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Abstract 

Confirmation of TDM Capabilities in Modeling Compartmentalized WAG EOR 

Anthony Morrow 

Data-Driven Reservoir Modeling (DDRM), commonly referred to as Top-Down Modeling 
(TDM), is a relatively new and cutting-edge approach to the traditional numerical reservoir 
modeling and simulation techniques. DDRM uses artificial intelligence and machine learning in 
tandem to construct full-field models using measured data instead of calculations that refer to 
equations derived from averaged values and type curves. TDM allows all of the measured data 
from a field to be combined and used towards generating predictions of the production on a well 
by well basis for a specific field.  

Due to TDM not using the traditional physics-based approach, it is subjected to a plethora of 
criticisms within the industry. Therefore, the purpose of this thesis is to confirm the capabilities of 
TDM versus data synthetically generated using a Numerical Reservoir Simulator (NRS). To do 
this, the fluid flow through porous media will be modeled via the use of a traditional NRS; this 
way, everything is known about the reservoir in question. The data generated will then be exported 
and used towards the construction of the TDM. 

To complete the proposed objectives of this thesis, an application will be used to aid in the 
development of a TDM. All of the data used in order to develop and history match the TDM will 
have been generated via the NRS; this is done to confirm the abilities of TDM forecasting existing 
wells behavior. Once the TDM has been constructed; the forecast data will be compared to that 
from the NRS to validate the ability of the TDM.
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CHAPTER I 
 

INTRODUCTION 
 

1.1 General Overview 
 

Reservoir modeling has been a standard in the oil and gas industry for years, being used and 

improved throughout the past century. Until relatively recently, Numerical Reservoir Simulation 

was the industry standard for modeling fluid flow through porous media. Within the past 20 years, 

there has been an emergence of the use of artificial intelligence and machine learning to model 

these same reservoirs and predict the fluid flow through porous media.  

 

When using NRM, one of the significant assumptions that are made would be that all of the 

complexities of a reservoir are known and can be modeled. Supposing that the complexities are 

known, their modeling will be based on mathematical equations available to the modeler at the 

time of development. Along with this, one can conclude that since the reservoir model will be 

developed from the geological or static model, it will inherently carry assumptions and uncertain 

values. We, as engineers, however, feel comfortable changing these values to obtain an accurate 

history match based on gathered production data. Nevertheless, when it comes to developing these 

models in unconventional reservoirs, it is generally understood that these methods are far from the 

reality of the physics happening in shale reservoirs. They are only used due to the lack of any 

viable alternatives. (Mohaghegh, S. D., 2011, January). 

 

Using artificial intelligence is highly successful due to its ability to use only field data when 

generating a model. These obtained data points are considered to be facts about the reservoir. By 

obtaining these facts about the reservoir, it eliminates any possibility for assumptions to be 

integrated into the data and alter the unseen patterns. The caveat to this form of data usage is the 

inherent noise that will be present due to the collection or real data, but this noise can be accounted 

for and mitigated.  (Mohaghegh, Data-Driven Reservoir Modeling, 2017).  
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1.2 Problem Statement 
 

To adequately determine the characteristics and behavior of a reservoir, it is beneficial to have 

a model of the reservoir in question. Currently, the most generally accepted and commonly used 

method of modeling such reservoirs is by way of Numerical Reservoir Simulation. The problem 

with said technology is that it does not include a significant amount of the measured data once the 

field has matured and continues production.  

 

When looking at a method such as decline curve analysis, operational constraints, and reservoir 

characteristics will not be brought into the decision-making process. Another element to keep in 

consideration is the amount of time invested in utilizing this approach once completed. Individuals 

managing reservoirs need to be able to make quick and accurate decisions with the tools provided 

to them. Data-Driven Reservoir Modeling (DDRM), also known as Top-Down Modeling (TDM), 

provides exactly that. It is an alternative to the traditional reservoir simulation models that have 

been created and utilized in the past. TDMs are comprehensive, full-field, empirical reservoir 

models that allow the measured data from the field to be brought into account when dealing with 

the reservoir. By using this approach, it will not modify the measured reservoir data that had been 

collected when history matching the model. Thus, history matching can be performed on multiple 

independent production values simultaneously. Due to this, for this case, synthetic data will be 

used to confirm the capabilities of TDM that were previously discussed.  

 

The development of a DDRM is comprised of three phases: the first phase of this process, 

which is more exploratory, involves data mining. This is then followed by the development of the 

model based on the data obtained during phase one. This development consists of the training, 

history matching and validation of the model you are developing. The final phase of this process 

is then the post-model analysis. Using both data mining and artificial intelligence, due to the 

mining being more exploratory, it will involve the usage of unsupervised algorithms. When 

applying these steps in the case of reservoir engineering and modeling, modifications have been 

made to some of the traditional unsupervised algorithms to allow for the usage of reservoir 

engineering and geological domain expertise. (Mohaghegh, Data-Driven Reservoir Modeling, 

2017).   



 
3 

CHAPTER II 
 

LITERATURE REVIEW 
 
2.1 DATA-DRIVEN TECHNOLOGIES 
 

In Mohaghegh’s book “Data-Driven Reservoir Modeling,” he defines Data-Driven 

Technologies as “a set of new technologies that rely on data rather than our current understanding 

of the physical phenomena in order to build models, solve problems, and make recommendations 

to help us in decisions” (Mohaghegh, Data-Driven Reservoir Modeling, 2017). When we apply 

this ideology to the concept of reservoir modeling, we can use measured data, also considered to 

be facts, to gain insight into the reservoir in question. Within these measured points, there will be 

inherent noise due to the differences in measurement, but this can be compensated for within the 

modeling approach.  

