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Abstract 
  

Disturbance Related to Unconventional Oil and Gas Development in the Appalachian 

Basin 

Kevin J. Harris 

Little research has been done on the land cover change of unconventional oil and gas 

(UOG) wells across the Appalachian basin. In the last decade, UOG development has 

increased drastically across the region. Permitted well data from 2007 to 2017 were assembled 

into a geospatial database and analyzed with current aerial imagery to determine the activity of 

permitted wells in Ohio, Pennsylvania, and West Virginia. To capture all disturbance related to 

UOG development, a 25-hectare buffer was placed around each active well as the study extent. 

A supervised classification approach was used to determine the pre-development and post-

development landcover across all 4,212 well pad buffers in the region. Overall, the average 

forested and grass land cover percentage decreased by 4.3 and 0.8 percent across the 

Appalachian basin, while the impervious surface percentage gained an average of 5.2 percent 

respectively. The largest land cover change category was forest to grass, with an average of 3.8 

hectares per well pad buffer across the region. Forest and grass land cover changed to 

impervious land cover by an average of 0.8 and 0.9 hectares per well buffer. The trend suggests 

that well pads are currently being placed in areas with higher grass landcover. Thus as 

development continues in the region, results indicate that impacts could increase in more 

forested cover types.  
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Introduction 

In 2018, over 30 trillion cubic feet (Tcf) of natural gas was consumed within the United 

States (U.S. Energy Information Administration, 2019a). Natural gas production rose to an all-

time high of 10 billion cubic feet per day (Bcf/d) in 2018, which is an 11 percent increase from 

2017 (Geary, 2019). The rise in unconventional drilling across the United States has led to an 

increased production of oil and natural gas which have previously been locked inside tight 

sandstones, shales, and other low-permeability geologic formations (Jackson et al., 2014). As of 

September 2018, the US exported more natural gas by pipeline than it imported by pipeline for 

the first time in nearly 20 years (Geary, 2019).  

The Marcellus and Utica shale play in the Appalachian basin, are just two of the shale 

plays being explored for natural gas production in the United States. The Utica shale play 

covers an area of 298 km² (115,000 mi²), while the Marcellus covers an area of 240,000 km² 

(95,000 mi²) respectively (Kargbo, Wilhelm, & Campbell, 2010)(Popova, 2017a)(Popova, 

2017b). The Marcellus play is located between 3,000 and 6,500 feet below ground, while the 

Utica shale is located significantly lower at 7,000 to 12,000 feet below ground (Popova, 

2017a)(Popova, 2017b). Both shale plays encompass much of Pennsylvania and West Virginia, 

while running into parts of eastern Ohio, western Maryland, and southern New York (Kargbo et 

al., 2010) (Figure 1). Pennsylvania, which lays in the heart of the Marcellus formation, was the 

second largest natural gas producing state in the nation in 2017 (U.S. Energy Information 

Administration, 2019d). Other states in the Appalachian basin such as New York and Maryland, 

have moratoriums on natural gas drilling (Hastings, Heller, & Stephenson, 2017) 

(Sangaramoorthy, 2018)(Leff, 2015).  
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Figure 1: The Marcellus and Utica shale plays underlay much of the Appalachian basin (U.S. 
Energy Information Administration, 2016).  

 

There are two types of wells that allow for the extraction of natural gas: conventional and 

unconventional wells (Figure 2). The Energy Information Administration (EIA) classifies 

conventional oil and gas production as “crude oil and natural gas that is produced by a well 

drilled into a geologic formation in which the reservoir and fluid characteristics permit the oil and 

natural gas to readily flow to the wellbore” (U.S. Energy Information Administration, 2019b). 

Conventional wells are buoyancy driven, and found in continuous gas accumulations with set 

boundaries, which means that they are more densely spaced than unconventional wells (Law & 

Curtis, 2002) (Evans & Kiesecker, 2014) (Song, Zhuo, Jiang, & Hong, 2015). Unconventional 

wells are located in low permeability rocks, which require the tight sandstone to be fractured to 

retrieve the gas deposits (Song et al., 2015). Since unconventional wells do not have 
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boundaries like the conventional wells, they drain a larger area, ergo producing more natural 

gas. Producing more gas per well means lower well pad density, but larger well pad area, 

pipeline diameter, and compressor station (The Nature Conservancy, 2014). Unconventional oil 

and gas (UOG) development in the Appalachian basin initiated in December 2004 when the 

company Range Resources started unconventional drilling in Pennsylvania with five total 

successful unconventional wells (Governor’s Marcellus Shale Advisory Commission Report, 

2011). Unconventional wells are drilled vertically until depths of 6,000 to 10,000 feet, then drilled 

horizontally along the shale layer which is then fracked to release the natural gas (Johnson et 

al., 2010).  

 
Figure 2: Conventional wells are typically drilled vertically, while unconventional wells are drilled 
both vertically and horizontally (U.S. Energy Information Administration, 2019c).  
 

Hydraulic fracturing, also known as fracking, can be used both on conventional as well as 

unconventional wells. Fracking is a complex process that involves pumping proppants, usually 

sand or ceramic particles, and water into the well bore, which in turn fractures the rock formation 

(Armstrong et al., 1995). The proppants hold the fractures in the rock open, so that the 

petroleum products can flow more easily to the well. Conventional wells are occasionally 

fracked, as they mature, which opens the formation, and gives the well a longer lifespan (Norris, 

Turcotte, Moores, Brodsky, & Rundle, 2016). Hydraulically fractured horizontal wells account for 
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69 percent of all oil and natural gas wells drilled in the United States (Cook, Perrin, & Van 

Wagener, 2018). Hydraulic fracturing is popular since it allows access to oil and gas reserves 

that are inaccessible to reach with conventional drilling methods (Boudet et al., 2014). In the 

period of initial growth, many companies permitted more wells than they could successfully drill 

to lay claim to the land and allow them to stay ahead of their competitors. The companies would 

drill on those sites to test productivity, and then move on to secure as many productive leases 

as possible (Johnson et al., 2010).  

Conventional wells tend to have a smaller ecological footprint in comparison to 

unconventional wells. Preliminary data found by Zinkhan (2016), show that the average 

disturbance area of a conventional well is 0.66 hectares. The average unconventional well pad 

size can range from 1.2 to 2.8 hectares, but may have a total disturbance footprint of more than 

12 hectares for a single pad (Johnson et al., 2010). Zinkhan (2016) found that the average 

unconventional well pad disturbance was 3.6 hectares in WV. An average unconventional well 

can produce oil across 80 to 170 acres, depending on lateral length (Johnson et al., 2010). Well 

laterals are placed in a northwest to southeast plane, so that they are perpendicular to the shale 

rock, which lays in a southwest to northeast fashion (WVDEP, 2020). The average conventional 

well pipeline is two to four inches, while an unconventional pipeline can be up to 24 inches in 

diameter respectively (Johnson et al., 2010). 

Since there can be one to twenty wells on a single pad, UOG well pads tend to be larger 

than conventional oil and gas well pads. The pad must be large for unconventional development 

due to the equipment that must be able to maneuver around the pad to complete production, 

such as the drilling rig, stimulation equipment, and production appurtenances. Large roads must 

be built to each pad to support the large volumes of heavy duty truck traffic needed for the 

development of the well. Gathering lines are installed so the produced oil and gas can be 

transported to the nearest transmission lines. Disturbance related to UOG development is not 

related just to the well pad size alone.  Disturbance also encompasses the well pad, roads, 

compressor stations and pipelines created.  

Natural gas has proven to have more benefits than other commonly used fossil fuels for 

power generation. It produces half of the amount of carbon dioxide per unit of energy in 

comparison to coal (Kargbo et al., 2010), and uses less water per unit of energy than nuclear 

and coal fired power plants (Jackson et al., 2014). Other benefits of using natural gas as an 

energy source include reduced levels of sulfur dioxide (S02), nitrogen oxide (NOX), carbon 
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monoxide (CO), and mercury (Hg) in comparison to burning coal (Kargbo et al., 2010). Using 

natural gas for power generation does not produce billions of tons of toxic coal ash each year, 

and can help bridge the gap towards a renewable energy-based future (Jackson et al., 2014).  

Even though natural gas is a cleaner source of energy than other fossil fuels, it still comes 

with its own costs. With the increase of well pads across the Marcellus region, forest 

fragmentation is becoming a widespread problem (Drohan, Brittingham, Bishop, & Yoder, 2012) 

(Langlois, Drohan, & Brittingham, 2017). Fragmentation leads to an increase in impervious 

surfaces, which in turn is a threat to quality of drinking water, stream health, and the integrity of 

headwater watersheds (Evans & Kiesecker, 2014). Land cover change also impacts wildlife 

habitats and populations. Johnson et al. (2010) found that almost 40 percent of Pennsylvania’s 

rare, threatened, and endangered species can be found in areas with high potential for 

Marcellus gas development.   

As well sites are cleared and developed, research has shown that increased sediment flow 

into surface waters, and higher concentrations of total suspended solids (TSS) in water bodies 

is possible (Entrekin, Evans-White, Johnson, & Hagenbuch, 2011). Higher sediment levels are 

known to have negative effects within lotic food webs (Entrekin et al., 2011). Olmstead, 

Muehlenbachs, Shih, Chu, & Krupnick (2013) found in Pennsylvania that each additional 18 well 

pads resulted in a five percent increase in watershed level TSS concentrations. Drohan & 

Brittingham (2012), indicated that erosion and sedimentation of surface waters is the most 

common problems of UOG development. A study by Williams, Havens, Banks, & Wachal (2008) 

in Texas, found an increase in sedimentation of streams due to storm water runoff from well 

pads and other UOG development nearby.  

As of 2012 in Pennsylvania, roughly 90 percent of the existing well pads were developed on 

private land (Drohan et al., 2012). With most wells occurring on private land, it is harder to 

manage land cover due to a lack of centralized decision making, and the variable lease 

negotiations for each separate landowner (Drohan et al., 2012). Mineral ownership 

characteristics also can affect land cover change. Landowners who own land and mineral rights 

have more of a say on what happens to the surface, than someone who only owns one or the 

other (Drohan et al., 2012). Currently, the Pennsylvania Department of Conservation and 

Natural Resources (PDCNR) policy is to place the shale-gas pads as close to existing roads as 

possible since roads are known to help contribute to the spread of invasive species, negatively 

affect wildlife and their habitat, and interrupt the movement of water across landscapes (Drohan 
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et al., 2012). In a study about canopy removal and oil and gas development in the upper 

Susquehanna river basin, Young, Maloney, Slonecker, Milheim, & Siripoonsup (2018) found that 

the volume of canopy removed for oil and gas related development was 60 percent of the 

volume of timber harvested from the State Forest lands.  

With unconventional development, there is more to the disturbance of an ecosystem than 

the installation of the well pad alone. Drohan et al. (2012) classified drilling related land 

disturbance as any road development, pad installation, gathering lines, compressor stations, 

staging areas, or storage ponds. Wildlife habitat, especially core forest habitats, could be at risk 

for fragmentation and habitat loss in the future (Johnson et al., 2010)(Riitters et al., 2002). 

Habitat loss has a major effect on biodiversity, which many biologists believe that the pattern of 

habitat loss is more important than the quantity of habitat loss (Abrahams, Griffin, & Matthews, 

2015) (Johnson et al., 2010). Forest fragmentation leading to habitat loss can have immediate 

effects on wildlife populations, but the ecological response to fragmentation can vary due to 

affecting different species at different time scales (Makki, Fakheran, Moradi, Iravani, & Senn, 

2013). Edge effects can be detrimental to forest wildlife populations due to increased predation, 

changing lighting and humidity, and an increase in invasive species (Johnson et al., 2010) (The 

Nature Conservancy, 2014).  

Potential impacts on land cover in the Appalachian region due to Marcellus shale production 

include increased impervious surfaces and deforestation from land clearing to construct well 

pads and associated infrastructure (Johnson et al., 2010).  According to Evans & Kiesecker 

(2014), new gas pads and wind turbines will drive between 268,503 and 495,357 acres of 

deforestation in the Marcellus shale play, at that level, there will be changed conditions at the 

sub watershed level.  

Although well pads impact land cover, as time goes on it is possible to reduce land cover 

change. Most wells use a gathering line to transport the product from the well to a bigger, main 

distribution line. As the well pad density increases, it is possible that the infrastructure can be 

shared to an interstate or intrastate lines. Compressor and pigging stations can also share the 

right of ways, leading to reduced land cover change for infrastructure. Developing more wells 

per pad could also lead to a decline in land cover conversion, but an increase on other sources 

of disturbance such as noise pollution, or air quality degradation (Drohan et al., 2012). After the 

pad is constructed, the disturbed footprint becomes smaller, and when the well is done 

producing, the landscape must be returned to the original contour. 
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As natural gas continues to be used as an energy source, it is important to determine the 

effects that it is having across the landscape. There are relatively few studies looking at 

potential surface land cover characteristics of future Marcellus UOG development. Like any 

resource, it must be managed appropriately to minimize its impact on the environment, while 

also maximizing longevity.  

