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ABSTRACT 

On-site Measurement of the Water-Cementitious Ratio and Heat of Hydration of Delivered 

Concrete 

Seyednavid Mardmomen 

In this study, AASHTO T318-15 was adopted to estimate the water content of fresh concrete mixes 

and then revised to have better precision. The additional step required sieving out the coarse 

aggregate after drying the sample in a microwave oven, and it was then used in the calculation of 

the absorbed water and cementitious material content. Several laboratory batches, as well as on-

site water-cementitious (w/cm) ratio tests, were performed on concrete mixes containing ordinary 

Portland cement, ground granulated blast furnace slag, and Class F fly ash. The results of the 

experiments indicated that the accuracy of the revised method was increased to an average 

percentage error of 2.16% from the actual w/cm ratio, while the method based on AASHTO T318 

was 6.2%. For cases with high chemical admixtures dosages, washing vinegar was used to wash 

out the particles around the dried sieved coarse aggregate to calculate the w/cm ratio with a more 

precise mass for each sample. 

A simple on-site measurement for the heat of hydration of fresh concrete was conducted using an 

insulated 1-meter cube. The cube was designed to be well insulated with 8-cm of insulation 

material on each side. It acted as a semi-adiabatic calorimetry since the heat loss was small. The 

temperature-time history at the center was used to calculate the adiabatic temperature rise (ATR) 

of the concrete. An average heat loss characteristic parameter was obtained for each delivered 

batch using the measured concrete temperature-time history after five days of curing. A finite 

element model (FEM) was developed to analyze the cube at different ambient environmental 

conditions. A table with the required insulation for various ambient conditions with a range 

between -10 to 30 °C ambient temperatures was also provided so that the setup can accurately 

estimate the ATR using only the temperature measurement at the center of the cube. 

The w/cm ratio and the heat of hydration test methods were evaluated in three on-site castings in 

the state of West Virginia. Two of the on-site castings contained Grade 100 ground granulated 

blast furnace slag. The third on-site casting used Class F fly ash concrete. Several compressive 

strength cylinders were made and cured at a temperature of 23 °C. The materials used in each on-

site casting were also collected to perform compressive strength, adiabatic, and isothermal heat of 

hydration tests in laboratory conditions. The compressive strength measured on-site was lower 

than the laboratory batches which indicates a higher w/cm ratio was received on-site.  The adiabatic 

temperature rises calculated from the cube’s center temperature compared well with the results 

from both the adiabatic and isothermal calorimetry. Results show that the on-site temperature 

measurement using the 1-m cube can be considered as a simple and accurate approach to measure 

the heat of hydration of a delivered concrete batch. 
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Chapter 1 : Introduction 

1.1.  Overview 

1.1.1.  Revised Method for Rapid Determination of On-Site Water-Cementitious 

Ratio Using Microwave Oven 

The determination of the amount of water in a concrete mix is an important factor to ensure 

the concrete has good quality and performance. In the past, before the use of water-reducing 

admixtures, extra water was added to increase the workability of the concrete; concrete was usually 

ordered within a specific slump range to allow for proper placement and workability. However, 

adding water to a concrete mix increases the capillary pores and reduces the strength. Researchers 

have shown that an increment of  the water cementitious (w/cm) ratio of 0.01 will cause a strength 

decrease of approximately 0.86 MPa (Nantung 1998). Neville (Neville 2011) denoted that when 

the w/cm ratio increased from 0.4 to 0.5, the compressive strength of the concrete would reduce; 

the compressive strength reduction at one-day is about 38%, and the strength reduction at one-year 

is about 17%. Since in modern construction, the concrete’s strength is highly important, an 

accurate and consistent method that can measure the w/cm ratio within a short period of time and 

can be applied in field conditions would be a very useful tool. 

1.1.2.  On-Site Measurement of the Adiabatic Temperature Rise of Delivered 

Concrete 

The curing process of concrete is an exothermic chemical reaction between the 

cementitious material and the mixing water. The adiabatic temperature rise (ATR) could be 

significant, depending on the mix proportions and cementitious chemical compositions. High 

ATRs increase the possibility of thermal cracking in mass concrete structures since the surface of 
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the concrete tends to cool down much faster than the inside layers. A precise estimation of the 

ATR is vital to model the thermal and mechanical behavior of concrete at an early age. Several 

test methods are available to determine the heat of hydration of concrete. Isothermal, semi-

adiabatic, and adiabatic calorimetry are the standard test methods that have been used by many 

researchers. Reaching an exact adiabatic condition is a difficult task. Therefore, semi-adiabatic 

calorimeters are a more practical way to measure the heat of hydration and needs a less complicated 

controlling unit. For a semi-adiabatic calorimeter, the heat loss due to the ambient conditions needs 

to be estimated and added back to calculate the ATR. Building a calorimetry at a job site with 

various ambient environmental conditions is not an easy task and requires expensive equipment 

and sophisticated testing procedures. Therefore, an alternative method is needed to measure the 

unknown ATR of a fresh concrete mix.  

1.2.  Scope & Objectives 

The scope of this thesis was to develop an accurate method for the on-site measurements 

of the water-cementitious ratio and heat of hydration of a delivered concrete batch. These 

objectives were completed in the thesis: 

✓ Development of a revised AASHTO T318-15 method for on-site measurement of w/cm 

ratio. 

✓ Laboratory w/cm ratio measurements for different types of concrete mixes and 

discussions about the accuracy of the method. 

✓ Development of a simple and accurate method of an on-site heat of hydration 

measurement of a concrete batch using a 1-m insulated cube. 

✓ Development of guidelines for using the on-site heat of hydration method at different 

ambient conditions. 
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✓ Evaluation of the revised w/cm ratio and on-site heat of hydration measurement in real 

field castings. 

✓ Calculation of the adiabatic temperature rise (ATR) using the temperature 

measurement at the center location after five days of curing. 

✓ Evaluation of the accuracy of the calculated ATR with adiabatic and isothermal 

calorimetry. 

1.3.  Thesis Organization 

An overview of the organization is as follows: 

❖ Chapter 2: 

This chapter contains different studies for the determination of the water-

cementitious ratio and heat of hydration of concrete. Literature studies related to both 

laboratory and on-site measurement techniques are discussed in this chapter.  

❖ Chapter 3: 

This chapter provides the revised method of on-site determination of the water 

cementitious ratio using microwave oven. The technique is discussed in detail, and the 

laboratory results are presented. 

❖ Chapter 4: 

The chapter presents the on-site measurement setup for the determination of heat 

of hydration and adiabatic temperature rise of fresh concrete batch. A table is provided to 

be used when the setup is used in cold ambient temperatures. 
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❖ Chapter 5: 

This chapter contains the details and the results obtained from three field castings. 

The on-site water-cementitious ratio testing results, as well as the temperature data 

obtained from different locations in the cubes, are provided. 

❖ Chapter 6: 

This chapter presents discussions and comparisons between the results provided in 

Chapter 5 with some laboratory measurements of compressive strength and the heat of 

hydration. The laboratory compressive strengths were compared to the compressive 

strengths obtained from the delivered batches. The adiabatic temperature rise obtained 

from the 1-m cube was compared to isothermal and adiabatic calorimetry measurements. 

❖ Chapter 7: 

This chapter includes a summary of the work that has been done in this study 

including the conclusions and recommendations for future studies on the same topics.  
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Chapter 2 : Literature Review 

2.1.  Revised Method for Rapid Determination of On-Site Water-cementitious Ratio Using 

Microwave Oven 

Many methods have been reported for measuring w/cm ratio of concrete (Roshore 1973; 

Naik and Ramme 1987; Nagi and Whiting 1994; Leung and Pheeraphan 1995; Hershberger 2015; 

Dowell and Cramer 2002; Fox, Trost, and Hellman 2007; Hossain et al. 1996; Chen, Shen, and 

Shui 2012; Mancio et al. 2010). Since the early 1970s, there have been many research studies that 

have improved the testing procedure using the microwave oven (Roshore 1973; Naik and Ramme 

1987; Nagi and Whiting 1994; Leung and Pheeraphan 1995; Hershberger 2015; Dowell and 

Cramer 2002; Fox, Trost, and Hellman 2007). The researchers focused on the accuracy, time 

consumption, cost, and, most importantly, the replicability of two or three samples. Other w/cm 

ratio measurement techniques were also investigated by the researchers such as the nuclear gauge 

(Center 1996), chemical titration method (Williamson 1985), flotation method (Nägele and 

Hilsdorf 1980), electrical resistivity method (K. A. MacDonald and D. O. Northwood 1999), 

reflectometer apparatus (N. T. Ali et al. 2010), and buoyancy method (Tarun R. Naik and Bruce 

W. Ramme 1989). 

2.1.1.  Microwave Oven Methods 

A study by Naik et al. (Naik and Ramme 1987) considered the microwave method as a fast, 

simple, inexpensive, and accurate way of determining the water content of a fresh mix and the 

moisture content of aggregates. The study presents a rapid (15 minutes or less) method for 

determining the water content of the mix. Approximately 1000-grams of a concrete sample were 

placed in a microwave oven. The microwave oven was also used to establish natural moisture 
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content, absorption, and bulk specific gravity in aggregates in a short period. It was recommended 

by the authors to test the method in a job-site condition. The authors also had up to 27.8% error 

for their laboratory mixes. 

Nagi and Whiting (Nagi and Whiting 1994) used a 900-W microwave oven to measure the 

water content of three different mixes containing fly ash and silica fume, and it was found to be 

applicable to all the mixes. Approximately 1500-grams were used for each sample. The method 

was verified to be applicable under actual field conditions at the placements of bridge deck 

overlays and full-depth pavement repair sections. The measured unit weight of fresh concrete was 

used to calculate the water content of the mix in this method. It was concluded that the test is 

simple, requires little skill to perform, and applies to both laboratory and field testing. The accuracy 

of the method was verified by testing it under actual field conditions with deviations up to 7%. 

Leung and Pheeraphan (Leung and Pheeraphan 1995) used a method to increase the curing 

process by placing the sample inside a microwave oven. Relatively high early strengths were 

obtained within 4.5 hours for w/cm ratios ranging from 0.40 to 0.55 compared to the 7-day 

compressive strength of samples cured at room temperature. The procedure was used to determine 

the w/cm based upon the strength gain of a sample after a given period in a microwave oven at 

relatively low power.  

Microwave oven method AASHTO T318-15 (“Standard Method of Test for Water Content 

of Freshly Mixed Concrete Using Microwave Oven Drying” 2015) involves heating a fresh 

concrete sample at specific intervals using a 900-watt or higher capacity microwave. By recording 

the mass of the sample, the total water content can be obtained. Hershberger (Hershberger 2015) 

and Dowell et al. (Dowell and Cramer 2002) investigations showed that this test could be 

performed under 30 minutes and still result in a reasonable accuracy.  
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A study by Fox et al. (Fox, Trost, and Hellman 2007) attempted to improve the w/cm ratio 

measurement accuracy by using a 55-micron filter bag to separate the cementitious powder and 

the fine aggregate after microwave drying. The method was not found to be precise due to the loss 

of sand in the process of forcing the particles through the filter bag.  