 

2.1.1 Data Mining 
 

Data mining is essentially the process of assessing the dataset and finding the inherent 

patterns that are present within it. By ascertaining the information about these patterns, they can 

be put to use in developing a deeper understanding of the structure in question. When this is applied 

to Reservoir Engineering, the comprehensive dataset is called a Spacio-Temporal Database, and 

this database is then used to determine the patterns within the data and eventually given to an 

algorithm for TDM. However, before the modeling can take place, the data has to be cleaned; this 

is done to remove any noise, missing data points or errors within the database.  
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2.1.2 Artificial Intelligence-Base Reservoir Modeling 
 

Artificial Intelligence (AI) falls into a subfield of computer science that is used explicitly 

to create machines that convey behaviors considered intelligent.  However, AI can also be seen as 

an amalgamation of analytical tools in an attempt to imitate life. Researchers are continuously 

trying to develop and implement systems that can replicate or mimic things as complex as human 

thoughts. Some of the current uses of AI in the world are implemented through the usage of self-

driving cars, bank loan approvals, credit card fraud detection, medical diagnosis and a multitude 

of other processes that can be found throughout society. Although AI can be found so prominently 

throughout everyday functions, it is still broken into three main categories; these categories are 

fuzzy logic, artificial neural networks and evolutionary programming. Within the context of 

reservoir engineering tools developed from this technology are used to aid in understanding 

reservoir characterization, well log interpretations, drilling and pressure transient analysis 

(Mohaghegh, Shale Analytics, 2017). 

 

In reservoir simulation and modeling, when applied to AI, the goal is to mimic patterns 

found within the data. Instead of using the conventional understanding of physics sheerly to model, 

it is used to aid the understanding of fluid flow through porous media. With this understanding, a 

spatiotemporal database can be constructed. This database is then used to train a predictive model. 

The training takes place via the modification of the connection between parameters. As training 

continuously, the algorithm will eventually converge to a state where it can mimic the behavior of 

the hydrocarbon reservoir, as seen within the provided data. Alternatively, instead of trying to use 

physics to show the trends within the data, we allow the algorithm to deduce the physics implicitly.   

 

Although the concept of AI reservoir modeling is relatively new, it has an astonishing 

amount of potential. It allows reservoir models to be generated exponentially quicker compared to 

more traditional methods of modeling with this decrease in time to construct the model comes to 

a decrease in cost to develop reservoir models as well.  
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2.1.3 Artificial Neural Network 
 

As earlier stated, Artificial Neural Networks are considered to be one of the AI 

technologies that are present today. Systems like these are very complex such as the nervous 

system of the human body; they are continuously processing information to make decision-based 

on the data provided to it. Analyzing Figure 1, the decision process can be seen; the data from the 

previous neuron is provided to the one pictured. This input is affected by the weight of the 

connection determined during the training of the model, depicted as W1, W2 and Wa, respectively. 

Once this weight has been applied, the data enters the neuron and is applied to the activation 

function, which dictates if the output will be sent (Shahkarami, A., Mohaghegh, S. D., Gholami, 

V., & Haghighat, S. A., 2014, April). 

 

 
Figure 1 - Artificial Neuron 

When discussing a neural network, it is a vast array of these neurons arranged in a particular 

order to execute specific functions. An example of such an order is called a multilayer network 

and can be seen in Figure 2. The first layer, called the input layer, will have the same number of 

neurons as attributes in the provided database. The second layer, also known as the hidden layer, 

the data is modified based on training. This modified data is determined based on the weights that 

it assigns to each connection. These hidden layers are often compared to a “Black Box,” but unlike 

this accusation, they can be analyzed on a per-layer basis once the model is fully constructed. In a 

fully constructed network, there can be anywhere from no hidden layers to multiple, and it is 

dependent on the dataset and training performed. Lastly, as seen in the figure, the output layer is 

associated with the designated outputs of the model. In a fully constructed model, every output 

from a given layer is passed on to another node within the next layer. 



 
6 

 
Figure 2 - Sample Artificial Neural Network 

2.2 THE SPATIOTEMPORAL DATA BASE 
 
The spatiotemporal database is what truly makes or breaks the process of TDM. This database 

provides all of the necessary field measurement material to the TDM in a simplistic format where 

the inherent trends within the dataset can be determined. To optimize the number of trends that 

the algorithms can find within the database the shape must be flat or a matrix consistent of only 

rows and columns. The rows of the given matrix correspond to a record from the dataset whereas 

the columns are the attributes associated for a given record. When dealing with these databases, 

there are two types of data types that they can provide: static data and dynamic data. An example 

of a generic spatiotemporal database can be seen below in Figure 3. The corresponding data to 

be used within a given data based can be found in Table 1. 

 

 
Figure 3 - Example of Spatiotemporal Database 

Well Name Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6 Attribute 7 Attribute 8 Attribute 9 Attribute 10
Well 1
Well 2
Well 3
Well 4
Well 5
Well 6
Well 7
Well 8
Well 9
Well 10
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Table 1 - Sample of Attributes used in Database 

 
2.2.1 STATIC DATA 
 

For an attribute to be classified as a static attribute in the development of the TDM it cannot 

change over the time. The data that falls within this classification is used to construct the geo-

cellular model where the quantities of oil, gas and water present within the reservoir are 

calculated. This model is also known as the geological static model. When considering that all 

rocks can be classified as both heterogeneous and anisotropic, the static data can then be 

subdivided into two subcategories. The first category would be constructed of all of the attributes 

that are truly static such as the X and Y location of the well. This will not change for the life of the 

well at all. The second group would be dynamic-static data. This data contains dynamic attributes 

that are expected to change throughout the life of the reservoir being modeled. An example of 

this type of attribute would be drainage area, as new wells are completed within the reservoir 

the available drainage area to each well can alter over time. Along with this, some static 

attributes that are associated with drainage area such as the average porosity of the drainage 

area will also dynamically change over the life of the reservoir in question as well (Mohaghegh, 

Data-Driven Reservoir Modeling, 2017).  

