs) is generated from the shear sonic log, and 

compressional velocity (Vp) is generated from the compressional sonic log.  

Vs is derived from the shear sonic log and is represented by equation 2: 

Eq. 2 

𝑽𝒔 =
𝟏

𝑫𝑻𝑺𝑴
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Vp is derived from the compressional sonic log and is represented by equation 3: 

Eq. 3 

 

𝑽𝒑 =
𝟏

𝑫𝑻𝑪𝑶
 

The shear and compressional velocities are integrated into the calculations used to generate 

geomechanical moduli for the Marcellus Shale reservoir in the MIP-3H lateral.  

2.2.2  Geomechanical Moduli Generation and Application 

Poisson’s Ratio (PR) is used to determine the brittleness of a material by measuring the amount 

of axial compressibility relative to lateral expansion before fracturing occurs. PR is calculated 

from the amount of lateral expansion of the material when undergoing an axial strain. The 

division of the lateral expansion by the measured axial shortening gives the Poisson’s Ratio 

value (Zoback, 2007). The less lateral strain relative to axial strain results in a smaller PR value 

indicating a more brittle material.  

Young’s Modulus (YME) calculates the rigidity of the reservoir from the elastic deformation of 

the rock. An ideal elastic material will have a linear relation between the stress applied to the 

material and the strain experienced. The “stiffness” of the rock, or the resistance to failure, is 

represented by the Young’s Modulus value. Rock will deform elastically except for a small 

amount of inelastic deformation just before failure. Young’s Modulus evaluates the strength of 

the material by calculating the ratio of stress to strain. A material that experiences less strain as 

stress is applied yields a larger YME which indicates a more rigid material. YME and PR can be 
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calculated as static or dynamic values. Static is found from experiments in a laboratory, while 

dynamic is found from seismic velocity measurements or from compressional and shear sonic 

logs. Dynamic values tend to be higher than static, but dynamic can be converted to static by 

calculating the trend from static, laboratory values. Dynamic logs are then adjusted based on the 

trend found. YME and PR were calculated using sonic log measurements along the MIP-3H 

wellbore. Those dynamic logs were converted to the static logs used in this analysis (Zoback, 

2007). This allowed for the application of Greiser and Bray (2007) PR vs. YME cross-plots.       

Poisson’s Ratio (PR) and Young’s Modulus (YME) calculations are generated from the 

compressional and shear velocities, Vp and Vs, along with bulk density (𝜌). The moduli are 

represented by equations 3 and 4 shown below.  

 

Eq. 4 

                  Poisson’s Ratio:                𝑷𝑹 =
𝑽𝒑𝟐−𝟐𝑽𝒔𝟐

𝟐 ( 𝑽𝒑𝟐−𝑽𝒔𝟐)
 

Eq. 5 

                  Young’s Modulus:           𝒀𝑴𝑬 =
𝝆𝑽𝒔𝟐(𝟑𝑽𝒑𝟐−𝟒𝑽𝒔𝟐)

𝑽𝒑𝟐−𝑽𝒔𝟐   

Poisson’s Ratio is a unit-less calculation and has values between 0.1 and 0.5 for various geologic 

materials. Young’s Modulus has units of mega-pound per square inch (Mpsi). Mpsi converts to 

gigapascals (GPa) by multiplying one Mpsi by 6.895 to obtain Young’s Modulus values in units 

of GPa. In the cross-plots used in this study, YME has either a range from 1.0 to 10.0 Mpsi or 

1.0 to 15.0 Mpsi. Figure 4 shows the zone of increased brittleness of rock in a Poisson’s Ratio 

vs. Young’s Modulus cross-plot indicated by Greiser and Bray, 2007.  
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Greiser and Bray, 2007 suggest that brittle shale will fracture more readily than a malleable shale 

and will create a larger induced fracture network. A more complex fracture network increases the 

exposed surface area and increases production. The potential “fracability” of the reservoir can be 

estimated by analyzing brittleness and rigidity. The average values of Poisson’s Ratio and 

Young’s Modulus at each cluster within each stage were compared to the energy distribution 

across the completion stages during stimulation.  

2.2.3  Poisson’s Ratio vs. Young’s Modulus Cross-Plot 

Various lithologies from formations stratigraphically above and below the Marcellus Shale are 

included in the Young’s Modulus (YME) and Poisson’s Ratio (PR) cross-plot in figure 5a. This 

cross-plot is used to estimate the brittleness and rigidity of rock represented by the YME and PR 

values and can also be used to interpret lithology based on the location of data points in the 

cross-plot. Limestone, like the Tully and Onondaga above and below the Marcellus Shale, are 

relatively strong with low brittleness and are interpreted to act as barriers to fracture stimulation. 