The benefits of the microwave methods are low cost, accessible, high speed, and small 

sample size compared to other methods. However, later tests revealed that the accuracy of the 

method would deviate because of the non-homogenous nature of concrete, which causes a different 

amount of large aggregate in each sample taken from the mix. 

2.1.2.  Other w/cm Ratio Measurement Techniques 

Niak and Ramme (Tarun R. Naik and Bruce W. Ramme 1989) used the buoyancy method 

to measure the water content of fresh concrete mixes. In this method, it is mentioned that by adding 

water to a 22-pound concrete sample, the underwater weight of the material could be calculated. 

By knowing the density of each aggregate and cement based on the mix design ratios, the amount 

of water can be obtained with the average error of 4.1%. 

Hossain et al. (Hossain et al. 1996) developed a tool for measuring the w/cm ratio, which 

involved a principle measurement of turbidity and pressure sieving of concrete to separate the 

cement-water slurry phase from the aggregate. Although the accuracy of the test was within 0.01 

in terms of the w/cm ratio, the commercially available version of the device could be expensive 

compared to the other methods. 

Chen et al. (Chen, Shen, and Shui 2012) used penetrating radar to measure the dielectric 

constant since the water content could alter this variable. The relative dielectric constant of the 

fresh mix was measured by calculating the propagation time of the electromagnetic impulse in the 
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material. A hybrid capacitor model was used to correlate the composition of the fresh mix to its 

relative dielectric constant. The method could be strongly influenced by the temperature of freshly 

mixed concrete, and it has not been implemented at a job site to check its feasibility. 

Mancio et al. (Mancio et al. 2010)  developed an electrical resistivity probe for fresh 

concrete samples containing fly ash with varying w/cm ratios ranging from 0.3-0.6. The results 

indicated the device could estimate the w/cm ratio within a variation of 0.01 from the actual w/cm 

values; However, it is mentioned by the authors, the device has not been tested for mixes 

containing chemical admixtures and higher volume of mineral admixtures as well as the need for 

evaluation of the method in actual field testing. 

2.1.3.  Summary 

Among all the studies, the most recent AASHTO T318-15 guideline was adopted and 

improved to have better precision in estimating the water amount of an on-site delivered concrete 

mix. AASHTO T318-15 recommends using the measured density to calculate the absorbed amount 

of water. However, since the coarse aggregate amount in each sample could vary, the method 

proposed requires sieving the coarse aggregate from the dried sample and separating the mass of 

the fine aggregate and cementitious material based on the mix design ratios. The details are 

explained in Chapter 3. 

2.2.  On-Site Measurement of Adiabatic Temperature Rise of Delivered Concrete 

The heat generation of concrete due to the exothermic reaction between the cementitious 

materials and water has been measured by many researchers using isothermal or adiabatic 

calorimeters (De Schutter and Taerwe 1995; Broda, Wirquin, and Duthoit 2002; Pane and Hansen 

2005; L. Poole et al. 2007; Gruyaert, Robeyst, and De Belie 2010; Poole Jonathan L. et al. 2011; 
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Pang, Cuello Jimenez, and Iverson 2013; Pang et al. 2013; C. T. Tam 1994; Gibbon, Ballim, and 

Grieve 1997; Lin and Chen 2015). Creating an isothermal or adiabatic environment is not an easy 

task. Therefore, more straightforward methods have been used for the determination of the heat 

and adiabatic temperature rise. As an alternative approach, the semi-adiabatic curing test has been 

popular among researchers (Zhang, Sun, and Liu 2002; Schindler and Folliard 2005; Kyle A. 

Riding 2006; P. L. Ng 2008; Ng and Kwan 2012; Eddhahak et al. 2014; Klemczak and Batog 

2016). A semi-adiabatic method does not require complex procedures or equipment and can be as 

easy as implanting thermal couples in a concrete sample surrounded by insulation. The accuracy 

of the semi-adiabatic heat measurement is closely related to the determination of the heat loss to 

the ambient environment. Besides the calorimetry methods, on-site temperature measurements 

have also been performed by other researchers (Tia et al. 2010; Do 2013; T. Yikici and Chen 2015) 

to determine the concrete’s early-age heat of hydration. 

2.2.1.  Isothermal & Adiabatic Calorimetry 

De Shutter et al. (De Schutter and Taerwe 1995) measured the evolution of the heat of 

hydration of hardening concrete for several mixes, including partial replacement of blast furnace 

slag using isothermal and adiabatic calorimetry. The isothermal calorimetry was developed based 

on the conduction method of Belgian standard NBN B12-213. The adiabatic condition was 

obtained by controlling the temperature of a water-ring surrounding the concrete using a 

differential thermostat. A hydration model was developed, for both cement and blast furnace slag, 

based on the heat measurements. A water-cementitious ratio of 0.5 was used in the isothermal 

measurements with curing temperatures of 5, 20, and 35 °C. Broda et al. (Broda, Wirquin, and 

Duthoit 2002) designed an isothermal calorimeter to measure the heat of hydration of a cylindrical 

sample with an 11-cm diameter and 22 cm height in different curing temperatures (10, 20, 30 and 
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40 °C). The isothermal heat measurements were then used to determine the activation energy of 

mixes using two methods of “rates” and “superposition.” Pane et al. (Pane and Hansen 2005) 

investigated the hydration of Portland cement pastes containing fly ash, ground-granulated slag, 

and silica fume using differential thermal analysis (DTA), thermogravimetric (TGA) and 

isothermal calorimetry. The isothermal calorimetry was used to measure the heat of the cement 

paste specimens at curing temperatures of 15, 23 and 34 °C for about 3 weeks. It was shown that 

the chemically bound water obtained using DTA/TGA was proportional to the heat of hydration. 

Poole et al. (L. Poole et al. 2007) studied three different computational methods to obtain activation 

energy based on isothermal heat measurement and compressive strength tests at different curing 

temperatures. In their study, isothermal calorimetry was performed on various cementitious pastes 

with the curing temperatures of 5, 15, 23, 38, and 60 °C. The tests were performed for a duration 

of 44 hours at 60 °C to over 100 hours at 5 °C. Class I Portland cement, two types of Class F fly 

ash, two types of Class C fly ashes, silica fume, and Grade 120 ground-granulated blast furnace 

slag were used by the authors to produce the mixes. Gruyaert et al. (Gruyaert, Robeyst, and De 

Belie 2010) investigated the hydration process of blast furnace slag and Portland cement mixes in 

which 0 to 85% of the Portland cement was replaced by the blast furnace slag. At an early age, the 

isothermal, semi-adiabatic, and adiabatic calorimetry measurements were performed to measure 

the heat produced by the cementitious materials. At the later ages, thermogravimetric (TG) 

analyses were performed to detect the hydration behavior of the mixes using the amount of bonded 

water content. Using both heat and chemically bonded water, the reaction degrees were determined 

and compared well to the results of the backscattered electron microscopy’s image analyses. Poole 

et al. (Poole Jonathan L. et al. 2011) studied the effect of different types of mineral and chemical 

admixtures on the hydration of concrete mixes using isothermal calorimetry at five different curing 
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temperatures between 5 to 60 °C. The paper examined the effects of set-accelerating, water-

reducing, water set retarding, and air entraining admixtures on the apparent activation energy for 

the mixes with or without mineral admixtures. Pang et al. (Pang, Cuello Jimenez, and Iverson 

2013; Pang et al. 2013) examined the heat evolution of different classes of oil-well cement under 

different curing temperatures (25 to 60 °C) and pressures (2 to 45 MPa) using isothermal 

calorimetry. The results were used to develop the scaling factor which is related to the activation 

energy and activation volume of the mix. Tam et al. (C. T. Tam 1994) used a computer controlled 

cell as an adiabatic calorimeter to measure the ATR of different concrete mixes with replacement 

up to 70% slag of the total cementitious materials. The samples were cast inside a thin-walled 

cylindrical steel container (15-cm diameter by 15-cm height) with a thermal couple located at the 

center of the sample. It was found that the increment of slag will result in the reduction of 

temperature rise in the concrete mix. The effect of higher fineness and placing temperature were 

also investigated using the adiabatic calorimetry. Gibbon et al. (Gibbon, Ballim, and Grieve 1997) 

designed a low-cost adiabatic calorimeter that was controlled using a computer system. The 

calorimetry was surrounded by water and the water was heated up to have the same temperature 

as the concrete sample. Two stirrers were used to homogenize the 50-liter water tank. A similar 

temperature between the concrete specimen and the surrounding water will lead to no loss of heat. 

Therefore, the measured temperature is from heat production in adiabatic conditions. Lin and Chen 

(Lin and Chen 2015) developed adiabatic calorimetry based on Gibbon et al.’s design. A control 

unit with a solid-state relay was designed to control the heating unit using an electrical switch 

based on the temperature of the sample and the surrounding water. RTD sensors with an accuracy 

of 0.1 °C were used in the study. A light-weight high porosity foam layer was added between the 

concrete sample and the surrounding water to delay the heat loss from the sample to the 
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surrounding water. The ATRs measured by the calorimeter were used in a finite element analysis 

to calculate the temperature distribution of mass concrete elements. 

2.2.2.  Semi-adiabatic Calorimetry 

RILEM TC 119-TCE (TC Members 1997) document introduced a semi adiabatic 

calorimeter to be made up of an insulating vessel filled with foam rubber and an external shell. 

Based on this document, the coefficient of heat loss shall not exceed 100 J/hr/K in a fixed ambient 

temperature of 20°C. Zhang et al. (Zhang, Sun, and Liu 2002) evaluated the effect of w/cm ratio, 

superplasticizer, and mineral admixtures on the hydration heat of high-performance concrete using 

semi-adiabatic calorimetry. In this method, a cylindrical container with a 10-cm diameter by 200-

mm height was placed inside a large insulated box. The temperature was recorded using a 

thermocouple located at the center of the cylinder, and the amount of liberated heat was calculated 

using a heat-dissipating coefficient that was measured before the concrete’s heat measurements. 