 

 
  

Well Location 
X (Lattitude)

Y (Longitutde)
TVD

Production Stimulation Well Tests
Oil Water Injection Reservoir Pressure 
Gas Gas Injection

Water
Days of Production

Formation Evaluation

Dynamic Attributes

Static Attributes 

Porosity
Permeability 
Pay Thickness

Initial Water Saturation
Formation Top
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2.2.2 DYNAMIC DATA 
 
Dynamic data, as opposed to static, are attributes that will change over time. Most of the 

attributes that will fall within this class are due to human interventions within the production, 

regardless if said intervention was intentional or not. Things such as altering the size of the choke 

would fall within the domain of an intentional intervention. Whereas altering the well head 

pressure due to a constraint of the facilities downstream would be unintentional. It is important 

for the model to differentiate between the different types of data be it dynamic or static.  

 
 
2.3 TOP-DOWN MODEL 
 
Dr. Shahab Mohaghegh is seen as one of the early pioneers of developing AI technology in a 

manner to aid in petroleum engineering. Within the past few years, he has developed and 

introduced the world to the technology of TDM. This approach is considered by many to be the 

first approach to a data-driven reservoir model using comprehensive datasets based on actual 

data. TDM is such a critical technology within the industry because it simultaneously utilizes 

multiple disciplines. Some of these include reservoir engineering, statistical analysis using 

machine learning, reservoir modeling and a thorough understanding of AI. TDM was developed 

as an alternative to traditional modeling approaches in the sense that it is less demanding of both 

time and monitory resources to fully develop and complete a model of a reservoir. (Mohaghegh, 

S. D., Al-Mehairi, Y., Gaskari, R., Maysami, M., & Khazaeni, Y., October, 2014).  

 

Some of the features of TDM’s that set them apart from traditional numerical approaches are 

the following points:  

• It makes no assumptions or interpretations on the data that is given to it; meaning that 

the geological model that is provided on behalf of the modeling approach is unbiased.  

• It does not attempt to make physics-based assumptions pertaining to fluid flow through 

porous media to model the production from the reservoir.    
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CHAPTER III 
 

METHODOLOGY 
 
3.1 Introduction 
 
To complete this project, IMagine software was used for the development of the TDM. The TDM 

was constructed based on synthetic data obtained from a numerical reservoir simulator. In this 

chapter, an in-depth description as to how the synthetic data was generated as well as it was 

implemented for the TDM will be covered. The numerical simulation will consist of 49 production 

wells and 20 injection wells. The injection wells will alternate between injecting water and gas 

injection to adequately model WAG recovery being implemented on this reservoir. Additionally, 

the reservoir in question has 6 layers but will not be producing from layers 3 and 5. To fulfill this, 

all wells were not completed in either of these layers. Production from this reservoir started in 

January 1995 and continued until December of 2016. The production development plan 

consisted of 4 primary phases, and the final phase was broken into 4 sub phases. This phase 

development can be seen in Figure 4. The injection development phases and the WAG alteration 

plan can be seen in Figure 5 below. The reservoir being studied will have dome like features as 

well as a series of faults with no transmissibility across said fault to add more complexity and 

pressure boundaries present within the reservoir.  
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Figure 4 - Production Well Development Timeline 

 
 

 
Figure 5 - Injection Development and Phase Timeline 

  

Well X coord Y Coord 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
WELL-001 202 214 X
WELL-002 75 210 X
WELL-003 149 138 X
WELL-004 68 94 X
WELL-005 201 75 X
WELL-006 55 71 X
WELL-007 32 178 X
WELL-008 45 49 X
WELL-009 70 58 X
WELL-010 206 141 X
WELL-011 47 165 X
WELL-012 66 34 X
WELL-013 75 122 X
WELL-014 208 112 X
WELL-015 185 32 X
WELL-016 39 95 X
WELL-017 130 93 X
WELL-018 36 65 X
WELL-019 41 197 X
WELL-020 34 152 X
WELL-021 47 112 X
WELL-022 48 218 X
WELL-023 98 142 X
WELL-024 86 168 X
WELL-025 101 192 X
WELL-026 130 187 X
WELL-027 120 213 X
WELL-028 147 209 X
WELL-029 157 182 X
WELL-030 174 204 X
WELL-031 184 184 X
WELL-032 200 203 X
WELL-033 208 184 X
WELL-034 143 168 X
WELL-035 210 48 X
WELL-036 182 52 X
WELL-037 72 144 X
WELL-038 158 91 X
WELL-039 159 63 X
WELL-040 197 161 X
WELL-041 172 160 X
WELL-042 180 86 X
WELL-043 185 137 X
WELL-044 181 111 X
WELL-045 141 40 X
WELL-046 110 46 X
WELL-047 148 114 X
WELL-048 48 138 X
WELL-049 94 105 X
WELL-050 122 68 X
WELL-051 169 124 X
WELL-052 96 69 X
WELL-053 77 186 X
WELL-054 103 88 X
WELL-055 116 114 X
WELL-056 125 141 X
WELL-057 113 166 X

