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Abstract 
 

FAST DECISION-MAKING UNDER TIME AND RESOURCE CONSTRAINTS 
 

by Kyle G. Lassak 
  

Practical decision makers are inherently limited by computational and memory 

resources as well as the time available in which to make decisions. To cope with these 

limitations, humans actively seek methods which limit their resource demands by 

exploiting structure within the environment and exploiting a coupling between their 

sensing and actuation to form heuristics for fast decision-making. To date, such behavior 

has not been replicated in artificial agents. This research explores how heuristics may be 

incorporated into the decision-making process to quickly make high-quality decisions 

through the analysis of a prominent case study: the outfielder problem. In the outfielder 

problem, a fielder is required to intercept balls traveling in ballistic trajectories, while the 

motion of the fielder is constrained to the ground plane. In order to maximize the 

probability of interception, the agent must make good, yet timely, decisions. Researchers 

have put forth several heuristic approaches to describe how a fielder may decide how to 

run based only on immediately available information under different control paradigms. 

This research statistically quantifies upper bounds on the expected catch rate of a couple 

notable approaches, given that interception of the ball is theoretically possible if the 

fielder ran directly towards the landing spot with maximal effort throughout the entire 

duration of the ball’s flight. 

Additionally, novel modifications are made to a belief-space variant of iterative 

Linear Quadratic Gaussian (iLQG), which is an online method that may be used to find 

locally-optimal policies to continuous Partially Observable Markov Decision Processes 



 

(POMDPs) in which Bayesian estimation may reasonably be approximated by an 

Extended Kalman Filter (EKF). Directional derivatives are used to reduce the 

computation time of certain matrix derivatives with respect to the variance of the belief 

state from 𝑂[𝑛$] to 𝑂[𝑛&], where 𝑛 is the dimension of the belief space. However, the 

improved algorithm still may not be capable of real-time decision-making by the 

standards of modern-day computing on mobile platforms, especially in systems with long 

planning horizons and sparse rewards. The belief-space variant of iLQG is applied to the 

outfielder problem, which may also indicate its applicability to similar target interception 

problems with input constraints, such as missile defense. 
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1 INTRODUCTION 

From the moment that a fly ball is hit, a baseball fielder has only a few seconds to 

run to the spot where the ball will land in order to catch it. The task of fielders to position 

themselves at the correct spot at the time the ball lands (neglecting the manipulation task 

of actually catching the ball) is commonly referred to as the outfielder problem [32], and 

has drawn increasing interest from a variety of researchers in the fields of cognitive 

science, artificial intelligence, and robotics. It draws attention because humans’ 

proficiency in performing such a complex and time-sensitive task seems to be at odds 

with their limitations in sensing, working memory, time estimation, and computation 

power (at least conscious and effortful computational power), to name a few. These 

limitations prohibit humans from determining the optimal running paths in real-time, e.g. 

by solving for the optimal solution of the Partially Observable Markov Decision Process 

(POMDP [43]) which would theoretically give them the highest probability of catching 

the ball. 

Therefore, it has been proposed that humans must rely on heuristic approaches in 

order to arrive at good decisions in a timely manner. Heuristics are defined by Pearl [74] 

as “strategies using readily accessible though loosely applicable information to control 

problem-solving processes” that also “represent compromises between two requirements: 

the need to make such criteria simple and, at the same time, the desire to see them 

discriminate correctly between good and bad choices.” Researchers have posited several 

different heuristic methods that humans may implement in the outfielder problem, with 

some experimental data showing that human running trajectories are often similar to 

those expected by the proposed heuristics. However, no method has yet demonstrated the 
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full capacity of human fielding behaviors (particularly humans’ predictive abilities; [11]), 

and a satisfactory description of how humans resolve the outfielder problem remains an 

open question.  

While the study of these heuristics provides significant value to the understanding 

of human and animal behavior [92], as well as possible strategies for robotic 

implementations (e.g. [107]), they are perhaps just an instantiation of a broader real-time 

decision-making strategy for resource-limited agents. One plausible explanation for the 

success of humans in the outfielder problem that is given by researchers in the cognitive 

sciences is the theory of embodied cognition [6][123]. Embodied cognition is a broad area 

of study emphasizing the role of the motor system, the perceptual system, and bodily 

interactions with environment in complementing the cognitive process. Specifically, it 

has been hypothesized that a human fielder employs embodied cognition in the outfielder 

problem to select actions that leverage the fielder’s interaction with the environment to 

reduce the amount of computation that needs to be performed by the fielder, therefore 

enabling the fielder to quickly decide how to act [124].  

The POMDP framework provides a rich theoretical foundation for decision-

making in stochastic control problems, where the value of an action may be interpreted as 

a trade-off between receiving a direct reward and acquiring information about the state of 

the environment [43]. However, finding optimal solutions to POMDPs is computationally 

intractable [43], therefore researchers seeking approximate solutions to POMDPs (e.g. 

[43][50][80][112]) must necessarily factor resource constraints into their methodology. 

However, algorithms do not exist which autonomously optimize decision-making 

strategies to an agent’s resource constraints in a manner similar to human abilities. 
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Generally, it is the job of the human researcher to select, modify, or design an algorithm 

which fits the specific space and time constraints of an agent in a given system, whereas 

humans seem to actively seek efficient methods which suit their specific machinery 

(whether this occurs consciously or subconsciously, see Section 7.2). 

One algorithm that exists in literature for efficiently finding locally-optimal 

policies to continuous POMDPs in which Bayesian estimation may reasonably be 

approximated by an Extended Kalman Filter (EKF; [97][121]) is the belief space variant 

of iterative Linear Quadratic Gaussian (iLQG) that was proposed by van den Berg et al. 

[118]. In their work, van den Berg et al. [118] developed an algorithm which iteratively 

improved on a linear nominal policy which would converge to a locally optimal policy 

with a second-order convergence rate, while the complexity of a single iteration was 

𝑂[ℓ𝑛$], where 𝑛 is the number of states and ℓ is the length of the planning horizon. 

Furthermore, it is proposed in this work that directional derivatives can be employed to 

calculate certain matrix derivatives with respect to the variance of the belief state, which 

reduces the time complexity of determining those derivatives from 𝑂[𝑛$] to 𝑂[𝑛&]. The 

determination of these derivatives forms a computational bottleneck under certain 

conditions (i.e. linear dynamics and low-dimensional action and observation spaces). 

Therefore, the run-time of the algorithm is always improved while the efficiency of the 

algorithm may be improved by up to an order of magnitude under special conditions. 

However, despite the improvements to the efficiency of the iLQG algorithm, there 

still exist several limitations which complicate its direct application to the outfielder 

problem. For instance, the iLQG algorithm assumes a value function that is convex with 

respect to the parameters of Gaussian beliefs (i.e. mean and variance), which is not true in 
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general. Some of these limitations were mitigated through the use of cost shaping, 

however significant assumptions were employed to make the algorithm operable which 

were undesirable (e.g. the maximum likelihood assumption about the ball’s time-to-

impact was employed). Additionally, the running time of the modified belief iLQG until 

convergence is still too long for it to be employed in real time, which highlights the need 

to find alternate methods to quickly find good decisions. 

Sports provide relatable and tangible examples in which resource-limited agents 

(e.g. humans) must make time-critical decisions, however there are innumerable 

examples in which artificial agents similarly must make time-critical decisions using 

limited resources. For example, closely related to the outfielder problem are other target 

interception problems, such as missile defense [126]. While the dynamics, actuation, and 

sensing of a missile defense system may be quite different from agents that are used to 

catch baseballs, the underlying principle that the coupling between actuation and sensing 

can be exploited to reduce the computational effort of the agent remains similar. The 

methodologies which allow the belief iLQG algorithm to be applied to the outfielder 

problem thus may also be applicable to missile defense. It has also been proposed that 

robots can throw and catch objects for the efficient transportation of small objects [34], 

which is essentially the same motive for why throwing and catching is performed in 

baseball and other sports. Additionally, similar principles may be applied to improve the 

autonomy of vehicles such as cars and planetary rovers. Cars require fast decision-

making to cope with unexpected situations while traveling at high speeds [20], while 

planetary rovers require efficient decision making strategies because they are notably 

deficient in computational resources [9]. 
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1.1 OBJECTIVE 

The objective of this dissertation is to present novel modifications which improve 

the efficiency of a belief space variant of iLQG presented by van den Berg et al. [118], 

and to evaluate several control methods – including the modified iLQG algorithm – 

which may be used to resolve the outfielder problem.  

The belief space variant of iLQG presented by van den Berg et al. [118] was 

improved through the implementation of directional derivatives [106]. The directional 

derivative specifies the rate of change of a multivariate function in the direction that is 

specified by a unit vector. In this context, directional derivatives are exploited to 

efficiently calculate certain first-order Taylor series approximations to reduce the time 

complexity of the belief space variant of iLQG presented by van den Berg et al. [118], 

while the underlying functionality of the algorithm remains unchanged. In effect, these 

modifications reduce the computational bottleneck of a single iteration of the algorithm 

from 𝑂[𝑛$] to 𝑂[𝑛&], although the full benefits are only realized under special 

circumstances.  

This modified belief iLQG is compared with various catching heuristic 

approaches found in literature (e.g. [21][56][61][114]). The actions are optimized for each 

heuristic method, so that an upper bound on the expected catch rate of each heuristic 

method can be approximated by simulating a large number of trials in different noise 

configurations. Furthermore, this work explores how heuristic techniques fit into the 

larger framework of existing POMDP research and provides insight into further research 

in this area.  
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1.2 ORGANIZATION 

This rest of this dissertation proceeds as follows. Chapter 2 explores the 

theoretical background of optimal decision-making in uncertain environments and the 

methodologies employed in finding exact and approximate solutions. Chapter 3 provides 

a synopsis of existing research into the outfielder problem, and it also provides some 

connections to general practical decision-making in uncertain environments. Chapter 4 

provides novel modifications to the belief space variant of iLQG presented by van den 

Berg et al. [118]. Chapter 5 describes the modeling  of the fielder and the ball for the 

outfielder problem that was studied in this work, which also provides some 

improvements to the fielder’s measurement and noise models that had been considered in 

previous work (e.g. [11][38]). Chapter 6 describes the predictive methods that were used 

to resolve outfielder problem, including deterministic time-optimal control and the 

modified belief iLQG controller described in  Chapter 4. Chapter 7 describes how various 

fielding heuristics were implemented so that the upper bound on the expected 

performance of the heuristic strategies could be approximated. Chapter 8 provides 

simulated results of the controllers described in Chapters 6 and 7 under various noise 

configurations. Chapter 9 provides concluding remarks about the methodologies 

employed and the challenges encountered in this work, and the direction of future 

research. 

2 THEORETICAL BACKGROUND 

Decision-making in partially observable domains has received extensive research 

since Sondik’s [101] seminal work. Optimal decision-making requires consideration of 

the value of future information that can be acquired by executing an action, the expected 
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future reward of an action, and how a given action changes the environment [43]. These 

considerations are summarized by the agent’s value function, which is introduced first 

through the consideration of Markov decision processes. 

2.1 MARKOV DECISION PROCESSES 

A Markov Decision Process (MDP; [109]) is a representation of an environment 

in which an agent makes decisions in discrete time. The state of the environment is fully 

observable to the agent at each time step, however each action performed by the agent 

results in an uncertain transition. Additionally, an MDP exhibits the Markov property, 

which implies that the history does not provide any more information about future states 

of the system than the current state. Formally, an MDP is given by the tuple 〈𝒮,𝒜, 𝒯, ℛ〉, 

where 

• 𝒮 is a set of states, 𝑠 ∈ 𝒮 

• 𝒜 is a set of actions,	𝑎 ∈ 𝒜 

• 𝒯[𝑠, 𝑠’, 𝑎] = Pr[𝑠��� = 𝑠’|𝑠� = 𝑠, 𝑎� = 𝑎] is the transition function. It is the 

conditional probability that the state will transition from state	𝑠 to state 𝑠’ if action 

𝑎 is implemented.  

• ℛ�[𝑠, 𝑎] is the reward function. It describes the expected immediate reward 

received by the agent for executing action 𝑎 at state 𝑠 at time 𝑘. 

A policy 𝜋�[𝑠] is a mapping from a state to an action at time step	𝑘. If a policy is the 

same at all time steps, i.e. 𝜋�[𝑠] = 𝜋[𝑠]	∀𝑘, then the policy is a stationary policy. If, 

however, the policy changes based on the time index, then the policy is nonstationary 

[109].  
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The optimal state-value function 𝜐�∗[𝑠] is the total expected reward the agent will 

receive given that the agent begins in state 𝑠� = 𝑠 at time 𝑘 and executes the optimal 

action 𝑎� = 𝑎∗ at each time step until the end of the trial, where the optimal action 𝑎∗ is 

defined as the action which maximizes the total expected future reward given that the 

agent also acts optimally in future time steps. Bellman’s equation [109] states that 

𝜐�∗[𝑠] = max
s
�𝐸[ℛ�[𝑠�, 𝑎�] + 𝜐���∗ [𝑠���]	|	𝑠� = 𝑠, 𝑎� = 𝑎]�	

	= max
s
�ℛ�[𝑠, 𝑎] + 𝐸�𝜐���∗ [𝑠�]��	

= max
s
�ℛ�[𝑠, 𝑎] +�𝒯[𝑠, 𝑠’, 𝑎]

��
𝜐���∗ [𝑠�]� 

(1) 

In words, Bellman’s equation states that 𝑣�∗[𝑠] is equal to the expected immediate reward 

for executing optimal action 𝑎∗ in state 𝑠 at time 𝑘 plus the expected value of the state-

value function over all possible terminal states 𝑠’. A discount factor 𝛾 ∈ [0,1] is often 

multiplied to the second term in Equation 1, but is omitted in this work since only finite 

horizon problems are considered. The optimal policy 𝜋�∗[𝑠] = 𝑎∗ is the mapping from 

state 𝑠 to the optimal action 𝑎∗, which is the argument of Equation 1. 

𝜋�∗[𝑠] = arg	max
s

�ℛ�[𝑠, 𝑎] + 𝐸�𝜐���∗ [𝑠�]�� (2) 

The goal of most problems which invoke MDPs is to find an optimal policy 𝜋�∗[𝑠] 

which maximizes the value of the state-value function, i.e. the policy which maximizes 

the expected total future reward. One algorithm which is guaranteed to converge to the 

optimal policy is value iteration [109]. In this work, only finite horizon problems are 

considered, since the ball is anticipated to impact the ground in a finite time, with ℓ being 

the length of the horizon. Additionally, it is assumed that the reward function at the final 
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time step ℛℓ[𝑠] is only a function of the state because no further actions will be taken. 

Value iteration may be initialized by setting the value function at time step ℓ to be equal 

to the reward function at time step ℓ. 