Schindler et al. (Schindler and Folliard 2005) used semi-adiabatic calorimetry to quantify the 

hydration development of different concrete mixes containing various amount of ground 

granulated blast furnace slag (30 and 50%), Class C and Class F fly ash (15 to 45%). The 

calorimeter consisted of an insulated 3.8-liter steel drum with a 15.24-cm diameter by 30.48-cm 

height concrete specimen. In this setup, the temperature sensors were used to record the 

temperature, heat loss through the calorimeter wall, and ambient air temperature. The calorimeter’s 

heat loss was determined using a hot water calibration before the heat of hydration testing. The 

measured heat of hydration was used to develop a general hydration model of cementitious 

materials. Ng et al. (P. L. Ng 2008; Ng and Kwan 2012) compared an adiabatic versus two semi-

adiabatic curing test setups. A 25-cm cubic specimen surrounded by 5-cm phenolic polymer boards 

and 18-mm thick plywood was used as an adiabatic calorimeter. A 0.5-m cube specimen 
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surrounded by 10-cm thick phenolic polymer boards and 18-mm thick plywood in every direction 

was used to build the first semi-adiabatic test setup. To evaluate the effect of the specimen size, 

another 1-m cube with an 18-mm plywood framework was created, which was insulated with a 

50-mm air gap outside of the wooden formwork and braced with steel. A computer-controlled 

environmental chamber was used to reach an adiabatic condition in the first setup. The system was 

able to keep the air temperature inside the room within 0.2 °C. Heat loss characteristic coefficients 

were calculated using four measurements: the center, side center, center of the edge, and corner. 

A fourth-order parabolic function was used to represent the concrete temperature at every location. 

Two empirical equations were developed to calculate the volumetric and surface mean 

temperatures for each test. Eddhahak et al. (Eddhahak et al. 2014) used a Langavant type semi-

adiabatic test to measure the heat generated by fresh PCM-mortars specimens. Four cylindrical 

mortar bottles closed with an insulating stopper were inserted at the center of four calorimeters 

formed by a high vacuum Dewar flask (made of silvered Pyrex glass). The thermal insulation used 

in the calorimeter minimized the heat loss. Temperature sensors were used in every calorimeter to 

measure the temperature evolution over time. A hardened mortar specimen was also used as a 

reference specimen. The temperature deviation between the fresh mortar and hardened specimens 

was used to calculate the total thermal conduction losses. Klemczak et al. (Klemczak and Batog 

2016) used isothermal and semi-adiabatic calorimetry to test several mixes with Portland cement 

(95.7%), limestone (4.3%), ground granulated blast furnace slag and siliceous fly ash (10, 30, 50 

and 70% as replacements of Portland cement). The isothermal measurement at two curing 

temperatures of 20 and 50 °C was carried out using a commercially available device, TAM Air. 

The TAM Air has eight-channels to measure the heat flow. Additionally, a six-channel semi 

adiabatic calorimeter was used to measure the heat evolution of 800-mL mortar samples. The 
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temperature difference between the fresh mortar sample and the reference was used to calculate 

the heat loss. Riding et al. (Kyle A. Riding 2006) used semi-adiabatic calorimetry devices at 

several construction sites under controlled ambient temperature. Multiple semi-adiabatic tests 

were also performed in the laboratory using the material collected from each on-site test. The semi-

adiabatic calorimeter was an insulated steel drum with a 15-cm diameter by a 30-cm height 

concrete cylinder. The temperature of the concrete and heat flux in the calorimeter were recorded. 

An energy balance finite difference method was used to calculate the heat of hydration of the 

concrete using the data collected from each semi-adiabatic test. 

2.2.3.  On-site Measurement of Temperature 

A 1-m concrete cube was used by Tia et al. (Tia et al. 2010) to measure the temperature of 

the delivered concrete on-site. The side faces and the base of the block were surrounded by 19-

mm plywood and 76-mm polystyrene foam insulations. Type K thermal couples were used to 

monitor the early-age temperature of several concrete mixes. The recorded data was used to 

validate the ability and the correctness of hydration parameters using finite element analysis. Do 

(Do 2013) monitored the temperature development of three different bridge pier footings cast in 

Florida. The temperature measurements were then compared with the results obtained from the 

finite element modeling. In his study, a preprocessing method was used by DIANA finite element 

software, and the adiabatic temperature rise was calculated and input from an isothermal 

measurement of heat. Lin and Chen (Lin and Chen 2015) monitored two 1.2-m concrete cubes 

with embedded temperature sensors. The cubes were constructed using steel formworks. 

Temperature sensors with an accuracy of 1°C were placed using a rebar cage to be sure of the 

location of each sensor. Then, the measured temperature-time histories were compared to the 

predicted values from a finite element analysis. Yikici and Chen (T. Yikici and Chen 2015) 
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constructed four 2-m concrete cubes in various locations throughout West Virginia. The delivered 

concrete had ground granulated blast furnace slag, and Class F fly ash. The blocks were 

instrumented using temperature loggers at various locations. The materials used in each batch were 

collected and used to produce semi-adiabatic and adiabatic (Lin and Chen 2015) specimens to 

measure the heat of hydration of each mix. 

2.2.4.  Summary 

In this study, a 1-m cube with a similar design to Ng et al.’s was used as an on-site semi-

adiabatic calorimetry. Since the setup can be used in ambient weather conditions with variations 

more significant than laboratory conditions, the setup was analyzed in a finite element model, and 

a table was provided for the required insulations in different ambient temperatures. On-site 

measurements of heat of hydration using a cube located beside the real structure can be a useful, 

accurate, and straightforward practice.  
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Chapter 3 : Revised Method for the Rapid Determination of 

On-Site Water-Cementitious Ratio Using Microwave Oven 

AASHTO T318-15 is a standard method to measure the amount of water in a freshly mix 

concrete using microwave oven. AASHTO T318-15 recommends using the measured density to 

calculate the absorbed amount of water. However, since the large aggregate amount in each sample 

could vary, a significant error would possibly happen. A revised method using a similar procedure 

as AASHTO T318-15 guideline was studied to have less measurement error. 

3.1.  Procedure 

The required tools for the method include a microwave oven with a strength higher than 

900-watts, a microwavable glass container which can hold about 1600 grams of concrete, a balance 

with an accuracy of at least 0.1 gram, a grinding pestle, a #4 sieve, and a plate. The steps needed 

to define the amount of water in a mix are mentioned below and are based on AASHTO T318-15 

(the mass determination for all procedures must be nearest to 0.1 g): 

1. Determine the mass of the dry and clean glass tray and record it as WS. 

2. Leave tray on the scale and zero it. Place 1500±100 (g) fresh specimen to be tested. Record 

the sample mass. 

3. Measure the mass of the tray and the freshly mixed concrete specimen in total and record 

its mass as WF. 

4. Place the tray and specimen on the turntable microwave oven and turn the microwave on 

at the 900-watt power setting for 5.0 ± 0.5 min for the first interval. 

5. At the end of the first drying cycle, the specimen shall be removed for a short period. 

During this time, the large aggregate should be debonded from the mortar using the grinding pestle, 
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and the mortar should be grounded to break up any big clumps. Then record the mass of the tray 

and specimen. 

6. The specimen is then returned to the microwave for an additional 5.0 ± 0.5 min at the 900-

watt power setting. Remove the tray and specimen and record the mass. 

7. Return to microwave for 2.0 ± 0.5 min at the 900-watt setting. 

8. Remove the tray and specimen, lightly stir the specimen to expose mortar. Record the mass 

of the tray and specimen. 

9. Keep track of the mass, if the change in the mass of the tray is greater than 1.0 g, repeat 

steps 7-9. If the change in the recorded mass is less than 1.0 g, record the mass of dry sample and 

glass tray as WD and end the experiment. 

The water content of the sample is determined below: 

𝑊𝑇𝑀 =
𝑊𝐹 − 𝑊𝐷

𝑊𝐹 − 𝑊𝑆
∗ 𝑈𝑊 

(3-1) 

Where, WTM, is the total measured water content (kg/m3), WF, is the mass of the tray + fresh test 

specimen (g), WD, is the mass of the tray + dry test specimen (g), WS, is the mass of the tray (g), 

and UW is the density of the fresh concrete (kg/m3). To calculate the w/cm ratio, the amount of 

free water needs to be calculated. To estimate the free water amount, the absorbed water of the 

aggregates must be deducted from the total water content of the mix. In this step, the AASHTO 

guideline suggests using the dry densities of the aggregates in the delivered concrete. The absorbed 

water can be calculated using the saturated surface dried (SSD) amounts and the mix design ratio 

of each aggregate which as follows: 

𝑊𝑇𝐴 =
∑(𝐴𝐶 ∗ 𝑊𝐶𝐴) + ∑(𝐴𝐹 ∗ 𝑊𝐹𝐴)

100 ∗ 𝑉
   ,      𝑀𝑊 = 𝑊𝑇𝑀 − 𝑊𝑇𝐴 (3-2) 
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Where, WTA , is the estimated absorbed water content (kg/m3), AC, is the coarse aggregate 

absorption (SSD of coarse aggregate-%), AF, is the fine aggregate absorption (SSD of fine 

aggregate-%), WCA, is the dry mass of coarse aggregate in test specimen based on mix design (kg), 

WFA, is the dry mass of fine aggregate in test specimen based on mix design (kg), V, is the batch 

volume, m3 and MW is the estimated mixing of water content (kg/m3). WCem , is the dry mass of 

cementitious material in the sample based on mix design (kg). The w/cm ratio can then be 

estimated using MW/WCem (Hershberger 2015; Dowell and Cramer 2002). However, due to the 

variability of the large aggregate mass in every sample taken as well as the amount of water 

absorbed in the large aggregate, which is proportional to the mass, in some cases, the above 

equations will not be accurate. Sieving the large aggregate from the dried specimen and properly 

separating the dried fine aggregate and cementitious powder by forcing the sample on the top of a 

#4 sieve (shown in Figure 3-1) with reasonable force is helpful at this point. Considering that one 

piece of large aggregate could alter the calculation of free water and cementitious materials. 

 

Figure 3-1: Large aggregate on sieve no. 4 
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Consequently, knowing the precise amount in each sample would reduce the error caused 

by sampling. As an additional consideration, if powder is observed bonded around the large 

aggregate (as shown in Figure 3-2), especially when there is a large amount of chemical admixture 

in the mix or more extended period of heating, washing vinegar can be used to wash out the 

remaining particles after the drying cycle. However, vinegar’s acetic acid can dissolve the 

limestone aggregates at the time of mixing; therefore, this loss of mass needs to be added to the 

cleaned large aggregate mass. 

 

Figure 3-2: (a) Before washing with vinegar, (b) After washing with vinegar 

For limestone aggregate, the amount of loss can be calculated using the stoichiometric equation of 

lime and acetic acid, the following equation was used to determine the loss of limestone. 