Objectives 

1. Assess current level of unconventional well development in the Appalachian basin. 

2. Compare and contrast the site disturbance related to unconventional development in 

Pennsylvania, West Virginia, and Ohio.  

3. Evaluate land cover types in areas disturbed by UOG development before and after 

site construction.   

4. Evaluate potential surface land characteristics of future UOG development in the 

Appalachian basin 

Methods 

 

Unconventional Development in the Appalachian Basin 
 

UOG Well Data 
 

The focus of this project is on unconventional gas wells and associated land cover in 

Pennsylvania, West Virginia, and Ohio in the Appalachian Basin from 2007 to 2017.  Data for 

each state were acquired through the respective regulatory agency. Each state agency is 

responsible for handling the permits associated with development. Pennsylvania and West 

Virginia well permits are regulated by each states Department of Environmental Protection 

(DEP), while Ohio permits are regulated by the Ohio Department of Natural Resources (ODNR). 

Federal agencies are mainly responsible for the transportation, storage, refining, and marketing 

of the product (PHMSA, 2019). They also handle permitting under the Clean Water Act (Clean 

Water Act, 1972) and Endangered Species Act (Endangered Species Act, 1973).  

Because each state has a different agency responsible for permitting the wells, each 

database was unique and included a variety of data fields. In Pennsylvania, the oil and gas 
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exploration is regulated by the Oil and Gas Act, Coal and Gas Resource Coordination Act, and 

Oil and Gas Conservation Law. The Pennsylvania Department of Environmental Protection 

(PADEP) is responsible for the permitting of the proposed oil and gas wells.  Pennsylvania data 

obtained from the DEP reports include: well location, permit issue date, operator name and 

address, authorization type, API number, configuration, well type, farm name, and spud date.  

Well permits for West Virginia were extracted from the West Virginia Department of 

Environmental Protection (WVDEP) Oil & Gas database. According to the Natural Gas 

Horizontal Well Control Act, any permitting of WV gas wells must be done through the WVDEP 

(Horizontal Well Act, 2011). After the WVDEP has assessed the permit, it is then catalogued 

into a database by the West Virginia Geological and Economic Survey (WVGES). In the West 

Virginia Oil & Gas database, the following information was associated with the permitted wells: 

API number, permit number, permit type, well type, well use, current operator, surface owner, 

well number, permit activity type, activity date, UTM locational data, well pad name, and the 

target formation.  

In Ohio, the Ohio Department of Natural Resources, Division of Oil and Gas Resources 

Management (ODNR-DOGRM) is responsible for regulating the oil and natural gas wells. Under 

Chapter 1509 of the Ohio Revised Code (ORC) and Chapter 1501 of the Ohio Administrative 

Code (OAC), the ODNR-DOGRM is responsible for regulating the location, construction, design, 

spacing and operation of the oil and gas wells in the state. The ODNR-DOGRM is also 

responsible for the permitting of the wells, and creating the database which catalogues all the 

important data about the well. The Ohio well database includes all the categorical data about 

the well including: API number, date issued, well name, number, location, depth, well class, 

formation, purpose, elevation, operator name, number, address, acreage, and permit issue 

date.  

Since drilling takes place horizontally on an individual UOG well, multiple wells can be 

placed on a single well pad. Each well pad must adhere to best management practices 

assigned by the state. Best management practices (BMPs) are set to protect the environment 

from excess degradation from resources of interest. UOG development across the Appalachian 

basin are subject to BMPs, just like any other environmental industry is. Ohio, Pennsylvania, 

and West Virginia all have different best management practices, and are each regulated through 

a different state regulatory agency. West Virginia defines a horizontal well as “any well site, 

other than a coalbed methane well, drilled using a horizontal drilling method, and which disturbs 
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three acres or more of surface, excluding pipelines, gathering lines and roads, or utilizes more 

than two hundred ten thousand gallons of water in any thirty day period” (Horizontal Well Act, 

2011).  

There are many types of BMPs regarding oil and gas production across the Appalachian 

basin. The majority of BMPs cover the topics of air quality, human health, land-disturbance 

impacts, soil, vegetation, water quality and quantity, and wildlife (Bearer et al., 2012). There are 

two forms of BMPs enforced in Pennsylvania. Passed in 2012, Act 13 provides updated 

regulations that encompass UOG drilling across the state (Pa General Assembly, 2012). Well 

pad development is also regulated under the Clean Streams Law in Pennsylvania, enforced by 

the Department of Environmental Protection (The Clean Streams Law, 2006). All best 

management practices for the state of West Virginia, are outlined in the West Virginia Erosion 

and Sediment Control Field Manual (WV DEP, 2012). In Ohio, the regulation of BMP’s is done 

through the ODNR-DOGRM Regulatory enforcement program under the Ohio Administrative 

Code 1501:9 (Ohio Administrative Code, 2019). The two types of BMPs focused on in the state 

are water sampling, and well pad construction. BMPs help to ensure reduced impacts on the 

environment, while still allowing the natural resource to be extracted.  

UOG Surface Characteristics 
 

Locational data from each permitted well site, gathered from each state’s regulatory 

agency, were combined into Environmental Systems Research Institute (ESRI)’s ArcGIS 

software (version 10.6) for further analysis. To determine whether construction had begun on 

the well sites, locational information was analyzed with respect to current aerial imagery for 

each state. National Agriculture Imagery Program (NAIP) aerial imagery was used for all states. 

Horizontal wells that showed no signs of activity were excluded from the study. Those wells that  

showed disturbance in NAIP imagery were considered for subsequent analyses.  

NAIP imagery is developed by the United States Department of Agriculture (USDA) 

Farm Service Agency during the agricultural growing season in the continental United States. 

Unlike satellite imagery, it is attained from aerial photography and is available to be used by the 

public free of charge, with a scale of 1:10,000. NAIP imagery was chosen for the study due to its 

availability and high resolution. NAIP imagery resolution varies depending on year, and state. It 

has ranged from 2-meter resolution in the beginning to 60-centimeter resolution in 2018. The 

imagery used in the study, was acquired at a one meter ground sample distance, which 
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provided the most up to date imagery that was easily accessible for all three states. With the 1 

meter resolution of the imagery, the minimum mapping unit was 9 square meters, which is the 

smallest land cover size that could be delineated in the study. Imagery was obtained through 

each states regulatory agency. Pennsylvania imagery was acquired through the Pennsylvania 

Spatial Data Access, West Virginia imagery was attained through the West Virginia GIS 

Technical Center, and Ohio imagery was retrieved from the USDA Geospatial Data Gateway. 

The spatial data acquired from each state’s well permits were visually inspected in 

ArcGIS using the NAIP imagery. Using the most recent imagery at a scale of 1:10,000, the 

permitted well locations were inspected for any signs of activity including dirt moved, forest 

clearings, roadways, or an already constructed well pad. Older imagery was used to confirm 

sites where activity level was difficult to determine.  By comparing multiple imagery years, the 

true extent of development was determined.  Due to the variability of NAIP imagery, different 

years of imagery were used for different states (Table 1). Ohio and Pennsylvania’s most recent 

NAIP imagery taken was in 2017. West Virginia’s most recent NAIP imagery was taken in 2016. 

Wells that showed signs of activity during each states most recent imagery, were used in the 

study.  

Table 1: Years of NAIP imagery utilized in the analysis. 

State NAIP Imagery Year 

Ohio 2009, 2017 
Pennsylvania 2008, 2013, 2015, 2017 
West Virginia 2007, 2009, 2011, 2014, 2016 

  

The variability in NAIP imagery comes from the available funding, the Farm Service 

Agency (FSA) acquisition cycle by state, and the time of year the imagery is taken. Starting in 

2009, the NAIP switched from a five-year, to a three-year acquisition period. Even though the 

most recent imagery was used to determine well activity, there were still limitations to it. Since 

NAIP imagery is taken during the leaf-on period of the year, well activity had the potential to be 

missed during the final few months of the calendar year, after the imagery was taken for that 

year. Since West Virginia imagery was taken in 2016, it did not show the activity that occurred 

during the 2017 calendar year. Although most of the land cover types remain the same 

throughout the growing season, they will visually change depending on when the imagery was 

taken. Trees and grass look different as the growing season progresses. Early in the growing 

season, both land covers are a deep dark green, and can be difficult to distinguish apart. As the 
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growing season progresses, it is easier to tell the two land covers apart, as the trees stay a dark 

green, and the grass becomes a lighter green. Since NAIP imagery is collected every other 

year, and has a pixel size of one meter, not all UOG well pad disturbance was recognizable. 

With those limitations, it is possible that disturbed sites were excluded from the study, due to the 

disturbance footprint being too small. A few of the images used in the study were acquired in the 

early fall of the year, when the leaves of trees were starting to change colors. Shadows, and 

clouds in the imagery were other limitations to using NAIP. Using four band (red, green, blue, 

NIR) NAIP, is known to produce increased accuracy over the three band imagery (Franklin, 

2018). To keep all classifications consistent, only three band NAIP was used for the 

classification, largely because the four-band imagery was not available during the pre-

development imagery. 

After acquisition, NAIP imagery is required to be sent to the Aerial Photography Field 

Office (APFO) within 30 days after flying and collecting the imagery. The APFO must then 

inspect the imagery for errors, and make it available within a year. Once all images within a 

project area (state) are accepted, they are released to the public. Due to this, 2018 West 

Virginia NAIP imagery was not available in time to use for the project.  Since it is not possible to 

collect all the imagery for an entire state in one day, the NAIP imagery, must be combined to 

create a Digital Orthophoto Quarter Quad (DOQQ). A DOQQ is a digital image of an aerial 

photograph, which combines the photo with the geometric qualities of a map. Orthophotos are 

imagery that is corrected for elevation, which allows accurate measurements to be made from 

them. Each state is covered by thousands of DOQQ’s, which each measure 3.75-minutes of 

latitude by 3.75-minutes of longitude, and are in the Universal Transverse Mercator Projection 

(UTM), on the North American Datum of 1983 (NAD83). Due to time constraints of the study, it 

was not feasible to mosaic the uncompressed DOQQ files across all three states. Instead, 

Compressed County Mosaics (CCM) were used in the study, which are created by joining all the 

DOQQ images into a single mosaic for a certain county. The CCMs were used for data 

analyses, due to their accessibility, and size.  

Many types of imagery have been assessed to determine the land cover characteristics 

of UOG development. Langlois (et al. 2017) used aerial imagery flown in leaf off conditions to 

asses habitat conversion and forest fragmentation. Drohan (et al. 2012), Jantz (et al. 2014), 

Slonecker (Milheim, Roig-Silva, & Fisher, 2012), and Slonecker (Milheim, Roig-Silva, Malizia, et 

al., 2012) used NAIP imagery to digitize the disturbance associated with UOG development. 
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NAIP imagery is largely used because it is updated frequently (2-3 years), has high resolution (1 

meter), and is available for the continental United States.  

 

Land Cover Characteristics Associated with UOG Development 
 

Supervised Classification 
 

Once it had been determined which well pads had shown signs of development, a 25-

hectare circular buffer was placed around each well on the well pad. Johnson et al. (2010) found 

that an average unconventional well pad and associated infrastructure in the Marcellus region 

occupied 9 acres per well pad. Similarly, Evans & Kiesecker (2014) and Arthur & Cornue (2010) 

found that the same wells and associated infrastructure occupied 11.6 and 7.4 acres 

respectively. Previous studies have used 15 and 20-hectare buffer sizes to assess UOG 

development (Zinkhan Jr, 2016). Upon inspection, some UOG infrastructure was not captured 

within that area, so an increased buffer size of 25-hectares was chosen to ensure that all 

disturbance associated with the development was accounted for. With an average spacing of 40 

to 160 acres per well in the Marcellus region, a few buffers overlapped (U.S. Department of 

Energy, 2009). The shared boundaries were dissolved for those buffers that overlapped. Once 

the buffer was created and dissolved, the NAIP imagery was clipped to the 25-hectare buffers. 

The buffers in each state were then assigned an identification number, to better track the 

changes.  

There are many ways to investigate land use change from aerial imagery. One of which, 

is to use a supervised classification approach. The most time-consuming step in the 

classification process is training the dataset (Olofsson et al., 2014). In this study, training data 

had to be utilized to acquire the spectral properties of each land cover class. By using five 

training samples per land cover class, it is possible that not all spectral classes were 

represented equally in the training data set. The digitizing of the polygons used to train the data 

have the potential to overestimate the class variance. The maximum likelihood classifier used to 

classify the imagery, relies heavily on normally distributed signatures. In a few counties, there 

was a large diversity in the spectral classes of the land cover which did not have normally 

distributed signatures.  
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Another approach to land use change classification is by digitizing the extent of 

disturbance associated with UOG development (Drohan et al., 2012; Jantz et al., 2014; Johnson 

et al., 2010; Langlois et al., 2017; Slonecker, Milheim, Roig-Silva, & Fisher, 2012; Slonecker, 

Milheim, Roig-Silva, Malizia, et al., 2012). Digitization of UOG development, is time consuming, 

and can easily contain errors due to digitizer bias. In other studies that have used digitization to 

assess the level of disturbance, a sampling approach was used instead of a census. The 

supervised classification methodology used in this study removes the digitizer bias, and allowed 

for the inclusion of all well pads in the entire Appalachian basin to be included in the study. With 

more time, it would be possible to capture the exact extent of disturbance across the entire 

Appalachian basin using a digitized approach. Using three land cover classes, it was easy to 

determine where, and to what extent the land cover changed throughout the region. 