Figure 4 Adapted from (Grieser and Bray, 2007). Displays the general brittle and malleable 
zones of the Poisson's Ratio vs. Young's Modulus cross-plot. 
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Silica-rich rocks, such as the Huntersville Chert, are relatively rigid and brittle.  It is observed 

where the Onondaga Limestone no longer separates the Marcellus Shale from the Huntersville 

Chert that fracture stimulation will propagate downward (Zhu, 2019). The data points 

representing the Mahantango and Marcellus units show that shale can have a large range of 

geomechanical values. The Marcellus reservoir is relatively brittle when compared with the 

Mahantango Formation. This brittleness, along with the presence of frac-barriers, make the 

reservoir susceptible to induced fracturing during hydraulic stimulation.  Figure 5b shows a very 

similar placement of data points from the formations discussed above plotted in the cross-plot of 

minimum horizontal stress (Shmin) and YME. The relationship between Poisson’s Ratio and 

minimum horizontal stress will be discussed later in the results and discussion section of this 

study.  
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Figure 5 Geomechanical cross-plots of Devonian age formations.  5a. Poisson's Ratio vs. Young's Modulus cross-plot is 
used to estimate the brittleness and relative strength of various lithologies. 5b. Minimum Horizontal Stress vs. Young’s 

Modulus creates a similar scatter of data points.  

a 

b 
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2.2.4  Divisions of Standard Deviation using Gamma Ray Log 

The standard deviation of Poisson’s Ratio (PR) and Young’s Modulus (YME) in relation to the 

gamma ray log was calculated to interpret the heterogeneity within the reservoir. Standard 

deviation is used to calculate the amount of variation or dispersion of a set of values. The larger 

the standard deviation, the broader the range around the mean, or average, the values have. For 

this method of analysis, divisions in the reservoir were created based on the gamma ray log 

before the standard deviation was calculated for those divisions. This was to locate homogenous 

zones within the reservoir. 

Unconventional shale-gas reservoirs are heterogeneous bodies of rock, so determining 

geomechanically homogeneous zones prior to fracture stimulation is important. The Marcellus 

Shale includes numerous natural, calcite-filled fractures, calcite concretions, and laminations and 

layers within the shale that contribute to the heterogeneity of the reservoir. An approach to 

quantitatively analyze the reservoir is by examining the deviation of the values within individual 

stages. Analyzing the standard deviation of geomechanical moduli values is used to evaluate the 

degree of homogeneity of each stage. The goal of this method was to include the gamma ray 

(GR) log in the analysis to separate segments of the well into more homogeneous groupings 

based on the API value of the GR.   

When calculating the standard deviation of PR and YME for defining the geomechanically 

homogeneous zones of the reservoir, initial gamma ray divisions included three value sets: 0-

300, 300-450, and greater than 450 API. Further analysis showed a noticeable change between 

the reservoir at 0-300 API and the reservoir greater than 300 API. Because of the similar results 

found in the upper two divisions, they were combined. Analysis was evolved to include two 

divisions: less than 330 API and greater than 330 API. The 330 API cut off was determined 
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based on the gamma ray and density well logs and where they had abrupt or significant changes 

in values which indicated a change in the rock lithology.  

 

In figure 6, these are represented by the colors green and red. The green shading of the gamma 

ray indicates that the gamma ray is less than 330 API, and the red shading represents gamma ray 

greater than 330 API. The values in figure 6 give an example of the standard deviation for an 

Figure 6 Gamma ray log with color shading green 0-330 API and red >330 API. Black line represents bulk density. An 
example of the standard deviation values for Poisson’s Ratio and Young’s Modulus for each of the gamma ray divisions.  

Depths Poisson's Ratio Young's Modulus

Red 8700-8780 0.021 0.10

Green 8800-8500 0.025 0.30

Both 9635-9700 0.039 0.66
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individual red zone, individual green zone, and a combination of the two. Red and green 

separately are considered homogeneous zones, while red and green together are heterogeneous. 

The calculation of standard deviation in homogeneous zones is low when compared with the 

standard deviation of the heterogeneous zones. 

Cluster placement within the potential homogeneous or heterogeneous zones was analyzed for 

individual stages to determine if the gamma ray could be used to separate the well into areas of 

geomechanically homogenous zones that would be detailed enough to implement when placing 

clusters. The intention of this division of the reservoir was to determine if the gamma ray could 

be used to place perforations at geomechanically homogeneous locations with the goal of 

increasing the stimulation efficiency of each stage.   

In addition to this, the mean PR and YME log values were calculated at each perforation 

location, and magnitude and deviation of the geomechanical moduli of clusters for each stage 

was analyzed. The purpose of only including the reservoir at perforation locations was to create 

control within the data to avoid zones of the reservoir that were potentially not impacting stage 

stimulation. The values of the averages and the range in the values was considered when 

determining factors resulting in efficient stimulation.   

2.3  Natural Fracture Identification and Analysis 

There are two joint sets described by Engelder et al. (2009) in the Marcellus: J1 and J2. J1 joints 

are crosscut by J2 and formed at, or near, peak burial of the Marcellus Shale. Burial of the 

Marcellus occurred during the Alleghenian orogeny in the Permian, which resulted in 

hydrocarbon generation from maturation of organic material. This maturation created 

“abnormal” pressures within the formation that caused natural fractures to form throughout the 
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reservoir. J1 joints are east/northeast striking and run roughly parallel to the maximum horizontal 

tectonic stress of the area. J1 joints are predominantly found in black shale, whereas J2 are more 

often found in siltstone. This, along with evidence that these joints do not intersect, or only 

slightly intersect, calcite concretions (McConaughy and Engelder, 1999) supports the 

interpretation that the J1 joints are natural hydraulic fractures and the result of hydrocarbon 

generation.  