𝐶𝑎𝐶𝑂3(𝐿𝑖𝑚𝑒) + 2𝐶𝐻3𝐶𝑂𝑂𝐻 (𝑊𝑎𝑠ℎ𝑖𝑛𝑔 𝑉𝑖𝑛𝑒𝑔𝑎𝑟) → (𝐶𝐻3𝐶𝑂𝑂)2𝐶𝑎 (𝑆𝑜𝑙𝑖𝑑) + 𝐶𝑂2 + 𝐻2𝑂 

 
(3-3) 

The loss is dependent on the concentration of acetic acid and the amount of collected, dried 

limestone. Finally, by measuring the remaining mass of large aggregate, two unknowns (water and 
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large aggregate masses) from the total weight of the mix can be determined. Therefore, the 

combined weight of cementitious material and fine aggregate can be estimated in each sample. 

Separation of these two materials is not practical with simple methods. Therefore, the remaining 

weight on the tray is distributed using the mix design ratio to the cementitious materials and fine 

aggregate. This will give a reasonable approximation of the dry mass of cementitious material in 

the sample. The revised w/cm ratio can now be calculated using the revised equations: 

𝑊𝐹𝐴
′ = (𝑊𝐷 − 𝑊𝑆 − 𝑊𝐶𝐴′) ∗ [

𝑊𝐹𝐴

𝑊𝐶𝑒𝑚 + 𝑊𝐹𝐴
]  

𝑊′
𝐶𝑒𝑚 = 𝑊𝐷 − 𝑊𝑆 − 𝑊𝐶𝐴

′ − 𝑊𝐹𝐴
′      

𝑀𝑊′ = (𝑊𝐹 − 𝑊𝐷) − [𝐴𝐶 ∗ 𝑊𝐶𝐴
′ + 𝐴𝐹 ∗ 𝑊𝐹𝐴

′ ] 

𝑇ℎ𝑒 𝑟𝑒𝑣𝑖𝑠𝑒𝑑
𝑤

𝑐𝑚
𝑟𝑎𝑡𝑖𝑜 =

𝑀𝑊′

𝑊′
𝐶𝑒𝑚

 (3-4) 

Where, WCA
′ , is the dry mass of coarse aggregate in the sample (measured, g), WFA

′ , is the dry mass 

of fine aggregate in the sample (calculated, g) W′
Cem ,  is the dry mass of cementitious material in 

the sample (calculated, g) and, MW′ is the mixing water content in the sample (g). 

3.2.  Laboratory Experiments 

Several sets of experiments were performed to test the ability of the microwave oven in 

drying the concrete ingredients. The limestone aggregate and sand were tested first. After two 

heating periods of 5 minutes, the microwave oven could evaporate over 99% of the added water 

amount in both types of aggregate. Another experiment was conducted on a cement paste with a 

w/cm ratio of 0.415. As Figure 3-3 shows, after heating for several 2 minutes intervals, a loss of 
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about 98.2% of the added water was recorded. Although the heat from the microwave oven 

accelerates the chemical reaction between the cement and water, as the results indicate, there was 

not enough time for the water to be chemically bonded with the cement particles during the first 

few minutes of heating, and almost all the added water could be retracted from the mix. Thus, the 

microwave oven is proven to be capable of evaporating almost all the water added to each material 

used in concrete mixes. 

 

Figure 3-3: Water loss of cement paste in microwave vs. time 

The mix designs of all the laboratory batches are shown in Table 3-1. These mix designs 

contained Type I/II ordinary Portland cement as well as a 50% slag mix using Grade 100 ground-

granulated blast-furnace slag (GGBFS) and a 30% fly-ash mix using Class F fly ash as 

supplementary cementitious materials. The measured SSD of the coarse aggregate (limestone) was 

0.5%, and the SSD of sand was 1.4% based on ASTM C127 (“Standard Test Method for Relative 

Density (Specific Gravity) and Absorption of Coarse Aggregate” 15) and ASTM C128 (“Standard 

Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate” 15). In 

every experiment, two to three samples were taken from each batch of concrete after testing the 

slump and air content. 
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Table 3-1: Mix designs 

Material OPC 50% slag 30% fly ash 

Cement (𝐤𝐠 𝐦𝟑⁄ ) 335.2 150.6 201.71 

Slag (𝐤𝐠 𝐦𝟑⁄ ) - 150.6 - 

Fly Ash (𝐤𝐠 𝐦𝟑⁄ ) - - 99.67 

Water (𝐤𝐠 𝐦𝟑⁄ ) 139.4 135.6 127.55 

Limestone (#57) SSD (𝐤𝐠 𝐦𝟑⁄ ) 968.8 1064.93 1056.03 

Sand SSD (𝐤𝐠 𝐦𝟑⁄ ) 844.2 809.22 806.85 

w/cm ratio 0.417 0.445 0.423 

The amount of water in the slag mixes (Test 1-1, 1-2, and 1-3) was 135.6 kg/m3. A total of 

four ordinary Portland cement (w/cm ratio of 0.417), three slag (w/cm ratio of 0.45), another four 

slag (w/cm ratio of 0.423), and seven fly ash (w/cm ratio of 0.423) mix designs were tested. The 

evaporated water, sieved limestone mass, as well as the calculated w/cm ratio based on both 

AASHTO guideline and the revised method, are shown in Table 3-2. To control the moisture 

content and prevent any excessive moisture in the aggregates, some batches were prepared using 

dried aggregates such as three OPC samples (test 1-1, test 1-2, test 2), two fly ash samples (test 1-

1, test 1-2), and three slag samples (test 1-1, test 1-2, test 1-3). Both limestone and sand were 

prepared in a 105 °C oven and dried for 24 hours as recommended by ASTM C127 and ASTM 

C128. The dried aggregate content and measured SSD could be the basis for the exactness of the 

added water amount to each mix. In addition, all the ingredients in the concrete were measured 

within a precision of 1.0-g before the mixing process. The average evaporated water measured 

from each 1500±100-g sample was 94.67-g, with a range of 21.0-g (86.1-g - 107.1-g). As the 

percentage error columns show, the w/cm ratio calculated based on the T318 method varies up to 

a maximum error of 15.1%, while the maximum error is within 3.9% using the revised method. 

The average percentage error between the target w/cm ratio and the measured w/cm ratio 

calculated by the T318 method was 6.2% in comparison to 2.16% with the revised method. Other 
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than the reduction of overall error the revised method indicates a much better consistencies 

between the calculated results of the same concrete batch than the T318 method. As an example, 

by looking at 50% Slag 1-1, 50% Slag 1-2 and 50% Slag 1-3 samples from the same concrete batch 

the w/cm ratio results using T318 were not consistent (with the deviation of 0.039); however, the 

revised method shows very consistent values (with the deviation of 0.01). The amount of water 

loss for the different mixes is shown in Figure 3-4, a similar trend was observed for all three mixes. 

The distribution of evaporated water and the limestone mass is shown in Figure 3-5 and Figure 

3-6. The average sieved limestone mass was 727.15-g, with a range of 174.4-g (648.5-g - 822.9-

g). The range between the highest and the lowest amount of limestone reveals the impact of not 

sieving the aggregate. It can have an enormous influence on the results. For instance, based on the 

OPC mix design, 632-g of dried coarse aggregate should be available in 1500-g of the concrete 

sample, which is an aggregate ratio of 0.421. However, the average aggregate ratio of the test 

results for OPC was calculated to be 0.444. A lower amount of coarse aggregate ratio means if the 

density of the whole concrete batch (current T318 method) is used in the w/cm ratio calculation, 

the amount of cementitious material would be overestimated; therefore, it reduces the accuracy of 

the estimated w/cm ratios. 

 

Figure 3-4: Water loss trend for different types of mixes 
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Table 3-2: W/cm ratio results with different mix designs 

Description 
Sample 

(g) 

Evaporated 

Water (g) 

Coarse 

Aggregate 

(g) 

Given 

w/cm 

ratio 

AASHTO T-318 

Method 
Revised Method  

w/cm 

ratio 

Percentage 

Error 

w/cm 

ratio 

Percentage 

Error 

OPC  

(test 1-1) 
1534.8 107.1 653.3 0.417 0.427 2.3% 0.432 3.5% 

OPC  

(test 1-2) 
1547.5 103.4 689.7 0.417 0.407 2.5% 0.427 2.3% 

OPC  

(test 2) 
1516.7 95.2 726.1 0.417 0.379 10.0% 0.424 1.7% 

OPC  

(test 3) 
1515.6 100.9 648.5 0.417 0.405 3.0% 0.409 2.0% 

50% slag  

(test 1-1) 
1501.3 95.4 720.2 0.45 0.43 4.7% 0.451 0.2% 

50% slag  

(test 1-2) 
1513.3 90.1 770.5 0.45 0.399 12.8% 0.444 1.4% 

50% slag  

(test 1-3) 
1595.5 93.2 822.9 0.45 0.391 15.1% 0.441 2.0% 

50% slag  

(test 2-1) 
1501.3 95.4 700.5 0.423 0.43 1.6% 0.438 3.4% 

50% slag  

(test 2-2) 
1542.1 93 760 0.423 0.405 4.4% 0.435 2.8% 

50% slag  

(test 3-1) 
1529.8 89.4 747.3 0.423 0.391 8.2% 0.413 2.4% 

50% slag  

(test 3-2) 
1535.7 88 766.3 0.423 0.382 10.7% 0.413 2.4% 

30% fly ash 

(test 1-1) 
1552.3 92.4 740 0.423 0.398 6.3% 0.411 2.9% 

30% fly ash 

(test 1-2) 
1426.8 88.3 660.1 0.423 0.416 1.7% 0.419 1.0% 

30% fly ash 

(test 2-1) 
1532.3 102.8 672 0.423 0.456 7.2% 0.44 3.9% 

30% fly ash 

(test 2-2) 
1539.3 94.6 742.1 0.423 0.412 2.7% 0.433 2.3% 

30% fly ash 

(test 2-3) 
1537.7 92.6 761.2 0.423 0.403 5.0% 0.435 2.8% 

30% fly ash 

(test 2-4) 
1536.8 96.1 707.1 0.423 0.421 0.5% 0.422 0.2% 

30% fly ash 

(test 3-1) 
1525.1 86.1 800.9 0.423 0.374 13.1% 0.431 1.9% 
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Figure 3-5: Evaporated water amount in each sample 

 

Figure 3-6: Mass of dried limestone in each sample 

3.3.  Summary 

A revised method based on the AASHTO T318-15 standard for the determination of water 

content in fresh mixes of concrete was evaluated. The revised method considered the actual amount 
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of coarse aggregates used in the calculation of the absorbed water and cementitious material 

content. Several laboratory batch tests were performed on concrete mixes containing various types 

of cementitious materials with slag and fly ash. The results of the experiments indicated the 

accuracy of the proposed method was increased to an average error of about 2.16% from the actual 

mix design w/cm ratio whereas the method based on AASHTO calculations had an error of 6.2%. 

In the case of a higher amount of chemical admixture in the mixes, washing vinegar was used to 

wash out the particles around the dried aggregate which was dissolved by the vinegar’s acid was 

calculated based on its stoichiometric reaction equation. Using the revised method, the results of 

laboratory tests were consistent among the samples from the same batch which also indicates the 

accuracy of the revised method when considering the actual mass of coarse aggregate for each 

sample. 