 A subset of known pixels in an image were selected and then classified to a given land 

cover and were used as training data. The training areas were digitized to ensure they were 

dispersed throughout the study area, and were as spectrally distinct as possible. Spectral 

signatures were then created from the training data, to be used as an input source in the 

maximum likelihood classifier. The spectral reflectance properties of the training data, were 

used to help classify the imagery used in the study. 

A supervised classification approach was chosen over other classification options such 

as an object based classifier, and an unsupervised classification. Object based classification 

uses spatial and spectral properties to identify objects, which can be different land cover types 

(Myint, Gober, Brazel, Grossman-Clarke, & Weng, 2011). The main difference between a 

supervised and unsupervised classification is the timing of the observer in the process. An 

unsupervised classification classifies the image without training data, and places like pixels into 

groups. The observer must then identify the different groups, assign labels, and make sure they 

are correct to give the data meaning, which can be time consuming. Due to the additional 

software needed for an object based classification, and the additional time needed for 

unsupervised classification, the supervised classification approach was used in this study. 

The three main land cover types the study focused on were grass, forest, and 

impervious surfaces, such as roads and well pads. Only three classes were used to classify the 

landcover because the study mainly focused on the natural versus unnatural properties of the 

land. Representative samples were collected across the entire CCM, allowing different spectral 

properties of the same class to be established. Five representative samples from each land 
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cover class were used to make a training data set to classify the imagery. Each individual class 

contained between 1,000 and 3,000 pixels to be used as the training data. Spectral signatures 

were then created based on the training data. Since the imagery was so variable, and was 

gathered at different times of the year for each county, a training data set was required for every 

individual CCM. Training data was collected not only for each county in the study, but also for 

the pre-development, and post-development imagery as well.   

There were a few limitations to training a different data set for each image that was 

classified throughout the study. Classifying imagery on a county basis proved to be difficult, as a 

few counties only contained one well pad. Due to the resolution of the imagery used, sometimes 

it was not possible to identify all three land cover types in a CCM. With only five training data 

samples per land cover class, it is possible that there were unique spectral classes of grass and 

forest, that were not identified correctly. Even though the training data samples were selected at 

random, it is possible that there may be bias in the data used, since each shape is of different 

size, and location. The forest and grass land cover types shared similar spectral properties due 

to the variance in the imagery used. Sharing similar spectral properties depending on season, 

location, and land usage proved to be another limitation for using the supervised image 

classification approach.  

The maximum likelihood classification tool was used to classify the land cover using the 

NAIP imagery, within the 25-hectare well pad buffer (Figure 3). The tool used an algorithm to 

assign imagery pixels a classification based on the class mean, and co-variance from the user 

created training data as seen in Figure 4. The classification is probability based, and each pixel 

in the image receives the classification of the highest probability land cover class. Since the 

study was focused on looking at the differences in land cover between pre and post-

development, there were no issues classifying impermeable surfaces such as rock, concrete, 

and asphalt as well pad disturbance. Due to the size of the imagery files, each county was 

classified individually. After the imagery was classified, a majority filter was used to replace 

some of the cells in the raster, based on the majority of the neighboring cells. The majority filter 

tool reduced the number of isolated cells in the classification, making for a cleaner image. After 

the majority filter produced a raster, the data was extracted for each well pad across the three 

states, and placed into excel for subsequent analysis.  



 

 

15 

 

 
Figure 3: The flowchart of the steps taken to determine land cover on well sites throughout the 
study area.  
 

Accuracy Assessment 
 

Training data were collected at a county level to improve accuracy in the classification of 

the pre and post-development imagery. Classification accuracy was determined using an 

equalized stratified random sample approach. Thirty random points were assigned to each of 

the three land cover classes identified in the study: forest, impervious surfaces, and grass. Each 
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random point was used as ground reference data to compare the accuracy of the classified map 

with the type of landcover that occurred at the random point. The term ground reference data is 

used instead of ground truth, because there is still a slight chance of error in the data. The 

original training data was not utilized in the accuracy assessment, because it would provide a 

biased higher accuracy for the classified map (Olofsson et al., 2014).  A confusion matrix 

(Strager, 2008) (Olofsson, Foody, Stehman, & Woodcock, 2012) was then created to ascertain 

the success of the image classification (Table 2).   

The total accuracy of the classification was found by adding all cells that were identified 

correctly together, and then dividing them by the total cell count of correct and misidentified 

cells. Although total accuracy gives the percentage of correctly identified plots, it is an average, 

and does not give any information on the distribution of the error between classes. Errors of 

omission and commission are related to the user’s and producer’s accuracy, which help to 

further analyze the accuracy of the image classification. User’s accuracy describes how often 

the class identified will be present on the ground, while producer’s accuracy describes how 

often on the ground classes are identified correctly (Olofsson et al., 2012) (Olofsson et al., 

2014). User’s accuracy is calculated by 1-commission error, while producer’s accuracy is 

calculated by 1-omission error.  

Table 2: Accuracy assessment of the supervised classification for the post-development time, 

using 2017 NAIP imagery, for Ohio. Reference numbers represent the ground reference data, 

while the map numbers represent the classification of each image pixel. 

Map 

Reference Row 

Total 

User’s 

accuracy 
Well Grass Forest 

Well 29 0 0 29 100 

Grass 1 21 1 23 91 

Forest 0 9 29 28 76 

Column Total 30 30 30 90  

Producer’s 

accuracy 

97 70 97   
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Figure 4: NAIP imagery from 2017 and supervised classification results from an unconventional 
well pad in West Virginia. Imagery was classified into forest, grass, and impervious surface 
using the maximum likelihood classifier tool within ArcGIS.  
  

Land Cover Change 
  

Following classification for the pre and post time periods, the area of each land cover 

change was calculated. Using the raster calculator function within ArcMap, the pre and post-

development raster’s were summed to produce an output with nine values (ESRI, 2019). Each 

value in the output described a land cover change for each individual cell in the raster (Table 3). 

The change categories that were focused on for the remainder of the study and would fully 

capture changes due to unconventional development included forest to impervious surface, 

grass to impervious surface, and forest to grass. The remaining changes in classification were 

not used in the study, because they represented erroneous classifications or did not directly 

relate to unconventional development.  
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Table 3: Nine potential types of land cover change in the Appalachian basin between 2007 and 

2017. 

Pre-Land Cover Post-Land Cover 

Forest Forest 

Impervious Surface Forest 

Grass Forest 

Forest Impervious Surface 

Impervious Surface Impervious Surface 

Grass Impervious Surface 

Forest Grass 

Impervious Surface Grass 

Grass Grass 

 

The importance of land cover changes associated with unconventional development, 

were investigated among states.  Data analyses were performed with SAS /STAT Software of 

the SAS System for Windows, Version 9.4, Copyright © 2016 by SAS Institute Inc., Cary, NC, 

USA.   The GLIMMIX procedure was used to model differences in land cover change (ha) 

among states and land cover type before and after unconventional development. The null 

hypothesis is that there is no difference in land cover change (ha) among states and land cover 

types before and after unconventional development. The alternate hypothesis is that there is a 

difference in land cover change (ha) among states and land cover types before and after 

unconventional development. The model was defined as: 

 

 

𝑌𝑖𝑗𝑘𝑙 =  𝜇 + 𝛼𝑖 + ∅𝑗 + 𝛾𝑘 + 𝛼∅(𝑖𝑗) + 𝜕𝑙(𝑖) +  𝜀(𝑖𝑗𝑘𝑙) 1 

 

where   𝑌𝑖𝑗𝑘𝑙 is the change in pre/post land classification (ha),  𝜇 is the overall mean, 𝛼𝑖  is the 

fixed effect of state, ∅𝑗 is the fixed effect of land change type (forest to impervious, forest to 

grass, grass to impervious), 𝛾𝑘 is the fixed effect of pre-forest cover (%) as a covariate, 𝛼∅(𝑖𝑗) is 

the interaction between state and land change type, 𝜕𝑙(𝑖)is the random effect of well pads within 

a state, and 𝜀(𝑖𝑗𝑘𝑙) is the full model error.  Pre/post land change was log transformed before all 

analyses.  Subsequent pairwise comparisons of treatments showing significant differences were 

made with Tukey-Kramer adjustment for multiple comparisons. All statistical comparisons were 

made at the 0.05 significance level. 
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Pre and Future Development Land Cover Characteristics 
 

Pre-Development Site Characteristics 
 

To determine if there were any preferential land cover characteristics when locating an 

unconventional pad, land cover was assessed at known well locations prior to unconventional 

development and at random locations within the study area. Random land cover samples were 

located within one county of each state where the greatest number of completed unconventional 

pads were observed. This included Bradford county in Pennsylvania, Doddridge county in West 

Virginia, and Belmont county in Ohio. Thirty random 25-hectare buffers were placed in each of 

the chosen counties, with no additional restrictions on their location. NAIP imagery from 2007 

was used to classify the random buffers in each of the counties. The same supervised 

classification methodology was used to determine the land cover breakdown within the random 

buffers. Once the imagery was clipped to the random buffers, the training data that was 

collected for the pre-development imagery was used as the classification dataset. The majority 

filter tool was then used to replace cells in the raster based on the majority of the neighboring 

cells. The GLIMMIX procedure was used to model differences in land cover (ha) among known 

unconventional sites and random buffers within each of the highest well-density counties. The 

null hypothesis was that there is no difference in land cover among known unconventional well 

sites and random buffers. The alternate hypothesis is that there is a difference in land cover 

among known unconventional well sites and random buffers. The model was defined as: 

 

 

𝑌𝑖𝑗𝑘𝑙 =  𝜇 + 𝛼𝑖 + ∅𝑗 + 𝛾𝑘 + 𝜕𝑙(𝑖) +  𝜀(𝑖𝑗𝑘𝑙) 2 

 

where   𝑌𝑖𝑗𝑘𝑙 is the percent classification of forest, grass, and impervious cover, 𝜇 is the overall 

mean, 𝛼𝑖  is the fixed effect of location (either known unconventional development or random 

buffer), ∅𝑗 is the fixed effect of state, 𝛼∅(𝑖𝑗) is the interaction between location and state, 𝜕𝑙(𝑖)is 

the random effect of counties within a state, and 𝜀(𝑖𝑗𝑘𝑙) is the full model error.  Known and 

random location land cover classifications were log transformed before all analyses.  

Subsequent pairwise comparisons of treatments showing significant differences were made with 

Tukey-Kramer adjustment for multiple comparisons. All statistical comparisons were made at 

the 0.05 significance level. 
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Future Development Characteristics 
 

Once a well pad is drilled, completed, and ready to be produced, operators file a 

declaration of pooled unitization (DPU) for the producing location in the county records where 

the well is located. The DPU describes the producing unit including the operator, the lease 

characteristics, total land area that is producing, the landowners that own the mineral resources 

in the unit, and the percentage ownership for each owner. The DPU typically contains those 

acres that are being produced by the well bore that has been unitized. DPUs can be as low as 

80 acres to as high as several thousand acres. Their size is determined by the number of wells 

included and the length of the lateral proportion of the well bore. The land area associated with 

the unit is highly variable and can be amended by the operator over time. Since the DPU is the 

area that a certain well pad is theoretically producing oil and natural gas from, no additional 

wells should be permitted or located in the same area. To assess trends in future development, 

a hypothetical DPU buffer was created over each permitted unconventional well in the study 

area. A DPU buffer was built in the northwesterly to southeasterly direction to follow the drilling 

pattern commonly used during unconventional development in the Appalachian basin (Figure 5) 

(WVDEP, 2020).  

 
Figure 5: Known UOG well lateral directions and lengths from WVDEP (2020). 
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The hypothetical DPU buffers displayed the areas of the Appalachian basin that have 

been developed, and those areas that are currently undeveloped. Using the top three counties 

in each state that had the highest number of horizontal wells, 25-hectare random circular buffers 

were randomly placed in the undeveloped areas of Bradford county, Pennsylvania, Doddridge 

county, West Virginia, and Belmont county, Ohio. Using the same supervised classification 

methodology, the post-development training data were used for each county to classify the 

undeveloped buffers. Understanding the land cover characteristics associated with the 

undeveloped areas will offer insight to potential future impacts due to UOG development in the 

selected counties.  