Well X coord Y Coord 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20111 2012 2013 2014 2015 2016
INJECTOR-007 77 240 X
INJECTOR-008 245 129 X
INJECTOR-001 10 76 X
INJECTOR-002 5 177 X
INJECTOR-003 15 34 X
INJECTOR-014 19 129 X
INJECTOR-015 15 216 X
INJECTOR-016 231 87 X
INJECTOR-017 57 23 X
INJECTOR-004 191 237 X
INJECTOR-005 235 55 X
INJECTOR-009 141 231 X
INJECTOR-011 237 203 X
INJECTOR-019 116 250 X
INJECTOR-012 217 19 X
INJECTOR-013 231 166 X
INJECTOR-010 154 15 X
INJECTOR-020 122 21 X
INJECTOR-018 42 235 X
INJECTOR-006 85 10 X

GASWATER

PHASE 1 

PHASE 2 

PHASE 3 

PHASE 4 

A 
B 
C 
D 
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3.2 IMagine Software  
 
The software used for the completion of this study, IMagine (Figure 6), is the only program of its 

kind. It allows for a thorough construction of TDM through a series of innovative algorithms. 

Based on artificial neural networks, fuzzy logic and genetic optimization, it aids in the 

development of comprehensive models.  

 

 
Figure 6 - IMagine Software 

 
 
3.3 Research Strategy 
 
Visualization of the workflow implemented throughout the completion of this study can be seen 

in the Figure 7 below.  

 
Figure 7 - Workflow for TDM development 
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1. Modify the Numerical Reservoir Simulator 
 

The model that was used for the purposes of this thesis was developed at WVU for studies such 

as this one to be conducted on. Once the model was obtained, a few tests were completed to 

verify that the model was in working order before modifications began. The overview of the well 

locations as well as the general shape of the reservoir can be seen below in Figure 8 and Figure 

9. The permeability and porosity of each of the 6 layers can be seen in Figure 10 and Figure 11 

respectively. Once these analyses had been complete, the model underwent alterations to fit the 

criteria of the thesis. Faults were added to the model to fulfil the required reservoir 

compartmentalization, these faults can be seen in Figure 12. All three of the faults had the 

transmissibility across them set to zero. This was done to create pressure boundaries within the 

reservoir and add complexity. Verification of the success of the faults instituting 

compartmentalization as well as pressure boundaries can be seen below in Figure 13, image 

shows the pressure distribution at a timestep within the reservoir’s lifespan. Here it can clearly 

be seen that the boundaries are acting as they are expected to. Both layers 3 and 5 were closed 

to all production and injection wells to add more complexity to the reservoir. This stipulation was 

fulfilled by not completing any of the wells within either of the specified layers. The operational 

conditions were changed to have a daily injection volume for both water and gas injector wells. 

Determining the final rates to use was an iterative process due to the initial model being 

consistent of only water injection on the field in question.  The volume of gas added had to 

compensate for the pressure loss due to the removal of water injection if there was not enough 

gas injected to compensate for the volume of water removed, then the differential pressure 

across the block over a time step would cause non-convergence errors within the simulation run. 

The final success of the WAG injection process can be seen below in Figure 14, here it is seen the 

saturations of water and gas change as the reservoir goes through the first phases of each fluid 

type.  Along with this minimum oil rates as well as a water cut constraints was added to the model 

in order to prevent wells nearest to the injectors from eventually producing mostly all water and 

mitigating the effects of the injection procedure. A randomized shut-in program was used to 

make the model more realistic. As previously mentioned, there were 49 production wells as well 

as 20 injection wells.  
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Figure 8 - Well Location as seen over Initial Water Saturation 

 

Figure 9 - 3D Visualization of Reservoir 

 



 
14 

 

 

 
Figure 10 - Reservoir Permeability per Layer 
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Figure 11 - Reservoir Permeability per Layer 

    
Figure 12 - Reservoir Faults 
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Figure 13 - Pressure Boundary 

 
Figure 14 - Conformation of WAG Implementation 

2. Generate the required data for the Top-Down-Model 
 
Once the numerical model was completed and the results were deemed to be adequate for the 

purposes of this study the data needed to be exported and then converted to an acceptable 

format for the TDM program. From all of the data generated within the numerical simulation, the 

attributes as seen in Table 2 below were exported and given to the TDM software. The data was 

classified into two groups, static and dynamic data. These groups are separated on the basis of 

the value of that attribute will change throughout the window of simulation. If the attribute was 

deemed to fall within the static category, then the given information was exported on a per layer 

basis and then averaged or summed together dependent on the given attribute. The method of 

combining the data per layer can be seen under the method column in Table 2. Once this data 
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was collected it needed to be formatted in a way for the software to adequately use it. The 

formatting used for the static dataset used within this study can be seen in Table 3. The dynamic 

attributes had to be formatted in such a way to train the model as to how they were changing 

per well over time. This information was exported on a cell level instead of per layer of the 

reservoir to more adequately calculate the needed values. Once these had been exported from 

CMG some of the attributes were weighted and others were summed across the corresponding 

blocks within a given well. This was done dependent on the attribute. The method applied to 

each attribute within the dynamic section can be found in Table 2. For attributes that were 

completed using weighted averaging, the weighted method was different per attribute. For 

example, flowing bottom hole pressure was weighted using only the thickness of the formation 

whereas reservoir pressure was weighted with both thickness and permeability. These averages 

were completed based off of the monthly exported block information. A piece of the final 

formatting for the dynamic oil data can been seen below in Table 4. Based on the oil production 

for the reservoir a days of production table was also completed. Due to there being a minimum 

oil production rate and water cut constraint implemented on the model, it can be said that when 

there is no oil production that the well is not producing at all.  
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Table 2 - Attributes Exported for TDM 