 

  



27 
 

Chapter 4 : On-site Measurement of Adiabatic Temperature 

Rise of Concrete 

4.1.  Test Setup 

In this study, a 1-meter (1-m) cube with multiple layers of insulations (as shown in Figure 

4-1) was built in a way that minimizes the amount of heat loss to the ambient environment. 

Plywood was used to create the structure of the cube, and polystyrene foam boards were cut into 

pieces and placed on each side of the cube. The 1-m cube specimen was chosen to act as a semi-

adiabatic calorimetry. Two temperature loggers are needed to measure the temperature-time 

history of the center and the ambient environment. The temperature-time history of the cube at the 

center was used to calculate the ATR of a delivered concrete batch. However, the amount of 

insulation provided may not be enough for all ambient conditions. Therefore, a practical method 

is needed to adjust the amount of insulation based on ambient conditions. 

 

Figure 4-1: 1-m Cube design 
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4.2.  Calculations 

For a concrete specimen subjected to a semi-adiabatic curing condition, the following 

equation can be expressed between the adiabatic temperature rise and the amount of heat loss: 

𝑇𝑉𝑜𝑙 − 𝑇𝑖𝑛𝑖 = 𝑇𝑎𝑑 −
𝐻𝐿𝑜𝑠𝑠

𝜌 ∙ 𝐶𝑝
 (4-1) 

Where, 𝑇𝑉𝑜𝑙, 𝑇𝑖𝑛𝑖 , 𝑇𝑎𝑑, 𝐻𝐿𝑜𝑠𝑠 , ρ, 𝐶𝑝 are measured volumetric mean temperature, initial temperature, 

adiabatic temperature rise, the amount of heat loss, density, and specific heat of concrete. 

According to the heat conduction law (Fourier’s Law), the rate of the heat loss vs. time 𝜕𝐻𝐿𝑜𝑠𝑠/𝜕𝑡 

between the specimen and the ambient environment is proportional to the average thermal 

conductivity of the system (𝐾𝑎𝑣𝑔) multiplied by the temperature difference between the surface of 

the concrete and ambient temperature. 𝐾𝑎𝑣𝑔 is highly dependent on the surroundings, including 

the formwork, insulation foam, or blanket which all have different thermal resistance. The overall 

heat loss can be determined using the following relationship: 

𝐻𝐿𝑜𝑠𝑠 = 𝐾𝑎𝑣𝑔 ∫ (𝑇𝑆𝑢𝑟𝑓 − 𝑇𝐴𝑚𝑏)𝑑𝑡
𝑡

0

 (4-2) 

Where the 𝑇𝑆𝑢𝑟𝑓 and  𝑇𝐴𝑚𝑏 are the surface mean temperature of the concrete and ambient 

temperature. By substituting Equation (4-2) into Equation (4-1), the adiabatic temperature rise of 

the concrete can be calculated with the following equation: 

𝑇𝑎𝑑 = 𝑇𝑉𝑜𝑙 − 𝑇𝑖𝑛𝑖 + 𝜆 ∫ (𝑇𝑆𝑢𝑟𝑓 − 𝑇𝐴𝑚𝑏)𝑑𝑡
𝑡

0

 (4-3) 

Where, λ = 𝐾𝑎𝑣𝑔/𝜌 ∙ 𝐶𝑝 represents the heat loss characteristic coefficient of the curing test setup. 

By taking a derivative of Equation (4-3), the following expression will be obtained: 
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𝜕𝑇𝑎𝑑

𝜕𝑡
=

𝜕𝑇𝑉𝑜𝑙

𝜕𝑡
+ 𝜆(𝑇𝑆𝑢𝑟𝑓 − 𝑇𝐴𝑚𝑏) 

(4-4) 

Where 𝑇𝑉𝑜𝑙  and 𝑇𝑆𝑢𝑟𝑓  are: 

𝑇𝑉𝑜𝑙 =
1

𝑉
∫ 𝑇(𝑥, 𝑦, 𝑧) 𝑑𝑉

𝑉

               , 𝑇𝑆𝑢𝑟𝑓 =
1

𝐴
∫ 𝑇(𝑥, 𝑦, 𝑧) 𝑑𝐴

𝐴

 (4-5) 

Where V and A are the volume and surface area of the concrete. After a long period of time, the 

concrete, which cured at a high temperature, will have a sufficiently small amount of heat 

production. Therefore, 𝜕𝑇𝑎𝑑 will be approximately equal to zero (constant adiabatic temperature). 

Ng et al. (Ng and Kwan 2012) proposed 120 hours after placement of the concrete to be enough 

time based on several experiments. Therefore, the heat loss characteristic coefficient can be 

obtained using the following equation: 

𝜆 = −

𝜕𝑇𝑉𝑜𝑙

𝜕𝑡
(𝑇𝑆𝑢𝑟𝑓 − 𝑇𝐴𝑚𝑏)

 
(4-6) 

Since the estimation of the spatial temperature profile, 𝑇(𝑥, 𝑦, 𝑧), within the concrete 

volume, is not simple and needs a heat conduction model, a practical method is required in order 

to simplify the calculation process. In this study, it was assumed that both 𝑇𝑉𝑜𝑙 and 𝑇𝑆𝑢𝑟𝑓 are equal 

to the measured center temperature. Therefore, enough insulation is needed to satisfy this condition 

for any ambient temperatures. 

4.3.  Heat Loss Characteristic Coefficient 

To assume that 𝑇𝑉𝑜𝑙 and 𝑇𝑆𝑢𝑟𝑓 are equal to the temperature measured at the center location 

of the cube, a minimum amount of insulation is required. The minimum amount depends on the 

different ambient environmental conditions. A finite element model (FEM) with a user subroutine 

(Lin and Chen 2015) in ABAQUS program was used to find the minimum insulation needed for 
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using a one-point measurement to calculate the ATR accurately. As shown in Figure 4-2, a 1-m 

cube of concrete surrounded by 1.9-cm plywood and 2.54-cm thickness of insulation was modeled 

in the program. To be conservative, tie constraints were used between the plywood, insulation 

material, and concrete. Hexahedral (linear) type mesh (DC3D8) with a size of 1.9-cm were found 

to be enough for convergence. The mass densities of the concrete, plywood, and insulation foam 

were 2286.6, 672.8, and 30.4 (kg/ m3), respectively. The specific heat of 1256 and 2261 (J/kg/°C) 

were used for the insulation and plywood material. The thermal conductivity of the plywood was 

assumed to be 0.13 W/m/K. The specific heat (𝐶𝑝) and thermal conductivity (𝐾𝑐) of the concrete 

was considered to be a degree of hydration dependent. They were calculated in a user subroutine 

with the following equations (Van Breugel 1980; Meeks and Folliard 2013): 

𝐶𝑝(𝛼𝑟 , 𝑇(𝑡)) =
1

𝜌
(𝑊𝑐𝛼𝑟(8.4𝑇(𝑡) + 339) + 740𝑊𝑐(1 − 𝛼𝑟) + 710𝑊𝑠 + 840𝑊𝑎 + 4184𝑊𝑤) 

 (4-7) 

𝐾𝑐(𝛼𝑟) = 𝐾𝑢𝑐(1.33 − 0.33(𝛼𝑟(𝑡)) (4-8) 

Where 𝛼𝑟 = 𝛼/𝛼𝑢, 𝛼 is the degree of hydration of the concrete, 𝛼𝑢 is the ultimate degree of 

hydration, 𝜌 is the mass density of concrete, 𝑊𝑐 , 𝑊𝑠 , 𝑊𝑎  and 𝑊𝑤  are the mass of cementitious 

materials, sand, large aggregate and water per unit volume of concrete (Kg/m3), T(𝑡) is the 

temperature of concrete (°C) and 𝐾𝑢𝑐 is the thermal conductivity of the mature concrete (measured 

after 28 days of curing). 
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Figure 4-2: Finite element model 

In the FEM, the heat release, 𝐻(𝑡𝑒), is fundamentally based on an exponential function 

with two empirical hydration parameters (τ and β) shown in Equation (4-9). The degree of 

hydration can be obtained using the heat release of concrete divided by the ultimate heat of 

hydration (𝐻𝑢). The ultimate heat of hydration is a quantity dependent on the chemical properties 

of the cementitious materials. Since the temperature of the concrete can affect the chemical 

reaction between the cementitious materials and water, the time shift is considered by Arrhenius 

law of chemical reaction using the equivalent age concept (𝑡𝑒). In the Arrhenius equation, the 

reference temperature was assumed to be 23 °C. Therefore, the heat generation (q) of each element 

can be calculated using the following equations: 

𝐻(𝑡𝑒) = 𝐻𝑢𝛼𝑢 exp (− [
𝜏

𝑡𝑒
]

𝛽

) , 𝛼(𝑡𝑒) =
𝐻(𝑡𝑒)

𝐻𝑢
 (4-9) 

𝑡𝑒 = ∫ exp (
𝐸𝑎

𝑅
(

1

𝑇(𝑡) + 273
−

1

23 + 273
)) 𝑑𝑡

𝑡

0

 (4-10) 
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𝑞(𝑡) = 𝐻𝑢𝑊𝑐𝛼𝑢 𝑒𝑥𝑝 (− [
𝜏

𝑡𝑒
]

𝛽

) [
𝜏

𝑡𝑒
]

𝛽 𝛽

𝑡𝑒
𝑒𝑥𝑝 (

𝐸𝑎

𝑅
(

1

𝑇(𝑡) + 273
−

1

23 + 273
)) 

(4-11) 

Where 𝜏, 𝛽 are the hydration parameters, t is the current time, T is the temperature (°C) and 𝐸𝑎  is 

the activation energy of concrete. In all the analyses, the initial temperature of the concrete was 

assumed to be 30 °C. The parameters used in the ABAQUS model are shown in Table 4-1. The 

ultimate thermal conductivity was measured following the CRD-C standard for the concrete (Lin 

and Chen 2015; US Army Corps of Engineers 1973). The activation energy was tested following 

ASTM C-1074 (T. A. Yikici and Chen 2015). 

Table 4-1: Input parameters of FEM  

𝐇𝐮 (J/g) 498,970 

𝛂𝐮 0.703 

𝐄𝐚 (J/mol) 41,841 

𝛕 14 

𝛃 0.94 

𝑲𝐮𝐜   (𝑾/𝐦/𝐊) 1.765 

𝐖𝐜 (Kg/m
3
) 334.6 

𝐖𝐬 (Kg/m
3
) 843.63 

𝐖𝐚 (Kg/m
3
) 969.11 

𝐖𝐰 (Kg/m
3
) 139.41 

 

 A convection film coefficient of 7.9 W/m2/K (free convection) was assumed for the surface 

convection heat transfer between the ambient air and the surface of the insulation materials. A 

constant 7-day ambient temperature of 0 to 35 °C with an increment of 5 °C was used in the model. 