𝜐ℓ[𝑠] = ℛℓ[𝑠] (3) 

Then, the value of the value function at each state 𝑠 and time step 𝑘 is updated by acting 

greedily with respect to the value function in the next time step. 

𝜐�[𝑠] = max
s
�ℛ�[𝑠, 𝑎] + 𝐸�𝜐���[𝑠�]��	 (4) 

Equation 4 is often referred to as the Bellman update [109]. Here, finite-horizon 

problems which may require nonstationary policies are considered, since generally the 

optimal policy of a finite-horizon MDPs is nonstationary [43]. Policy iteration is another 

method for finding optimal policies and is similar to value iteration. Instead of inferring 

the policy from the value function, policy iteration begins by assuming an initial policy 

and calculating the value of the initial policy. Then, the policy is updated by acting 

greedily with respect to the value function given by the current policy (similar to 

Equation 4).  

Finding good policies in large MDPs – ones which are too large to efficiently 

obtain exact solutions by value or policy iteration – is one of the core problems in 

reinforcement learning. While these MDPs are too large to find exact solutions, there 

exist numerous algorithms which can provide good approximate solutions. These 

algorithms often rely on value or policy iteration as an essential component of the 

approximation strategy [109]. 
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2.2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 

A Partially Observable Markov Decisions Process (POMDP; [43]) is an MDP in 

which the agent cannot fully observe the state of the environment, which dramatically 

complicates task of finding an optimal policy. A POMDP may formally be represented by 

the tuple 〈𝒮,𝒜, Ω, 𝒯, ℛ, 𝒪〉: 

• 𝒮 is a set of states, 𝑠 ∈ 𝒮 

• 𝒜 is a set of actions, 𝑎 ∈ 𝒜  

• Ω is a set of observations,	𝑜 ∈ Ω 

• 𝒯[𝑠, 𝑠’, 𝑎] = Pr[𝑠��� = 𝑠’|𝑠� = 𝑠, 𝑎� = 𝑎] is the transition function. It is the 

conditional probability that the state will transition from state	𝑠 to state 𝑠’ if action 

𝑎 is implemented.  

• ℛ�[𝑠, 𝑎] is the reward function. It describes the expected immediate reward 

received by the agent for executing action 𝑎 at state 𝑠 and time step 𝑘. 

• 𝒪[𝑠�, 𝑜, 𝑎] = Pr[𝑜��� = 𝑜|𝑠��� = 𝑠′, 𝑎� = 𝑎] is an observation function, which 

gives the conditional probability of making an observation 𝑜 given the agent took 

action 𝑎 and ended up in state 𝑠′. 

Again, an optional discount factor 𝛾 is omitted in this work because only finite horizon 

problems are considered. 

 A POMDP can be reduced to an MDP known as a belief MDP through the 

introduction of the belief state 𝑏. The belief state is the probability distribution over the 

environmental states 𝒮 given the agent’s history – the set of all recorded actions and 

observations in a trial – and 𝑏[𝑠] denotes the probability of being in environmental state 

s, i.e. 𝑏[𝑠] = Pr[𝑠]. Due to the Markov property, 𝑏 represents all the useful information 
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from the agent’s history. The new belief state 𝑏’, given an old belief 𝑏, an action 𝑎, and 

an observation 𝑜, is computed via a Bayesian estimator:  

𝑏�[𝑠�] = Pr[𝑠�|𝑏, 𝑎, 𝑜]	

=
Pr[𝑜|	𝑠�, 𝑎, 𝑏] Pr[𝑠�|𝑎, 𝑏]

Pr[𝑜|	𝑎, 𝑏] 	

=
Pr[𝑜|	𝑠�, 𝑎] ∑ Pr[𝑠�|𝑠, 𝑎, 𝑏]�∈𝒮 Pr[𝑠|𝑎, 𝑏]

Pr[𝑜|	𝑎, 𝑏] 	

=
𝒪[𝑠�, 𝑜, 𝑎] ∑ 𝒯[𝑠, 𝑠’, 𝑎]�∈𝒮 𝑏[𝑠]

Pr[𝑜|	𝑎, 𝑏] 	

= SE[𝑏, 𝑎, 𝑜] 

(5) 

where Equation 5 can be obtained from the application of Bayes’ Theorem, the Markov 

property, the law of total probability for the second term in the numerator, and from the 

substitution of the observation and transition functions. The updated belief state 𝑏� can 

thus be found using the state-estimation function SE[𝑏, 𝑎, 𝑜], which calculates the 

probability of each environmental state of a given the belief state using Equation 5.   

A belief MDP defined as a tuple 〈ℬ,𝒜, 𝜏, 𝜌〉: 

• ℬ is a set of belief states, 𝑏 ∈ ℬ 

• 𝒜 is a set of actions, 𝑎 ∈ 𝒜  

• 𝜏[𝑏, 𝑏’, 𝑎] = Pr[𝑏��� = 𝑏’	|𝑏� = 𝑏, 𝑎� = 𝑎] is the belief state transition function. 

It is dependent upon the probability of receiving an observation 𝑜 given a belief 𝑏 

and an action 𝑎 executed at that belief: 

• Pr[𝑏’	|𝑏, 𝑎] = ∑ Pr[𝑏’	|𝑏, 𝑎, 𝑜] Pr[𝑜|	𝑏, 𝑎]¢∈£	  

where 

Pr[𝑏’	|𝑏, 𝑎, 𝑜] = ¤1					if	SE[𝑏, 𝑎, 𝑜] = 𝑏�
0					otherwise.
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The belief state transition function is the conditional probability that the belief 

state will transition from belief state	𝑏 to belief state 𝑏’ if action 𝑎 is implemented.  

• 𝜌�[𝑏, 𝑎] = E«�ℛ�[𝑠, 𝑎]� = ∑ 𝑏[𝑠]ℛ�[𝑠, 𝑎]�∈𝒮  is the reward function. It describes 

the immediate reward received when action 𝑎 is implemented at belief state 𝑏. It 

is equal to the expected reward of the environmental states found by using the 

distribution of the belief state. 

The belief transition function defines a conditional probability distribution over belief 

states, i.e. a probability distribution over probability distributions. This arises due to the 

fact that there is a probability that one of several observations will be made after action 𝑎 

is implemented at belief state 𝑏, and each possible observation will generate a different 

value of the belief state as calculated by the state estimator. However, after a particular 

observation 𝑜 is made, the belief state 𝑏’ – as calculated by the state estimator – is unique 

[43]. Therefore, the belief state is fully observable, so the belief MDP is an MDP 

operating on the belief state rather than the environmental state. 

2.2.1 METHODS FOR SOLVING DISCRETE POMDPS 

The reduction of POMDP problems to belief MDPs enables the tools which can 

be used to solve MDPs to be applied to solve POMDPs, namely value and policy 

iteration. Some additional considerations are necessary due to the fact that the belief 

space is an infinite dimensional continuous space, necessitating that the value function 

and the policy must be defined over an infinite dimensional belief space. While solutions 

to continuous space MDPs are generally difficult to find due to the large state space, the 

value functions of belief MDPs possess additional structure which renders it possible to 

find exact solutions with finite representations. Specifically, the optimal value function of 
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a POMDP with a finite time horizon	𝑘 is piecewise linear and convex [43]. This means 

that the optimal value function can be defined as the maximum value of the set 

𝛤�	consisting of |𝒮|-dimensional hyperplanes defined over belief space. These 

hyperplanes are usually each represented by an α-vector – which is the normal vector of 

the associated hyperplane – so that 𝛤� = {𝜶, 𝜶�, … , 𝜶¯}, where m is the number of 

hyperplanes that are necessary to define the optimal value function. The 𝑘-step optimal 

value function 𝑉� can then be represented as 

𝑉�[𝑏] = max
𝜶∈²³

�𝑏[𝑠]𝜶[𝑠]
�∈𝒮

 (6) 

where 𝜶[𝑠] indicates the magnitude of 𝜶 in the direction associated with state 𝑠. 

Exact algorithms solve for the complete set of α-vectors which compose 𝑉�. This 

would also implicitly define the optimal policy. However, finding exact solutions is often 

difficult due to the computational complexity of the solution: finite-horizon POMDPs are 

PSPACE-complete while infinite-horizon POMDPs are undecidable [86]. Therefore, 

finding efficient approximations to POMDP solutions is the focus of most POMDP 

research. 

2.2.1.1 Offline Methods 

Grid-based methods provide an intuitive approach to approximating the value 

function over the belief space. In these methods, the belief space is discretized, and the 

value function is approximated at specific points on the grid. Largely, these methods 

differ based on the method in which grid points are generated (e.g. fixed or variable grid 

size) and how the value function is approximated at the grid points and then generalized 

to the entire belief space [14][15][127]. Grid-based methods have largely fallen out of 
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favor because they are sensitive to the curse of dimensionality – as the number of states 

grows, the number of grid points that are necessary to discretize the belief space 

sufficiently enough for a good solution grows exponentially, even for variable size grids.  

Point-based methods [50][77][99][102] cope with the curse of dimensionality by 

sampling points from the belief space, and approximating the value function at these 

sample beliefs. Sampling can be made more efficient by considering only the reachable 

belief space – the subset of belief space that is reachable given an initial belief state and 

any given set of actions – rather than by trying to approximate the value function over the 

whole belief space [77]. Search heuristics may also be employed to focus on only the 

optimally reachable belief space – the subset of belief space that is reachable given an 

initial belief state and optimal actions [50]. Like grid-based methods, point-based 

methods differ in how beliefs are sampled and the manner in which the value function is 

approximated at the sample beliefs. Since point-based methods typically focus only the 

reachable belief space, the value function approximations that they generate can only be 

Figure 1: Belief Space vs. Reachable Belief Space vs. Optimally 
Reachable Belief Space.  
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generalized over a subset of the belief space that is reachable (or optimally reachable) 

from some initial belief state. If the POMDP is initialized with a different initial belief 

where the value function is not well suited, a new approximation of the value function 

may be necessary. Point-based methods have been shown to be effective in relatively 

large discrete POMDPs, e.g. an integrated exploration problem with |𝒮| = 15,517,

|𝒜| = 8,	and |Ω| = 1,015 has been efficiently approximated using SARSOP [50]. In 

general, the effectiveness of point-based algorithms is likely governed by the complexity 

of the reachable belief space [40]. Many point-based algorithms enable a trade-off 

between the complexity of the algorithm and the quality of the approximation by varying 

the number of sample points. However, point-based algorithms are still subject to the 

curse of dimensionality, which requires that the number of sample points that are 

necessary for good performance to grow exponentially with the dimensionality of the 

belief space [99]. 

Another method for mitigating the curse of dimensionality is through belief 

compression. Compression methods [82][87] map the belief space to some lower 

dimensional compressed belief space. A compression is considered to be lossless if the 

compressed belief state can be used to accurately evaluate the value of all policies, 

otherwise the compression is considered to be lossy [82]. Lossless compressions that 

result in an appreciable reduction in the dimensionality of the belief space are often 

intractable to find or may not exist, so it is often desirable to find lossy compressions that 

minimize the error between the value of a policy that is evaluated on the compressed 

POMDP versus the value of the policy that is evaluated on the original POMDP. 

Compression algorithms can thus be used as a preprocessing step to point-based methods 
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in order to reduce the dimension of the belief space for which the POMDP must be 

solved [102]. 

Value iteration methods implicitly represent a policy as the action at each belief 

state that maximizes the total expected future reward, which is given by the value 

function. In contrast, policy-based methods [1][37][69][83] iteratively attempt to improve 

an explicitly defined policy. For example, finite state controllers have been used to 

directly map beliefs into actions [1][37]. Finite state controllers are appealing because the 

value function of a finite state controller is piecewise linear and convex [37], and it is also 

easy to evaluate. Additionally, a finite state controller can be expanded in size so that the 

error between the finite state controller and the optimal policy can be made arbitrarily 

small. However, due to time and memory constraints, it is necessary to limit the size of 

the finite state controller to a fixed finite value. Finding the optimal finite state controller 

of a fixed size is NP-hard [37], so only locally optimal solutions are obtainable. Some 

search heuristics allow moderate expansion of the finite state controller to escape local 

optima; however, they still do not enable the globally optimal fixed-size finite state 

controller to be found efficiently.  

It has been also been observed that it is sometimes easier to improve upon a given 

policy than it is to determine than the value of a policy [1]. This may occur when a 

relatively simple finite state controller yields good performance while the corresponding 

value function is complex. To avoid evaluating the value of a policy, gradient based 

methods can be used, which only require that the direction in policy space which 

maximizes the average reward to be computed [1]. Thus, the policy can be improved by 

stepping in the direction of the gradient without having to evaluate the policy. 
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2.2.1.2 Online Methods 

In large POMDPs, offline methods can practically only provide coarse 

approximations of the value function, which often causes the resulting policy to be of 

poor quality. Therefore, it is often necessary to employ an online method which searches 

for the best action for the current belief state only, rather than trying to find the optimal 

policy over the whole belief space [86]. This may be accomplished through forward 

search on the tree of all possible future action-observation sequences with the current 

belief state at the root node.  Forward search is used to locally approximate the value of 

each action at the current belief state, so that the agent then immediately executes the 

action with the maximum expected total reward. Fully expanding the tree is intractable 

unless the planning horizon is short and the POMDP contains small action and 

observation spaces. Branch and bound pruning, Monte Carlo methods, and heuristic 

search have been employed to reduce the necessary expansion of the action-observation 

tree when these conditions are not satisfied. These methods comprise a list of online 

techniques that is neither mutually exclusive nor exhaustive, but have demonstrated to be 

effective in some large domains [86].  

Branch and bound pruning (e.g. [72]) involves creating upper and lower bounds 

for the value of each action at the fringe nodes of the tree. If the upper bound of the value 

of one action is less than the lower bound of another action, then the branch of the tree 

that descends from that action is pruned, which avoids superfluous expansion of 

descendent nodes. Finding efficient ways of establishing bounds is therefore essential for 

branch and bound pruning methods to be implementable.  
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Monte Carlo methods (e.g. [96]) involve simulating many possible histories. 

Rather than searching the full breadth of possible observations, histories are sampled at 

depth. This means that longer sequences of actions and observations are sampled rather 

than considering several possibilities at each time step. Monte Carlo methods provide the 

benefit of a reduced branching factor, so planning can be done further into the future. 

However, since the full breadth of possibilities is not considered, it is possible branches 

with high expected total reward are missed in planning.  

Heuristics search techniques (e.g. [99]) are used to selectively expand the tree at 

the node that the heuristic predicts will provide the greatest improvement to the solution. 

This mitigates the problem of the branching factor while also focusing on branches with 

high expected total reward. However, these methods may run slowly if there are many 

nodes to consider or if evaluating the heuristic is expensive.  