 

Data Name Method
Well Type N/A
X N/A
Y N/A
Top N/A
TVD N/A
Initial Sw Average
Pay Thickness Sumation
Porosity Average
Completion Summation
Oil Production Summation
Gas Production Summation
Water Production Summation
FBHP Weighted Average
Reservoir Pressure Weighted Average
Oil Saturation Weighted Average
Gas Saturation Weighted Average
Water Saturation Weighted Average
Days of Production Summation
Water Injection Rates Summation
Gas Injection Rates Summation

St
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ta
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Table 3 - Static Attribute Table 

 
 
 
 
 

Well Name Well Type Xc Yc Top TVD Swi Thickness Perm Porosity Completion Footage
I-01 Iv 9724 17517.5 4358.253333 4404.5 1 44.74586667 100 0.1 44.74586667
I-02 Iv 9668.75 12362.35 4505.862222 4531.724444 1 23.84175778 100 0.1 23.84175778
I-03 Iv 9724 19669.65 4329.73 4364.478889 1 32.76715667 100 0.1 32.76715667
I-04 Iv 20221.5 9459.45 4007.923333 4274.21 1 203.7323267 100 0.065 203.7323267
I-05 Iv 23039.25 18568.55 4147.026667 4311.93 1 133.1482922 100 0.065 133.1482922
I-06 Iv 14365 20820.8 4258.983333 4342.74 1 68.38636667 100 0.065 68.38636667
I-07 Iv 13923 9309.3 3979.313333 4271.95 1 207.7200444 100 0.065 207.7200444
I-08 Iv 23205 14864.85 4113.48 4287.64 1 137.7061289 100 0.065 137.7061289
I-09 Iv 17459 9759.75 3911.526667 4260.32 0.551821333 235.8483667 100 0.065 235.8483667
I-10 Iv 18177.25 21321.3 4198.413333 4348.556667 1 115.9604467 100 0.065 115.9604467
I-11 Iv 22763 11161.15 4222.273333 4357.017778 1 99.23821111 100 0.065 99.23821111
I-12 Iv 22707.75 20870.85 4230.91 4370.97 0.934268 111.49413 100 0.065 111.49413
I-13 Iv 22431.5 13013 4186.175556 4343.852222 0.652117444 117.9717 100 0.065 117.9717
I-14 Iv 10718.5 14864.85 4176.87 4516.828889 0.652164444 233.6744922 100 0.065 233.6744922
I-15 Iv 10497.5 10510.5 4121.888889 4444.943333 1 230.8298033 100 0.065 230.8298033
I-16 Iv 23426 16966.95 4109.61 4265.08 1 122.0588556 100 0.065 122.0588556
I-17 Iv 12541.75 21121.1 4330.324444 4360.166667 1 28.04769111 100 0.1 28.04769111
I-18 Iv 11989.25 9559.55 4079.475556 4362.401111 0.937699222 211.22611 100 0.065 211.22611
I-19 Iv 16077.75 8808.8 3899.906667 4259.68 1 237.4268 100 0.065 237.4268
I-20 Iv 16409.25 21021 4217.226667 4341.483333 1 95.08361667 100 0.065 95.08361667
P-01 Pv 20829.25 10610.6 4123.297778 4273 0.082184389 100.3025444 63.52325 0.08717557 100.3025444
P-02 Pv 13812.5 10810.8 4023.616667 4302.295556 0.046370589 209.5878556 2.069399444 0.045334956 209.5878556
P-03 Pv 17901 14414.4 3919.642222 4270.725556 0.037160111 243.5754111 20.26365972 0.118597456 243.5754111
P-04 Pv 13425.75 16616.6 4148.858889 4419.197778 0 197.7591978 38.48183639 0.082316231 197.7591978
P-05 Pv 20774 17567.55 4095.665556 4134.272222 0.046511667 38.605 1.956190556 0.066532544 38.605
P-06 Pv 12486.5 17467.45 4263.375556 4373.136667 0 55.63082222 376.6512778 0.143741611 55.63082222
P-07 Pv 12486.5 12262.25 4217.058889 4410.773333 0 98.72555556 92.8418 0.0945285 98.72555556
P-09 Pv 13867.75 17917.9 4197.375556 4295.034444 0 97.65927778 2.438473333 0.058949289 97.65927778
P-10 Pv 21050.25 14264.25 4098.468889 4305.946667 0.046374256 160.4357667 30.46674944 0.089310806 160.4357667
P-11 Pv 13260 13313.3 4111.37 4415.735556 0 204.2574111 185.9187915 0.099720011 204.2574111
P-13 Pv 13812.5 15215.2 4109.378889 4456.807778 0 244.8389989 76.36984444 0.100531222 244.8389989
P-14 Pv 21160.75 15715.7 4054.264444 4161.19 0.043490578 81.80547778 14.39334333 0.074308685 81.80547778
P-15 Pv 17735.25 18718.7 4113.022222 4163.427778 0.053320044 50.4056 1.216545556 0.01301875 50.4056
P-16 Pv 11823.5 16566.55 4196.252222 4340.052222 0.081733722 143.7972667 243.1078889 0.130939778 143.7972667