The thermal conductivity of the foam was assumed to be 0.0289 (W/m/K) or RSI value of 0.88 

(m2.K/W) for the 25.4-mm insulation board. Figure 4-3 shows the change in the center temperature 
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due to the variation of the ambient temperature. It is evident that by lowering the ambient 

temperature, the cube loses more heat to the environment; therefore, the heat loss characteristic 

coefficient will be higher at lower ambient temperatures. The temperature-time history of the 

center location was chosen to calculate the ATR for each ambient temperature, by using Equation 

(4-6) and assuming Tsurf = Tvol = T at center location. As shown in Figure 4-4, a linear relationship 

was found between the ambient temperature and the heat loss characteristic coefficient when 

keeping the thermal conductivity of the insulation as a constant value. The percent difference 

between the calculated ATR using the temperature history of the center location and the ATR from 

the input parameters (Table 4-1) at 7 days is shown in Figure 4-5. Figure 4-5 indicates that the 

error from the one-point measurement (center temperature) calculation increases as the heat loss 

increases (due to a reduction of the ambient temperature). This error is mainly due to insufficient 

insulation needed at lower ambient temperature. 

 

Figure 4-3: The effect of ambient temperature on the temperature of the center location 
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Figure 4-4: Heat loss characteristic coefficient vs. ambient temperature 

 

Figure 4-5: ATR error at 7-days due to ambient temperature 

Using the FEM model, the amount of insulation was estimated so that the calculated ATR 

using the one-point measurement is close to the actual ATR of the mix. The thermal conductivity 

of the 25.4-mm insulation was modified until the calculated ATR using the center temperature was 

within 1 °C (2%) of the actual ATR at 7 days (49.38 °C). Finally, the amount of insulation needed 

for each different ambient temperature, the calculated heat loss characteristic coefficient and the 

percentage difference between the calculated ATR and the input ATR are shown in Table 4-2. The 

comparison between the ATRs obtained by the heat loss compensation and the input ATR are 
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shown in Figure 4-6, Figure 4-7, Figure 4-8, Figure 4-9 and Figure 4-10. These Figures represent 

that the amount of insulation in Table 4-2 is enough for each ambient condition, and the ATRs 

calculated using the center temperature compare very well with the actual ATR input. The heat 

loss characteristic coefficient versus time is shown in  Figure 4-11 for each case. It is obvious that 

the λ coefficients approached to constant values after 120 hours in any cases which is a validation 

for the usage of average λ after approximately 5 days of curing. As shown in Table 4-2, Figure 

4-11 and Figure 4-12 the heat loss characteristic coefficient decreases as the amount of insulation 

due to lower ambient temperature increases; however, similar heat loss behavior can be obtained 

for all the cases. The normalized heat loss by the density and specific heat of the concrete is 

compared closely and shown in Figure 4-12. Therefore, the method can be applied in various 

ambient conditions as long as the insulation requirements shown in Table 4-2 are met. The number 

of minimum insulation layers with RSI value of 0.88 (m2.K/W) with the thickness of 25.4-mm for 

each layer are shown in Table 4-2. The average calculated heat loss characteristic based on Table 

4-2 is plot versus the ambient temperature in Figure 4-13. Since the heat loss characteristics shown 

in Table 4-2 are based on the minimum required insulations; therefore, Figure 4-13 can be used as 

the upper bound for the heat loss characteristic coefficient so that the ATR can be accurately 

calculated.  

Table 4-2: Required insulation for different ambient temperature 

Ambient (°C) 

Thermal 

Conductivity of 

insulation (W/m/K) 

RSI value of insulation 

(m
2
.K/W) 

(Each Layer = 0.88 m
2
.K/W) 

λ (hr
-1

) 
ATR difference 

at 7-days (%) 

-10 0.0103 2.448 (3 Layers) 0.00350 1.06 

0 0.0121 2.098 (3 Layers) 0.00400 1.21 

10 0.0147 1.728 (2 Layers) 0.00471 1.39 

20 0.0207 1.224 (2 Layers) 0.00559 1.41 

30 0.0242 1.049 (2 Layers) 0.00699 1.70 
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Figure 4-6: Heat loss compensated vs. input ATR (Ambient temperature = -10 °C) 

 

Figure 4-7: Heat loss compensated vs. input ATR (Ambient temperature = 0 °C) 

 

Figure 4-8: Heat loss compensated vs. input ATR (Ambient temperature = 10 °C) 
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Figure 4-9: Heat loss compensated vs. input ATR (Ambient temperature = 20 °C) 

 

Figure 4-10: Heat loss compensated vs. input ATR (Ambient temperature = 30 °C) 

 

Figure 4-11: Heat loss characteristic comparisons vs. time  
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Figure 4-12: Normalized heat loss comparisons 

 

Figure 4-13: Heat loss characteristic coefficient vs. ambient temperature 

4.4.  Summary 

A 1-m cube with multiple layers of insulations was chosen to act as an on-site semi-

adiabatic calorimetry. Since the estimation of the spatial temperature profile within the concrete 

volume is not simple, a practical method is required to simplify the calculation. It was assumed 

that both volumetric and surface temperatures are equal to the measured center temperature. 

Therefore, enough insulation is needed to satisfy this condition for any ambient temperatures. The 

minimum amount depends on the different ambient environmental conditions. A finite element 
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model was used to find the minimum insulation needed for using a one-point measurement to 

calculate the ATR accurately. A table based on different thermal insulation needed for each 

ambient condition was provided to be used in building the on-site calorimetry. 
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Chapter 5 : On-site testing 

5.1.  Material Properties 

The applicability of the proposed procedures for the on-site measurement of w/cm ratio 

and adiabatic temperature rise were tested in several field situations. Three on-site castings took 

place in three different district locations (District 4 (D-4), District 5 (D-5), and District 10 (D-10)) 

in the state of West Virginia. In each district location, two ready-mix concrete batches were 

delivered to the job site by concrete trucks. Table 5-1 contains the submitted mix designs and the 

measured SSD values. The absorption rate (SSD) of each individual aggregate was measured using 

ASTM standards before on-site testing. Slump, air percentage, initial temperature, and unit density 

were tested for the delivered concrete and are shown in Table 5-2. 

Table 5-1: Mix design of on-site testing 

Material District-4 District-5 District-10 

Cement (𝐤𝐠 𝐦𝟑⁄ ) 150.6 150.6 211.2 

Slag (𝐤𝐠 𝐦𝟑⁄ ) 150.6 150.6 - 

Fly Ash (𝐤𝐠 𝐦𝟑⁄ ) - - 90.17 

Water (𝐤𝐠 𝐦𝟑⁄ ) 120.55 127.55 120.43 

Limestone Aggregate (𝐤𝐠 𝐦𝟑⁄ ) 1056.03 1066.11 1056.03 

SSD (Limestone) (%) 0.5 0.44 0.5 

Fine Aggregate (𝐤𝐠 𝐦𝟑⁄ ) 864.4 832.36 850.75 

SSD (Sand) (%) 1.4 0.8 1.5 

w/cm ratio 0.4 0.423 0.4 

Air Entraining, ml/100 kg 32.6 81.6 12.4 

Retarder, ml/100 kg 130.5 84.8 228.4 

Water Reducer, ml/100 kg 261 391.5 522 

Super Plasticizer, ml/100 kg 208.8 913.6 287.1 



41 
 

 

Figure 5-1: Onsite testing: (a) slump, (b) air content and (c) temperature measurement 

Table 5-2: Measured properties 

Location Truck # Slump, cm Air content, % Initial temperature (°C) Unit density, 𝐤𝐠 𝐦𝟑⁄  

District-4 
1 19.7 8.5 28 2322.7 

2 13.2 7.0 30 2338.7 

District-5 
1 12.7 7.5 21 2258.6 

2 17.2 7.8 22 2274.6 

District-10 
1 16.5 3.6 26 2316.3 

2 17.2 4.6 27 2316.3 

All the necessary tools were brought to the job site, and the on-site w/cm ratio tests were 

performed. Two samples (1500±100-g) were taken to measure the w/cm ratio for each batch. The 

measured w/cm ratios for all the on-site testing, twelve test samples, are shown in Table 5-3. The 

measured densities were used to calculate the w/cm ratios based on AASHTO equations. The dry 

limestone mass for each sample was measured on-site. However, even after shaking the dried 

aggregate on top of a #4 sieve, powder particles could still be observed around the dried limestone. 
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Since the amount of water in these mixes was higher than the laboratory batches, the duration of 

the heating cycles in the microwave was longer. Thus, the particles had more time to bond around 

the aggregate. Another reason could be the high chemical admixtures dosage used in these batches 

to increase the workability of these mixes, which created bonds between the aggregate and the 

dried powder during the heating cycles. In the laboratory castings, powder particles were not as 

visible around the aggregate after sieving. To measure the correct amount of coarse aggregate, 

washing vinegar was used to wash out the particles. The aggregate was saturated in 230-g of 

washing vinegar (6% acetic acid) with the addition of 230-g of water for 24 hrs. The experimental 

results, as well as the stoichiometry calculation, showed approximately 10-g of limestone was 

dissolved in the vinegar. Therefore, this amount of limestone in vinegar solution must be added 

back to the dry limestone mass. After saturation and drying, the aggregate surfaces were clean. 