 

It is beneficial for natural gas extraction from the reservoir that J1 joints or fractures run 

perpendicularly to the minimum horizontal tectonic stress, because horizontal wells, like the 

MIP-3H well, drilled in the northwest-southeast direction cut and drain J1 fractures (Engelder, 

2009). Strike orientations of the natural fractures, along the MIP-3H horizontal wellbore, are 

represented by the rose diagram in figure 7 and show an average northeast trend of 79 degrees. 

This value is comparable to the 82 degrees discussed in Engelder (2004). Fractures identified 

Figure 7 Rose diagram of the orientation of the strike of natural fractures along the MIP-3H well 
bore. The average strike at N79E. 
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along the horizontal well bore of the MIP-3H well are almost all calcite-filled. The number of 

fractures per stage of the MIP-3H well along with the measured depth of each stage are listed in 

table 1. 

 

Table 1 Pre-existing natural fracture count for each stage in the MIP-3H well. 

Natural Fracture Count per Stage 
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These fractures were identified using Schlumberger’s Quanta Geo technology. Quanta Geo 

allows for 98% of borehole coverage in eight inch holes, measures a range of resistivity from 0.2 

ohm-m to 20,000 ohm-m within the formation, and has a sampling rate of 0.2 inch when 

sampling at 3600 feet per hour and 0.1 inch when sampling at 1800 feet per hour (Laronga and 

Shalaby, 2014).  The resistivity contrast between shale and calcite allowed fractures within the 

formation to be more easily identified. Over 1600 calcite-filled fractures were located along the 

lateral portion of the MIP-3H well, and the reactivation of these fractures during well stimulation 

is one way of creating permeability within the reservoir. Fracture failure, Mohr-Coulomb models 

suggest that these fractures are activated when pore pressure is increased during hydraulic 

stimulation (Evans et al., 2019). Petra IHS software was used to plot the distribution of fractures 

along the well bore along with the location of perforation clusters. This displays the fracture 

intensity of individual stages along the length of the MIP-3H well and allows for visualization of 

fracture location and intensity relative to cluster placement. Poisson’s Ratio and Young’s 

Modulus logs are included in the image and show greater deviation in stage 10 than in stage 14. 

The high frequency of fractures in stage 10 may be creating variation in the PR and YME values.  
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Figure 8 shows how the natural fracture distribution can vary between stages. Stages 10 and 14 

show how in natural fracture intensity can vary throughout the reservoir. One hundred and sixty 

pre-existing fractures and two faults were picked for stage 10, while only 17 fractures were 

identified within stage 14. The reactivation of natural fractures can have both a positive and 

Figure 8 Fracture distributions within Stage 10 and Stage 14 of the MIP-3H well. Individual 

fractures are represented by a green "x", faults are represented by an orange "x", and each 

cluster location is indicated by gray "x". A. Stage 10 has 160 fractures and two faults. B. Stage 

14 has 17 fractures picked.  

A 

B
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negative affect on stimulation and the subsequent production of stages within unconventional 

shale-gas wells, so it is important to consider these fractures when completing stages. 

2.4 Fiber Optic Distributed Acoustic Sensing Data 

The first application of DAS in a tight gas well occurred in 2009 and is a source of real time data 

that was difficult to obtain with technology up to that point. It is applicable as a permanent 

source of information that does not interfere with the operation of the well. This technology is 

sensitive and reliable enough to obtain data on logging operations, perforating, and hydraulic 

stimulation. DAS allows for the observation of individual clusters during the hydraulic fracturing 

process which is used to determine which clusters are taking the majority of the fracturing fluid 

(Molenaar et al., 2012).  

The distributed acoustic sensing (DAS) laser interrogator system is a continuous process which 

records disturbances along the entire length of the fiber; this records any vibration or mechanical 

movement of the fiber. DAS data is acquired by observing the backscattering of light from each 

pulse of laser signal into the optic fiber. Changes in the fiber path caused by acoustic waves 

hitting the fiber alters the fiber structure which causes varying degrees of backscattered light. 

The processing system converts the collected data into differential strain which occurs due to 

acoustic vibration. The vibration subjects the fiber to varied levels of pressure, reflecting the 

varying levels of strain applied to the fiber during stimulation of the well. This is interpreted as 

the distribution and intensity of energy contributed to each individual cluster during hydraulic 

fracturing.  
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Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) fiber optic data 

were acquired for the MIP-3H well. Because the fiber is in place during hydraulic stimulation of 

the well, energy distribution and temperature changes were recorded during the completion of for 

individual clusters in each individual stage. DAS measures the amount of vibration during 

hydraulic fracturing. This shows the potential stimulation efficiency of each stage by displaying 

where the energy was distributed during injection of the fracturing fluid (MacPhail et al., 2012).  