P-17 Pv 16851.25 16666.65 4004.058889 4294.436667 0 207.6955556 135.6275272 0.119340897 207.6955556
P-18 Pv 11657.75 18068.05 4242.737778 4275.421111 0.092231478 32.68271111 369.8424444 0.136995444 32.68271111
P-19 Pv 11934 11461.45 4118.713333 4400.395556 0.075765856 189.0718444 31.03580741 0.0956155 189.0718444
P-20 Pv 11547.25 13713.7 4319.914444 4588.028889 0.094244011 140.6144711 4.361211481 0.060362622 140.6144711
P-21 Pv 12265.5 15715.7 4178.265556 4520.756667 0.009221573 238.1828544 30.095215 0.084188406 238.1828544
P-22 Pv 12320.75 10410.4 4072.84 4358.233333 0.109436278 213.34573 1.458286944 0.033858256 213.34573
P-23 Pv 15083.25 14214.2 4059.043333 4350.193333 0 218.3902522 5.2793025 0.047081278 218.3902522
P-24 Pv 14420.25 12912.9 4076.184444 4383.453333 0.0414863 227.34607 11.52561222 0.079988064 227.34607
P-25 Pv 15249 11711.7 4149.874444 4313.014444 0.044487467 126.3260222 27.51719444 0.136403889 126.3260222
P-26 Pv 16851.25 11961.95 4033.668889 4275.218889 0.046356889 166.9091222 105.4412389 0.144704778 166.9091222
P-27 Pv 16298.75 10660.65 3901.105556 4092.874444 0.050819 157.9334889 35.75531704 0.098638656 157.9334889
P-28 Pv 17790.5 10860.85 3945.755556 4127.037778 0.045220433 137.9545667 26.3513037 0.121875544 137.9545667
P-29 Pv 18343 12212.2 4108.862222 4273.797778 0.041996722 125.9678556 20.16001667 0.137773167 125.9678556
P-30 Pv 19282.25 11111.1 4007.961111 4290.333333 0.047057222 215.8863633 47.14674722 0.132264011 215.8863633
P-31 Pv 19834.75 12112.1 4052.348889 4303.124444 0.043602344 192.4337644 27.48996806 0.096436956 192.4337644
P-32 Pv 20718.75 11161.15 4117.811111 4225.007778 0.046334767 107.1946556 78.91058111 0.121886589 107.1946556
P-33 Pv 21160.75 12112.1 4153.061111 4242.914444 0.043510467 89.85442222 3.266722778 0.066622683 89.85442222
P-34 Pv 17569.5 12912.9 3919.832222 4269.655556 0.0415137 242.2014667 62.38331944 0.133257417 242.2014667
P-37 Pv 13646.75 14114.1 4120.255556 4480.573333 0 151.0529689 215.47618 0.118531548 151.0529689
P-38 Pv 18398.25 16766.75 4007.662222 4277.286667 0 176.6166 17.49285074 0.096772122 176.6166
P-39 Pv 18453.5 18168.15 4084.144444 4258.995556 0 127.2268333 23.25029296 0.094666733 127.2268333
P-41 Pv 19171.75 13313.3 4172.91 4282.202222 0.038999689 95.95498889 23.49308444 0.120623056 95.95498889
P-42 Pv 19613.75 17017 4149.635556 4267.655556 0.042333144 99.39841111 120.3275556 0.133382483 99.39841111
P-43 Pv 19890 14464.45 4038.691111 4295.008889 0.040652333 196.3503111 16.27456222 0.1007342 196.3503111
P-44 Pv 19669 15765.75 3984.922222 4277.521111 0.042333367 211.3189333 13.97312583 0.085518628 211.3189333
P-47 Pv 17845.75 15615.6 3913.453333 4278.015556 0.031641367 250.5424333 76.20079278 0.089283694 250.5424333
P-49 Pv 14862.25 16066.05 4089.591111 4374.516667 0 211.8414433 6.034539167 0.054675431 211.8414433
P-50 Pv 16409.25 17917.9 4113.377778 4313.983333 0 155.2309956 3.476153889 0.054495428 155.2309956
P-51 Pv 19006 15115.1 3952.136667 4274.024444 0.037952122 228.7757222 7.635279444 0.078738911 228.7757222
P-52 Pv 14972.75 17867.85 4166.59 4398.866667 0 168.9607067 2.169341944 0.037089247 168.9607067
P-53 Pv 13923 12012 4077.141111 4379.94 0.043001122 224.8286922 13.64446722 0.068782044 224.8286922
P-54 Pv 15359.5 16916.9 4102.676667 4370.477778 0 198.4797789 23.31033528 0.071827231 198.4797789
P-55 Pv 16077.75 15615.6 4009.043333 4297.305556 0 210.7863778 63.26158222 0.102820736 210.7863778
P-56 Pv 16575 14264.25 3937.353333 4288.597778 0.036666667 247.7304444 33.61684917 0.128098175 247.7304444
P-57 Pv 15912 13013 3983.35 4291.483333 0.0415137 224.8585889 6.824005833 0.083751336 224.8585889
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Table 4 - Dynamic Oil Data 