Online algorithms are often used in conjunction with an offline algorithm, which 

is used to provide a coarse approximation of the value function at fringe nodes. Better 

approximations of value function may also be learned concurrently with online planning, 

so that the approximation of the value function is continuously improved whenever 

online planning is executed [86].  

2.2.2 METHODS FOR CONTINUOUS POMDPS 

Continuous POMDPs are POMDPs with continuous state spaces and are 

analogous to discrete POMDPs. Continuous state spaces present a unique set of 

challenges and opportunities that differentiate many continuous POMDP methods from 

their discrete counterparts. The challenges stem from the fact that the dimensionality of 
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the state space in a continuous POMDP is uncountably infinite [17], which in turn causes 

the number of continuous dimensions of the belief space to be uncountably infinite.  

While state-estimation is usually an easy task in the discrete state spaces 

considered by most discrete methods (with some exceptions, e.g. [96]), even representing 

the belief state is often intractable in continuous spaces. This is because beliefs must be 

represented by a finite set of parameters for practical reasons, despite the fact that the 

number of continuous dimensions in the belief space is uncountably infinite. Therefore, 

beliefs must usually be approximated except in special cases, e.g. Kalman filtering may 

be employed for exact inference in linear Gaussian systems [97]. The task of bounding 

the error between approximate state-estimates and the Bayesian state-estimate has been 

the subject of some research (e.g. [24][85]), although thorough investigations on the 

effects of these approximations on POMDP solutions are scarce due to the complexity of 

the problem. Therefore, most continuous POMDP solutions operate under the assumption 

that the state-estimation method provides a reasonable approximation of the Bayesian 

state-estimate, while it is left to the user to determine whether this assumption is valid. 

Even under the assumption that an accurate Bayesian state-estimate can efficiently be 

obtained, planners for continuous POMDPs still need to contend with infinite-

dimensional state, action, and observation spaces – which makes the direct application of 

algorithms designed for discrete POMDPs impractical. 

While continuous POMDPs are generally more complex than discrete POMDPs, 

certain properties of continuous state spaces can sometimes be leveraged to develop 

efficient solutions. Among the tools that are often exploited in continuous domains are 

Gaussian probability distributions and the differentiability of continuous functions. 
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Linear Quadratic Gaussian (LQG; [7]) control on linear Gaussian systems is a prominent 

example in which an exact solution can be calculated efficiently by applying a linear 

quadratic regulator to the mean of the belief state that is estimated by a Kalman filter. 

Through the use of differentiation to linearize nonlinear systems, LQG can be extended to 

approximate solutions in nonlinear systems as well (e.g. [79][112][117][118]), which is 

fundamental to the iLQG algorithm presented in Chapter 4. In general, however, exact 

solutions to general continuous POMDPs – which have nonlinear dynamics, nonlinear 

measurement functions, and non-Gaussian beliefs – are intractable to find. 

2.2.2.1 Point-Based Methods 

One intuitive approach to solving continuous POMDPs is to discretize the state 

space and apply a discrete POMDP method, e.g. [87]. However, this is only possible for 

small state spaces, since the number of samples that are necessary to sufficiently 

discretize the state space is subject to the curse of dimensionality [80][128]. Therefore, 

sampling-based methods which sample directly from the belief space – rather than 

discretizing the state space – have been proposed to help mitigate the curse of 

dimensionality. Thrun [110] proposed a Monte Carlo method in which sample beliefs are 

generated using a particle filter. Then, value iteration is used at the sampled beliefs. 

When a belief is sampled for which the value function has not been defined, the value is 

interpolated from the nearest neighbors based on Kullback-Leibler divergence (KL 

divergence; [49]) if the beliefs are sufficiently similar. If the beliefs of the nearest 

neighbors are too dissimilar, the sampled belief is added to the set of beliefs at which 

value iteration is evaluated. This results in a growing set of beliefs over which value 
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iteration is performed, which becomes unwieldy if the dimensionality of the state space is 

large or over long planning horizons. 

Point-based methods similar to those used in discrete spaces have also been 

adapted for continuous spaces. For example, the Perseus algorithm [102], which was 

originally designed for discrete domains, was extended to work in continuous spaces by 

representing observation, transition, and reward models using Gaussian mixtures; while 

the beliefs could be represented by Gaussian mixtures or particle sets [80]. The value 

function could then be parameterized using a set of 𝛼-functions that are defined over the 

state space, which are analogous to 𝛼-vectors in discrete domains. Similar to 𝛼-vectors, 

𝛼-functions can be used to define a piecewise linear and convex value function for 

systems with continuous state spaces, but discrete actions and observations. Efficient 

sampling-based methods have been proposed for the case in which the action and 

observation spaces are continuous. The number of 𝛼-functions grows exponentially with 

each value iteration step, which limits the length of the planning horizon. 

2.2.2.2 Trajectory Optimization Methods 

Since finding the globally optimum solution in POMDPs is generally intractable, 

trajectory optimization methods instead focus on finding locally optimal solutions by 

iteratively improving a nominal trajectory. Trajectory optimization methods are 

initialized with an initial policy that is used to generate an initial nominal trajectory. 

Since the policy is a function of the belief state and future belief states are unknown until 

real observations are made, the sequence of future actions and observations is uncertain. 

Therefore, many methods assume the agent will receive the maximum-likelihood 

observations, which implicitly results in a nominal trajectory corresponding to maximum-
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likelihood belief states and deterministic belief state dynamics (e.g. [31][63][78][79][112]. 

Frequently, state estimation is performed via a Kalman filter (e.g. an extended Kalman 

filter [121]) under the assumption that the belief state may reasonably be approximated as 

Gaussian in iterative Linear Quadratic Gaussian (iLQG; [112]) methods, although 

algorithms which apply particle filters to perform state estimation have also been 

proposed (e.g. [79]). To account for stochastic belief state dynamics, van den Berg et al. 

[118][119] extended the iLQG algorithm to account for Gaussian distributed observations 

rather than assuming maximum-likelihood measurements. The resulting nominal 

trajectory then represents the means of Gaussian-distributed belief states. The work of 

van den Berg et al. [118] forms the basis of the algorithm presented in Chapter 4, where 

modifications to van den Berg’s original algorithm are made to improve efficiency. The 

original algorithm may be found in Appendix A. 

Direct optimization methods, such as shooting and collocation methods, have also 

been applied to the belief space [73]. These methods have been shown to be more 

effective in dealing with state and control constraints than dynamic programming 

methods (such as iLQG), although they also rely on the undesirable assumption of 

maximum-likelihood observations. 

2.2.2.3 Sample-Based Path Planners 

Sample-based path planners such as PRM [47] and RRT* [46] have also been 

extended into belief space variants [4][19][84]. Sample-based path planners operate by 

sampling nodes from the belief space and constructing a graph from which an optimal 

trajectory can be planned. However, some additional form of a control must be assumed 

along the edges between nodes. This is often accomplished through the use of a trajectory 
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optimization method (see Section 2.2.2.2). However, the existence of a two-point 

boundary value problem solver that can connect any two sampled configurations may be 

required, which may be computationally expensive to compute for nonholonomic robots 

[108].  

While trajectory optimization methods continuously deform the trajectory to a 

locally-optimal trajectory, sample-based path planners advantageously converge to the 

globally optimal solution (of an approximate system), which makes them particularly 

useful in systems with many homotopy classes [2]. Thus, sample-based path planners 

have been applied to problems such as planning collision-free paths (e.g. [3][2][5][66]), 

determining where to look for optimized autonomous rover localization [70][105], and in 

simultaneous localization and mapping (SLAM; [30]) to maximize information gain 

[67][104], to name a few. In this work, sample-based path planners were not considered 

because the environment is free from obstacles, so any initial trajectory may be 

continuously deformed into any other feasible trajectory, which makes the use of a 

trajectory optimization method sufficient4 (see Figure 2). 

 

4 Although the methods used in this paper are still susceptible to converging to a locally optimal trajectory rather than the global 

one, each trajectory may be continuously deformed into any other trajectory and thus belong to the same homotopy class. 

Figure 2: Due to the presence of the obstacle, the blue 
trajectory cannot be continuously deformed into the 
red trajectory, indicating that they belong to different 
homotopy classes. In the case of the outfielder 
problem, obstacles do not exist, so any running path 
may be continuously deformed into any other running 
path. 



24 

2.2.2.4 Other Methods 

In simultaneous localization and mapping (SLAM; [30]), an agent is tasked with 

the problem of mapping an unknown environment while simultaneously localizing itself 

within the generated map. POMDPs for SLAM problems are complicated by the fact that 

the environment is unknown, which requires the agent to simultaneously take actions to 

learn the environment and perform localization while also completing its primary 

objective. Many SLAM algorithms focus on information gathering (e.g. [104][116]), in 

which the goal is to map the environment efficiently, although others take on more 

complicated objectives, such as retrieving a roaming target [36]. In this work, the 

environment is well defined, so methods which operate in unknown environments are 

beyond the scope of this work. 

2.2.3 HIERARCHICAL METHODS 

The human thought process can be used to illustrate how hierarchical methods 

(e.g. [44][76][113]) can be used to solve POMDPs in both discrete and continuous 

domains. An example posed by Kaelbling [44] may be paraphrased like this: rather than 

evaluating 3-dimensional coordinates of a cup, one may simply ask whether or not the 

cup is in the cupboard. Thus, a set of 3-dimensional coordinates may be abstracted to a 

logical state “in the cupboard.” Planning can then be performed based on small set of 

logical and symbolic variables, rather than in large and complex discrete or continuous 

domains. However, defining abstract representations and operators for the symbolic states 

that result in robust behavior is a nontrivial problem which demands more research. 

Additionally, reliable methods of automating the design of abstract representations do not 

exist [18], so it is a task that must be completed by humans.  



25 

3 OUTFIELDER PROBLEM BACKGROUND 

Researchers have posited many different approaches to the outfielder problem that 

rely on either predictive or heuristic approaches. The goal of each approach is to resolve 

how a human could intercept a fly ball given their limited resources and limited time in 

which to make a decision. In addition to the methods presented here, model-free 

reinforcement learning has also been proposed to resolve the outfielder problem (e.g. 

[38]). Model-free reinforcement learning methods (including model-free methods which 

are applied to simulated models) generally require a large number of trials to converge to 

a good policy, which hinders their application to high-dimensional continuous systems 

[25][28]. Thus, planning algorithms which have full access to the dynamics generally 

outperform model-free reinforcement learning methods in these domains [52]. While 

intuitively it seems likely that humans implement some form of reinforcement learning in 

the outfielder problem, the specific mechanisms which enables humans to do so are not 

well understood [51], and so reinforcement learning methods will not be discussed at 

length in this work. 

3.1 TRAJECTORY PREDICTION 

The most intuitive approach to the outfielder problem is likely model-based 

trajectory prediction. In this approach, it is postulated that humans have an internal model 

of fly ball trajectories and are able to use their vision and other sensory information (e.g. 

sound of the bat hitting the ball and odometry) to predict the most likely landing spot of 

the ball and run to it. Such a model would have to accurately predict the ball’s position, 

velocity, and spin as well [88].  Saxberg [89] and Todd [111] showed that humans are 

poor estimators of landing distances of computer simulated fly balls traveling in parabolic 
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trajectories, but Saxberg [89] did show that humans demonstrated some predictive 

abilities. Babler and Dannemiller [8] cautioned that inferring human performance in 

estimating actual fly ball trajectories based on simulations using 2D displays (e.g. as in 

[89] and [111]) may be unwarranted. To date, no research has been performed testing 

humans’ abilities to estimate the landing spot of fly balls under realistic conditions, i.e. 

humans tracking fly balls from the field with their sight of the ball being occluded at 

various times before impact, and then being tasked with positioning themselves at their 

prediction of the landing spot of the ball5.  

Shaffer and McBeath [93] have shown that humans generally do not have a very 

good model of the ball’s trajectory. In their experiments, they had both novice and skilled 

fielders try to identify the time at which the ball reached the apex of its trajectory when 

viewing actual fly balls from various perspectives. The results indicate that both novice 

and skilled fielders biased their estimates towards the optical apex rather than the true 

 

5 There are, of course, valid safety concerns which must be addressed before the execution of such an experiment. 

Figure 3: The optical apex, or the highest point when viewed from the perspective of the fielder, occurs 
later in the trajectory than the time at which the ball physically reaches its highest point in the trajectory. 
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apex. Additionally, when the ball was headed directly toward the fielder, so that the 

optical apex occurred very late in the flight of the ball (if there was one at all), humans 

seemed to rely on other visual indicators that signified the ball was approaching (e.g. 

binocular parallax and the size of the image of the ball on the eye) to infer the ball was no 

longer traveling upward. However, this information is perceivable only shortly before 

impact, and thus is a poor indicator of when the ball reaches its true apex. This indicates 

that even if humans do utilize an internal model, then either it is a poor representation of 

actual physics, or humans cannot accurately estimate the states of a high-fidelity model 

due to their lack of sensing capabilities or their inability to quickly and accurately 

propagate and update a state estimate due to time and resource constraints.  

Fink et al. [32] had skilled fielders wear a virtual reality headset to catch 

simulated fly balls with perturbed trajectories. Based on how the fielders reacted to the 

simulated perturbations, Fink et al. [32] concluded that there is a lack of evidence 

supporting the hypothesis that humans implement trajectory prediction based solely on 

initial conditions. The argument presented by [32] was that if fielders estimated the 

landing spot of the ball based on the ball’s initial conditions (as suggested by [88]), then 

fielders should ignore in-flight perturbations to the ball’s trajectory and run to the 

predicted landing spot of the ball. However, extrapolating this conclusion to infer that 

humans do not use any trajectory prediction is not justified, as humans may trust new 

measurements more than previous predictions in the determination of the ball’s landing 

spot.  

The most rigorous attempts yet to implement trajectory prediction were performed 

by Belousov et al. [11] and Höfer [38]. Belousov et al. [11] developed a model that 
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simulated catching a fly ball traveling in a parabolic trajectory using a covariance-free 

shooting method which assumed maximum-likelihood observations. The results seemed 

to demonstrate reasonably human-like behavior, although they have not yet been 

compared to actual human data. The ball trajectory model used by Belousov et al. [11] 

neglected aerodynamic effects on the baseball, i.e. drag and Magnus forces. It was also 

assumed that the agent could directly measure the full global position of the ball with 

equal noise in each direction (although the noise was state-dependent); while in most 

camera models the fielder would not be able to measure the ball’s depth as reliably as its 

relative direction.  