Figure 9 shows the distributed acoustic sensing (DAS) measurements during hydraulic 

stimulation of stages 10 and 14 of the MIP-3H well. Each horizontal line with a color range of 

blue to red is a perforated location along the stage and shows the DAS changes over the time that 

hydraulic stimulation occurred. Warmer colors, like reds and yellows, indicate that higher levels 

of strain are occurring, whereas the cooler colors, like blue, indicate lower levels of strain. As 

Figure 9 Stage 10 shows an uneven distribution of energy during stimulation with most of the fracturing fluid stimulating clusters 
one, two, and five. Stage 14 has a much more even distribution of energy across all five clusters.   
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time progresses, these DAS figures show the variation of the amount of energy that is 

contributed to each clusters of perforations within each stage. The geomechanical properties and 

fracture distribution observed for individual stages are compared to the energy dispersed during 

hydraulic stimulation that is represented by the DAS data. Factors contributing to efficient 

distribution of energy during well stimulation are identified with the use of DAS data. 

3.  Results and Discussion  

During analysis, all outlying data that was likely the source of human error or variations in 

completion approaches using different proppants and chemicals were not considered for quality 

control. This includes completion stages 22 through 28 where multiple techniques were 

attempted, and stage 11 where recording issues were observed. An inconsistency between data 

sets was found at stages 22 and 23 that was reported as two sets of completion data, one 

indicating four cluster locations and another indicating five clusters for these two stages. The 

variance in this data resulted in a shift in the measured depths reported for stages 22 through 28. 

The DAS data for stage 11 appeared to be unreliably recorded and is not a trusted source for 

stage stimulation. For the purpose of quality control, these stages were not included in the 

analysis.  

Geomechanical properties, pre-existing fracture distribution, and minimum horizontal stress are 

compared to the amount of strain, or the energy experienced, at each completion cluster that is 

provided by the fiber optic distributed acoustic sensing (DAS) data. The “evenness” of the 

energy distribution is related to the efficiency of stimulation for each stage. Stages 2 through 21 

are separated into two main groups: even and uneven energy distribution.  
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The DAS data in figure 10 shows comparatively even distribution of energy during stimulation 

for stages 9, 13-19, 20, and 21. These stages are designated as Group A. Figure 11 shows the 

uneven distribution of energy in stages 2-8, 10, and 12, so these stages are labelled Group B. 

Stage 20 shows even distribution in clusters 2-5, while no strain on the fiber occurred at cluster 

1. The lack of energy to cluster 1 for stage 20 is interpreted as a result of an ineffective cluster, 

so the stage will be included in the Group A. Perforations for stage 17 were placed into two 

longer length clusters rather than four or five. This explains why DAS data only shows energy 

distributed to two locations along the stage.   

 

Figure 10 Group A: DAS data showing even energy distribution during the hydraulic fracturing of stages 9, 13, 14, 15, 16, 17, 
18, 19, 20, and 21. Red indicates high levels of strain on the fiber while blue represents little to no strain. The initial horizontal 
line at the bottom of each image is the plug location, and each line above that showing strain on the optic fiber is a cluster 
within that stage. The x-axis is time, and the y-axis is measured depth. The y-axis read upward is toward the heel of the well. 

GROUP A 
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3.1  Geomechanical Moduli: Poisson’s Ratio and Young’s Modulus   

3.1.1  Results 

The placement of clusters within homogeneous vs. heterogeneous zones defined by the gamma 

ray magnitude was compared to the distribution of energy to those clusters. The gamma ray (GR) 

was separated into two divisions: less than 330 API and greater than 330 API. Gamma ray less 

than 330 API was assigned green, and GR greater than 330 API was assigned red. If perforation 

clusters did not clearly have a GR of green or red, then they were labelled as “both”. The purpose 

of this was determine if geomechanically homogeneous zones could be found based on GR 

Figure 11 Group B: DAS data showing uneven energy distribution during hydraulic fracturing of stages 2, 3, 4, 5, 6, 7, 8, 10, and 12. 

Red indicates high levels of strain on the fiber while blue represents little to no strain. The initial horizontal line at the bottom of each 
image is the plug location, and each line above that showing strain on the optic fiber is a cluster within that stage. The x-axis is time, 

and the y-axis is measured depth. The y-axis read upward is toward the heel of the well. 

GROUP B 
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magnitude and then applied when placing perforations. The standard deviation of Poisson’s 

Ratio and Young’s Modulus was relatively low in the red and low in the green, but when red and 

green were combined, there was an increase in the standard deviation values.  