Since the aggregate at the time of mixing always contains dust particles, the mass of dust needs to 

be included in the aggregate mass, which was measured to be approximately 4-g in 600-g of 

aggregate. An average of 17-g of bonded particles were collected from the samples. The last 

column in Table 5-3 shows the results of the w/cm ratio after the washing process. A maximum 

deviation of 0.041 between the revised method and the revised method after saturation in vinegar 

was observed. The increment in some results might be due to the underestimation of dust powder 

in the calculations. The revised method, as well as the T318 method, indicate a higher w/cm ratio 

for the delivered batches. However, the revised method after saturation showed higher consistency 

between the two samples tested. 
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Table 5-3: w/cm ratio result for different districts casting 

Description 
Sample 

(g) 

Evaporated 

Water (g) 

Limestone 

(g) 

w/cm ratio 

(Mix design) 

w/cm ratio 

(AASHTO 

T-318 

method) 

w/cm ratio 

(Revised 

method) 

w/cm ratio 

(Revised 

method -

saturated in 

vinegar) 

D-4 (Truck 1-1) 1520.7 95.6 673.5 0.4 0.428 0.414 0.429 

D-4 (Truck 1-2) 1526.7 102.3 609.7 0.4 0.458 0.411 0.425 

D-4 (Truck 2-1) 1551.2 102.2 629.1 0.4 0.453 0.407 0.417 

D-4 (Truck 2-2) 1560.7 96.7 691.2 0.4 0.424 0.406 0.416 

D-5 (Truck 1-1) 1534.2 106.8 689 0.423 0.485 0.490 0.498 

D-5 (Truck 1-2) 1525.2 102.6 696 0.423 0.468 0.479 0.488 

D-5 (Truck 2-1) 1545.8 95.9 762.3 0.423 0.432 0.486 0.471 

D-5 (Truck 2-2) 1569.4 101.1 753.2 0.423 0.45 0.494 0.475 

D-10 (Truck 1-1) 1573.4 110.9 736.9 0.4 0.484 0.516 0.498 

D-10 (Truck 1-2) 1589.1 115.9 730 0.4 0.503 0.529 0.494 

D-10 (Truck 2-1) 1721.1 139.2 691 0.4 0.562 0.534 0.493 

D-10 (Truck 2-2) 1539.6 113.7 688.2 0.4 0.51 0.523 0.499 

 

5.2.  Compressive Strength Tests 

Standard compressive strength cylinders (15-cm diameter by 30-cm length) were made 

during each field casting and cured in a temperature-controlled water bath (at 23 °C). The 

compressive strength was tested at the ages of 1, 3, 7, 14, 28, and 56 days shown in Figure 5-3, 

Figure 5-4, and Figure 5-5. The measured 1-day and 28-days compressive strength are compared 

in Table 5-4 for each batch. Table 5-4 shows that the 50% slag batches have very low one-day 

compressive strength results but much higher 28-days compressive strength. The very low 

compressive strength of District 5 batch at one-day testing was a result of overdosing the water 

reducer/retarder admixture to adjust the slump of the mix. 
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Figure 5-2: On-site curing of compressive strength specimens 

 

Figure 5-3: Comparison of compressive strength (District-4) 
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Figure 5-4: Comparison of compressive strength (District-5) 

 

Figure 5-5: Comparison of compressive strength (District-10) 

Table 5-4: Comparison of compressive strength 1-day and 28-days 

District Batch 1-Day Compressive Strength (MPa) 28-Days Compressive Strength (MPa) 

District-4 
Truck 1 7.83 48.37 

Truck 2 5.30 52.25 

District-5 
Truck 1 1.00 47.08 

Truck 2 0.64 46.13 

District-10 
Truck 1 12.76 30.57 

Truck 2 11.26 26.78 
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5.3.  Insulated Cubes 

Each cube was built based on the design that was shown in Chapter 4. Thermal loggers, 

with the accuracy of 1 °C, were mounted inside the cubes and activated an hour before the concrete 

delivered. Another temperature logger was also installed on the shaded area to record the ambient 

environmental temperature, which was directly used to calculate the heat loss of the specimen. As 

shown in Figure 5-6, each cube was covered with a 5-cm insulation sheet on the top and plastic 

sheets around the mold after smoothing the top surface. The measured temperature histories for 

the center, side center (5-cm from the formwork), and the bottom center (5-cm from the wooden 

pallet) are shown in Figure 5-7, Figure 5-8, and Figure 5-9. The largest peak temperature difference 

at the different locations are 3 °C, 2 °C and 2 °C for District 4, 5, and 10. 

 

Figure 5-6: Cube casting 
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Figure 5-7: District 4 Cube 

 

Figure 5-8: District 5 Cube 
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Figure 5-9: District 10 Cube 
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Chapter 6 : Laboratory Tests, Analysis and Comparison of 

Results 

6.1.  Compressive Strength Measurement 

The collected material from the district locations was used to produce 10-cm diameter by 

20-cm height compressive strength cylinders and tested at the ages of 1, 3, 7, 14, and 28 days. The 

measured w/cm ratios of District 4, 5, and 10 laboratory batches were obtained to be 0.4, (0.423 

and 0.47), and 0.4 as shown in their mix designs (Table 5-1). To ensure the added water amount, 

the sand and large aggregates were dried in the 105 °C oven for 24 hours before the mixing process, 

and the w/cm ratio was measured using the revised method mentioned in Chapter 3. The 

comparison between the measured compressive strength of the laboratory and on-site mixes are 

shown in Figure 6-1, Figure 6-2, and Figure 6-3. The compressive strength results can reversely 

confirm that the average measured w/cm ratio results (shown in Table 6-1) are indeed higher than 

their mix design ones since the compressive strength results of laboratory batches of both Districts 

5 and 10 are much higher than their corresponding on-site batches. 

Table 6-1: Summary of w/cm ratio results 

Description w/cm ratio (Mix Design) w/cm ratio (On-Site) Average 

D-4 (Truck 1) 
0.4 

0.427 

D-4 (Truck 2) 0.417 

D-5 (Truck 1) 
0.423 

0.493 

D-5 (Truck 2) 0.473 

D-10 (Truck 1) 
0.4 

0.496 

D-10 (Truck 2) 0.496 
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Figure 6-1: The compressive strength comparison of District-4 mix 

 

Figure 6-2: The compressive strength comparison of District-5 mix 
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Figure 6-3: The compressive strength comparison of District-10 mix 

6.2.  Heat Generation Measurement 

Using the cementitious materials collected from each district location, the heat generation 

of each blend was measured with the isothermal calorimetry. The heat generation (W/g binder) 

and accumulated heat (J/g binder) are shown in Figure 6-4, Figure 6-5, and Figure 6-6. The 

isothermal calorimetry was a commercially available device, TAM Air microcalorimeter (8 

channels), which was set at 73.4 °F constant curing temperature. A total of 20-gram cementitious 

materials was mixed with water for each isothermal test, and water was used as the reference 

material in the calorimetry. 
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Figure 6-4: Isothermal heat of hydration measurement of District-4 mix 

 

Figure 6-5: Isothermal heat of hydration measurement of District-5 mix 
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Figure 6-6: Isothermal heat of hydration measurement of District-10 mix 

6.3.  Adiabatic Temperature Rise Measurement 

Besides isothermal tests, the adiabatic temperature rise of each blend was also tested in an 

adiabatic calorimeter developed at WVU (Lin and Chen, 2015). The adiabatic calorimeter was 

constructed, following Gibbon et al.’s concept (Gibbon, Ballim, and Grieve 1997; Lin and Chen 

2015). The heat loss was controlled by keeping the temperature of the concrete sample and 

surrounding water the same in addition to adding a layer of polystyrene foam around the sample 

holder. The accuracy of the temperature measurements was between 0.1 to 0.5 °C using RTD 

sensors. The measured adiabatic temperature rises are shown in Figure 6-7, Figure 6-8, and Figure 

6-9. 
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Figure 6-7: ATR of District-4 mix 

 

Figure 6-8: ATR of District-5 mix 
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Figure 6-9: ATR of District-10 mix 

6.4.  Analysis & Comparisons of ATR 

The temperature history of each 1-m cube was used to calculate the adiabatic temperature 

rises based on the method explained in Chapter 4. The average heat loss characteristic coefficients, 

minimum, maximum and average ambient temperatures of the district cubes are shown in Table 

6-2. Based on the average ambient temperature, the heat loss characteristic coefficients were 

compared to the minimum required λ (Figure 4-13) and shown in Figure 6-10. As shown in Figure 

6-10 the amount of insulations were enough for all three districts’ cubes; therefore, the method of 

ATR calculation using the cube’s center temperature is applicable to these cases. Then, the results 

of ATR calculated by the compensation of heat loss using cube temperature data were compared 

to the results obtained from the adiabatic and isothermal calorimetry in Figure 6-11, Figure 6-12, 

and Figure 6-13. The normalized heat of hydration (J/g binder) measured by the isothermal 

calorimetry was divided by the density and calculated specific heat of concrete based on mix 

design proportions. The densities are 2348.13, 2348.16 and 2357.63 kg/m3 based on the measured 

on-site w/cm ratios of D-4, D-5 and D-10 delivered batch, respectively. The specific heat was 



56 
 

considered to be variable and calculated based on Equation (4-7). A weighted average (using the 

proportions of cement, slag and fly ash in each mix) specific heat of cementitious materials was 

used to calculate the ATR from the heat of hydration since the district’s mixes contained slag and 

fly ash. Krishnaiah et al (Krishnaiah and Singh 2006) measured the specific heat of supplementary 

cementitious materials at different compaction levels. The value of 640 and 720 J/kg/°C was 

reported for slag and fly ash, respectively. Therefore, Equation (4-7)  was revised to have 690 (D-

4 and D-5 mix) and 734 (D-10 mix) J/kg/°C instead of 740 J/kg/°C which was assumed for Portland 

cement. The degree of hydration in Equation (4-7) was calculated based on the heat release divided 

by the ultimate heat of hydration, 𝐻𝑢, for each mix (Shown in Table 6-4). The ultimate degree of 

hydration, 𝛼𝑢, is calculated based on a w/cm ratio based equation and shown in Table 6-4. The 

equivalent age was calculated using the activation energies of 53,000 J/mol for District 4 and 

District 5 and 47,947 J/mol for District 10 mix. The activation energies obtained using ASTM C-

1074 (“Standard Practice for Estimating Concrete Strength by the Maturity Method” 2019). At 

100 equivalent hours the maximum difference between all three ATR are 0.5, 2.1 and 2.4 °C for 

District-4, District-5 and District-10 mixes. The District-5 ATR based on the isothermal 

calorimetry was shifted to the beginning of the ATR calorimetry and heat compensated ATR heat 

generation since the isothermal calorimetry samples were not mixed with chemical admixtures and 

District-5 mix had an excessive amount of superplasticizer. 

Table 6-2: Calculated heat loss characteristic coefficient for each cube 

Location 
Minimum Ambient 

Temperature (°C) 

Maximum Ambient 

Temperature (°C) 

Average Ambient 

Temperature (°C) 
𝛌 (𝒉𝒓.−𝟏 ) 

District 4 11 31 19 0.00574 

District 5 2 22 12.4 0.00485 

District 10 8 31 24.4 0.00429 
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Figure 6-10: Cube’s heat loss characteristic coefficients vs. reference 

 

Figure 6-11: District 4 adiabatic temperature rise comparison 
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Figure 6-12: District 5 adiabatic temperature rise comparison 

 

Figure 6-13: District 10 adiabatic temperature rise comparison 
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The hydration parameters of the three mixes, defined based on the heat compensated ATR 

are shown in Figure 6-11, Figure 6-12 and Figure 6-13. The τ and β parameters were decided by 

the summation of error squares analysis. The ultimate heat of hydration, 𝐻𝑢 was calculated based 

on the cement chemical compositions and the proportions of slag and fly ash in the mix design, 

shown in Equation (6-2) (Schindler and Folliard 2005). In Equation (6-2), the ultimate heat of 

hydration of Portland cement, 𝐻𝑐𝑒𝑚, was calculated using Equation (6-1) based on its chemical 

properties (shown in Table 6-3). The ultimate degree of hydration, 𝛼𝑢 was calculated using 

Equation (6-3) which is a w/cm ratio dependent function. 