Additionally, while the fielder was subject to process noise, the fielder was able to 

fully observe its global position and orientation at each observation, which together 

provides an unrealistic noise model for a practical fielder. In the work of Höfer [38], a 

version of iLQG which assumes maximum likelihood observations (as given by [112]) 

was used as a model predictive controller. In [38], it was also assumed that the fielder 

could directly measure the ball’s global position. Additionally, the orientation of the 

fielder was assumed to be fixed and the global position and velocity of the fielder was 

also directly measured (although with noise). Aerodynamic effects were also included, 

but while the drag force had a precise motion model, the modeling of the Magnus force 

was relegated to Gaussian noise applied to the ball’s trajectory. It should be noted that in 

this work, parabolic trajectories are assumed, although more realistic motion models 

should be the subject of future work.  
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3.2 OPTICAL ACCELERATION CANCELLATION (OAC) 

Other researchers have sought methods in which a fielder could move to the 

correct spot for interception without the need of a full-state representation of the fly ball 

trajectory. The first such method was proposed by Chapman [21], in which the clever 

insight was provided showing that if the fielder stood at the landing spot of a ball 

traveling in parabolic flight, then the tangent of the elevation angle, 𝛼, of the ball with 

respect to the fielder increases at a linear rate until the time of interception (see Figure 

4a). An additional observation was made about the case in which the fielder’s initial 

position does not coincide with the landing spot but is in the same plane as the ball’s 

motion: if the fielder moves at the correct constant velocity that will result in 

interception, then tan�𝛼[𝑡]� increases linearly until the time of interception, and only the 

correct constant velocity would cause the tan�𝛼[𝑡]� to increase linearly (see Figure 4b). 

Therefore, Chapman proposed that fielders modulate their speed so that tan�𝛼[𝑡]� 

increases at a constant rate. This strategy later became known as Optical Acceleration 

Cancellation (OAC), since tan�𝛼[𝑡]� increasing at a constant rate can equivalently be 

interpreted as the ball rising with zero acceleration in the image of a pinhole camera.  

𝑜𝑝𝑡𝑖𝑐𝑎𝑙	𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑑½ tan�𝛼[𝑡]�	

𝑑𝑡½  (7) 

While Chapman’s result was insightful, there are some significant limitations in 

Chapman’s assumptions. First, Chapman assumed the ball travelled in a parabolic 

trajectory, but aerodynamic effects are significant in determining the trajectory of a 

baseball. For example, Brancazio [16] showed that drag alone can reduce the flight 

distance of the ball by up to approximately 40%, and McBeath et al. [58] showed that 
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Magnus forces can cause the flight of a baseball to deviate significantly from a parabola, 

such that some trajectories even demonstrate cusps and loops. Despite the parabolic 

assumption in its derivation, Dienes and McLeod [29] showed that OAC is a viable 

strategy for catching the ball even if the ball is not traveling in a parabolic trajectory, but 

this would require that the fielder run at a non-constant velocity.  

Figure 4: The tangent of the elevation angle, α, increases at a constant rate for a) a stationary fielder at the 
interception point and b) for a fielder moving at the correct constant velocity to catch the ball. The dashed 
line slants to the left because the base distance is held fixed at each snapshot in time while the fielder is 
moving to the left. 
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The OAC strategy also requires constant feedback in order to determine an 

appropriate control, thus the fielder cannot lose sight of the ball since the OAC strategy 

does not incorporate predictions into decision-making. Chapman also admits that it is 

unlikely that humans perform complex trigonometry (i.e. calculating the tangent of an 

angle) in their heads while they are running to catch the ball. However, Chapman points 

out that this heuristic strategy was not intended to describe actual human decision 

making, but that it was meant to illustrate how humans could exploit the underlying laws 

of motion to devise a strategy that needs only a small amount of information and 

computation to be successful.  

Chapman’s method formed a basis that compelled much further study into the 

outfielder problem. Todd [111] demonstrated that humans are not particularly sensitive to 

image acceleration, calling into question whether OAC is a viable interception strategy. 

However, Babler and Dannemiller [8] showed that humans’ sensitivity to optical 

acceleration is proportional to the optical velocities, and humans can use this information 

to detect whether a ball will land in front or behind them if a sensitivity threshold was 

met. Additionally, Michaels and Oudejans [62] and Dienes and McLeod [29] collected 

empirical data of fielders catching actual fly balls, and observed that the fielders’ running 

paths nulled the optical acceleration of the ball, as predicted by OAC. It remained 

uncertain though if this was being done deliberately by the fielder, or if it was just a 

byproduct of a different strategy being performed by the fielder.  

The OAC strategy only has the capability to account for the fielder’s behavior if 

the fielder’s initial position is in the same plane as the ball’s trajectory. For the more 

typical scenario in which the ball will land to the side of the fielder, additional 
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considerations must be employed for controlling lateral movement. Chapman [21] 

suggests that the fielder maintains OAC for forward and backwards motion, and a 

constant bearing angle to control lateral motion, although no empirical evidence was 

provided supporting its implementation by humans.  

Tresilian [114] interpreted a constant bearing angle as implying that the angular 

rate of the bearing angle �̇� is zero. Tresilian’s method therefore utilized the angular rate �̇� 

in which the fielder had to rotate in order to fixate on the ball in conjunction with OAC. 

In this method, the fielder would use OAC to calculate the desired acceleration of the 

fielder in forward and backward motion. Then, a desired acceleration that is proportional 

to the rate in which the fielder must rotate to fixate on the ball is applied in the direction 

perpendicular to the one calculated by OAC. The desired acceleration of the fielder is 

then determined from the sum of the two accelerations (with some additional 

considerations to ensure certain ad hoc thresholds are not exceeded). This method caused 

the simulated fielder to approach the plane of the ball’s motion faster than Chapman’s 

method, although no empirical evidence was provided to suggest that this method was 

implemented by humans.  

Figure 5: Top-down view of the fielder and the ball’s trajectory. The angular rate �̇� is the rate in which the 
fielder must rotate to fixate on the ball as used by Tresilian (1995) and McLeod et al. (2006). 
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Jacobs et al. [41] support the view that fielders run to the plane of the ball’s 

motion first, and then use OAC to adjust their position within the plane of the ball’s 

motion. However, they did not provide a method as to how this could be accomplished 

and provided supporting data from only one trial. The work of Tresilian [114] was 

generalized by McLeod et al. [61] to form the Generalized Optical Acceleration 

Cancellation (GOAC). In the GOAC strategy, the fielder uses OAC to control tan�𝛼[𝑡]�. 

The fielder then varies their lateral movement based on the angular rate �̇� that they have 

to turn left or right to face the ball, similar to Tresilian [114]. The GOAC strategy states 

that �̇� is controlled to be a constant value when the fielder is close to catching the ball. 

Thus, the fielder seeks to null the angular acceleration required to face the ball, rather 

than nulling the angular velocity as was done by Tresilian [114]. Thus, the direction that 

the fielder attempts to run when using GOAC is the direction in which tan�𝛼[𝑡]� and �̇� 

both increase linearly. Additionally, McLeod et al. [61] provided some empirical 

evidence that supports the use of GOAC by humans. However, the GOAC strategy does 

not describe precisely how a fielder should behave early in the ball’s trajectory, which 

makes it difficult to implement as a control strategy. 

3.3 LINEAR OPTICAL TRAJECTORY (LOT) 

McBeath et al. [56] noted that while the research of Todd [111] and Babler and 

Dannemiller [8] demonstrated that generally humans are poor at detecting optical 

acceleration, humans have demonstrated better proficiency at detecting optical curvature, 

i.e. whether a line is straight or curved. McBeath et al. [56] used this principle to motivate 

the Linear Optical Trajectory (LOT) heuristic. Similar to the OAC heuristic, the LOT 

heuristic requires no knowledge of the distance to the ball or home plate. The intent of 
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the LOT heuristic is for the fielder to run along a path such that the trajectory of the ball 

forms a straight line within the fielder’s image plane, due to humans having demonstrated 

proficiency in detecting optical curvature.  

Let 𝜓 be the angle between the ground plane and the line from home plate to the 

ball as projected onto the fielder’s initial image plane (see Figure 6a.). Provided that the 

horizon is always oriented in the same direction in the image, the angle 𝜓 can be 

described using the image coordinates of the ball (𝑢«, 𝑣«) and home plate (𝑢¾, 𝑣¾): 

𝜓 = tan¿� À
𝑢« − 𝑢¾
𝑣« − 𝑣¾

Á (8) 

While it is possible to generalize the definition of 𝜓 into the case in which the image 

plane rotates in a manner that changes the orientation of the horizon, it is not necessary 

for the fielder model considered in this work (see Section 5.2). 

The LOT heuristic specifies that 𝜓 must remain a constant value. In McBeath et 

al. [56], the angle 𝜓 in the LOT heuristic is geometrically related to the angle of 

elevation, 	𝛼, as employed by OAC strategy, and a lateral angle 𝛽, which may be 

described as the horizontal angle between the direction from the fielder to home plate and 

the direction from the fielder to the vertical projection of the ball onto the ground. This 

relation is given by the following equation. 

tan[𝜓] =
tan[𝛼]
tan[𝛽] (9) 

The geometric reasoning for this relation is illustrated in Figure 6a. using a trirectangular 

tetrahedron, i.e. a tetrahedron in which all three face angles at one vertex are right angles. 

Equation 9 may be extended to be time-varying values. 
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tan�𝜓[𝑡]� =
tan�𝛼[𝑡]�
tan�𝛽[𝑡]�

=
𝑓[𝑡]𝐶Ã
𝑓[𝑡]𝐶Ä

= 𝐶Å (10) 

In the following section, it will be shown that this implies a specific orientation of the 

image plane in which the fielder’s gaze tracks the ball laterally, but not vertically.  

The LOT heuristic that McBeath et al. [56] propose additionally requires 𝑓[𝑡] of 

Equation 10 to increase monotonically. Thus, if the tan�𝛼[𝑡]� increases monotonically 

and proportional to tan�𝛽[𝑡]�, then it is equivalent to the ball traveling along a 

monotonically increasing optical trajectory. Since an infinite number of functions satisfy 

the monotonic constraint, there are infinite running paths that satisfy the LOT heuristic. 

McBeath et al. [56] suggest setting 𝑓[𝑡] to be a linear function for ball trajectories which 

are approximately parabolic. Setting 𝑓[𝑡] to be a linear function is equivalent to using the 

OAC heuristic to control the elevation angle, and the LOT heuristic to control lateral 

motion of the fielder – although 𝑓[𝑡] is not constrained to be linear for the 

Figure 6: a) Geometric relationships used in the LOT heuristic represented using a trirectangular tetrahedron. 
The angle 𝜓 in the image plane is controlled to be constant even as b) the fielder rotates to fixate on the ball. 
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implementation of LOT in general. McBeath et al. [57] concede that the LOT heuristic 

alone is not sufficient to lead to interception, as the function 𝑓[𝑡] must be chosen 

appropriately.  

Dannermiller et al. [26] contested that much of the research cited by McBeath et 

al. [56] in demonstrating that humans are good at detecting curvature were for lines in 

which the human subject was presented with full view of the line at once, rather than a 

streaking point moving along a line. Thus, the LOT strategy is more of a spatiotemporal 

heuristic rather than a strictly spatial one, as assumed by the supporting evidence 

presented by McBeath et al. [56]. While this does not necessarily imply that humans 

would be ineffective at achieving LOT, the evidence presented in McBeath et al. [56] is 

not sufficient to demonstrate that humans would be effective in such a task and thus 

further study is needed. Jacobs et al. [41] observed that near the end of the ball’s flight, 

fielders often arrive at the landing site of the ball or align themselves with the plane of 

the ball’s travel and move slightly radially in order to make the catch, neither of which 

can be accounted for using LOT theory. McBeath et al. [57] note that the LOT model was 

only intended for use in the initial part of the ball’s flight and not during the final descent. 

During the final descent of the ball, humans may use other cues, such as optical 

enlargement and stereo disparity, which the LOT heuristic does not take into account.  

McLeod et al. [59] show that for some fielder trajectories, tan�𝛼[𝑡]� increases 

linearly as predicted by OAC and LOT. However, tan�𝛽[𝑡]� increased linearly for some 

catches but not for others, depending on the fielder. Thus, tan�𝛽[𝑡]� did not increase 

proportionally to the linearly increasing tan�𝛼[𝑡]�, which is inconsistent with the 

predictions of the LOT heuristic. Additionally, McLeod et al. [60] note that some data 
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provided by Shaffer and McBeath [90] seems to indicate that fielder motions are counter 

to the predictions of LOT for fly balls that are uncatchable. Shaffer et al. [91] clarify that 

the LOT heuristic is meant to break down for uncatchable fly balls, and the manner in 

which fielders behave when the LOT heuristic fails is one in which the ball lands in front 

of the fielder rather than behind.  

The LOT heuristic is also not specific about what control is used to correct optical 

curvature. McBeath et al. [56] suggest that humans react to correct observed upward or 

downward curvature of the optical trajectory. However, it is not clear if curvature is 

meant in the sense of differential geometry [106], or if another quantity which may 

indicate a deviation from a straight line (e.g. orthogonal distance to the desired linear 

optical trajectory) is controlled as a means to correct curvature. It may also be reasonable 

deduced that the fielder is intended to directly control 𝜓 to be a constant value. In the 

following section, a novel formulation of a control variable which results in the 

satisfaction of the LOT heuristic is proposed. 

3.4 GENERALIZED LOT 

 The intent of the LOT heuristic presented by McBeath et al. [56] is for the fielder 

to choose a running path such that the ball forms a linear optical trajectory in the image 

plane. However, the geometric relation described in Equation 9 and illustrated in Figure 6 

necessitates that a linear optical trajectory will always be observed, independent of the 

path of the fielder. This is due to the manner in which the fielder rotates the image plane 

to track the ball. Referring to Figure 6, which is similar to one that is presented in 

McBeath et al. [56], it can be seen that the orientation of the image plane is always 

orthogonal to the ground plane. This implies that the optical axis is parallel to the ground 
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plane since the optical axis is orthogonal to the image plane. The fielder rotates so that 

the optical axis remains vertically aligned with the ball such that the ball stays at the 

horizontal center of the image plane, which may be inferred from the right angle in the 

image plane in Figure 6. Since the position of the ball is constrained to the horizontal 

center of the image plane, this method would result in a ball which rises and falls 

vertically in the image plane. Thus, the ball must necessarily follow a linear optical 

trajectory independent of the translational motion of the fielder. A later paper [120] 

describes the geometry in a slightly different manner, in which the image plane rotates 

such that the ball is aligned with the optical axis, i.e. the gaze of the fielder is fixed on the 

ball. This would imply that the ball would always remain fixed at the origin of the image 

Figure 7: Depending on the fielder’s rotation, the fielder may necessarily observe a linear optical 
trajectory (although not necessarily monotonically increasing). In a), the geometric relation provided 
by Equation 9 implies that the fielder rotates such that the ball is constrained to strictly vertical motion 
in the fielder’s image plane. In b), the fielder’s gaze is fixated on the ball, so that the ball is always at 
the center of the image plane. 
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plane – independent of the path of the fielder – rather than forming a linear optical 

trajectory. Similar to McBeath’s original paper [56], the heuristic demands that the fielder 

chooses a running path to maintain constant 𝜓. While the optical trajectory of the ball in 

each of these scenarios is trivialized by fielder’s rotation of the image plane, the angle 𝜓 

is also dependent on the direction to home plate – which adds additional degrees of 

freedom that need to be controlled. Thus, maintaining constant 𝜓 requires translational 

movement of the fielder for any choice of rotational motion of the image plane. The 

constraint that 𝜓 is constant describes a family of possible LOT heuristics, with the 

running path in each being determined by how the fielder chooses to rotate the image 

plane.  