The overall goal was to determine if GR could be used to define geomechanically homogeneous 

zones for the placement of perforation clusters in order to lead to more efficient and even 

distribution of energy during hydraulic stimulation of the stage. The only constant variation in 

values was generated when comparing thick “red zones” to “green zones”. Though there was a 

noticeable change between these, there was no connection between similar GR and similar 

geomechanical values once above the 330 API cutoff. Results showed there were no clear 

connections between the geomechanically homogeneous stages created through GR separation 

and even energy distribution during stage stimulation. For example, twelve of the nineteen stages 

included in the study were completed exclusively in zones of the reservoir with GR values higher 

than 330 API. Of these twelve stages, six of them were in Group B and six in Group A. The 

application of GR for separating geomechanically heterogeneous stages from homogeneous 

stages with the goal of generating even hydraulic stimulation does not yield consistent efficient 

stimulation results. 

When creating the Poisson’s Ratio (PR) and Young’s Modulus (YME) cross-plots for the 

completion stages in the MIP-3H well, the length of the well from plug to plug was included to 

determine if a trend could be identified. Figure 12 and 13 show the cross-plots of stages 2 

through 21, excluding stage 11. Figure 12 is the grouping of evenly stimulated stages, Group A, 

and figure 13 shows Group B, the unevenly stimulated stages. In these figures, Young’s 

Modulus is on the y-axis and Poisson’s Ratio is on the x-axis. The red lines are used to indicate 

the general transition of high to low brittleness for PR and the change in rigidity in YME that is 
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described by Grieser and Bray, 2007. The z-axis was used to represent the measured depth of 

each data point to see if there were noticeable geomechanical changes within a stage with 

increasing or decreasing depth. Stage 10 had consistent geomechanical change with depth, but 

this was not seen in other stages.  

Figure 12 Poisson's Ratio vs. Young's Modulus cross-plot for stages of even DAS. Stages included are 9, 13, 114, 15, 16, 17, 
18, 19, 20, and 21. Poisson’s ratio is on the x-axis and has a scale of 0.1 to 0.5. Young’s Modulus is on the y-axis and has a 

scale of 0.0 to 10.0. The vertical, red line crosses the x-axis at 0.25 and the horizontal, red line crosses the y-axis at 5.0. 
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Examination of these cross-plots did not show consistent changes between Group A and Group B 

stages. The bulk of the reservoir rock is comparatively similar when placed against lithologies 

with higher calcite or silica content. Variations in the data are difficult to pick out and analyze 

from cross-plots of the Marcellus Shale data set. Because of this, looking at the specific 

geomechanical values is more applicable. To do that, the average, or mean, was calculated for 

the reservoir at each perforation cluster. When calculating the mean values for PR and YME, 

Figure 13 Poisson's Ratio vs. Young's Modulus cross-plot for stags with uneven DAS. Stages included are 2, 3, 4, 5, 6, 7, 8, 10, 
and 12. Poisson’s Ratio is on the x-axis and has a scale of 0.1 to 0.5 Young’s Modulus is on the y-axis and has a scale of 0.0 to 

10.0. The vertical, red line crosses the x-axis at 0.25 and the horizontal, red line crosses the y-axis at 5.0. 
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including the entire stage would result in data points that potentially have no effect on 

stimulation, so in order to have a constant data set and to avoid irrelevant data points from 

impacting the results, only log data obtained at completion clusters was included in the 

calculations.  

Poisson’s Ratio (PR) values for evaluating brittleness can range from 0.1 to 0.5 with the general 

transition from brittle to malleable occurring around 0.25 according to Grieser and Bray, 2007. 

The PR of the clusters within the Marcellus MIP-3H well ranged from ~ 0.19 to ~ 0.33. Table 2 

lists the mean values of Poisson’s Ratio for stage 2 through stage 21. Stages with a Poisson’s 

Ratio (PR) range of 0.02 or less between all clusters are stages 8, 14, 15, 16 17, 18, and 19. All 

but stage 8 are included in Group A in figure 10 and experience even energy distribution during 

stimulation which gives ~ 86% of stages experiencing efficient stimulation when PR values have 

minimal variation. When observing stages with a range of 0.03 or greater in the PR values of 

clusters, three of the nineteen (~ 16%) were Group A and nine of nineteen (~ 47%) were from 

Group B. On average, uneven energy distribution is linked with a greater range of Poisson’s 

Ratio values. There was no link between lower PR values, or more brittle reservoir rock, and 

increased stimulation energy. Within stages, energy from hydraulic fracturing did not 

preferentially take the path of more brittle clusters.  
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Table 2 Average Poisson's Ratio values of each cluster per stage of the MIP-3H well. Cluster 1 is 
located at the toe end of the stage and cluster 5 at the heel. 

Table 3 Average Young's Modulus values of each cluster per stage of the MIP-3H well. Cluster 1 is 
located at the toe end of the stage and cluster 5 at the heel. 
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The average values of Young’s Modulus at each cluster are found in table 3. The calculated 

mean values of Young’s Modulus (YME) ranged from ~ 2.12 to ~ 4.83 Mpsi, but the majority of 

the data falls between 2.10Mpsi and 2.85 Mpsi. Young’s Modulus does not vary throughout the 

reservoir as much as Poisson’s Ratio. Values less than ~2.80 have an unremarkable effect on 

energy experienced at clusters. Very similar YME magnitudes exist for the majority of both 

Group A and Group B. There are two clusters, one in stage 10 and one in stage 12, that have 

abnormally high YME values. In stage 10, it is the fifth cluster, and that cluster experiences a 

high level of vibration during stimulation. The same is true for cluster one with high YME in 

stage 12. Overall, there was no change in the stimulation of stages unless the YME had a value 

greater than 3.00.  