Results 
 

Unconventional Development in the Appalachian Basin 
 

During the study period, 25,771 horizontal wells were permitted across Pennsylvania, 

West Virginia, and Ohio (Figure 6). Of the 25,771 well permits in the region, a total of 21,997 

wells showed signs of surface activity as of the latest imagery available in each state. The 

21,997 active wells, were located on a total of 4,212 well pad buffers across the study region.  

Pennsylvania had the greatest number of bore locations with 17,609 horizontal wells 

permitted within the state during the study period. Of the 17,609 permits in Pennsylvania, 

15,474 showed signs of surface disturbance according to 2017 NAIP imagery. In West Virginia, 

5,294 horizontal wells were permitted between 2007 and 2017. A total of 3,874 of the 5,294 

permitted wells showed signs of surface activity. In Ohio, 2,649 of the 2,868 total permitted wells 

showed signs of activity in the most recent 2017 NAIP imagery. The 15,474 active wells in 

Pennsylvania, were located on a total of 2,741 well pad buffers. West Virginia contained a total 

of 780 well pad buffers, followed by Ohio, which contained a total of 691 well pad buffers 

respectively.  

The average wells per pad across the Appalachian basin is 5.2. Pennsylvania has the 

highest ratio, with an average of 5.6 active wells per pad, respectively. West Virginia contains 

an average of 5 wells per pad, while Ohio has an average of 3.8 wells per pad.  

 Almost fifty percent of all active wells in Pennsylvania were in either Bradford, 

Washington, or Susquehanna counties. Bradford county contained 2,965 active wells, 
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Washington county had 2,225 active wells, and Susquehanna county contained a total of 2,152 

horizontal active wells. There were 2,741 25-hectare buffers across thirty-seven different 

counties in Pennsylvania. Ten of the thirty-seven counties in Pennsylvania contained less than 

10 well pad buffers. Bradford and Susquehanna counties contained the most well pads per 

county in the state with 541 and 394 well pad buffers respectively. In West Virginia, Doddridge, 

Wetzel, and Marshall counties contained over forty percent of all the active wells across the 

entire state. Doddridge county had 661 active wells, Wetzel county contained a total of 516 

wells, and Marshall county contained 497 active wells as of 2017. West Virginia contained a 

total of 780 well buffers across the state. Twenty-one of the thirty-eight counties in the state 

contained less than 10 well pad buffers. The two counties in West Virginia that contained the 

most well pads were Marshall, and Doddridge county. Marshall county had a total of 98 well pad 

buffers, while Doddridge county contained a total of 96 well pad buffers. Seventy percent of all 

active wells in Ohio occurred in four counties in the eastern part of the state. Carroll and 

Belmont counties both contained 524 active wells. There were 405 active wells located within 

Harrison county, followed by 398 active wells located in Monroe county. In Ohio, 691 well pad 

buffers were found in twenty-seven different counties across the state. Of the twenty-seven 

counties in Ohio that contained at least one well pad buffer, sixteen counties contained less 

than 10 buffers. Belmont and Carroll counties had the most well pad buffers  at 123, and 122 

buffers respectively. 

The top four counties that have the highest well density, all occur in Pennsylvania. 

Bradford, Greene, Susquehanna, and Washington counties all have an average well density of 

2.6 wells per square mile. Doddridge county, West Virginia has an average of 2 wells per 

square mile, while Carroll county, Ohio had an average well density of 1.31 wells per square 

mile. Greene county, Pennsylvania also has the largest average well pad density of 0.77 well 

pads per square mile. Bradford and Susquehanna counties, Pennsylvania both had a well pad 

density of 0.47 well pads per square mile.  
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Figure 6: The geographical location of all active wells, which were used in the study 

 

Land Cover Characteristics Associated with UOG Development 
 

Accuracy Assessment 
 

Total accuracies on the classification of the land cover for each of the states in the study 

area were high. Overall classification accuracy was 88% for 2007 and 89% for 2017. West 

Virginia classification was the highest at 91% and 94% total accuracy for 2007 and 2016 

imagery respectively. Likewise, Pennsylvania image classification produced 79% and 84% total 

accuracies based on 2008 and 2017 imagery. Ohio image classification produced 92% and 88% 

total accuracies based on 2009 and 2017 imagery.  

Producer’s accuracies of 100 percent were found in the forest category of the post West 

Virginia development, and the impervious category in the pre Ohio development. The lowest 

producer’s accuracy was in the pre-development impervious category of West Virginia at 33 

percent (Table 4). Producer’s accuracies for Pennsylvania were between 75 and 95 percent 

respectively.  
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Table 4: Accuracy assessment of the supervised classification for the pre-development time, 

using 2007 NAIP imagery, for West Virginia. Reference numbers represent the ground 

reference data, while the map numbers represent the classification of each image pixel. 

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 1 0 0 1 100 

Grass 1 29 2 32 91 

Forest 1 4 52 57 91 

Column Total 3 33 54 90  

Producer’s accuracy 33 88 96   

 

User’s accuracies ranged from 72% to 100% depending on state and time frame. 

Accuracies of 100% were found in all post-development well categories, as well as in the West 

Virginia pre-development well category. The lowest user’s accuracy was determined to be in 

post-development Pennsylvania imagery when classifying the forests at 72%. User’s accuracies 

at and below 75% were also calculated in the pre-development time of Pennsylvania for the well 

and forest categories at 75 and 73% respectively (Table 5). Having too few accuracy 

assessment points can produce a lower user’s accuracy.  

Table 5: Accuracy assessment of the supervised classification for the pre-development time, 

using 2008 NAIP imagery, for Pennsylvania. Reference numbers represent the ground 

reference data, while the map numbers represent the classification of each image pixel. 

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 3 1 0 4 75 

Grass 1 32 2 35 91 

Forest 0 14 37 51 73 

Column Total 4 47 39 90  

Producer’s accuracy 75 77 95   

 
 

Land cover associated with well pads  
 

The average percentage forest cover within the pre-development well pad buffers from 

the three state study area was 66.5 percent. The second highest cover type was grass at 31.5 
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percent, followed by impervious surfaces at 1.9 percent. During the 10-year post-development 

period in 2017, the mean percentage of forested area within the unconventional well pad buffers 

was 62.2 percent across the region. Areas classified as grass represented 30.7 percent of 10-

year post-development buffers, while impervious surfaces represented 7.1 percent of the total 

land cover (Table 6). 

Table 6: Land cover proportion of the well pad buffers in the Appalachian basin. 

Time n Forest 

Mean 

(%) 

Forest 

Std. 

Dev 

Impervious 

Mean (%) 

Impervious 

Std. Dev 

Grass 

Mean 

(%) 

Grass 

Std. 

Dev 

Pre-Development 4212 66.5 23.3 1.9 4.8 31.5 22.3 

Post-Development 4212 62.2 18.4 7.1 5.7 30.7 17.6 

 

The highest average percentage forested land cover during pre and post-development, 

occurred in West Virginia. Randolph county contained an average of 99.7 percent forested 

landcover in 2007, while Kanawha county contained an average of 97.5 percent forested land 

cover in 2017 respectively. The lowest average percentage of forested land cover for both time 

periods occurred in Ohio. In 2007, Wayne county contained an average of 12.6 percent forested 

land cover, while in 2017, Morrow county contained an average of 11.2 percent forested land 

cover respectively.  

Morrow county, Ohio, and Clay, Mercer, and Wood counties, West Virginia, did not 

contain impervious surfaces within the 25-hectare buffers during the pre-development time 

period. Wood county, West Virginia had an average of 0.2 percent impervious land cover during 

the post-development time period, which was the lowest county average in the Appalachian 

basin. Portage county, Ohio contained the highest average impervious surface, 12.9 percent, for 

the pre-development time. The highest average impervious surface during the post-

development time occurred in Warren county, Pennsylvania, with an average of 24.4 percent 

impervious land cover.  

Bedford county, Pennsylvania, Randolph, Raleigh, and Clay counties, West Virginia all 

contained no grass landcover during the pre-development time. Kanawha county, West Virginia 

contained the lowest average grass landcover in 2017, at an average of 2.2 percent 

respectively. The highest grass land cover was found in Medina county, Ohio with an average of 

85.6 percent grass land cover in 2007. Morrow county, Ohio contained the highest grass 

landcover for 2017, with an average of 85.1 percent. 



 

 

26 

 

During the pre-development time period, the average forested area inside the well pad 

buffers in Pennsylvania was 64.9 percent (Table 7), followed by a decline to 61.0 percent in 

2017 (Table 8). The percentage of impervious surface increased from 2.2 percent in 2007, to 

7.6 percent in 2017. The average grass percentage in Pennsylvania decreased over the study 

period, from 33.0 percent, pre-development, to 31.4 percent in the 10 year post-development 

period.  

Table 7: Pre-development land cover percentage by state across the Appalachian basin. 

State n Forest 

Mean 

(%) 

Forest 

Std. 

Dev 

Impervious 

Mean (%) 

Impervious 

Std. Dev 

Grass 

Mean 

(%) 

Grass 

Std. 

Dev 

Ohio 691 55.0 24.1 2.1 4.6 43.0 23.0 

Pennsylvania 2741 64.9 22.1 2.2 5.4 33.0 21.2 

West Virginia 780 82.7 17.4 1.1 2.4 16.2 16.8 

 

The average forested percentage for the 10 year post-development well pad buffers was 

73.0 percent in West Virginia (Table 8), which had decreased from the pre-development time 

period of 82.7 percent. The mean percentage of impervious surface increased during the time 

period from an average of 1.1 percent in 2007 (Table 7), to 4.7 percent in 2017. The average 

percentage of grass land cover during the pre-development time period was 16.2 percent, which 

increased to an average of 22.3 percent during the post-development time frame.  

Table 8: Post-development land cover percentage by state across the Appalachian basin. 

State n Forest 

Mean 

(%) 

Forest 

Std. 

Dev 

Impervious 

Mean (%) 

Impervious 

Std. Dev 

Grass 

Mean 

(%) 

Grass 

Std. 

Dev 

Ohio 691 54.5 18.1 7.8 4.0 37.7 17.5 

Pennsylvania 2741 61.0 18.0 7.6 6.3 31.4 17.6 

West Virginia 780 73.0 15.2 4.7 3.7 22.3 13.6 

 

The average forested percentage within the well pad buffers in Ohio remained consistent 

during the study period at 55.0 percent in 2007 to 54.5 percent in 2017. In 2007, the average 

percentage of impervious surface was 2.1 percent (Table 7). In 2017, the average percentage of 

impervious surface in Ohio had increased to 7.8 percent. The mean percentage of grass in Ohio 

during the pre-development time period was 43.0 percent, which dropped to 37.7 percent in 

2017 (Table 8).  
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Land cover changes associated with UOG development 
 

Out of the nine possible types of land cover change, three categories were used to 

monitor change in the land cover due to UOG development: (1) grass to impervious surface, (2) 

forest to impervious surface, and (3) forest to grass. As a pad is developed, earth is moved, and 

forested areas that are located near or adjacent to the well pad and associated infrastructure 

either become part of unconventional development, or are revegetated to grass. Over the three 

state study area, it was determined that a total of 23,505 hectares of land cover were impacted 

by UOG development. Pennsylvania contained the most land cover change in the Appalachian 

region, with 16,846 hectares due to UOG development. West Virginia and Ohio both had similar 

UOG well pad disturbance, with 3,423, and 3,236 hectares of land cover change, respectively. 

In Pennsylvania, Washington, Bradford, and Susquehanna counties, had the largest amount of 

land cover change. Washington and Bradford counties contained 2,874 and 2,858 hectares of 

disturbance respectively, while Susquehanna county had 2,724 hectares of land cover 

disturbance. The largest amount of land cover change in West Virginia occurred in Doddridge 

county, with 502 hectares of land cover change. Belmont county, Ohio had the most disturbance 

in the state due to UOG development with 617 hectares of land cover change.  

The average amount of disturbance per well pad varied by state across the Appalachian 

basin. The overall disturbance across the region was 5.6 hectares per well pad. Pennsylvania 

had the largest disturbance per pad with an average of 6.2 hectares disturbed. West Virginia 

had the smallest disturbance per well pad with an average of 4.4 hectares disturbed, while Ohio 

had an average disturbance size of 4.7 hectares per well pad.  

Of the 23,505 hectares of land cover in the Appalachian basin impacted by UOG 

development, 16,220 hectares of disturbance were associated with previously, classified forest 

areas converting to grass land cover. During the study period, 3,703 hectares were converted 

from grass to an impervious surface land cover, and 3,582 hectares were converted from forest 

to impervious surface land cover. The forest to grass land cover change is the highest in all 

three states. Pennsylvania and West Virginia had 11,783, and 2,502 hectares of forest land 

converted to grass land cover. During the study period, Ohio had 1,934 hectares of forest land 

converted to grass land cover. Pennsylvania contained 2,644 hectares of forest to impervious 

surface land cover change. The state also had 2,419 hectares of grass land cover converted to 

impervious surface land cover during the study period. In West Virginia, 389 hectares of grass 
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were converted to impervious surface, while 532 hectares of forest were converted to 

impervious surface. Ohio contained 406 hectares of forested land cover converted to impervious 

surface, while 895 hectares of grass land cover were converted to impervious surface.  