𝐻𝑐𝑒𝑚 = 500𝑃𝐶3𝑆 + 260𝑃𝐶2𝑆 + 866𝑃𝐶3𝐴 + 420𝑃𝐶4𝐴𝐹 + 624𝑃𝑆𝑂3
+ 1186𝑃𝑓𝑟𝑒𝑒𝐶𝑎𝑂 + 850𝑃𝑀𝑔𝑂 (6-1) 

𝐻𝑢 = 𝐻𝑐𝑒𝑚  . 𝑃𝑐𝑒𝑚 + 𝐻𝑆𝐿 . 𝑃𝑆𝐿 + 1800𝑃𝐹𝐴−𝐶𝑎𝑂  . 𝑃𝐹𝐴 (6-2) 

𝛼𝑢 =
1.031 (𝑤

𝑐𝑚⁄ )

0.194 + 𝑤
𝑐𝑚⁄

+ 0.50𝑃𝐹𝐴 + 0.30𝑃𝑆𝐿 
(6-3) 

Where 𝑃𝐶3𝑆, 𝑃𝐶2𝑆, 𝑃𝐶3𝐴, 𝑃𝐶4𝐴𝐹 , 𝑃𝑆𝑂3
, 𝑃𝑓𝑟𝑒𝑒𝐶𝑎𝑂 and 𝑃𝑀𝑔𝑂 are the mass proportions of cement 

chemical compounds, 𝑆𝑂3, 𝑓𝑟𝑒𝑒𝐶𝑎𝑂 (assumed to be 1%) and 𝑀𝑔𝑂 in Portland cement, 𝑃𝑐𝑒𝑚, 𝑃𝑆𝐿, 

𝑃𝐹𝐴 are the mass fractions of cement, slag and fly ash in total cementitious materials and 𝑃𝐹𝐴−𝐶𝑎𝑂  

is the mass proportions of CaO in the fly ash. 𝐻𝑆𝐿  in Equation (6-2) was originally assumed to be 

461 (J/g) based on the assumption of Maekawa et al. (Maekawa, Ishida, and Kishi 2009) with the 

slag major chemical compositions of CaO = 43.3% and SiO2 = 31.3%. The 𝐻𝑆𝐿  for the two types 

of slag materials were obtained based on the isothermal (23 °C) heat measurement of slag in 25% 

hydrated limewater as a source of alkali. The two D-4 and D-5 slag materials were compared to a 

reference slag with a similar major chemical composition (shown in Table 6-3) as Maekawa et 

al.’s slag. It can be assumed that the same behavior might be observed using Maekawa et al. slag 
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hydrated with the 25% limewater solution. Therefore, the ultimate heat of slag assumed by 

Maekawa et al. (461 J/g) was reduced following the heat ratio between the D-4, D-5 slag over the 

reference slag (shown in Figure 6-15). Based on the assumption, the reductions need to be 

approximately 70% and 50% from the Maekawa et al.’s assumption; therefore, D-4 and D-5 slag’s 

ultimate heat were assumed to be 322.7 and 230.5 J/g, respectively. Finally, the hydration 

parameters of these mixes are obtained and shown in Table 6-4. 

Table 6-3: Chemical composition of cementitious Materials 

Chemical 

Properties 

LOI 

(%) 

CaO 

(%) 

SiO2 

(%) 

Al2O3 

(%) 

Fe2O3 

(%) 

MgO 

(%) 

SO3 

(%) 

Na2O 

(%) 

K2O 

(%) 

Cement (D-4) 2.93 63.41 19.91 5.17 3.48 2.55 3.25 0.08 0.84 

Cement (D-5) 2.74 63.95 19.61 5.42 4.06 1.19 3.08 0.04 0.66 

Cement (D-10) 2.65 63.39 20.19 5.12 3.48 2.17 2.67 0.087 0.83 

Fly ash (D-10) 1.5 6.69 43.46 21.06 17.39 0.87 1.68 1.77 1.84 

Reference Slag - 47.48 28.89 8.27 1.93 8.34 0.73 - - 

 

 

Figure 6-14: Comparison of slag materials heat of hydration  
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Figure 6-15: Heat ratios of slag materials 

Table 6-4: Hydration parameters 

Location 𝝉 𝜷 
𝑯𝒄𝒆𝒎 

(J/g) 

𝑯𝒖 

(J/g) 
𝜶𝒖 

𝑬𝒂 

(J/mol) 

District 4 28.5 0.52 492,571 407,630 0.859 53,000 

District 5 25 0.76 488,041 359,270 0.889 53,000 

District 10 21.9 0.65 483,560 374,618 0.891 47,947 

 

The hydration parameters, shown in Table 6-4, can be used to obtain the ATR for a similar 

type of mix design and chemical compositions of the cementitious materials. Using Equation (4-7) 

and Equation (4-11), the following equation can be obtained to calculate ATR with known 

hydration parameters. 

𝑇𝑎𝑑(𝑡) = (
𝑊𝑐

𝜌 .  𝐶𝑝(𝛼𝑟, 𝑇(𝑡))
) 𝐻(𝑡)    , 𝐻(𝑡) = ∫ 𝑞(𝑡) 𝑑𝑡

𝑡

0

 

𝑇𝑎𝑑(𝑡) = (
𝑊𝑐  𝐻𝑢 𝛼𝑢

𝜌 .  𝐶𝑝(𝛼𝑟, 𝑇(𝑡))
) ∫ 𝑒𝑥𝑝 (− [

𝜏

𝑡𝑒
]

𝛽

) [
𝜏

𝑡𝑒
]

𝛽 𝛽

𝑡𝑒
𝑒𝑥𝑝 (

𝐸𝑎

𝑅
(

1

𝑇(𝑡) + 273
−

1

23 + 273
)) 𝑑𝑡

𝑡

0

 

(6-4) 
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The ATRs obtained using Equation (6-4) in comparison with the experimental results are 

shown in Figure 6-16, Figure 6-17 and Figure 6-18. In addition, these figures show the 

comparisons between the district’ ATRs versus the ATR obtained by 100% Portland cement mix 

(using Table 4-1  hydration parameters). As Figure 6-16, Figure 6-17 and Figure 6-18 represent,  

50% and 30% replacements of Portland cement by slag and fly ash, respectively,  greatly reduced 

the heat of hydration and ATR of the concrete. 

 

Figure 6-16: Analysis vs. experiment (District-4) 
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Figure 6-17: Analysis vs. experiment (District-5) 

 

Figure 6-18: Analysis vs. experiment (District-10) 
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Chapter 7 : Conclusions & Recommendations 

7.1.  Conclusions 

In this study, the most recent AASHTO T318-15 guideline was adopted and improved to 

have better precision in estimating the water amount of an on-site delivered concrete mix. Since 

the coarse aggregate amount in each sample could vary, the method proposed requires sieving the 

coarse aggregate from the dried sample and separating the mass of the fine aggregate and 

cementitious material based on the mix design ratios. The results of the experiments indicated the 

accuracy of the proposed method was increased to have an average error of about 2.16% from the 

actual mix design w/cm ratio whereas the method based on AASHTO calculations had an error of 

6.2%. Using the revised method, the results of laboratory tests were consistent among the samples 

from the same batch which also indicates the accuracy of the revised method when considering the 

actual mass of coarse aggregate for each sample. In the case of higher amount of chemical 

admixture in the mixes, washing vinegar was used to wash out the particles around the dried 

aggregate, which was dissolved by the vinegar’s acid, was calculated based on its stoichiometric 

reaction equation.  

Additionally, a 1-meter cube was used as an on-site semi-adiabatic calorimetry. The 

estimation of the spatial temperature profile within the concrete volume is not simple, therefore, a 

practical method is required to simplify the calculation. It can be assumed that both volumetric 

and surface temperatures are equal to the measured center temperature. A minimum amount of 

insulation should be obtained to satisfy this condition for any ambient temperatures so that 

calculated ATR has enough accuracy. The on-site semi-adiabatic calorimetry setup can be used in 

ambient weather conditions with variations more significant than the laboratory conditions. The 

setup was analyzed in a finite element model, and a table was provided for the required insulations 
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in different ambient temperatures ranging from -10 to 30 °C. On-site measurements of heat of 

hydration using a cube located beside the real structure can be a useful, accurate, and 

straightforward practice.  

The applicability of the proposed procedures for the on-site measurement of w/cm ratio 

and adiabatic temperature rise were tested in several field situations. Three on-site castings took 

place in three different district locations (District 4, District 5, and District 10) in the state of West 

Virginia. On-site testing of slump, air content and water cementitious ratio were performed. The 

measured on-site water cement ratio for both District 5 and District 10 mixes were much higher 

than their corresponding mix design ones. The compressive strength cylinders were made on-site 

and cured at 23 °C reference temperature. One-meter concrete cubes were made and placed on-site 

to measure the heat of hydration of the mixes.  

 Using all materials collected from each district location, several laboratory mixes were 

made. The compressive strength and heat of hydration was again measured then compared to the 

on-site batches. The heat of hydration was measured using the isothermal and adiabatic 

calorimetry. The compressive strength results can reversely confirm that the average measured 

w/cm ratio results are indeed higher than their mix design ones since the compressive strength 

results of laboratory batches of both Districts 5 and 10 are much higher than their corresponding 

on-site batches. Using the average measured ambient temperatures of the cubes and calculated heat 

loss characteristic coefficients, the calculation of ATR using the center temperature method is 

applicable to the district cases. The calculated ATR from the temperature time histories of the on-

site 1-m cube using the compensation method was compared well with the ATR measured by the 

isothermal and adiabatic calorimetry with the maximum difference of 2.4 °C in 100 equivalent 

hours related to District 10 batch. Results show that both on-site measurement methods are 
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applicable and useful and can accurately measure w/cm ratio and heat of hydration of fresh 

concrete at the job site. 

7.2.  Recommendations for future work 

❖ It was mentioned that sand and cementitious materials are the two components that are not 

easy to separate from the dried specimen after sieving the large aggregates which can be 

addressed to improve the accuracy of the revised w/cm ratio method. In addition, washing 

the aggregate using vinegar was only studied on Limestone type of aggregate; however, 

other type of aggregate can be tested. 

❖ The same procedure that was used to develop the required insulation table for the 1-m cube 

may be obtained for smaller size specimens since it would be easier to dispose a smaller 

cube after the experiment has ended. To have a more comprehensive approach that can be 

used to accurately calculate ATR for any type of on-site calorimetry design with any 

ambient conditions, the author of this study will be working on an inverse three-

dimensional heat conduction approach using numerical analysis in his Ph.D. study. 
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