3.1.2  Discussion  

The Marcellus Shale reservoir at this location for the MIP-3H well has a relatively small range of 

geomechanical values. Smaller PR indicates a more brittle material, and it is expected that that 

smaller values would increase the “fracability” of the reservoir resulting in more effective 

stimulation of those areas with smaller PR values. Even distribution of energy during stimulation 

occurs when PR is similar in value for each cluster within the stage. Having PR constant cluster 

to cluster was noticeably effective at keeping energy evenly distributed across the stage. 

Relatively lower PR values did not necessarily result in greater strain from stimulation.   

One factor that may contribute to the relatively high energy introduced to cluster five in stage 10 

is the high intensity of fractures which will be discussed later in the results section. Higher YME 

is expected to facilitate fracturing within the reservoir and may be the cause of the increased 

energy to the cluster 5 in stage 10 and cluster 1 in stage 12. These clusters have YME values 

noticeably higher that the other four clusters in each of those two stages. It is likely that the 
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higher values come from an increase in calcite content. This could be an effect of the calcite-

filled fractures. 

It is most likely that the method of gamma ray separation was valid when comparing the two 

extremes (greater and less than 330 API) because those GR values were the result of a lithology 

change between calcite and shale. Though this method of attempting to divide geomechanical 

values into homogeneous groupings with low standard deviation by gamma ray was 

unsuccessful, from the results of comparing Poisson’s Ratio of clusters to DAS, it is still 

important that perforations are placed in geomechanically homogeneous zones.  

3.2  Natural Fracture Distribution 

3.2.1  Results 

The natural fracture count per stage is shown in figure 14. There is no consistent tie between 

high fracture count for the entire stage length and the stimulation efficiency of the stage, so the 

analysis was adjusted to observe the location of the natural fractures in relation to the placement 

of perforation clusters. IHS Petra software was applied in figure 15 and figure 16 displays the 

distribution of natural fractures within each stage. For these figures, PR in black and YME in 

blue were included. The scale for PR is 0.1 to 0.5, and the scale for YME is 1.0 to 5.0. Young’s 

Modulus did not exceed 5.0 in this location of the Marcellus. The scales were held constant for 

each of the Petra figures created for each completion stage. In each figure, the toe of the well is 

to the right, and clusters read in increasing order from right to left. Cluster placement is 

designated by navy blue rectangles at the bottom of each track image. Each green dot on the 
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track indicates a natural fracture picked along the lateral well bore. Stages 5, 6, and 10 each have 

faults picked which are indicated by an orange x at the top of each track image.  

 

The purpose of analyzing this data was to determine if the number of fractures at each 

perforation cluster impacts the stimulation efficiency of the stage. This was especially important 

because of the results seen in stage 10 which had very high fracture intensity at clusters 1, 2, and 

5 along with the presence of faults near cluster 5.  This correlated to significantly more energy 

applied to those three clusters during stimulation. Stage 12 also showed high fracture intensity at 

cluster 1 along with high strain reported in the DAS at that cluster. Stage 20 had higher energy 

levels at clusters 2, 3, and 4 which coincided with higher natural fracture count than was present 

at cluster 5 in stage 20. Though stage 16 had comparatively more even energy distribution during 

stimulation, an analysis of fracture intensity in stage 16 shows that clusters 3 and 4 are highly 

Figure 14 Number of natural fractures counted using image logs for each completion stage. 
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fractured compared to the other three clusters within the stage. The DAS for stage 16 also 

showed higher strain on the fiber at the clusters with higher pre-existing fracture counts. Apart 

from stages 10, 12, 16, and 20, there were no obvious variations in the stimulation of stages with 

regard to the fracture distribution and cluster placement. This could be because there were 

comparatively few highly fractured stages in the MIP-3H.  
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Figure 15 Group A: Natural fracture distribution in stages 9, 13, 14, 15, 16, 17, 18, 19, 20, and 21. Fractures are 
represented by green dots and faults by orang x's. Toe of the well is to the right in each figure. Poisson’s Ratio has 
a scale of 0.1 to 0.5, and Young’s Modulus has a scale of 1.0 to 5.0. 

Fracture Distribution per Completion Stage: Group A 
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Figure 16 Group B: Natural fracture distribution in stages 2, 3, 4, 5, 6, 7, 8, 10, and 12. Fractures are represented by green dots 
and faults by orang x's. Toe of the well is to the right in each figure. Poisson’s Ratio has a scale of 0.1 to 0.5, and Young’s 
Modulus has a scale of 1.0 to 5.0. 

Fracture Distribution per Completion Stage: 

Group B 
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3.2.2  Discussion 

Results showed that high intensity of fractures at a cluster location, especially in contrast to the 

other clusters within the stage, will likely impact the efficiency of stimulation for that stage. 