 
3. Importing Data into Imagine 

 
Once all of the data had been converted into the appropriate formats for IMagine, it then needed 

to be imported. All of the generated data was broken into two groups, either well based data or 

production data. They were separated like this to fulfill the criteria set by IMagine. Once selected, 

they were imported into their respective categories as seen in Figure 15. For training purposes 

and to validate the ability of the TDM to adequately forecast production from the reservoir data 

from 1995 until 2014 was given to the software. The partitioning of said data can be seen in 

Figure 16 below.  

 
Figure 15 - Data Import 

Well Name 2/1/1995 3/1/1995 4/1/1995 5/1/1995 6/1/1995 7/1/1995 8/1/1995 9/1/1995 10/1/1995 11/1/1995 12/1/1995 1/1/1996 2/1/1996 3/1/1996
P-01 25497.79102 17507.23828 15597.71387 13782.34277 12355.32813 0 12020.98242 9588.329102 8666.594727 7552.389648 6528.727539 5836.885254 5409.306641 4998.283203
P-02 1050.013916 922.4468384 905.3519897 883.4414063 859.2730103 831.5455933 809.032959 783.5483398 761.6668091 739.8683472 712.8626709 687.5158691 0 660.6240845
P-03 10540.06641 8484.485352 7855.526367 7253.751465 6726.149414 6236.045898 5853.100098 0 5546.135742 4995.890137 4632.1875 4405.808105 4169.120117 3988.650391
P-04 7211.507324 5977.976563 5733.566895 5576.668945 5333.308594 5130.754395 4916.022949 4701.675293 4557.504883 4381.919434 4212.104004 4073.910889 3912.149414 3814.911865
P-05 207.2028656 183.8948669 180.6111908 175.2799072 169.0693359 162.5798187 156.8040009 151.5491028 145.5938721 139.7486267 135.064682 129.1069336 124.4681931 120.4067307
P-06
P-07
P-09
P-10
P-11
P-13
P-14
P-15
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Figure 16 - Data Partitioning 

 
4. Static Modeling  

 

This section of the application allows for the completion of a grid and boundary analysis as well 

as geo-statistics, reservoir delineation and volumetric calculations to be performed. All of these 

calculations are based on the given factual data for the reservoir in question. The reservoir 

boundary had to be set manually for the model. Once the boundary was developed, a grid size 

was determined and then the reservoirs delineation was calculated using the Voronoi technique. 

When completed, the volumetric calculations could be completed. An example of the completed 

calculations for reservoir delineation can be found below in Figure 17.  

 
Figure 17 - Reservoir Delineation Example 
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5. Top-Down modeling: (Training and History Matching) 
 
This section is comprised of three steps; model design, attribute selection and development of a 

comprehensive dataset. These three steps can be seen highlighted in Figure 18 below. The first 

step to building each model is to determine out what the model’s inputs and outputs will be. This 

will include all of the data that will be used to train the model within the date range specified. 

Once the data desired has been decided upon, the necessary attributes that each model will use 

during the training phase need to be selected. These attributes that are selected in this phase 

will go on to build the spatiotemporal database that is used for each model’s data set. Each of 

the models used to construct this TDM used different attributes. The attributes that each model 

used was dependent on their place within the final TDM. The order of the models in the final 

TDM can be seen in Figure 19. For each model, the static data along with the dynamic data, 

comprised of operational conditions needed to be selected at time (t). However, the production-

based models, for example, Oil at time (t-1) had to be selected and used due to Oil at time (t) 

being the output of that model. Similarly, for Gas and Water their respective attribute had to be 

selected at time (t-1), however, the prior levels of the TDM was given to the current model at 

time (t). For example, when building the water model we know the water(t) will be our output 

for the model. In terms of inputs, we will need to give it water(t-1) and due to its position in the 

TDM it will also receive oil(t) and gas(t). A visual representation of the attribute selection can be 

seen in Table 5.  
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Figure 18 - Build and History Matching 

 
Figure 19 - Sequence of Models in TDM 

 
One important consistency among all of the models attribute selection for creating the 

spatiotemporal database was that oil(t) was selected before generating the dataset. This was due 

to the fact that the dataset was cleaned based on the oil production. Once the dataset was 

generated the values for oil were sorted numerically and all records where oil(t) equaled zero 

were removed from the dataset before advancing to the training section of model development. 

This is due to wanting the model to be trained on data points where there was oil production 

since that was the most important element of the TDM. A cumulative list of the attributes that 

were selected for each model can be seen below in table below in Figure 19. A generated and 

cleaned database can be seen below in Table 6.  

1 2 3 
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Table 5 - Attribute Selection 

 

Table 6 - Spatiotemporal Database for Oil 

Once the database had been cleaned, the total number of remaining cases was 4,679. 

Of those, 80% was used towards training and 10% was used respectively towards each the 

calibration and validation. A synopsis of the total amount of cases split into each category can 

be seen in Table 7 below.  

 

 
Table 7 - Number of Cases 

 

Total Cases Imported Cases Training Cases Calibration Cases Validation

6572 4679 3743 468 468
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6. Forecasting 
 

After the TDM was created, (trained, calibrated and verified) and deemed to be an accurate 

model based on the data provided between 1995 and 2014, the deployment phase started. The 

deployment would determine future production of oil, gas and water for all of the wells included 

in the dataset. Once the predictions had been completed between January 2015 until December 

2016, the results were then to be compared to the numerical results. The final deployment type 

as well as the list of inputs can be seen in Figure 20 below. It is essential to add the data for the 

operational conditions, as seen in the figure for the years of forecasting before deployment.  

 

 
Figure 20 - TDM Deployment 
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CHAPTER IV 
 

Results 
4.1 Training Results 
 

The results for the training, calibration and verification of the Oil, Gas, Water, Reservoir 

Pressure and Water Saturation models can be found within this section. After a multitude of 

attempts over varying models, the best ones were selected based on their R2 training results. In 

order for the model to be deemed satisfactory, it needed to have a high R2 across its training, 

calibration and verification. If the model performed well in 1 or 2 of the three classes, but not all 

three the attributes were reevaluated, then the model was built and trained again. 

When analyzing the results from these training sets, as seen in Figure 21 and Figure 22 

below, we can see that the results for each of the models mentioned performed very well across 

its training, calibration and verification stages. Due to the results, these models would then be 

used in the final construction of the TDM. The numerical results of the R2 associated with training 

of each model can be seen in Table 8 below. 