The constraint that 𝜓 is constant implies its derivative with respect to time �̇� = 0. 

Referencing Equation 8, this implies  

�̇� = Æ�̇�È
𝓇É

𝓇È½ + 𝓇É½
− �̇�É

𝓇È
𝓇È½ + 𝓇É½

Ê = 0 (11) 

where 𝓇È = 𝑢« − 𝑢¾ and 𝓇É = 𝑣« − 𝑣¾ are the relative distance components between the 

ball and home plate in image coordinates. With some algebraic manipulation, it can be 

seen that 

𝓇È
𝓇É

=
�̇�È
�̇�É

 (12) 

 

which implies  

𝓻 ∝ �̇�,												where	𝓻 = �
𝓇È
𝓇É� (13) 

Therefore, for the LOT heuristic to be satisfied, the relative image velocity between the 

ball and home plate must be in the same direction as the relative image displacement 
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within the fielder’s rotating and translating image plane. By letting 𝛾 be the angle 

between 𝓻 and �̇�, the generalized LOT heuristic that is proposed here is 𝛾 = 0, which 

would imply 𝓻 and �̇� are in the same direction.  

 From a practical standpoint, it does not seem efficient for the fielder to keep track 

of the directions of both the ball and home plate. Results from [120] seem to indicate that 

background movements affect the running paths of human fielders, thus it is possible that 

humans utilize background information to help satisfy the LOT heuristic. In this work, it 

is assumed that the background is featureless, so that it does not provide any additional 

information to the fielder. The fielder also cannot reference home plate as a navigational 

aid. Therefore, the fielder must have a sense about their own global state6 in order for the 

fielder to know the direction to home plate and satisfy the generalized LOT heuristic. 

This is in contrast to Tresilian’s method [114] (see Section 3.2), which does not require 

 

6 In this work, it is assumed that the fielder has access to a full Bayesian state estimate of their global position; see the discussion at 

the beginning of Chapter Error! Reference source not found. for further explanation. 

Figure 8: The Generalized LOT heuristic 
requires that the relative image velocity, �̇�,  
between the ball and home plate to be in the 
same direction as the relative image 
displacement 𝓻 (i.e. 𝛾 = 0). Satisfaction of this 
constraint would cause 𝜓 to be a constant value. 
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the fielder to maintain global information but rather only local information about their 

current angular rate. 

3.5 GENERAL DISCUSSION ABOUT CATCHING HEURISTICS 

The aforementioned catching heuristics describe the fielder behavior that will be 

observed in successful catching strategies, but do not elaborate much on the type of 

controller that would cause the heuristic to be satisfied. Generally, proportional or 

proportional-derivative control seems to be the implied controller ([21][32][38][56][61]), 

although the methodology to select the proper gains is not clear. The McRuer-Krendel 

controller has also been proposed for modeling to account for human reaction time [114].  

There have been several studies that have evaluated the feasibility of the various 

fielding strategies from an analytic viewpoint, yet several assumptions remain in previous 

work that are still too restrictive to assess whether they would be successful in real-life, 

either for human or mobile robot implementations. Previous work has primarily evaluated 

the performance of heuristics on either parabolic trajectories (e.g. [11][21][56][59]) or 

trajectories with drag (e.g. [38][114]). However, Magnus forces significantly affect the 

flight of a baseball [58]. For example, cusps or even loops can be introduced to the 

trajectories of fly balls that are hit high but do not travel far [58]. Additionally, Magnus 

forces can also cause significant lateral curvature. No analysis of the outfielder problem 

to date has adequately modeled these effects which are introduced by the Magnus force in 

3-dimensions, although McBeath et al. [58] have observed that the OAC heuristic 

sometimes requires sudden fielder movements in the 2-dimensional case. This work 

assumes a parabolic trajectory, with emphasis on improving the measurement and noise 

models instead of modeling the ball’s trajectory with greater fidelity. However, modeling 
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of the ball’s trajectory with greater fidelity is an important consideration for evaluating 

the feasibility of catching heuristics in future work.  

Previous research on fielding heuristics has also mostly only covered 

deterministic systems, while only a handful of studies have evaluated the success of 

fielding heuristics under random perturbations (e.g. [38][114]). For example, Tresilian 

[114] applied Gaussian noise to optical acceleration measurements in the 1-dimensional 

case of OAC being implemented with a McRuer-Krendel controller, to which the 

heuristic control demonstrated robustness, but results for the 2-dimensional case were not 

provided. Höfer [38] provided a more thorough analysis by testing the performance of 

several heuristics for 2-dimensional motion when perturbations were applied to the 

measurements, the motor control, and the ball’s trajectory. Generally, it was found that 

the performance of common heuristic methods degraded more than predictive methods in 

the presence of noise, although predictive models were more sensitive to the inaccurate 

modeling of drag. However, there were a few ways in which the analysis could be 

improved. First, the measurement model assumed that the global positions of the fielder 

and the ball could be measured directly with additive noise, while a practical 

measurement would only provide the relative direction from the fielder to the ball in the 

fielder’s coordinate system. Next, each of the heuristics studied requires that the fielder 

has some knowledge of their rotation rate, which will be uncertain for any practical 

fielder – yet this noise was not included in the motion model of the fielder. Finally, all 

noise terms were varied proportionately, so the effects of individual perturbations could 

not be discerned. The system model in this work makes improvements in each of these 

areas. 
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There has also been debate as to whether the satisfaction of a given heuristic 

arises merely as a geometric consequence of the implementation of another control 

strategy [61]. Belousov et al.’s [11] research indicates that the satisfaction of each 

heuristic may be viewed as geometric consequences of the fielder running along an 

approximately optimal trajectory that may be determined by their stochastic optimal 

controller, which is based on the trajectory optimization method presented in [73]. 

Additionally, Belousov et al.’s [11] stochastic optimal controller accounts for some 

observed human behaviors which the heuristic approaches that were considered in this 

work do not: humans tend to exhibit some predictive behavior when catching fly balls 

(i.e. deliberately taking their eyes off the ball to gain a speed advantage) which cannot be 

explained using heuristic approaches, while a predictive controller is capable of 

describing such behavior. However, humans seem to be poor estimators of the ball’s 

trajectory (see Section 3.1) and the stochastic optimal controller is computationally 

expensive, therefore it is unlikely that humans would be able to implement it. Therefore, 

Belousov et al. [11] suggest that humans may use various heuristics at the appropriate 

times to compose an approximately optimal policy.  

3.6 CONSIDERATIONS IN GENERAL PRACTICAL DECISION MAKING 

Belousov et al.’s [11]  hypothesis that a human fielder’s control policy is 

composed of several different heuristics is consistent with the view of Gigerenzer and 

Selten [35], who suggest that human decision making is performed through the 

implementation of an “adaptive toolbox” of heuristics. In the adaptive toolbox approach, 

humans develop quick and easy solutions to hard problems or components of hard 

problems, and then exploit the heuristics in the toolbox to generate a good solution. The 
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work of Tversky and Kahneman [115] provided empirical evidence of the use of 

heuristics in many specific human decision-making situations. They also went on to show 

that the heuristics implemented by humans often lead to predictable and systematic 

cognitive biases. Kahneman [45] suggests that the heuristic techniques that are 

implemented by humans are crucial for timely decision making, and the biases introduced 

through the use of a heuristic can be mitigated through additional conscious effort if 

necessary.  

The use of heuristics for describing human decision making was first popularized 

by Herbert Simon [98], who observed that humans are not capable of the classical view of 

“rational” (i.e. optimal) decision making due to the fact that determining the optimal 

decision is generally a computationally intractable problem. Thus, optimal decisions 

seldom can be found practically because humans have only limited memory and 

computational resources while only having a short time in which to make a decision. 

Additionally, decision makers seldom have access to complete information (i.e. a proper 

prior), so the optimization problem is often ill-defined. Therefore, Simon argued that 

practical decision makers (e.g. humans or artificial intelligence) can only hope to achieve 

bounded rationality. Bounded rationality is an idea developed by Simon that implies that 

the rationality of a practical decision maker is limited by the intractability of the problem, 

the computational power of the decision maker, the time available to make a decision, 

and the information available to the decision maker. Simon suggests that humans cope 

with their bounded rationality through satisficing, a cognitive heuristic in which the 

decision maker searches for a satisfactory solution rather than an optimal one. The 
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threshold of what is considered to be satisfactory can also recede as time progresses, 

depending on the problem, to ensure a timely decision is always reached.  

It has also been hypothesized that humans reduce the amount of computation that 

they have to perform through simplifying the state representation that is used to make a 

decision, which is sometimes called the controlled variable in cognitive science [55], and 

is analogous to the agent state in reinforcement learning [109]. In the limit, the state 

representation can be reduced to only that which can be directly measured or perceived, 

which has been called perceptual control by some psychologists [81]. For example, it has 

been observed that honeybees perform direct feedback on optical flow to regulate 

forward and vertical velocity during landing without explicitly estimating either state 

[103]. This concept is also applied by roboticists in many image-based visual servoing 

techniques [23]. Image-based visual servoing allows a robot’s end effector to be precisely 

positioned in 3-dimensional coordinates without any a priori knowledge of the 3-

dimensional coordinates of objects in its workspace. Additionally, the error-correcting 

feedback provided by visual servoing allows good performance without a high degree of 

mechanical accuracy of the servos, which demonstrates how a well-designed state 

representation can also provide robust performance. 

Humans also have demonstrated the ability to leverage the environment to assist 

in computation, thereby enabling faster decision making through the use of epistemic 

actions. Kirsh and Maglio [48] define epistemic actions to be “physical actions that make 

mental computation easier, faster, or more reliable.” This is in contrast to what they 

define as pragmatic actions, which are actions that directly move the agent closer to a 

desired goal. In a prominent experiment, subjects were observed while playing Tetris to 
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determine if humans performed actions that only had epistemic value. An epistemic 

action could be clearly distinguished from a pragmatic action if the action that was 

performed was deliberate (not a mistake), did not bring the agent closer to the goal state, 

and a reasonable explanation could be given that described how the action simplifies the 

computation required by the human. For example, it was noticed that even expert Tetris 

players made superfluous rotations, leading the researchers to infer that a physical 

rotation of a Tetris piece could be performed much faster and more reliably than a mental 

rotation to compute matching contours. While the Tetris experiment demonstrated that 

some human actions can be best described as having only epistemic value, in many 

applications a single action can serve both epistemic and pragmatic functions.  

Epistemic actions are more generally cast as an example of embodied cognition in 

cognitive psychology, in which the environment is used to aid in the cognitive process. It 

has been proposed that humans employ embodied cognition in the outfielder problem to 

choose running paths that minimize their cognitive load [124], and such decision-making 

would thus be epistemic in nature. For example, choosing a running path in which the 

optical acceleration is always zero eliminates the need for the fielder to calculate where 

the ball will land. Unfortunately, these hypotheses are not tested in this work, as the 

theory of epistemic actions demands more rigorous mathematical development before 

this is possible. Further research may determine that epistemic actions are composed of 

already familiar concepts (e.g. such as belief compression), or it may be determined that a 

new theory of epistemic actions allows the development of new innovative ways for 

efficient decision making, but that is not decided in this work.  
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Various researchers have previously attempted to include resource allocation (e.g. 

computation time and memory) in the objective functions for optimization (e.g. [13][39]). 

However, this often leads to optimization problems with even greater complexity than the 

original problems they were meant to simplify, which makes practical solutions 

impossible to find. A new theory of epistemic actions may permit new approaches to 

approximate solutions to such problems.  

4 MODIFIED BELIEF ILQG 

In this work, van den Berg et al.’s belief space variant of iLQG [118] was 

implemented to find an approximately optimal solution to the outfielder problem due to 

its efficiency in which locally-optimal solutions to the outfielder problem could be found, 

while also improving on similar approaches which assume maximum likelihood 

observations (e.g. [11][38]). The original form of the algorithm may be found in 

Appendix A. It has been modified using directional derivatives to calculate several matrix 

derivatives required by the original algorithm, which improves the efficiency of the 

algorithm while performing the same calculation. The policies generated by both forms 

of the algorithm are equivalent down to the numerical precision of the computer.  

4.1 PROBLEM DEFINITION 

 It is assumed that the state, action, and observation spaces are all continuous, and 

that that the belief state, process, and measurement noises may be characterized by 

Gaussian distributions. Since a Gaussian distribution may be parameterized by its mean 

and variance, let 𝒃[𝒙Í, 𝑃]~𝒩[𝒙Í, 𝑃] indicate a Gaussian belief state parameterized by its 

mean 𝒙Í and variance 𝑃. Since the belief 𝒃[𝒙Í, 𝑃] is fully parameterized by its mean and 
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variance, it is also sufficient to refer to a belief as the pair 𝒙Í, 𝑃, and any function of this 

pair of parameters is thus implicitly a function of the belief state. It is also assumed that 

the system may be described by the following state dynamics and observation model for 

the random variable 𝒙�: 

𝒙��� = 𝒇[𝒙�, 𝒖�] +𝒎�,										𝒎�~𝒩�𝟎,𝑀[𝒙�, 𝒖�]�	

												𝒚� = 𝒉[𝒙�] + 𝒏�,											𝒏�~𝒩�𝟎,𝑁[𝒙�]�	 

𝒙~𝒩[𝒙Í, 𝑃] 

(14) 

where 𝒎� and 𝒏� are the process and measurement noises, respectively, and the initial 

belief 𝒙Í, 𝑃 is given. It is assumed that 𝒎� and 𝒏� are independent zero-mean Gaussian 

distributions which may have state and action dependent variance. The goal is to 

determine a locally optimal policy  𝒖� = 𝝅�∗ [𝒙Í�, 𝑃�] that minimizes the value function: 

𝜐[𝒙Í, 𝑃] = E �𝑐ℓ[𝒙Íℓ, 𝑃ℓ] +�𝑐�[𝒙Í�, 𝑃�, 𝒖�]
ℓ¿�

�Ñ

� (15) 

where ℓ is the length of the planning horizon, 𝑐ℓ[𝒙Íℓ, 𝑃ℓ] is the cost of the final belief 

state, and 𝑐�[𝒙Í�, 𝑃�, 𝒖�] is the immediate cost of executing action 𝒖� at belief state 

𝒙Í�, 𝑃�. Given that 𝑐ℓ[𝒙Íℓ, 𝑃ℓ] and 𝑐�[𝒙Í�, 𝑃�, 𝒖�] are cost functions, the value function 

𝜐[𝒙Í, 𝑃] would thus represent a cost function. It is required that the Hessians of the cost 

functions obey the following constraints: 

𝜕½𝑐ℓ
𝜕𝒙Íℓ𝜕𝒙Íℓ

≥ 	0,
𝜕½𝑐�

𝜕𝒖�𝜕𝒖�
> 0,

⎣
⎢
⎢
⎢
⎡ 𝜕½𝑐�
𝜕𝒙Í�𝜕𝒙Í�

𝜕½𝑐�
𝜕𝒙Í�𝜕𝒖�

𝜕½𝑐�
𝜕𝒖�𝜕𝒙Í�

𝜕½𝑐�
𝜕𝒖�𝜕𝒖�⎦

⎥
⎥
⎥
⎤
≥ 0 (16) 

where 𝐴 > 0 implies 𝐴 is positive definite, and 𝐴 ≥ 0 implies 𝐴 is positive semi-definite. 