Fracturing fluid will preferentially take the path of the pre-existing fractures rather than a path 

where induced fracturing is required. Examples of this were seen in stages 10, 12, 16, and 20. 

The distribution of energy observed in cluster 1 of stage 12 also showed spikes in Poisson’s 

Ratio and Young’s Modulus values. This could have been the result of an increase in calcite 

which would increase the moduli values. Drilling through a thick section of calcite could have 

obscured the presence of natural fractures. Because the resistivity contrast assists with picking 

fractures in this area of the Marcellus Shale, fractures in zones with higher calcite content would 

have been difficult to identify. “Hidden” fractures would increase the count of fractures which 

would increase the likelihood that fractures impacted the efficiency of stimulation for stage 12. 

This spike in moduli values is also seen near clusters 2, 3, and 4 in stage 20 as well as increased 

energy to these three clusters. It is possible that natural fractures are “hidden” at these locations. 

Data analysis of stage 10 showed no clear correlations between the other methods applied to this 

data and the DAS distribution of energy, so it is most likely that the fracture intensity and fault 

presence directed the fracturing fluid to clusters 1, 2, and 5. It is likely stage 12 had the same 

result. In the DAS data of stage 16, it appears that clusters 4 and 5 may have significant 

communication during stimulation. This may be due to high frequency of natural fractures 

creating more complex network connections between the two perforated locations. 

Based on the results seen in stage 10 as well as the other stages discussed, it is very likely that 

cluster placement in highly fractured zones can impact the stimulation of the stage. It appears 
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that when stages have minor fracture counts, stimulation is neither negatively nor positively 

impacted when that efficiency is determined from DAS energy distribution data.   

3.3 Minimum Horizontal Stress 

Minimum horizontal stress (Shmin) was analyzed using the mean values of the reservoir at each 

cluster of perforations. These average values are listed in table 4 for stage 2 through stage 21. 

The seventh column (DAS Group) is referring to the two groups, A and B, which were 

designated based on the energy distribution shown in the distributed acoustic sensing (DAS) 

figures. The Shmin magnitudes range from ~ 6164 psi to ~ 7616 psi with the majority falling 

between 6400 and 7000 psi.  

STAGE Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 DAS Group

2 6738 6413 6312 7178 6544 B

3 6501 6403 6599 6748 6209 B

4 6729 6533 6662 6953 6765 B

5 6505 6641 6404 6841 6672 B

6 6585 6622 6819 6569 6904 B

7 6781 6606 6591 6667 6362 B

8 6708 6772 6800 6560 6709 B

9 6746 6754 6636 6707 6530 A

10 6638 6617 6569 6997 6912 B

11 7031 6942 6529 6488 6566 X

12 7616 6569 6506 6780 7010 B

13 6779 6657 6612 6164 6643 A

14 6855 6681 6698 6749 6767 A

15 6586 6608 6465 6653 X A

16 6725 6440 6579 6403 X A

17 6632 6746 6746 6746 X A

18 6644 6749 6798 6656 X A

19 7097 6944 7000 6996 X A

20 6749 6718 6406 7243 6724 A

21 6273 6715 6898 6601 6691 A

22 6672 6575 6609 6606 X X

23 6880 7182 6990 6493 X X

24 6852 7021 6419 6697 6599 X

25 6774 6674 6575 7001 6621 X

26 6774 6946 6822 6553 6679 X

27 6603 6782 6685 6671 6702 X

28 6706 6377 7064 6440 X X

Table 4 Average minimum horizontal stress at each perforation cluster for stages 2 through 21 
(excluding stage 11). 
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3.3.1 Results 

The comparison of minimum horizontal stress magnitudes to the energy distribution during 

hydraulic fracturing of the reservoir showed a clear connection between stages with 

homogeneous Shmin values at each perforation location and an even distribution of energy during 

stimulation. The variation between Group A and Group B can be seen in figure 17 which gives a 

graphical representation of the Shmin values of each cluster. The y-axis is labeled 6200 psi to 

7300 psi, and the x-axis labels each cluster. Figure 17a has Group A with even DAS 

distribution, and figure 17b shows Group B with uneven distribution. Shmin in pounds per square 

inch (psi) is on the y-axis and is held constant for each stage from 6200 psi to 7300 psi. The 

graphs are separated into the Groups A and B referenced above. Stages completed in areas of 

similar Shmin will generate a more horizontal line, while stages with more varied Shmin values 

will generate a more uneven line. Less vertical change for the line graphed means less change in 

Shmin for each of the perforated zones of the stage.  