Washington county, Pennsylvania contained 2,447 hectares of forest to grass 

conversion between 2007 and 2017. Tioga county had the largest amount of grass to 

impervious surface land cover in the state of Pennsylvania at 347 hectares respectively. 

Susquehanna county, Pennsylvania had the largest amount of forest to impervious surface 

change in the study with 528 hectares of land cover converting. 

Doddridge county, West Virginia had the most land cover change in the forest to grass 

category with 372 hectares of change. Marshall county, West Virginia had the largest amount of 

grass to impervious surface change with 66 hectares of change occurring throughout the study, 

while Doddridge county had 107 hectares of forest to grass land cover change in the state.  

Unlike Pennsylvania and West Virginia, one county in Ohio had the largest amount of 

land cover change in each type of change associated with UOG development. Belmont county 

had 315 hectares of forest land cover change to grass land cover throughout the study period, 

221 hectares of grass land cover change to impervious land cover, and 82 hectares of forest 

land cover change to impervious land cover.  

At the individual pad level during the 10-year study period, an average of 3.8 hectares 

changed from forested land cover to a grass land cover in 2017. During the same study period, 

an average of 0.9 hectares per buffer changed from grass land cover to impervious land cover, 

and an average of 0.8 hectares of forested land cover changed to an impervious surface within 

the 25-hectare buffers across the Appalachian region, respectively. Overall, the amount of land 

area that differed among change type (forest to grass, forest to impervious, and grass to 

impervious) was significant (p<0.0001) as was the total change in land cover type among states 

(p<0.0001). The interaction among change type and state was also significant (p<0.0001) and is 

the better descriptor of change type and state. 

According to the results from the mixed model analysis of variance, Pennsylvania had a 

significantly greater change in forest cover to grass (p<0.0001) of 4.3 hectares per buffer versus 

a change of 3.2 hectares in West Virginia, and 2.8 hectares in Ohio (Figure 7). Pennsylvania 

also had a significantly greater change in forest cover to impervious surface (p<0.0001) of 1 

hectare per buffer, in comparison to 0.7 hectares in West Virginia, and 0.6 hectares in Ohio. The 
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grass to impervious surface change was significantly higher (p<0.0001) in Ohio, with a mean 

change of 1.3 hectares per buffer versus 0.9 hectares in Pennsylvania, and 0.5 hectares in 

West Virginia. Pennsylvania also had a significantly greater change in grass to impervious 

surface (p<0.0001) of 0.9 hectares per buffer versus a change of 0.5 hectares West Virginia.  

Bedford county, Pennsylvania contained no forested to grass land cover change during 

the study period. Washington county, Pennsylvania contained the highest forest to grass land 

cover change, with an average change of 8.3 hectares per buffer respectively. Six counties in 

the study area that did not show a grass to impervious cover change were Marion county Ohio, 

and Braxton, Clay, Jackson, Raleigh, and Randolph counties, West Virginia. The largest land 

cover mean change occurred in Warren county, Pennsylvania, with an average of 4.3 hectares 

per buffer change of grass land cover to impervious across two well pad buffers. Five counties, 

across all three states had no change in landcover from the forest category to the impervious 

category. Those counties included Medina, and Morrow county, Ohio, Lackawanna county, 

Pennsylvania, and Jackson, and Wood county, West Virginia. Clearfield county, Pennsylvania 

contained an average of 5.4 hectares per buffer of land cover change from forest to impervious 

throughout the study period (Table 9).  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

30 

 

Table 9: Land cover change across Pennsylvania in acres, showing only those counties with 10 

or more buffers 

County Forest to 
Impervious 
(Mean) 

Forest to 
Impervious 
(Std. Dev) 

Grass to 
Impervious 
(Mean) 

Grass to 
Impervious 
(Std. Dev) 

Forest to 
Grass 
(Mean) 

Forest to 
Grass (Std. 
Dev) 

Allegheny 3.0  2.7  3.6  4.2  6.6  4.7  
Armstrong 0.9  1.2  3.5  3.5  6.6  6.7  
Beaver 1.9  1.7  2.4  2.2  7.9  3.9  
Bradford 1.5  1.6  1.4  1.7  10.1  7.2  
Butler 1.9  2.7  5.1  4.8  5.9  3.2  
Cameron 3.8  3.0  0.9  0.9  13.0  5.8  
Centre 1.6  1.5  0.6  0.8  13.6  7.4  
Clarion 1.7  1.0  5.5  4.7  5.2  3.2  
Clearfield 13.4  11.2  5.7  6.5  1.9  1.8  
Clinton 2.9  1.3  0.4  0.4  13.4  5.9  
Elk 3.6  1.7  0.7  0.9  10.2  6.5  
Fayette 1.0  1.2  3.1  4.3  8.0  4.9  
Greene 2.5  2.0  2.0  2.1  12.1  6.0  
Indiana 1.3 1.3 3.0 3.4 5.2 2.8 
Jefferson 1.5  1.5  4.0  6.3  9.8  6.1  
Lawrence 0.9  1.5  6.4  4.7  5.1  3.6  
Lycoming 2.8  2.1  1.4  2.0  4.7  3.5  
McKean 2.2  1.7  1.4  1.4  5.7  4.8  
Mercer 0.9  0.7  4.2  3.6  4.7  2.3  
Potter 1.7  2.5  0.6  0.8  12.7  7.1  
Somerset 2.9  2.1  2.5  3.2  15.3  11.6  
Sullivan 1.5  1.2  1.7  1.4  4.8  4.0  
Susquehanna 3.3  2.3  2.1  2.4  11.7  5.9  
Tioga 1.8  1.7  3.5  3.0  10.9  6.2  
Washington 2.5 1.9 1.1 1.2 20.6 7.9 
Westmoreland 0.8  1.0  2.2  1.8  7.9  6.5  
Wyoming 2.5  2.4  2.3  2.6  17.8  6.6  
Total 2.4 2.9 2.2 2.9 10.6 7.6 
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Figure 7: The average land cover disturbance (ha), per well pad, associated with UOG 
development across the Appalachian basin.  

 

Pre and Future Development Land Cover Characteristics 
 

Pre-Development Site Characteristics 
 

There was no significant difference (p=0.0512) in forested percent between known 

unconventional developed areas, and the random buffers. The average percent forested in the 

25-hectare active well buffers was 67.2 percent, while the average percent forest in the random 

buffers was 75.5 percent, respectively. The grass land cover on the 25-hectare buffers that have 

been developed was significantly higher (p=0.0021), with a mean of 31.1 percent, than the 

grass percentage in the completely random buffers with a mean of 22.7 percent. There was no 

difference(p=0.605) in the means between the impervious percent on the developed buffers and 

the random buffers, each had an average of 1.8 percent.  

Pre-land cover characteristics were also summarized for the top three unconventionally 

developed counties in each state. Bradford county, Pennsylvania contained an average of 80.1 

percent forested area, 1.1 percent impervious surface, and 18.8 percent grass land cover over 

the randomly selected buffered areas. In 2007, Bradford county contained 66.4 percent forested 
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areas, 1.8 percent impervious surface, and 31.9 percent of grass land cover within the original 

25-hectare well pad buffers. The previously selected well pad buffers contained a lower forested 

land cover percentage, but a higher impervious surface, and grass land cover percentage than 

the randomly selected buffers captured.  

 Doddridge county, West Virginia, contained an average of 92.4 percent forested land 

cover within the thirty random buffers across the county (Table 10). The pre-development well 

pad buffers captured a lower forest percentage than the random buffers in the county at 90.5 

percent. The grass percentage in Doddridge county within the random buffers was 7.0 percent, 

which is lower than the grass land cover found within the well pad buffers at 8.3 percent. 

Impervious surface land cover was also higher in the well pad buffers than in the random buffers 

across the county. Doddridge county had an impervious surface land cover of 1.3 percent within 

the well pad buffers, and 0.6 percent within the random buffers.  

Belmont county, Ohio contained the smallest forested percent with an average of 54.1 

percent in the random buffers. The average forested percent within the pre-development well 

pad buffers was similar at 52.4 percent respectively. The mean grass percentage for the county 

was 42.2 percent within the random buffers, while the grass land cover percentage was 45.5 

percent in the well pad buffers. In 2007, the mean impervious surface percent was 3.7 percent 

within the random buffers, and 2.2 percent within the existing well pad buffers.  

Table 10: Pre-development land cover, in percent, of areas within the random 25-ha buffers. 

The counties selected are the county with the most wells drilled per state. 

County Forest 
Mean (%) 

Forest 
Std. Dev 

Impervious 
Mean (%) 

Impervious 
Std. Dev 

Grass 
Mean (%) 

Grass 
Std. Dev 

Belmont 54.1 26.6 3.7 6.8 42.2 24.3 
Bradford 80.1 13.7 1.1 1.5 18.8 13.0 
Doddridge 92.4 10.7 0.6 1.2 7.0 10.0 

 

Potential Characteristics of Future Development 
 

Forest land cover comprised 79.9 percent of the landscape outside of producing buffers 

in the three county study area. Impervious surface comprises 2.3 percent of the landscape, 

while grass land cover is 17.8 percent, respectively. Bradford county, Pennsylvania contained 

an average of 76.0 percent forest, 3.5 percent impervious surface, and 20.5 percent grass land 

cover within the random undeveloped well pad buffers. In the undeveloped random buffers of 

Doddridge county, West Virginia the land cover consisted of 91.2 percent forested, 0.4 percent 
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impervious cover, and an average of 8.4 percent of grass respectively (Table 11). Belmont 

county, Ohio contained an average of 72.4 percent forest, 3.0 percent impervious surface, and 

an average of 24.5 percent grass land cover across the undeveloped random buffers.  

Table 11: Land cover percentage of areas that have not been developed, as of 2017. The 

counties selected are the county with the most wells drilled per state. 

County Forest 
Mean (%) 

Forest 
Std. Dev 

Impervious 
Mean (%) 

Impervious 
Std. Dev 

Grass 
Mean (%) 

Grass 
Std. Dev 

Belmont 72.4 15.1 3.0 5.1 24.5 12.4 
Bradford 76.0 22.2 3.5 8.6 20.5 18.6 
Doddridge 91.2 9.6 0.4 1.1 8.4 9.6 

 

Discussion 

 

In the 10-year period of this study, natural gas production in the Appalachian region 

grew from 1.2 BCF per day in January of 2007 to 26.9 BCF per day in December of 2017, 

representing an increase of 2142 percent (U.S. Energy Information Administration, 2020). This 

level of increase changed the energy production of the United States from a net importer of 3.8 

TCF in 2007 to a net importer of -0.12 TCF in 2017 (U.S. Energy Information Administration, 

2019c). All of the production increases in the past decade across the region, are linked to 

Pennsylvania, West Virginia, and Ohio (U.S. Energy Information Administration, 2019a). The 

other states that are within the Marcellus and Utica shale (Maryland and New York), have a 

moratorium on natural gas drilling (Hastings et al., 2017; Leff, 2015; Sangaramoorthy, 2018). 

With these increases in production, associated increases in land cover change have occurred. 

Much of the drilling has taken place in rural areas, which can focus change on the conversion of 

forest and grass lands to a more industrial land use type.  

 There have been many studies that have attempted to measure this change, but none 

have been done across the entire Appalachian basin. In June of 2011, Drohan (et al. 2012) 

reported that of the 3,364 wells permitted in Pennsylvania, 2,931 were considered active. The 

number of permitted and active wells rose drastically to 17,609 permitted, and 15,474 active 

wells as of December 31, 2017. The size of the pads has also increased, thus requiring larger 

well pads and potentially greater levels of land use change. In the same study, Drohan (et al. 

2012) concluded that over 75 percent of well pads in the state of Pennsylvania contained 1 to 2 

wells. As predicted, that number has increased, with the average well pad in Pennsylvania 

currently containing 5.6 wells. As companies have signed leases with land owners, and laid 
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claim to as much of the land as possible, they are now going back and adding more wells to 

each well pad. Currently, West Virginia has an average of 5 wells per pad. In Ohio, there are 

currently an average of 3.8 wells per pad, which is considerably less than in Pennsylvania. The 

increase in unconventional drilling activity started in Ohio approximately three years after 

Pennsylvania. 

Overall classification accuracies ranged from 80 percent for the pre-development 

Pennsylvania classification, to 94 percent for the post West Virginia classification. Pennsylvania 

post-development overall classification accuracies were the second lowest of all three states 

with an 84 percent accuracy. Compared to the other two states, Pennsylvania had the largest 

area classified. One way to increase the overall accuracies in the study would be to use more 

training data. Using more training data would give each class broader spectral properties, which 

would allow the classification algorithm to classify the correct land cover types more accurately, 

but would increase the amount of processing time. Since the study extent was the entire 

Appalachian basin, the number of training samples were chosen so that the computer 

processing could be completed in a feasible time period.  