The constraints in Equation 16 imply that the value function must be a convex function 
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with respect to the mean of the belief state at all time steps 𝑘, and must be a strictly 

convex function with respect to the input. The requirement that the value function is 

strictly convex function with respect to the input causes the optimal action to be unique.  

4.2 EXTENDED KALMAN FILTER 

 Since exact Bayesian inference is generally intractable, the Extended Kalman 

Filter (EKF; [97][121]) is used as the state estimator. The EKF relies on the following 

first-order approximations for the mean and variance of a function 𝒈[𝒛] of a stochastic 

variable 𝒛. 

E�𝒈[𝒛]� ≈ 𝒈�E[𝒛]� (17) 

Var�𝒈[𝒛]� ≈
𝜕𝒈
𝜕𝒛 �E

[𝒛]�Var[𝒛]
𝜕𝒈
𝜕𝒛 �E

[𝒛]�Û (18) 

The EKF assumes the initial belief 𝒙Í, 𝑃 accurately describes the initial distribution of 

the random variable 𝒙. Given a belief 𝒙Í�, 𝑃�, the belief at the next time step may be 

determined as: 

𝒙Í��� = 𝒇[𝒙Í�, 𝒖�] + 𝐾�Ü𝒚��� − 𝒉�𝒇[𝒙Í�, 𝒖�]�Ý (19) 

𝑃��� = (𝐼 − 𝐾�𝐻�)Γ�	

= (Γ�¿� + 𝐻�Û𝑁�¿�𝐻�)¿� 
(20) 

where, 

Γ� = 𝐹�𝑃�𝐹�Û + 𝑀� (21) 

𝐾� = Γ�𝐻�Û(𝐻�Γà𝐻�Û + 𝑁�)¿�	

= 𝑃���𝐻�Û𝑁�¿� 
(22) 

𝐹� =
𝜕𝒇
𝜕𝒙
[𝒙Í�, 𝒖�],					𝐻� =

𝜕𝒉
𝜕𝒙 �𝒇

[𝒙Í�, 𝒖�]� (23) 
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𝑀� = 𝑀[𝒙Í�, 𝒖�], 𝑁� = 𝑁�𝒇[𝒙Í�, 𝒖�]� (24) 

Two forms of the variance update 𝑃��� and the Kalman gain 𝐾� are listed in Equations 

20 and 22, respectively. The first form is conventional for Kalman filter form, while the 

latter is typically used in information filters [97]. Both forms are listed because each will 

be convenient at different times throughout this work. The latter form is slightly more 

computationally expensive than the standard form for use in Kalman filtering. However, 

this form is used frequently in this work because it simplifies the presentation of many 

analytic partial derivatives. Future work may seek to further improve the efficiency of the 

algorithm through considering the ordering of matrix operations. 

4.3 BELIEF DYNAMICS  

 Since the measurement that the agent will receive is uncertain, the resultant belief 

state of an action and observation sequence will be uncertain, as was mentioned in 

Section 2.2. This may also be deduced from the belief update given by Equations 19-24. 

First, let 𝒘� be 

𝒘� = 𝐾�Ü𝒚��� − 𝒉�𝒇[𝒙Í�, 𝒖�]�Ý (25) 

Then, Equation 19 may be rewritten as 

𝒙Í��� = 𝒇[𝒙Í�, 𝒖�] + 𝒘� (26) 

It is assumed that the mean of the belief state 𝒙Í� at time 𝑘 is given deterministic variable, 

and that 𝒖� represents a deterministic input (any stochastic part of the input may be 

lumped into 𝒎�), therefore the first term of the Equation 26 is deterministic. However, 

𝒘� is a stochastic variable since the measurement 𝒚��� is uncertain. The first order 

approximation of the mean of 𝒘� yields 
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E[𝒘�] = 𝐾�E[𝒚���] − 𝐾�E �𝒉�𝒇[𝒙Í�, 𝒖�]�� (27) 

where 

E[𝒚���] = E[𝒉[𝒇[𝒙�, 𝒖�] +𝒎�] + 𝒏�]	

≈ 𝒉�𝒇[𝒙Í�, 𝒖�]�	 
(28) 

which is due to the fact 𝒎� and 𝒏� are zero mean, Equations 14 and 17-18, and since 𝒙Í� 

is the mean of 𝒙�. Therefore, the E[𝒘�] ≈ 𝟎 to first order. The variance is 

Var[𝒘�] = 𝐾�Var �𝒚��� − 𝒉�𝒇[𝒙Í�, 𝒖�]��𝐾�Û (29) 

where 

 

Var �𝒚��� − 𝒉�𝒇[𝒙Í�, 𝒖�]�� = Var[𝒚���]	

= Var[𝒉[𝒇[𝒙�, 𝒖�] +𝒎�] + 𝒏�]	

≈ 𝐻�Γ�𝐻�Û + 𝑁� 

(30) 

since Γ� = Var[𝒇[𝒙�, 𝒖�] +𝒎�]. By combining Equations 29-30 and by substitution of 

the first definition of 𝐾� from Equation 22, it can be seen that 

Var[𝒘�] = 𝐾�(𝐻�Γ�𝐻�Û + 𝑁�)((𝐻�Γà𝐻�Û + 𝑁�)¿�𝐻�Γ�) 

= 𝐾�𝐻�Γ� 
(31) 

So, given a belief state 𝒙Í�, 𝑃� and control input 𝒖�, but before a measurement sampled 

from the distribution of 𝒚��� is observed, the mean of the belief state 𝒙Í��� given by the 

belief update is stochastic and may expressed by the following equation: 

𝒙Í��� = 𝒇[𝒙Í�, 𝒖�] + 𝒘�,										𝒘�~𝒩�𝟎,𝑊[𝒙Í�, 𝑃�, 𝒖�]� (32) 

where 

𝑊[𝒙Í�, 𝑃�, 𝒖�] = 𝐾�𝐻�Γ� (33) 
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Note that 𝑊[𝒙Í�, 𝑃�, 𝒖�] is the variance of the mean 𝒙Í��� given by the belief update 

before a measurement is taken, not the variance 𝑃��� that parameterizes the belief state.  

The variance that parameterizes the belief state is given by 

𝑃��� = Φ[𝒙Í�, 𝑃�, 𝒖�] (34) 

where, 

Φ[𝒙Í�, 𝑃�, 𝒖�] = (Γ�¿� + 𝐻�Û𝑁�¿�𝐻�)¿� (35) 

which was given by Equation 20. This implies that the variance dynamics are 

deterministic. Therefore, given a previous belief state 𝒙Í�, 𝑃� and control input 𝒖�, the 

variance of the belief state after a belief update is always the same value regardless of 

what measurement is made. This is in contrast to the mean dynamics, which are 

stochastic, i.e. given a  previous belief state 𝒙Í�, 𝑃� and control input 𝒖�, the mean 𝒙Í��� 

of the belief state after the belief update depends on which measurement is made, which 

is uncertain prior to receiving the actual measurement. Once a measurement is made, the 

Figure 9: Before the measurement 𝒚��� is observed, the mean 𝒙Í��� of the succeeding belief state is 
uncertain, and is Gaussian-distributed with variance 𝑊[𝒙Í�, 𝑃�, 𝒖�]. After the measurement 𝒚��� is observed, 
the mean 𝒙Í��� the succeeding belief state collapses to a unique value. 
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distribution of the belief state collapses to a single belief state by using the measured 

value of 𝒚��� in the belief update (Equations 19-24). The belief dynamics describe a 

Gaussian distribution over the means of Gaussian distributions with the same variance, 

which collapses to a belief state that is Gaussian with known mean and variance once an 

actual measurement is made. This is illustrated in Figure 9. 

4.4 VALUE ITERATION 

The value function 𝜐�[𝒙Í�, 𝑃�] at time 𝑘 is approximated by a function that is 

quadratic in the mean and linear in the variance, that is locally valid around some 

nominal belief 𝒙â�, 𝑃ã�: 

𝜐�[𝒙Í�, 𝑃�] ≈ 𝑠� +
1
2
(𝒙Í� − 𝒙â�)Û𝑆�(𝒙Í� − 𝒙â�) + 𝒔�Û(𝒙Í� − 𝒙â�) + tr[𝑇�(𝑃� − 𝑃ã�)] (36) 

with 𝑆� ≥ 	0. The form of this approximation is natural for cost functions that are 

quadratic in the state, since the expected cost is then quadratic with respect to the mean 

and linear with respect to the variance from the identity  

E[𝒛Û𝐴𝒛] = E[𝒛Û]𝐴E[𝒛] + tr�𝐴	Var[𝒛]�, (37) 

as noted in [118]. 

4.4.1 VALUE FUNCTION APPROXIMATIONS 

Suppose that an approximation of the value function 𝜐���[𝒙Í���, 𝑃���] of the form 

given in Equation 36 exists at time step 𝑘 + 1, with parameters 𝑠���, 𝒔���Û , 𝑆���, 𝑇��� 

and nominal belief 𝒙â���, 𝑃ã���. It will now be shown that an approximation of the value 

function of the form given in Equation 36 exists at time step 𝑘 through linearizing the 

belief dynamics and quadratizing the immediate reward function, so that parameters 𝑠�, 
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𝒔�Û, 𝑆�, 𝑇� and nominal belief 𝒙â�, 𝑃ã� may be determined at time step 𝑘 if the parameters 

and nominal belief are given at time 𝑘 + 1.  

From the Bellman backup (Equation 4), it necessary to find the control input 

which minimizes (rather than maximizes, as noted in Section 4.1) the expected value of 

the value function at each belief. 

𝜐�[𝒙Í, 𝑃] = min
𝒖
Ü𝑐�[𝒙Í�, 𝑃�, 𝒖�] + E�𝜐���[𝒙Í���, 𝑃���]�Ý (38) 

From the approximation of the value function given by Equation 36 and the belief state 

dynamics given by Equations 32-35, Equation 38 may be approximated as 

𝜐�[𝒙Í�, 𝑃�] ≈ min
𝒖³

å𝑐�[𝒙Í�, 𝑃�, 𝒖�] + E æ𝑠��� 		

+
1
2
(𝒇[𝒙Í�, 𝒖�] + 𝒘� − 𝒙â���)Û𝑆���(𝒇[𝒙Í�, 𝒖�] + 𝒘� − 𝒙â���)

+ 𝒔���Û (𝒇[𝒙Í�, 𝒖�] + 𝒘� − 𝒙â���)

+ tr[𝑇�(Φ[𝒙Í�, 𝑃�, 𝒖�] − 𝑃ã���)]çè	

≈ min
𝒖³

Æ𝑐�[𝒙Í�, 𝑃�, 𝒖�] + 𝑠���

+
1
2
(𝒇[𝒙Í�, 𝒖�] − 𝒙â���)Û𝑆���(𝒇[𝒙Í�, 𝒖�] − 𝒙â���)

+ 𝒔���Û (𝒇[𝒙Í�, 𝒖�] − 𝒙â���) + tr[𝑇���(Φ[𝒙Í�, 𝑃�, 𝒖�] − 𝑃ã���)]

+
1
2 tr

[𝑆���𝑊[𝒙Í�, 𝑃�, 𝒖�])]Ê 

(39) 

where last term comes from applying the identity in Equation 37 to the expectation of the 

term which is quadratic in 𝒘�. This will further be approximated by linearizing the belief 

dynamics about a nominal belief 𝒙â�, 𝑃ã� and control input 𝒖â� that are selected such that  



55 

𝒙â��� = 𝒇[𝒙â�, 𝒖â�] (40) 

𝑃ã��� = Φ[𝒙â�, 𝑃ã�, 𝒖â�] (41) 

Remaining consistent with the format of Equations 40-41, the over-bar (e.g. 𝒛ã) will be 

used to denote declared variables that are calculated using the nominal values 𝒙â�, 𝑃ã�, and 

𝒖â�.  

The deterministic part of the mean dynamics may be linearized as 

𝒇[𝒙Í�, 𝒖�] − 𝒙â��� ≈ 𝐹ã�(𝒙Í� − 𝒙â�) + �̅��(𝒖� − 𝒖â�) (42) 

where, 

𝐹ã� =
𝜕𝒇
𝜕𝒙Í�

[𝒙â�, 𝒖â�], �̅�� =
𝜕𝒇
𝜕𝒖

[𝒙â�, 𝒖â�] (43) 

The method used here to linearize the dynamics of the variance (second to last 

term in final equation of Equation 39) and the stochastic part of the mean dynamics (last 

term of Equation 39) is what distinguishes this method from the method used by [118]. In 

[118], the traces of matrix products in Equation 39 were represented as the dot product of 

two vectorized 𝑛 × 𝑛 matrices (see Appendix A). This made it convenient to perform 

linearization, although it was among the sources of greatest computational cost in the 

algorithm. Instead of employing vectorization, the linearization can equivalently be 

performed though the use of directional derivatives [106]. The following properties of 

matrix derivatives will also be used [75] 

𝜕𝐴¿�

𝜕𝑧 = −𝐴¿�
𝜕𝐴
𝜕𝑧 𝐴

¿� (44) 

𝜕tr[𝐴]
𝜕𝑧 = tr À

𝜕𝐴
𝜕𝑧Á 

(45) 

First, linearization of the variance of the belief state will be performed by noting 

that 
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Φ[𝒙Í�, 𝑃�, 𝒖�] − 𝑃ã��� = Φ[𝒙Í�, 𝑃�, 𝒖�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�]. (46) 

For the sake of clarity, the first order Taylor series expansions of the mean, 

variance, and control input will all be considered separately by assuming that the 

parameters that are not included in each expansion are held fixed (justification for this is 

provided in Appendix C). The first order Taylor series expansion of Φ[𝒙Í�, 𝑃�, 𝒖�] −

Φ[𝒙â�, 𝑃ã�, 𝒖â�] is then given by the sum of the individual expansions. 