 

 
Figure 21 - Oil Training Results 
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Figure 22 - Gas, Water, Pr, Sw Training Results 

 

 

Table 8 - Numerical Training Results 

 
 

  

R2
 -R

es
ul
ts

Model Training Calibration Verification

Oil 97.79 86.44 84.26

Gas 97.60 95.65 97.78

Water 96.86 85.0 95.78

Pr 98.97 97.37 97.82

Sw 99.40 98.60 98.76
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4.2 TDM Results and Conformation  
 
 The results from deploying the TDM can be seen in figures ranging from Figure 23 – 24 

below. Each of these sections of figures contains a detailed series of plots depicting how a 

selected well performed within the TDM.  In each instance, there are three graphs displaying how 

the Oil, Water and Gas production performed for said wells. Among all of the provided graphs, 

the X-axis can be seen to be time whereas the Y axis is the volume alternating between barrels 

for oil and water or mscf for gas.  Within these results, you can see the accuracy of the training 

sections as well as the forecasting. The division between the two sections is indicated by way of 

the vertical line at the 2015 time mark. The green, orange or blue dots represent oil, gas and 

water respectively, showing the results obtained from the numerical simulation. The grey line 

represents the training and forecasting of the completed TDM. Also, overlaid within the figures 

is a cumulative production calculated for each well. The cumulative for the actual matches the 

color of the actual data points within the given attribute being displayed, whereas the lighter 

green is the cumulative of the TDM’s predictions. From these results, it can be concluded that 

the TDM is a very powerful technique when it comes to history matching the results across the 

given measured data for each well within the given field. It has been illustrated within Dr. 

Mohaghegh’s book (Mohaghegh, Data-Driven Reservoir Modeling, 2017), that top-down 

modeling learns the reservoir and independent wells production behavior by way of determining 

internal correlations within the static and dynamic datasets provided to it. Along with this, it takes 

into account the production of each individual well and the injection and production of offset wells. 

The TDM will find the patterns within the data on a well-by-well scenario, looking at each 

individual record given to it and then cumulatively come to a concise conclusion about the entirety 

of the reservoir as seen in Figure 28 through Figure 30. The accuracy of this TDM is impressive 

when looking at the history matching section alone not to mention when looking over how well it 

forecast the data from the numerical simulation based on the data provided to it for training.    
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Figure 23 - Well 3 TDM Results 

 

Figure 24 - Well 34 TDM Results 
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Figure 25 - Well 47 TDM Results 

 

Figure 26 - Well 26 TDM Results 
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Figure 27 - Well 37 TDM Results 

 
Figure 28 - Oil Production Entire Reservoir 
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Figure 29 - Gas Production Entire Reservoir 

 
Figure 30 - Water Production Entire Reservoir 
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Subsequently, the prediction results or the reservoir pressure as well as the water 

saturation were compared to those of the initial numerical reservoir simulator to validate the 

accuracy of the model. In order to visualize these results they a heat mapping approach was 

implemented. This was done by taking the known values for each well and radially averaging 

them to generate the heat map.  All values used were for an entire well, the values form the 

numerical simulator were averaged while weighted with height of the reservoir layer as well as 

the permeability. A graph was generated for each attribute, reservoir pressure and water 

saturation, at each month of the forecasting period. In Figure 31 and Figure 32 below a summary 

of the initial time step for the last 3 years of production can be seen. The first image shows the 

last year of training and the latter two are both in forecasting to showcase how accurate the 

model was in training and how the further out the forecasting is deployed the model retains the 

ability to accurately forecast reservoir characteristics.  

 
Figure 31 - Reservoir Pressure Forecasting Heat Map Summary 
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Figure 32 - Water Saturation Forecasting Heat Map Summary 
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CHAPTER V 
Conclusion 

5.1 Conclusion 
 

The operation of a reservoir is only as successful as your ability to model and understand 

the reservoir in question. The current most widely accepted technique for this is numerical 

simulation approaches. However, when considering this technology, it cannot be considered to 

be truly an accurate representation of the reservoir due to the amount of collected data it omits 

as well as the amount of interpretation that is needed to be completed to build a model. 

Therefore, a data-driven reservoir modeling technique, also known as Top-Down Modeling 

(TDM), provides not only a more comprehensive, but also a more complete modeling approach 

than traditional numerical reservoir simulations. This is due to its inclusion of the recorded field 

data while not making interpretations based on assumptions. As a result, it makes TDM an 

extremely appropriate tool for reservoir modeling in the existing field and determines the future 

performance of the field as opposed to traditional approaches.   

 

Due to the amount of criticism that TDM is subjected to for not using a physics-based 

approach of modeling, synthetic data was generated from the entrusted existing technique. This 

data was then used to display the capabilities of a data-driven reservoir modeling approach, thus 

confirming the overall potential of TDM technology.  

 

The TDM presented was trained, calibrated and validated based on the historical data 

given to it. This data was generated by way of a complex numerical reservoir simulation model 

that included a myriad of intricacies; Some of which include compartmentalization, non-

producing layers, alternating injection fluids as well as dynamic completions of wells. The results 

prove that TDM is a powerful technology for history matching an existing field based on collected 

field data for each well. Moreover, predictions were made based on the data presented to the 

final TDM and compared to that of the Numerical Reservoir Simulation. It was clearly shown that 

the results of the TDM’s predictions over the final two years of the reservoir (2015 and 2016) for 

oil, gas and water production were directly comparable to those of the numerical simulation 
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model. Therefore, it can be said that the data-driven reservoir modeling approach using a 

combination of artificial intelligence as well as machine learning is a justifiable approach to 

reservoir modeling. It can be trusted for and applied to highly complex reservoirs only the actual 

measured data from the field and not making any interpretations.  
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