All user’s and producer’s accuracies were above 70 percent, except for producer’s 

accuracy of impervious surface for the pre-development time in West Virginia (33 percent). The 

producer’s accuracy was low, due to there being only three impervious surface reference points 

within the pre-development imagery. By having more random data points to test the accuracy of 

the classification process, there would be a less likely chance of having such a small accuracy 

level.  

The average amount of disturbance due to UOG activities was similar throughout the 

Appalachian basin. This study determined the well pad disturbance due to UOG development 

was higher than previously conducted studies with an average of 5.6 hectares per well. This 

estimate includes all of the disturbance within the 25-hectare buffer, representing the well pad, 

access roads and additional infrastructure related to UOG development including pipelines and 

water containment. Johnson (et al 2010) found a disturbance size of approximately 3.6 hectares 

per pad, while studies in Tioga, Greene, Bradford, and Washington, counties, Pennsylvania 

found the average disturbance per pad to be between 2.7 and 3 hectares respectively 

(Slonecker, Milheim, Roig-Silva, & Fisher, 2012; Slonecker, Milheim, Roig-Silva, Malizia, et al., 

2012). Jantz (et al. 2014) found that each well pad in Bradford county, Pennsylvania had an 

average size of 2.5 hectares, while the additional infrastructure associated with it disturbed an 
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additional 1.6 hectares of landscape. Langlois (et al. 2017) used a 2km buffer to assess the 

spatial disturbance of UOG development, and discovered that the average well pad disturbed 

2.2 hectares of landcover, while the associated secondary infrastructure disturbed an additional 

7.7 hectares of landcover.  

Only one study on land cover change and characteristics of UOG development in the 

Appalachian basin, have taken place outside the state of Pennsylvania. Zinkhan Jr (2016) found 

the average disturbance associated with UOG wells in West Virginia to be 3.6 hectares per well 

pad. In this study, we found that disturbance related to unconventional development was 

approximately 22 percent higher than Zinkhan Jr (2016). Several reasons can account for the 

greater level of disturbance found in this study. It can primarily be accounted for by the size of 

the buffer used (25 hectare versus 20 hectare in Zinkhan Jr (2016)) as well as the trend in well 

bores per pad. As unconventional development matured in the region, a greater number of wells 

are drilled on each pad, thus increasing the surface infrastructure needed for each site.  

In West Virginia, forest land has been stable over the last three decades (Morin, Domke, 

& Walters, 2017). Pennsylvania’s forest land has also been stable over the last three decades, 

with a gradual increase in the volume of the forests (Albright, 2017). Pennsylvania’s 

commonwealth consists of approximately 58 percent forested areas, while West Virginia 

contains approximately 78 percent forested areas (Albright, 2017; Morin et al., 2017). The 

highest average change in land cover across the Appalachian region was forested areas to 

grass. The majority of this change was accounted for directly surrounding the well pad. In areas 

with steep topography, the cleared area for the well pad can be larger than needed because of 

the increased area needed for cut and fill slopes. Once the pad is developed, the remaining 

areas surrounding the well pad are usually barren soil, which must then be seeded with grass 

species (WV DEP, 2012). Grass land cover helps with erosion control, and can also be 

important habitat for multiple types of wildlife (Villemey et al., 2018). Although many UOG well 

pads have not been reclaimed yet, most BMPs require the site be reclaimed back to original 

contour upon completion. In a study by Drohan & Brittingham (2012), it was found that 

reclaimed wells did convert back to agricultural crop production after UOG development. The 

biggest limitation to revegetation success of species on disturbed areas, is poor soil reclamation 

(Drohan & Brittingham, 2012). 

Unlike grass, impervious surface land cover is unnatural, and has little ecological use for 

wildlife. As impervious surface increases across the landscape, there will be a higher rate of 
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water runoff and soil erosion across the Appalachian basin. Entrekin (et al., 2011) found that 

well development can lead to higher sediment inputs into the nearby surface waters, which can 

have negative effects including eutrophication. One of the primary BMP strategies used to 

reduce the amount of sedimentation into surface waters is the use of a sediment fence, or filter 

sock (Grushecky, McDonald, & Osborn, 2019). Both options provide a barrier to allow the 

sedimentation to stay on site, while allowing water to pass through.  

The pre-development site characteristics were studied in a one county area from each 

state in the study region. Although each county has the greatest level of development in the 

state, they do not accurately depict the characteristics throughout the Appalachian region. It was 

found that grass cover on the well pads was significantly greater than on the random buffers. 

This suggests that the UOG companies were locating wells on areas with a higher grass 

percentage. There are a few reasons, as to why wells would be more likely found on grass. The 

cost of developing a well pad in a forested land cover is much higher in comparison to one in a 

grass land cover. It is more expensive and time consuming to remove trees and stumps from a 

location. Forests also tend to be typically more rugged than grass landscapes, meaning that 

they will be harder to work on due to uneven ground, and higher slopes. Areas that are currently 

grass land cover in the Appalachian basin are typically used as agricultural fields and pastures, 

which are already located on flatter ground, such as on hilltops. Another reason that UOG wells 

are preferentially placed in more grass areas are because of timber cutting restrictions 

associated with endangered species(U.S. Fish and Wildlife Service, 2011). Timber cutting 

restrictions are implemented in some areas where there is a potential overlap with an 

endangered species, such as the Indiana bat (Myotis sodalist). Currently in West Virginia, an 

Indiana bat conservation plan is needed if clearing more than 17 acres of forest (West Virginia 

Field Office, n.d.). If the bats are found on the location, then the timber must be cut seasonally, 

which can be a large inconvenience to the oil and gas companies.  

Conversion of forest to grass and impervious surface can negatively affect wildlife, 

especially those forest interior species such as the cerulean warbler, mourning warbler, and 

northern goshawk. Although the disturbance does not favor forest interior species, disturbance 

creating edge habitat is not bad for all types of wildlife. A study by Villemey (et al., 2018), 

documented increased insect abundance on linear infrastructure. Many species such as the 

Indiana bat forage on insects, which can be found surrounding UOG development (Sparks, 

Ritzi, Duchamp, & Whitaker, 2005).  
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The potential impacts of future development on site characteristics were studied in a one 

county area from each state in the study region. While this represents those counties with the 

greatest level of development, it does not accurately depict potential land cover changes 

throughout the Appalachian region. Results from this indicate that areas outside of DPUs had 

greater levels of forest cover than those that had already been developed. The undeveloped 

areas also contained less grass, and less impervious surface than found in the developed well 

pad buffers. Since there is less grass available for development, future development patterns 

will have a larger impact on forest resources. Our prediction that future UOG development will 

have a larger impact on the forest land cover is also consistent with research by Drohan (et al., 

2012). Because UOG development has preferentially been confined to areas with more grass, 

there is not as much grass land cover available for future UOG development. Since only the 

three top counties in each state were included in the study, we cannot imply that the trend will 

be consistent for the entire basin, but it is the trend for those counties included in the study.  

Conclusion 
 

Since each step of the study was done on a county level, the average time spent was 

approximately 6 hours per county. In the 6 hour time, it was possible to download and clip the 

imagery to the 25-ha buffers, create the signature file, and run the maximum likelihood classifier 

and majority filter tools. Processing time varied depending on size of county, size of imagery, 

and amount of 25-ha buffers. A similar approach could be used to determine the amount of 

disturbance associated with other UOG infrastructure. Compressor stations must be permitted 

in a similar manner to UOG wells, so similar methods would identify disturbance associated with 

them. Pipelines would be more complex to identify, since there is no single database with all 

gathering pipeline locational information available. To use a supervised classification, high 

resolution imagery would have to be used to digitize pipeline locations, which would be time 

consuming on a state by state basis. Once the locations were digitized, a buffer could be 

placed, and the imagery could be classified with similar methodology. One way to make the 

supervised classification process more efficient, would be to use computers with larger 

processing power, which would reduce waiting times.   

As the wells per pad increases throughout the Appalachian basin, there will be less 

disturbance associated with UOG production. On average, there are 5.2 wells per pad across 

the Appalachian basin, disturbing an average of 5.6 hectares of forest and grass landcover. 
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Across the region, 4.3 percent of forest was lost, 0.8 percent grass was lost, and 5.2 percent of 

impervious surface was gained directly surrounding UOG development. West Virginia was the 

only state that gained grass throughout the study. Over the study area, it was determined that 

23,505 hectares of land cover were impacted by UOG development, of which 16,220 hectares 

were forest land that was converted to grass land cover. The percentage of grass land cover 

was significantly higher on well pad locations, than at random areas throughout Belmont, 

Bradford,  and Doddridge counties. In those same counties, the percentage of forest were 

higher in undeveloped areas, suggesting that as more UOG development occurs across the 

Appalachian basin, forest land cover will be impacted at higher rates. To further address the 

landscape impacts associated with UOG development, other landscape metrics such as forest 

fragmentation, and edge effects, should be used in conjunction with land cover data to provide a 

complete analysis.  
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Appendix 
 

Table 1a: Pre-Development land cover area by county in Ohio, displaying counties that had at 

least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean 
(Ac) 

Forest 
Std. Dev 

Well 
Mean 
(Ac) 

Well 
Std. Dev 

Grass 
Mean 
(Ac) 

Grass 
Std. Dev 

Belmont 123 35.4 17.8 1.6 2.6 31.8 19.8 
Carroll 122 27.6 11.0 1.0 1.5 36.0 11.1 
Columbiana 55 30.6 13.9 3.0 4.9 29.3 12.7 
Guernsey 51 38.9 14.9 1.4 3.7 25.5 15.7 
Harrison 91 38.7 14.8 1.0 2.5 24.7 14.8 
Jefferson 53 35.3 14.6 0.7 1.4 28.3 16.6 
Monroe 78 47.5 14.7 0.5 0.8 17.5 12.2 
Noble 44 49.8 15.8 0.8 1.8 16.2 11.3 
Stark 13 26.2 15.4 1.2 1.2 34.5 14.8 
Trumbull 12 24.4 12.6 6.6 5.1 31.4 10.6 
Tuscarawas 10 26.2 16.2 1.4 2.3 35.3 15.8 
Total 691 35.8 16.3 1.4 3.0 28.1 16.0 

 

Table 2a: Post-Development land cover area by county in Ohio, displaying counties that had at 

least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean 
(Ac) 

Forest 
Std. Dev 

Well 
Mean 
(Ac) 

Well 
Std. Dev 

Grass 
Mean 
(Ac) 

Grass 
Std. Dev 

Belmont 123 37.3 13.1 6.6 3.3 24.8 14.8 
Carroll 122 32.7 10.7 4.4 2.3 27.4 9.7 
Columbiana 55 28.4 13.7 5.0 3.4 29.6 12.4 
Guernsey 51 38.7 11.2 5.3 2.0 21.8 10.3 
Harrison 91 36.0 11.9 5.6 2.6 22.7 11.5 
Jefferson 53 29.2 11.0 3.8 2.4 31.3 11.3 
Monroe 78 43.5 9.5 5.1 2.3 16.9 7.5 
Noble 44 42.3 10.9 4.1 1.5 20.5 7.0 
Stark 13 30.1 8.9 3.6 2.3 28.2 8.7 
Trumbull 12 31.2 11.4 3.2 2.4 27.9 10.4 
Tuscarawas 10 34.3 10.9 9.9 3.3 18.7 11.4 
Total 691 35.5 12.6 5.1 2.8 24.6 12.0 
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Table 3a: Pre-Development land cover percentage by county in Ohio, displaying counties that 

had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean (%) 

Forest 
Std. Dev 

Well 
Mean (%) 

Well 
Std. Dev 

Grass 
Mean (%) 

Grass 
Std. Dev 

Belmont 123 52.4 25.3 2.2 3.3 45.5 24.1 
Carroll 122 42.8 17.2 1.5 2.0 55.7 16.4 
Columbiana 55 48.7 22.2 4.7 7.7 46.6 19.9 
Guernsey 51 59.5 23.0 2.1 5.7 38.4 21.9 
Harrison 91 60.3 23.0 1.5 3.9 38.2 22.5 
Jefferson 53 55.5 23.4 1.1 2.1 43.4 22.5 
Monroe 78 72.3 19.6 0.7 1.2 27.0 19.1 
Noble 44 74.2 18.9 1.3 2.9 24.5 17.6 
Stark 13 42.2 24.7 2.0 2.0 55.8 24.1 
Trumbull 12 39.1 20.3 10.6 8.4 50.3 17.0 
Tuscarawas 10 41.6 25.9 2.2 3.7 56.2 25.4 
Total 691 55.0 24.1 2.1 4.6 43.0 23.0 

 

Table 4a: Post-Development land cover percentage by county in Ohio, displaying counties that 

had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean (%) 

Forest 
Std. Dev 

Well 
Mean (%) 

Well 
Std. Dev 

Grass 
Mean (%) 