Φ[𝒙Í�, 𝑃�, 𝒖�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�]

≈ 	 (Φ[𝒙Í�, 𝑃ã�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])

+ (Φ[𝒙â�, 𝑃�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])

+ (Φ[𝒙â�, 𝑃ã�, 𝒖�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�]) 

(47) 

Additionally, the properties of traces and the above equation imply the following about 

the second to last term in Equation 47, 

tr[𝑇���(Φ[𝒙Í�, 𝑃�, 𝒖�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])]

≈ tr[𝑇���(Φ[𝒙Í�, 𝑃ã�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])]

+ tr[𝑇���(Φ[𝒙â�, 𝑃�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])]

+ tr[𝑇���(Φ[𝒙â�, 𝑃ã�, 𝒖�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])] 

(48) 

The linearization of Φ[𝒙â�, 𝑃�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�] will be performed first. Whereas van 

den Berg et al. [118] proposed taking the first order Taylor series expansion with respect 

to each element of 𝑃� (see Appendix A), here it is proposed that it is more efficient to 

take the first order Taylor series expansion of a directional derivative. First, let 𝑃� be 

represented as a deviation Δ𝑃� from the nominal value 𝑃ã�. 

𝑃� = 𝑃ã� + Δ𝑃� (49) 

Now, let 𝛿𝑃� be a scalar multiple 𝛼 of Δ𝑃�. 
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Δ𝑃� = 𝛼𝛿𝑃� (50) 

If the elements of Δ𝑃� and 𝛿𝑃� were arranged into a vector, it can be seen that 

Δ𝑃� and 𝛿𝑃� would be in the same direction, since they vary only by a scaling factor 𝛼. 

Taking the first order Taylor series expansion of Φ[𝒙â�, 𝑃�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�] about 

𝛼 = 0 yields 

Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�] ≈ Φ[𝒙â�, 𝑃ã�, 𝒖â�] +
𝜕Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]

𝜕𝛼 ë
ÃÑ

(𝛼 − 0) (51) 

This expansion is valid for any choice of 𝛿𝑃�. To evaluate the partial derivative in 

Equation 51, first allow Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�] to be represented as the inverse of its own 

inverse. 

Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�] = (Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]¿�)¿� (52) 

This allows for the application of the identity given in Equation 44, 

𝜕Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]
𝜕𝛼 ë

ÃÑ
= −𝑃ã���

𝜕Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]¿�

𝜕𝛼 ë
ÃÑ

𝑃ã��� (53) 

The partial derivative of Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]¿� in Equation 53 may be found by 

referencing Equation 20.  

𝜕Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]¿�

𝜕𝛼 ë
ÃÑ

=
𝜕
𝜕𝛼

(Γ�¿� + 𝐻�Û𝑁�¿�𝐻�)ì
𝒙â³,ÃÑ,𝒖â

	

=
𝜕Γ�¿�	
𝜕𝛼 ë

𝒙â³,ÃÑ,𝒖â
 

(54) 

since Γ�¿� is a function of 𝛼, which can be seen from Equations 21 and 49-50, while the 

second term is not. By once again applying the identity in Equation 44 and evaluating at 

𝛼 = 0, the following is obtained: 
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𝜕Γ�¿�	
𝜕𝛼 ë

𝒙â³,ÃÑ,𝒖â
= −Γã�¿�

𝜕Γ�	
𝜕𝛼 ì𝒙â³,ÃÑ,𝒖â

Γã�¿� (55) 

From Equation 21, it can be seen that the partial derivative in the above equation is  

𝜕Γ�	
𝜕𝛼 ì𝒙â³,ÃÑ,𝒖â

= 𝐹ã�
𝜕𝑃�
𝜕𝛼 ì𝒙â³,ÃÑ,𝒖â

𝐹ã�Û (56) 

since 𝐹� and 𝑀� are not a function of 𝛼. Expressing 𝑃� once again as a deviation from the 

nominal value 𝑃ã�, as given Equation 49, and evaluating at 𝛼 = 0 yields 

𝐹ã�
𝜕(𝑃ã� + 𝛼𝛿𝑃�)

𝜕𝛼 ë
𝒙â³,ÃÑ,𝒖â

𝐹ã�Û = 𝐹ã�𝛿𝑃�𝐹ã�Û (57) 

Substituting the results of Equations 53-57 into Equation 51 yields 

𝜕Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]
𝜕𝛼 ë

ÃÑ
= 𝑃ã���Γã�¿�𝐹ã�𝛿𝑃�𝐹ã�ÛΓã�¿�𝑃ã��� (58) 

Substituting the above equation into the Taylor series expansion in Equation 51 yields, 

Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�] ≈ (𝑃ã���Γã�¿�𝐹ã�𝛿𝑃�𝐹ã�ÛΓã�¿�𝑃ã���)(𝛼 − 0)	

≈ 	𝑃ã���Γã�¿�𝐹ã�(𝛼𝛿𝑃�)𝐹ã�ÛΓã�¿�𝑃ã��� 
(59) 

where multiplication by 𝛼 is commutative since it is scalar. From Equation 50, it can be 

seen that Δ𝑃� may be substituted into the above equation. 

Φ[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�] ≈ 𝑃ã���Γã�¿�𝐹ã�Δ𝑃�𝐹ã�ÛΓã�¿�𝑃ã��� (60) 

Now, since 𝛿𝑃� was chosen arbitrarily, this approximation is valid for any matrix Δ𝑃�. 

Equation 60 may then be substituted into the second to last term in Equation 48 to give: 

tr[𝑇���(Φ[𝒙â�, 𝑃�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])] ≈ tr[𝑇���𝑃ã���Γã�¿�𝐹ã�Δ𝑃�𝐹ã�ÛΓã�¿�𝑃ã���]	

≈ tr[𝐹ã�ÛΓã�¿�𝑃ã���𝑇���𝑃ã���Γã�¿�𝐹ã�Δ𝑃�] 
(61) 

where the cyclic property of traces was used to rearrange the product inside the trace. 

Now, let 𝑋� be defined as the matrix product that precedes Δ𝑃� in Equation 61. 
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𝑋� = 𝐹ã�ÛΓã�¿�𝑃ã���𝑇���𝑃ã���Γã�¿�𝐹ã� (62) 

A form similar to the second to last term in Equation 39 can be obtained by referencing 

Equations 61-62. 

tr[𝑇���(Φ[𝒙â�, 𝑃�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])] ≈ tr[𝑋�(𝑃� − 𝑃ã�)] (63) 

Now the linearization of the term Φ[𝒙Í�, 𝑃ã�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�] will be 

performed. While the preceding Taylor series expansion employed the directional 

derivative, it is usually not as convenient to apply here. Instead, the partial derivatives 

with respect to each element 𝑥îï of 𝒙Í� are employed in the expansion about 𝒙â�. 

Φ[𝒙Í�, 𝑃ã�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�] ≈�ð
𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑥îï
ë
𝒙â³,ñã³,𝒖â³

(𝑥îï − �̅�ï)ò
ï

 (64) 

where �̅�ï is an element of 𝒙â�. The trace of this quantity is then 

tr[𝑇���(Φ[𝒙Í�, 𝑃ã�, 𝒖â�] − Φ[𝒙â�, 𝑃ã�, 𝒖â�])]

≈ tr ð𝑇��� ó�
𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑥îï
ë
𝒙â³,ñã³,𝒖â³

(𝑥îï − �̅�ï)
ï

ôò

≈�õtr ð𝑇���
𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑥îï
ë
𝒙â³,ñã³,𝒖â³

ò (𝑥îï − �̅�ï)ö
ï

 

(65) 

which may be derived from the properties of traces, and since (𝑥îï − �̅�ï) is scalar. Note 

that Equation 65 may be expressed as an inner product of two vectors  

tr[𝑆���(𝑊[𝒙Í�, 𝑃ã�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])] ≈ 𝒂�Û	(𝒙Í − 𝒙â�) (66) 

where an element 𝑎ï of 𝒂� is given by 

𝑎ï = tr ð𝑇���
𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑥îï
ë
𝒙â³,ñã³,𝒖â³

ò (67) 
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The partial derivative in Equation 67 may be found numerically, or it may be found 

analytically using the methods presented in Appendix B. 

The process for linearization with respect to the control input is very similar to the 

linearization with respect to the mean. The resulting approximation of the third term in 

Equation 48 is 

tr[𝑇ø��(Φ[𝒙âø, 𝑃ãø, 𝒖ø] − Φ[𝒙âø, 𝑃ãø, 𝒖âø])]

≈�õtr ð𝑇���
𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑢ï
ë
𝒙â³,ñã³,𝒖â³

ò (𝑢ï − 𝑢ãï)ö
ï

													

≈ 𝒃�Û(𝒖� − 𝒖â�) 

(68) 

where an element 𝑏ï of 𝒃� is given by 

𝑏ï = tr ð𝑇���
𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑢ï
ë
𝒙â³,ñã³,𝒖â³

ò (69) 

Again, the partial derivative in Equation 69 may be found numerically, or it may be 

found analytically using the methods presented in Appendix B. 

 The linearization of 𝑊[𝒙Í�, 𝑃�, 𝒖�] can be performed similarly to the linearization 

of the variance of the belief state. First, note that the first order Taylor series expansion of 

𝑊[𝒙Í�, 𝑃�, 𝒖�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�] can be represented as the sum of the individual 

expansions. 

𝑊[𝒙Í�, 𝑃�, 𝒖�] ≈ 𝑊[𝒙â�, 𝑃ã�, 𝒖â�] + (𝑊[𝒙Í�, 𝑃ã�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])

+ (𝑊[𝒙â�, 𝑃�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])

+ (𝑊[𝒙â�, 𝑃ã�, 𝒖�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�]) 

(70) 

The properties of traces and the above equation imply the last term in Equation 39 

may be approximated as 
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tr�𝑆���𝑊[𝒙Í�, 𝑃�, 𝒖�]�

≈ tr�𝑆���𝑊[𝒙â�, 𝑃ã�, 𝒖â�]�

+ tr[𝑆���(𝑊[𝒙Í�, 𝑃ã�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])]

+ tr[𝑆���(𝑊[𝒙â�, 𝑃�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])]

+ tr[𝑆���(𝑊[𝒙â�, 𝑃ã�, 𝒖�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])] 

(71) 

The linearization of 𝑊[𝒙â�, 𝑃�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�] will be performed first. The 

assumptions of Equations 49-50 are used to form the Taylor series expansion of this term 

about 𝛼 = 0. 

𝑊[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�] ≈
𝜕𝑊[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]

𝜕𝛼 ë
ÃÑ

(𝛼 − 0) (72) 

Using Equation 33, the partial derivative in Equation 72 can be evaluated as 

𝜕𝑊[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]
𝜕𝛼 ë

ÃÑ
=

𝜕
𝜕𝛼 𝐾�𝐻�Γ�ì𝒙â³,ÃÑ,𝒖â³

	

=
𝜕𝐾�
𝜕𝛼 ì𝒙â³,ÃÑ,𝒖â³

𝐻â�Γã� + 𝐾â�𝐻â�
𝜕Γ�
𝜕𝛼 ì𝒙â³,ÃÑ,𝒖â³

 

(73) 

The first partial derivative in Equation 73 is given by, 

𝜕𝐾�
𝜕𝛼 ì𝒙â³,ÃÑ,𝒖â³

=
𝜕Φ[𝒙â�, 𝑃�, 𝒖â�]

𝜕𝛼 𝐻�Û𝑁�¿�ë
𝒙â³,ÃÑ,𝒖â³

	

= 𝑃ã���Γã�¿�𝐹ã�𝛿𝑃�𝐹ã�ÛΓã�¿�𝑃ã���𝐻â�Û𝑁â�¿� 

(74) 

which is obtained by applying Equations 22 and 58 and evaluating at the nominal values. 

The second partial derivative in Equation 73 is given by Equations 56-57. Substitution of 

Equations 74 and 56-57 into Equation 73 yields 
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𝜕𝑊[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�]
𝜕𝛼 ë

ÃÑ

= 𝑃ã���Γã�¿�𝐹ã�𝛿𝑃�𝐹ã�ÛΓã�¿�𝑃ã���𝐻â�Û𝑁â�¿�𝐻â�Γã� + 𝐾â�𝐻â�𝐹ã�𝛿𝑃�𝐹ã�Û 

(75) 

Substituting Equation 75 into Equation 72 gives 

𝑊[𝒙â�, 𝑃ã� + 𝛼𝛿𝑃�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�]

≈ (𝑃ã���Γã�¿�𝐹ã�𝛿𝑃�𝐹ã�ÛΓã�¿�𝑃ã���𝐻â�Û𝑁â�¿�𝐻â�Γã� + 𝐾â�𝐻â�𝐹ã�𝛿𝑃�𝐹ã�Û)𝛼

≈ 𝑃ã���Γã�¿�𝐹ã�(𝛼𝛿𝑃�)𝐹ã�ÛΓã�¿�𝑃ã���𝐻â�Û𝑁â�¿�𝐻â�Γã� + 𝐾â�𝐻â�𝐹ã�(𝛼𝛿𝑃�)𝐹ã�Û

≈ 𝑃ã���Γã�¿�𝐹ã�Δ𝑃�𝐹ã�ÛΓã�¿�𝑃ã���𝐻â�Û𝑁â�¿�𝐻â�Γã� + 𝐾â�𝐻â�𝐹ã�Δ𝑃�𝐹ã�Û 

(76) 

which obtained by distributing 𝛼 and applying Equation 50. It is convenient to represent 

the products before and after the Δ𝑃� values as single terms. 

Ψ� = 𝐹ã�ÛΓã�¿�𝑃ã���𝐻â�Û𝑁â�¿�𝐻â�Γã� 

Ψ½ = 𝑃ã���Γã�¿�𝐹ã� 

Ψ& = 𝐹ã�Û 

Ψ$ = 𝐾â�𝐻â�𝐹ã� 

(77) 

Substituting Equations 76-77 into the second to last term in Equation 71 yields 

tr[𝑆���(𝑊[𝒙â�, 𝑃, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])] ≈ tr[𝑆���(Ψ½Δ𝑃�Ψ� + Ψ$Δ𝑃�Ψ&)]	

≈ tr[(Ψ�𝑆���Ψ½ + Ψ&𝑆���Ψ$)Δ𝑃�] 
(78) 

where the properties of the sum of traces and the cyclic property of traces were used to 

rearrange the product inside the trace. Now, let 𝑉� be defined as the matrix product that 

precedes Δ𝑃� in Equation 78: 

𝑉� = Ψ�𝑆���Ψ½ + Ψ&𝑆���Ψ$ (79) 

A form similar to the second to last term in Equation 39 can be obtained by referencing 

Equations 78-79. 
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tr[𝑆���(𝑊[𝒙â�, 𝑃, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])] ≈ tr[𝑉�(𝑃� − 𝑃ã�)] (80) 

Although it is not shown here, the matrix 𝑉� also happens to be symmetric. 