The graphs generated show a clear change between stages in Group A and stages in Group B 

with the slight exception of stage 16. Clusters within stage 16 have more of an overall variation 

in Shmin values than other stages in Group A, but the Shmin heterogeneity is tied to a 

comparatively uneven distribution of energy when related to the other stages in Group A. Stage 

9, 14, 18, and 19 show very efficient stimulation in the DAS and have very little variation in 

Shmin magnitudes. In contrast, stages 2, 3, 4, 5, 6, and 7 have significant variation in the Shmin 

magnitudes at the perforation clusters and are tied to uneven energy distribution during 

stimulation.  
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Figure 17 Minimum horizontal stress placed on the y-axis with each cluster along the x-axis. a: Group A stages with even 
DAS including 9, 13, 14, 15, 18, 16, and 19. b: Group B stages with uneven DAS including 2, 3, 4, 5, 6, 7, and 10. 

a 

b 



 

 

44 

 

A direct relationship between Poisson’s Ratio and the minimum horizontal stress magnitude was 

observed. This is shown in the cross-plot in figure 18a. Poisson’s ratio is placed on the y-axis 

with Shmin on the x-axis. Poisson’s Ratio values correlate to minimum horizontal stress values, 

and the trend line of the data points has an R-squared value of ~ 0.93. When values of PR were 

constant, Shmin at those same locations had a similar result. For this reason, stages that were 

determined to be homogeneous based on the Poisson’s Ratio data overlap with stages that have 

similar minimum horizontal stress magnitudes for each cluster. Young’s Modulus was also 

placed against Shmin in a cross-plot which is shown by figure 18b. There is less of a trend in the 

data when compared with the Poisson’s Ratio cross-plot, and the R-squared value from YME is 

~0.39.  



 

 

45 

 

 

 

 

Figure 18 Cross plot of geomechanical moduli, Poisson's Ratio and Young's Modulus, with the minimum 
horizontal stress. a: trend between minimum horizontal stress and PR b: trend between minimum 
horizontal stress and YME.  

a 
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3.3.2 Discussion 

It is likely that smaller minimum horizontal stress magnitudes will result in a more “fracable” 

reservoir, but analysis of the efficiency of stimulation with the magnitudes of minimum 

horizontal stress show that keeping the Shmin relatively equal for each cluster is more effective in 

generating even DAS rather than focusing on perforating the lowest Shmin values. Optimal 

conditions for inducing fractures within the reservoir are likely clusters placed in zones of small 

but equal Shmin. Smaller Shmin values would be more likely to allow fracture propagation 

perpendicular to the wellbore, but stages with even distribution of energy shown in the DAS 

tended to have like Shmin values regardless of where they fell in the 6400 psi to 7100 psi range.   

Though there is a noticeable overlap in the results found from both the Poisson’s Ratio and Shmin 

analyses, when determining homogeneous reservoir zones for cluster placement, Shmin would 

likely be a more effective method than using only PR. Shmin takes into account many variables 

that create heterogeneity within the reservoir which include Poisson’s Ratio as well as vertical 

stress, Biot’s Coefficient, and pore pressure.  

Though this was the most common result, there are examples where even DAS did not correlate 

with Shmin such as stages 16 and 21.These stages have relatively broad ranges of Shmin values but 

still resulted in comparatively even DAS data. This could be the impact of other factors such as 

the natural fracture distribution discussed earlier in the paper. Of the stages showing even energy 

distribution, it seems that having only one cluster varying by ~ 200 psi or greater did not 

significantly impact the stimulation efficiency. This is seen in stages 13, 16, and 21. Overall, 

stages with cluster placement in zones with similar Shmin experience comparatively even energy 

distribution shown in the DAS.   
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4.  Conclusions 

Fracture failure models in Evans et al., 2019 suggested that natural fractures within the reservoir 

open during hydraulic stimulation, so fracture distribution should be considered when 

determining the placement of perforation clusters. Perforating highly fractured zones within a 

stage can lead to fracturing fluid preferentially flowing to the cluster or clusters with high natural 

fracture count rather than expending energy to induce fractures at clusters with few or no natural 

fractures is that same stage. Stages with all clusters having few or no natural fractures do not 

have a significantly impact from fracture distribution on the stimulation of that stage. When 

placing clusters, it is potentially beneficial to avoid sharp peaks in the PR and YME logs that 

correlate with peaks in bulk density. Those areas are likely the result of increased calcite content 

which has the potential to “hide” natural, calcite-filled fractures.  

Minimum horizontal stress is an effective method of determining cluster placement. Stages with 

clusters placement in the reservoir with similar Shmin resulted in an even distribution of energy 

reported in the distributed acoustic sensing data. The calculation of the Shmin magnitudes 

incorporates several variables which contribute to heterogeneity within the reservoir that can be 

used when interpreting homogeneous locations to place perforation clusters. Low Shmin did not 

equal increased energy to a point, so perforating areas of similar Shmin was more effective than 

perforating the lowest Shmin in an area.   

Poisson’s Ratio has a close relationship with minimum horizontal stress, and when compared 

with the DAS data, it was beneficial to keep the PR as constant as possible when placing 

perforations in the reservoir. Shmin results and the PR results overlap in this analysis, so it would 

be beneficial to compare the two methods. However, because PR has a comparatively small 

range in values and because Shmin includes more variables in the calculation, Shmin is a more 
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effective method of cluster placement when determining homogeneity. Young’s Modulus is less 

effective when determining factors affecting efficient stimulation, though the few examples of 

significantly higher YME did tie to an increase in strain on the optic fiber at those clusters.    
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