Grass 
Std. Dev 

Belmont 123 55.1 17.5 9.6 3.6 35.3 16.7  
Carroll 122 50.7 16.0 6.8 3.4 42.5 15.0 
Columbiana 55 45.0 21.4 7.9 5.1 47.1 20.0 
Guernsey 51 58.9 16.1 8.1 2.5 33.1 14.7 
Harrison 91 56.2 18.6 8.7 4.0 35.2 17.4 
Jefferson 53 45.6 16.9 6.0 3.6 48.5 15.8 
Monroe 78 66.4 11.9 7.7 3.2 25.9 11.8 
Noble 44 63.1 10.7 6.0 1.7 30.9 10.5 
Stark 13 48.6 14.4 5.8 3.7 45.6 14.1 
Trumbull 12 50.2 18.2 5.1 3.9 44.7 16.2 
Tuscarawas 10 54.4 17.2 15.8 5.1 29.8 18.6 
Total 691 54.5 18.1 7.8 4.0 37.7 17.5 
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Table 5a: Pre-Development land cover area by county in Pennsylvania, displaying counties that 

had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean 
(Ac) 

Forest 
Std. 
Dev 

Well 
Mean 
(Ac) 

Well 
Std. 
Dev 

Grass 
Mean 
(Ac) 

Grass 
Std. 
Dev 

Allegheny 17 48.2 15.9 1.6 2.6 18.6 14.8 
Armstrong 32 28.1 15.5 1.1 1.1 35.1 15.3 
Beaver 41 40.2 11.7 0.8 1.6 22.1 11.8 
Bradford 541 44.2 16.8 1.2 2.4 21.3 13.7 
Butler 141 31.0 12.7 0.7 1.0 32.7 12.8 
Cameron 13 61.0 23.8 1.3 3.7 9.1 9.2 
Centre 23 59.9 17.8 0.4 1.0 8.8 9.1 
Clarion 13 28.6 12.2 0.4 0.6 34.5 12.3 
Clearfield 48 67.6 54.8 0.6 1.8 12.7 11.6 
Clinton 25 59.5 15.0 0.7 0.9 9.2 4.4 
Elk 39 59.8 16.3 1.4 1.8 7.9 6.2 
Fayette 68 28.0 11.9 3.0 4.3 33.4 11.8 
Greene 173 53.2 17.2 1.1 1.9 16.7 11.4 
Indiana 17 30.0 14.7 4.9 5.5 30.2 13.1 
Jefferson 19 39.3 15.3 0.6 1.2 24.1 15.9 
Lawrence 23 25.4 14.2 5.2 5.4 36.9 12.3 
Lycoming 238 52.7 15.5 0.5 1.2 14.2 11.0 
McKean 28 54.0 25.2 0.7 1.1 20.1 16.2 
Mercer 16 28.2 12.1 2.6 2.7 33.1 10.7 
Potter 34 48.0 12.5 2.4 3.6 16.5 10.7 
Somerset 10 46.7 11.7 1.1 1.6 14.7 10.1 
Sullivan 78 40.2 14.0 0.6 1.0 23.6 13.2 
Susquehanna 394 49.9 17.3 1.6 3.0 17.1 13.0 
Tioga 246 32.8 14.6 2.3 3.4 31.4 11.7 
Washington 294 42.6 16.6 0.3 1.0 26.2 14.0 
Westmoreland 59 31.0 19.7 3.2 4.8 41.6 31.4 
Wyoming 80 42.8 13.2 1.6 2.6 19.8 12.5 
Total 2741 44.0 19.6 1.4 3.6 22.2 15.2 
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Table 6a: Post-Development land cover area by county in Pennsylvania, displaying counties 

that had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean 
(Ac) 

Forest 
Std. 
Dev 

Well 
Mean 
(Ac) 

Well 
Std. 
Dev 

Grass 
Mean 
(Ac) 

Grass 
Std. 
Dev 

Allegheny 17 44.9 8.9 7.4 4.5 16.1 7.2 
Armstrong 32 28.7 12.5 4.7 3.4 30.9 11.7 
Beaver 41 41.8 7.1 4.5 2.1 16.8 6.7 
Bradford 541 41.5 14.2 3.2 2.5 22.0 12.8 
Butler 141 38.3 10.3 7.3 6.1 18.7 8.8 
Cameron 13 48.1 18.3 5.1 3.1 18.2 9.8 
Centre 23 50.7 12.6 2.4 1.7 16.0 7.0 
Clarion 13 35.4 8.2 7.4 4.6 20.8 9.2 
Clearfield 48 58.7 48.0 2.7 2.2 19.6 13.9 
Clinton 25 50.4 16.5 3.5 1.7 15.6 6.9 
Elk 39 50.5 15.8 4.6 1.9 14.0 8.7 
Fayette 68 32.5 10.5 4.8 6.1 27.1 10.9 
Greene 173 45.9 13.4 4.7 3.2 20.3 10.3 
Indiana 17 38.0 12.1 5.7 5.0 21.3 11.0 
Jefferson 19 34.0 12.7 5.9 6.2 24.0 11.9 
Lawrence 23 43.0 11.1 8.9 5.6 15.5 7.4 
Lycoming 238 54.4 14.1 4.4 2.8 8.6 7.3 
McKean 28 61.1 23.8 3.9 1.9 9.9 7.5 
Mercer 16 44.3 7.5 5.8 3.8 13.7 5.7 
Potter 34 42.7 10.1 2.7 3.1 21.4 10.3 
Somerset 10 35.4 11.9 6.0 4.3 21.1 11.6 
Sullivan 78 46.7 10.1 3.4 1.5 14.2 9.7 
Susquehanna 394 43.7 15.5 6.0 3.3 18.9 9.3 
Tioga 246 30.0 13.6 6.0 3.7 30.6 11.6 
Washington 294 36.1 13.2 4.1 2.2 29.0 10.0 
Westmoreland 59 35.1 23.4 3.5 2.5 37.1 27.6 
Wyoming 80 28.2 8.7 5.4 4.1 30.6 8.1 
Total 2741 41.4 16.8 5.1 4.6 21.2 13.1 
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Table 7a: Pre-Development land cover percentage by county in Pennsylvania, displaying 

counties that had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean 
(%) 

Forest 
Std. Dev 

Well 
Mean 
(%) 

Well 
Std. 
Dev 

Grass 
Mean 
(%) 

Grass 
Std. Dev 

Allegheny 17 70.7 23.2 2.3 3.7 26.9 20.8 
Armstrong 32 43.8 24.3 1.6 1.7 54.6 23.6 
Beaver 41 63.8 18.8 1.3 2.6 35.0 18.5 
Bradford 541 66.4 20.1 1.8 3.5 31.9 19.5 
Butler 141 48.1 19.2 1.1 1.6 50.8 18.8 
Cameron 13 84.5 18.9 1.9 5.6 13.6 13.8 
Centre 23 86.4 14.3 0.4 1.0 13.2 14.2 
Clarion 13 45.0 19.1 0.7 1.0 54.3 19.2 
Clearfield 48 82.4 15.4 0.8 2.7 16.8 14.6 
Clinton 25 85.6 6.0 0.9 0.9 13.5 6.4 
Elk 39 86.3 11.0 2.0 2.5 11.7 9.5 
Fayette 68 43.7 18.5 4.6 6.7 51.8 16.7 
Greene 173 75.0 15.0 1.6 2.9 23.4 14.5 
Indiana 17 46.6 23.9 7.3 8.3 46.1 19.5 
Jefferson 19 61.7 24.5 0.9 1.9 37.4 24.1 
Lawrence 23 37.1 18.0 7.9 8.3 55.0 17.5 
Lycoming 238 78.0 16.6 0.7 1.6 21.3 16.3 
McKean 28 72.6 19.9 1.0 1.6 26.4 19.4 
Mercer 16 43.8 18.1 4.1 4.2 52.1 17.7 
Potter 34 72.0 18.4 3.4 4.9 24.6 16.0 
Somerset 10 74.5 17.5 1.7 2.7 23.7 16.4 
Sullivan 78 62.4 21.2 0.8 1.5 36.8 20.5 
Susquehanna 394 73.0 18.6 2.3 4.4 24.7 17.4 
Tioga 246 48.8 19.0 3.6 5.3 47.6 17.7 
Washington 294 61.6 19.2 0.5 1.4 38.0 19.1 
Westmoreland 59 41.7 21.0 4.4 6.8 54.0 19.8 
Wyoming 80 66.7 20.5 2.5 4.1 30.8 19.3 
Total 2741 64.9 22.1 2.2 5.4 33.0 21.2 
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Table 8a: Post-Development land cover percentage by county in Pennsylvania, displaying 

counties that had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean 
(%) 

Forest 
Std. Dev 

Well 
Mean 
(%) 

Well 
Std. 
Dev 

Grass 
Mean 
(%) 

Grass 
Std. Dev 

Allegheny 17 66.0 13.8 10.6 6.3 23.3 9.5 
Armstrong 32 44.7 19.9 7.4 5.3 47.9 18.0 
Beaver 41 66.2 11.0 7.1 3.3 26.7 10.7 
Bradford 541 62.4 17.5 4.9 3.9 32.6 16.5 
Butler 141 59.6 15.3 11.4 9.4 29.0 13.0 
Cameron 13 66.7 15.1 7.0 3.6 26.3 15.2 
Centre 23 73.4 10.0 3.5 2.2 23.1 9.3 
Clarion 13 55.7 12.8 11.7 7.4 32.6 14.2 
Clearfield 48 71.1 13.8 3.4 2.2 25.5 13.5 
Clinton 25 71.9 11.7 5.0 2.1 23.1 11.2 
Elk 39 72.7 12.9 6.9 3.0 20.4 12.7 
Fayette 68 50.6 16.7 7.2 7.1 42.1 16.4 
Greene 173 65.0 11.5 6.6 3.7 28.4 11.2 
Indiana 17 58.7 19.5 8.5 6.8 32.8 17.2 
Jefferson 19 53.5 20.6 9.2 9.7 37.3 17.8 
Lawrence 23 63.6 9.9 13.5 8.9 22.8 9.1 
Lycoming 238 80.5 12.4 6.6 4.1 12.9 11.4 
McKean 28 82.0 5.9 5.4 2.6 12.7 6.1 
Mercer 16 69.2 10.6 9.2 6.1 21.6 9.1 
Potter 34 64.0 15.0 4.1 4.8 31.9 14.8 
Somerset 10 56.7 19.5 9.7 7.1 33.6 18.2 
Sullivan 78 72.7 15.4 5.3 2.4 22.0 14.7 
Susquehanna 394 63.5 11.9 8.9 4.7 27.7 11.7 
Tioga 246 44.7 17.9 9.0 5.7 46.3 17.3 
Washington 294 51.9 13.0 5.9 3.2 42.2 12.6 
Westmoreland 59 46.5 17.4 4.9 3.6 48.6 17.1 
Wyoming 80 43.9 13.7 8.5 6.4 47.6 12.4 
Total 2741 61.0 18.0 7.6 6.3 31.4 17.6 
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Table 9a: Pre-Development land cover area by county in West Virginia, displaying counties that 

had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean (Ac) 

Forest 
Std. 
Dev 

Well 
Mean (Ac) 

Well 
Std. 
Dev 

Grass 
Mean (Ac) 

Grass 
Std. 
Dev 

Barbour 12 46.1 13.3 0.9 1.2 19.1 13.1 
Brooke 25 44.4 13.6 0.6 0.9 19.4 13.6 
Doddridge 96 61.6 15.9 0.8 1.6 5.5 7.7 
Harrison 58 56.3 19.5 1.5 1.9 15.9 13.7 
Logan 48 61.8 16.6 0.9 1.6 5.8 5.1 
Marion 30 56.0 8.2 0.6 0.8 8.1 8.4 
Marshall 98 51.2 15.2 1.1 2.0 14.5 11.0 
Mason 15 56.8 19.9 1.1 1.7 10.5 8.9 
Mingo 54 62.9 31.6 0.4 1.9 12.4 18.5 
Monongalia 10 57.3 13.8 0.2 0.4 10.2 14.1 
Ohio 29 42.7 13.9 0.3 0.9 23.4 13.1 
Preston 15 46.0 11.1 0.1 0.1 17.5 12.1 
Ritchie 39 55.1 10.7 0.2 0.2 9.9 9.3 
Taylor 16 46.9 19.7 0.4 0.6 22.0 17.0 
Tyler 54 55.8 11.7 0.2 0.5 9.3 12.5 
Upshur 28 53.9 14.1 2.9 3.3 8.3 8.7 
Wetzel 86 58.3 8.6 0.4 0.8 7.5 6.3 
Total 780 55.8 16.9 0.7 1.6 11.0 12.0 

 

Table 10a: Post-Development land cover area by county in West Virginia, displaying counties 

that had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean (Ac) 

Forest 
Std. 
Dev 

Well 
Mean (Ac) 

Well 
Std. 
Dev 

Grass 
Mean (Ac) 

Grass 
Std. 
Dev 

Barbour 12 39.7 9.0 3.3 1.5 23.0 7.8 
Brooke 25 36.0 11.4 3.8 1.0 24.6 11.3 
Doddridge 96 51.5 13.6 3.5 1.7 12.9 7.5 
Harrison 58 53.9 18.0 5.0 3.6 14.8 10.4 
Logan 48 59.8 16.1 0.8 1.2 8.0 4.9 
Marion 30 45.3 8.2 3.0 1.7 16.4 7.7 
Marshall 98 43.4 12.7 3.8 3.4 19.5 8.9 
Mason 15 57.3 17.6 0.4 0.4 10.7 7.1 
Mingo 54 59.0 29.1 1.6 2.0 15.1 14.2 
Monongalia 10 41.1 14.0 5.4 3.2 21.2 12.9 
Ohio 29 42.1 10.3 5.4 1.9 18.8 8.8 
Preston 15 39.8 10.2 2.6 1.2 21.2 10.2 
Ritchie 39 47.5 8.2 3.3 1.9 14.4 6.4 
Taylor 16 41.3 15.9 4.9 2.8 23.0 13.6 
Tyler 54 48.6 8.0 3.6 1.9 13.1 8.4 
Upshur 28 44.0 13.9 3.8 3.4 17.2 10.5 
Wetzel 86 50.4 7.5 3.1 1.8 12.7 5.3 
Total 780 49.4 15.5 3.1 2.6 15.0 9.7 
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Table 11a: Pre-Development land cover percentage by county in West Virginia, displaying 

counties that had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean 
(%) 

Forest 
Std. Dev 

Well 
Mean 
(%) 

Well 
Std. Dev 

Grass 
Mean 
(%) 

Grass 
Std. Dev 

Barbour 12 69.8 19.8 1.3 1.9 28.8 19.4 
Brooke 25 69.1 21.4 1.0 1.5 30.0 20.9 
Doddridge 96 90.5 13.4 1.3 2.5 8.3 11.8 
Harrison 58 77.4 13.3 2.0 2.3 20.7 12.7 
Logan 48 89.9 9.0 1.4 2.6 8.7 7.5 
Marion 30 86.8 13.1 0.9 1.2 12.4 12.6 
Marshall 98 76.5 17.6 1.6 3.1 21.9 16.7 
Mason 15 82.0 15.1 1.8 2.7 16.2 13.7 
Mingo 54 83.5 20.3 0.7 3.0 15.8 19.8 
Monongalia 10 84.9 20.5 0.3 0.5 14.8 20.3 
Ohio 29 64.3 20.5 0.4 1.4 35.3 20.1 
Preston 15 72.6 18.7 0.1 0.2 27.2 18.6 
Ritchie 39 84.4 14.6 0.3 0.4 15.3 14.4 
Taylor 16 67.0 26.7 0.6 0.9 32.4 26.1 
Tyler 54 85.8 18.3 0.2 0.6 14.0 18.1 
Upshur 28 82.7 16.7 4.5 5.4 12.8 13.4 
Wetzel 86 88.0 10.1 0.5 1.2 11.5 9.7 
Total 780 82.7 17.4 1.1 2.4 16.2 16.8 

 

Table 12a: Post-Development land cover percentage by county in West Virginia, displaying 

counties that had at least 10 well buffers within them from 2007 to 2017. 

County n Forest 
Mean 
(%) 

Forest 
Std. Dev 

Well 
Mean 
(%) 

Well 
Std. Dev 

Grass 
Mean 
(%) 

Grass 
Std. Dev 

Barbour 12 60.2 13.7 5.1 2.3 34.8 11.9 
Brooke 25 55.9 17.8 5.9 1.6 38.2 17.4 
Doddridge 96 75.7 12.2 5.2 2.5 19.1 11.2 
Harrison 58 73.8 9.1 6.8 4.1 19.4 8.5 
Logan 48 86.9 8.6 1.2 1.8 11.9 7.4 
Marion 30 70.1 12.5 4.6 2.6 25.2 11.6 
Marshall 98 64.9 14.9 5.7 5.1 29.4 13.0 
Mason 15 83.2 10.7 0.7 0.7 16.1 10.3 
Mingo 54 78.3 13.7 2.0 2.4 19.7 12.2 
Monongalia 10 61.0 20.9 7.9 4.2 31.1 18.4 
Ohio 29 63.4 14.6 8.2 2.9 28.4 13.5 
Preston 15 62.7 16.5 4.0 1.7 33.2 15.8 
Ritchie 39 72.9 11.1 5.0 3.0 22.1 9.8 
Taylor 16 59.2 21.5 6.9 3.6 33.9 21.2 
Tyler 54 74.6 12.8 5.5 2.6 19.9 12.3 
Upshur 28 67.6 17.7 5.9 5.2 26.5 16.4 
Wetzel 86 76.2 9.5 4.7 2.6 19.2 8.1 
Total 780 73.0 15.2 4.7 3.7 22.3 13.6 
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Table 13a: Land cover area for the Appalachian basin 

Time Period n Forest 
Mean 
(ac) 

Forest 
Std. 
Dev 

Well 
Mean 
(ac) 

Well 
Std. 
Dev 

Grass 
Mean 
(ac) 

Grass 
Std. 
Dev 

Pre-
Development 

4212 44.9 19.5 1.3 3.2 21.1 15.7 

Post-
Development 

4212 41.9 16.5 4.8 4.1 20.6 12.7 

 

Table 14a: Pre-Development land cover, in acres, of areas within the random 25-ha buffers. The 

counties selected are the county with the most wells drilled per state.  

County Forest 
Mean (Ac) 

Forest 
Std. 
Dev 

Well 
Mean (Ac) 

Well 
Std. 
Dev 

Grass 
Mean (Ac) 

Grass 
Std. 
Dev 

Belmont 33.4 16.4 2.3 4.2 26.1 15.0 
Bradford 49.4 8.5 0.7 0.9 11.6 8.0 
Doddridge 56.9 6.6 0.4 0.7 4.3 6.2 

 

Table 15a: Post-Development land cover, in acres, of areas within the random 25-ha buffers 

outside the estimated production unit. The counties selected are the county with the most wells 

drilled per state.  

County Forest 
Mean (Ac) 

Forest 
Std. 
Dev 

Well 
Mean (Ac) 

Well 
Std. 
Dev 

Grass 
Mean (Ac) 

Grass 
Std. 
Dev 

Belmont 44.7 9.3 1.9 3.1 15.1 7.7 
Bradford 46.9 13.7 2.2 5.3 12.6 11.5 
Doddridge 56.3 5.9 0.3 0.7 5.2 5.9 

 

Table 16a: Land cover change across the entire Appalachian basin 

County Forest to 
Impervious 
(Mean) 

Forest to 
Impervious 
(Std. Dev) 

Grass to 
Impervious 
(Mean) 

Grass to 
Impervious 
(Std. Dev) 

Forest to 
Grass 
(Mean) 

Forest to 
Grass 
(Std. Dev) 

Total 2.1 2.6 2.2 2.7 9.5 7.0 
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Table 17a: Land cover change across West Virginia, showing only those counties with 10 or 

more buffers 

County Forest to 
Impervious 
(Mean) 

Forest to 
Impervious 
(Std. Dev) 

Grass to 
Impervious 
(Mean) 

Grass to 
Impervious 
(Std. Dev) 

Forest to 
Grass 
(Mean) 

Forest to 
Grass 
(Std. 
Dev) 

Barbour 1.3  1.1  1.8  1.6  10.2  6.2  
Brooke 1.4  1.5  2.2  1.5  9.2  3.6  
Doddridge 2.8  1.5  0.6  1.2  9.6  4.3  
Harrison 2.1  1.7  2.4  2.6  6.9  4.9  
Logan 0.3  0.3  0.1  0.2  5.6  2.8  
Marion 2.1  1.8  0.7  0.9  10.7  5.2  
Marshall 1.8  2.6  1.7  1.9  8.7  5.8  
Mason 0.1  0.2  0.2  0.2  3.1  2.5  
Mingo 0.5  0.5  0.9  1.8  8.4  6.7  
Monongalia 4.0  2.3  1.3  1.9  13.6  4.5  
Ohio 1.7  1.5  3.7  2.3  4.3  2.4  
Preston 1.1  0.9  1.5  1.4  8.5  3.1  
Ritchie 2.0  1.5  1.2  1.5  8.8  4.6  
Taylor 2.3  2.7  2.5  2.2  6.3  3.9  
Tyler 2.3  1.7  1.2  1.7  7.5  4.2  
Upshur 2.0  2.0  0.8  1.0  9.4  3.5  
Wetzel 1.7  1.5  1.3  1.5  8.3  4.1  
Total 1.7 1.8 1.2 1.8 7.9 4.9 

 

Table 18a: Land cover change across Ohio, showing only those counties with 10 or more 

buffers 

County Forest to 
Imperviou
s (Mean) 

Forest to 
Imperviou
s (Std. 
Dev) 

Grass to 
Imperviou
s(Mean) 

Grass to 
Imperviou
s (Std. 
Dev) 

Forest to 
Grass 
(Mean) 

Forest to 
Grass 
(Std. Dev) 

Belmont 1.6  1.9  4.4  3.0  6.3  4.8  
Carroll 0.8  0.9  3.2  2.2  4.6  2.7  
Columbiana 1.6  2.3  2.6  1.6  9.2  8.7  
Guernsey 1.4  1.5  3.4  2.3  5.6  3.7  
Harrison 1.8  1.8  3.4  2.4  6.2  5.0  
Jefferson 1.2  1.1  2.4  2.0  10.8  7.1  
Monroe 2.1  2.2  2.7  2.0  7.7  4.1  
Noble 2.1  1.5  1.7  1.4  10.9  5.2  
Stark 1.0  1.0  1.9  1.9  10.8  7.5  
Trumbull 0.3  0.6  2.2  2.2  3.5  3.9  
Tuscarawas 1.2  1.8  8.1  3.0  3.6  2.1  
Total 1.5 1.7 3.2 2.5 6.9 5.5 
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Table 19a: Accuracy assessment of the supervised classification for the post-development time, 
using 2017 NAIP imagery, for Pennsylvania.  

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 27 0 0 27 100 

Grass 0 23 4 27 85 

Forest 3 7 26 36 72 

Column Total 30 30 30 90  

Producer’s accuracy 90 77 87   

 

 
Table 20a: Accuracy assessment of the supervised classification for the post-development time, 
using 2016 NAIP imagery, for West Virginia.  

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 29 0 0 29 100 

Grass 1 26 0 27 96 

Forest 0 4 30 34 88 

Column Total 30 30 30 90  

Producer’s accuracy 97 87 100   

 
 
Table 21a: Accuracy assessment of the supervised classification for the pre-development time, 
using 2009 NAIP imagery, for Ohio. 

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 4 1 0 5 80 

Grass 0 43 2 45 96 

Forest 0 4 36 40 90 

Column Total 4 48 38 90  

Producer’s accuracy 100 90 95   
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Table 22a: Accuracy assessment of the supervised classification for the random 25-ha buffers, 
using 2008 NAIP imagery, of Bradford county, Pennsylvania.  

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 10 0 0 10 100 

Grass 0 4 0 4 100 

Forest 0 6 10 16 63 

Column Total 10 10 10 30  

Producer’s accuracy 100 40 100   

 

Table 23a: Accuracy assessment of the supervised classification for the random 25-ha buffers, 
using 2007 NAIP imagery, of Doddridge county, West Virginia.  

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 9 0 0 9 100 

Grass 0 8 0 8 100 

Forest 1 2 10 13 77 

Column Total 10 10 10 30  

Producer’s accuracy 90 80 100   

 
Table 24a: Accuracy assessment of the supervised classification for the random 25-ha buffers, 
using 2009 NAIP imagery, of Belmont county, Ohio.  

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 10 0 0 10 100 

Grass 0 10 1 11 91 

Forest 0 0 9 9 100 

Column Total 10 10 10 30  

Producer’s accuracy 100 100 90   
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Table 25a: Accuracy assessment of the supervised classification for the undeveloped 25-ha 
buffers, using 2017 NAIP imagery, of Bradford county, Pennsylvania.  

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 29 0 0 29 100 

Grass 0 23 1 24 96 

Forest 1 7 29 37 78 

Column Total 30 30 30 90  

Producer’s accuracy 97 77 97   

 

Table 26a: Accuracy assessment of the supervised classification for the undeveloped 25-ha 
buffers, using 2016 NAIP imagery, of Doddridge county, West Virginia.  

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 7 0 0 7 100 

Grass 3 6 0 9 67 

Forest 0 4 10 14 71 

Column Total 10 10 10 30  

Producer’s accuracy 70 60 100   

 
Table 27a: Accuracy assessment of the supervised classification for the undeveloped 25-ha 
buffers, using 2017 NAIP imagery, of Belmont county, Ohio.  

Map 

Reference 

Row Total User’s accuracy Well Grass Forest 

Well 28 0 0 28 100 

Grass 0 24 5 29 83 

Forest 2 6 25 33 76 

Column Total 30 30 30 90  

Producer’s accuracy 93 80 83   
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