The process for linearization with respect to the mean and the control input is very 

similar to the linearization performed in Equation 65. The resulting approximations of the 

second and fourth terms in Equation 71 are 

tr[𝑆���(𝑊[𝒙Í�, 𝑃ã�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])]

≈�õtr ð𝑆���
𝜕𝑊[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑥îï
ë
𝒙â³,ñã³,𝒖â³

ò (𝑥îï − �̅�ï)ö
ï

 
(81) 

tr[𝑆���(𝑊[𝒙Í�, 𝑃ã�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])]

≈�õtr ð𝑆���
𝜕𝑊[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑢ï
ë
𝒙â³,ñã³,𝒖â³

ò (𝑢ï − 𝑢ãï)ö
ï

 
(82) 

which may be expressed as the inner vector products 

tr[𝑆���(𝑊[𝒙Í�, 𝑃ã�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])] ≈ 𝒕�Û(𝒙Í − 𝒙â�) (83) 

tr[𝑆���(𝑊[𝒙Í�, 𝑃ã�, 𝒖â�] −𝑊[𝒙â�, 𝑃ã�, 𝒖â�])] ≈ 𝒗�Û(𝒖 − 𝒖â�) (84) 

where elements 𝑡ï of 𝒕� and 𝑣ï of 𝒗� are given by 

𝑡ï = tr ð𝑆���
𝜕𝑊[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑥îï
ë
𝒙â³,ñã³,𝒖â³

ò (85) 

𝑣ï = tr ð𝑆���
𝜕𝑊[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑢ï
ë
𝒙â³,ñã³,𝒖â³

ò (86) 

The partial derivatives in Equations 85-86 may be found numerically, or they may be 

found analytically using the methods presented in Appendix B. 
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 The term 𝑐�[𝒙Í�, 𝑃�, 𝒖�] in Equation 39 is approximated using a second order 

Taylor series expansion about the nominal values 𝒙â� and 𝒖â�, and a first order Taylor 

series expansion with about 𝑃ã�: 

𝑐�[𝒙Í�, 𝑃�, 𝒖�] ≈ 𝑞� +
1
2 À
𝒙Í� − 𝒙â�
𝒖� − 𝒖â�

Á
Û
À𝑄� 𝐽�Û
𝐽� 𝑅�

Á À𝒙Í� − 𝒙â�𝒖� − 𝒖â�
Á + �

𝒒�
𝒓��

Û
À𝒙Í� − 𝒙â�𝒖� − 𝒖â�

Á

+ tr[𝑈�(𝑃� − 𝑃ã�)] 

(87) 

where 

𝑄� =
𝜕½𝑐�

𝜕𝒙Í�𝜕𝒙Í�
[𝒙â�, 𝑃ã�, 𝒖â�], 𝒒�Û =

𝜕𝑐�
𝜕𝒙Í�

[𝒙â�, 𝑃ã�, 𝒖â�], 

(88) 

𝑅� =
𝜕½𝑐�

𝜕𝒖�𝜕𝒖�
[𝒙â�, 𝑃ã�, 𝒖â�], 𝒓�Û =

𝜕𝑐�
𝜕𝒖�

[𝒙â�, 𝑃ã�, 𝒖â�], 

𝐽� =
𝜕½𝑐�

𝜕𝒖�𝜕𝒙Í�
[𝒙â�, 𝑃ã�, 𝒖â�], 

𝑞� = 𝑐�[𝒙â�, 𝑃ã�, 𝒖â�], 

𝑈� =
𝜕𝑐�
𝜕𝑃�

[𝒙â�, 𝑃ã�, 𝒖â�], 
 

where either directional derivatives or element-wise differentiation may be used to obtain 

𝑈�, whichever is more convenient. 

4.4.2 BELLMAN BACKUP SUMMARY 

The Bellman backup equation may now be approximated using the 

approximations derived in Section 4.4.1. First, recall the Bellman backup equation: 
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𝜐�[𝒙Í�, 𝑃�]≈ min
𝒖³

Æ𝑐�[𝒙Í�, 𝑃�, 𝒖�] + 𝑠���

+
1
2
(𝒇[𝒙Í�, 𝒖�] − 𝒙â���)Û𝑆���(𝒇[𝒙Í�, 𝒖�] − 𝒙â���)

+ 𝒔���Û (𝒇[𝒙Í�, 𝒖�] − 𝒙â���) + tr[𝑇���(Φ[𝒙Í�, 𝑃�, 𝒖�] − 𝑃ã���)]

+
1
2 tr

[𝑆���𝑊[𝒙Í�, 𝑃�, 𝒖�])]Ê 

(89) 

The following approximations summarize the results of Section 4.4.1: 

𝒇[𝒙Í�, 𝒖�] − 𝒙â��� ≈ 𝐹ã�(𝒙Í� − 𝒙â�) + �̅��(𝒖� − 𝒖â�) (90) 

tr[𝑇���(Φ[𝒙Í�, 𝑃�, 𝒖�] − 𝑃ã���)]

≈ tr[𝑋�(𝑃� − 𝑃ã�)] + 𝒂�Û	(𝒙Í − 𝒙â�) + 𝒃�Û(𝒖� − 𝒖â�) 
(91) 

tr[𝑆���𝑊[𝒙Í�, 𝑃�, 𝒖�])] ≈ 𝑤� + tr[𝑉�(𝑃� − 𝑃ã�)] + 𝒕�Û	(𝒙Í − 𝒙â�) + 𝒗�Û(𝒖� − 𝒖â�) (92) 

𝑐�[𝒙Í�, 𝑃�, 𝒖�] ≈ 𝑞� +
1
2 À
𝒙Í� − 𝒙â�
𝒖� − 𝒖â�

Á
Û
À𝑄� 𝐽�Û
𝐽� 𝑅�

Á À𝒙Í� − 𝒙â�𝒖� − 𝒖â�
Á + �

𝒒�
𝒓��

Û
À𝒙Í� − 𝒙â�𝒖� − 𝒖â�

Á

+ tr[𝑈�(𝑃� − 𝑃ã�)] 

(93) 

 Now, Equations 90-93 can be substituted into Equation 89, which results in the 

following after like terms are collected and the result presented in matrix form 

𝜐�[𝒙Í�, 𝑃�] ≈ 𝑒� +
1
2 À
𝒙Í� − 𝒙â�
𝒖� − 𝒖â�

Á
Û
À𝐶� 𝐸�Û
𝐸� 𝐷�

Á À𝒙Í� − 𝒙â�𝒖� − 𝒖â�
Á + �

𝒄�
𝒅�
�
Û
À𝒙Í� − 𝒙â�𝒖� − 𝒖â�

Á

+ tr[𝑌�(𝑃� − 𝑃ã�)] 

(94) 

where 

𝐶� = 𝑄� + 𝐹ã�Û𝑆���𝐹ã�, 𝐷� = 𝑅� + �̅��Û𝑆����̅��, 

(95) 𝐸� = 𝐽� + �̅��Û𝑆���𝐹ã�, 𝑌� = 𝑈� + 𝑋� +
1
2𝑉�, 

𝒄�Û = 𝒒�Û + 𝒔���Û 𝐹ã� + 𝒂�Û +
1
2 𝒕�

Û, 𝒅�Û = 𝒓�Û + 𝒔���Û �̅�� + 𝒃�Û +
1
2𝒗�

Û, 
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𝑒� = 𝑞� + 𝑠��� +
1
2𝑤�, 

 

A locally optimal policy 𝒖� = 𝝅�[𝒙Í�, 𝑃�] at time step 𝑘 can be found by referencing 

Equations 94-95 and setting the first derivative of 𝜐�[𝒙Í�, 𝑃�] with respect to 𝒖� equal to 

zero and then solving for 𝒖�. 

𝒖� = 𝐿�(𝒙Í� − 𝒙â�) + 𝒍� + 𝒖â� (96) 

where 

𝐿� = −𝐷�¿�𝐸� (97) 

𝒍� = −𝐷�¿�𝒅� (98) 

Note that 𝐷� is invertible since it was required that 𝑅� > 0 and 𝑆��� ≥ 0. By substitution 

of Equations 96-98 into Equation 94, the desired form of the value function 

approximation is obtained at time step 𝑘. 

𝜐�[𝒙Í�, 𝑃�] ≈ 𝑠� +
1
2
(𝒙Í� − 𝒙â�)Û𝑆�(𝒙Í� − 𝒙â�) + 𝒔�Û(𝒙Í� − 𝒙â�)

+ tr[𝑇�(𝑃� − 𝑃ã�)] 

(99) 

where 

𝑆� = 𝐶� + 𝐿�Û𝐸�, 𝒔�Û = 𝒄�Û + 𝒍�Û𝐸�, 

(100) 
𝑠� = 𝑒� +

1
2𝒅�

Û𝒍�, 
𝑇� = 𝑌�, 

 

Therefore, given a value function 𝜐���[𝒙Í���, 𝑃���] of the form assumed in Equation 36 

and given that it is possible to select 𝒙â�, 𝑃ã�, 𝒖â� such that 𝒙â��� = 𝒇[𝒙â�, 𝒖â�] and 𝑃ã��� =

Φ[𝒙â�, 𝑃ã�, 𝒖â�], then 𝜐�[𝒙Í�, 𝑃�] may be approximated using Equations 99-100.  
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4.4.3 ITERATING TO A LOCALLY-OPTIMAL POLICY 

Sections 4.4.1 and 4.4.2 assume that it possible to select 𝒙â�, 𝑃ã�, 𝒖â� such that 

𝒙â��� = 𝒇[𝒙â�, 𝒖â�] and 𝑃ã��� = Φ[𝒙â�, 𝑃ã�, 𝒖â�] in order to generate the approximation of 

𝜐�[𝒙Í�, 𝑃�] from the approximation of 𝜐���[𝒙Í���, 𝑃���]. This is most easily accomplished 

by assuming a policy, which is applied to the system beginning at a given initial belief 

state 𝒙â = 𝒙Í, 𝑃ã = 𝑃. Then, successive values of 𝒙â��� and 𝑃ã��� are generated by 

applying the policy and Equations 40-41. This is continued until the length of the 

planning horizon, ℓ, is reached. This process thus generates a sequence of nominal beliefs 

and actions which satisfy Equations 40-41 : {(𝒙â, 𝑃ã, 𝒖â), … , (𝒙âℓ¿�, 𝑃ãℓ¿�, 𝒖âℓ¿�), (𝒙âℓ, 𝑃ãℓ)}.  

By approximating the value function at the final time step 𝑘 = ℓ, 𝜐ℓ[𝒙Íℓ, 𝑃ℓ], it is 

then possible to apply back-propagation as described in Section 4.4.2 to find an 

approximately optimal value function 𝜐�[𝒙Í�, 𝑃�] and policy 𝝅�[𝒙Í�, 𝑃�] for each time step 

𝑘. The value function 𝜐ℓ[𝒙Íℓ, 𝑃ℓ] is approximated by using a second order Taylor series 

expansion of 𝑐ℓ[𝒙Íℓ, 𝑃ℓ] about the nominal belief 𝒙âℓ, 𝑃ãℓ: 

𝑆ℓ =
𝜕½𝑐ℓ
𝜕𝒙Íℓ𝜕𝒙Íℓ

[𝒙âℓ, 𝑃ãℓ], 𝒔ℓÛ =
𝜕𝑐ℓ
𝜕𝒙Íℓ

[𝒙âℓ, 𝑃ãℓ], 

(101) 

𝑠ℓ = 𝑐ℓ[𝒙âℓ, 𝑃ãℓ], 𝑇ℓ =
𝜕𝑐ℓ
𝜕𝑃ℓ

[𝒙âℓ, 𝑃ãℓ], 

where the directional derivative or element-wise differentiation may be used to obtain 𝑇ℓ, 

whichever is more convenient.  

An initial policy (or simply a sequence of actions) is assumed in order to generate 

an initial nominal trajectory ¤+𝒙â
(), 𝑃ã

(), 𝒖â
(),, … , +𝒙âℓ¿�

() , 𝑃ãℓ¿�
() , 𝒖âℓ¿�

() ,, +𝒙âℓ
(), 𝑃ãℓ

(),-, where 

𝒖â�
() is the action that was applied at belief 𝒙â�

(), 𝑃ã�
(), and the initial nominal belief is 
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equal to the given initial belief: 𝒙â
() = 𝒙Í, 𝑃ã

() = 𝑃. The initial policy affects the 

convergence to a locally optimal policy, and so it may require careful selection to obtain 

the desired results. Then, given a nominal trajectory at the iteration 𝑖 − 1, the nominal 

trajectory at the iteration 𝑖 − 1 can be used to find an approximately optimal value 

function 𝜐�
(ï¿�)[𝒙Í�, 𝑃�] and locally optimal policy given by Equation 102 (which is based 

on Equation  96).  

𝒖� = 𝐿�
(ï¿�)+𝒙Í� − 𝒙â�

(ï¿�),+ 𝒍�
(ï¿�) + 𝒖â�

(ï¿�). (102) 

Since the policy given in Equation 102 is locally optimal, it is expected to output a 

locally optimal action for any mean 𝒙Í� in the neighborhood of 𝒙â�
(ï¿�). Thus, the policy 

given in Equation 102 may be expected to improve upon the previous policy7, so that a 

lower total expected cost can be expected from applying the policy in Equation 102 

compared to the previous policy. Therefore, the policy given in Equation 102 it is used to 

generate a new nominal trajectory for iteration 𝑖: 

𝒖â�
(ï) = 𝐿�

(ï¿�)+𝒙â�
(ï) − 𝒙â�

(ï¿�), + 𝒍�
(ï¿�) + 𝒖â�

(ï¿�) (103) 

𝒙â���
(ï) = 𝒇�𝒙â�

(ï), 𝒖â�
(ï)� (104) 

𝑃ã���
(ï) = Φ�𝒙â�

(ï), 𝑃ã�
(ï), 𝒖â�

(ï)� (105) 

where 𝒙â
(ï) = 𝒙Í, 𝑃ã

(ï) = 𝑃. Once a new nominal trajectory is computed, it is possible to 

compute a new value function 𝜐�
(ï)[𝒙Í�, 𝑃�] and policy and then iterate. It has been shown 

that the policy causes convergence to a locally optimal trajectory with a second-order 

convergence rate [118]. 

 

7 Since it is a locally optimal policy, it should dominate any policy in its neighborhood. 
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The policy described in Equation 102 is only valid in the neighborhood the 

nominal belief 𝒙â�
(ï¿�), 𝑃ã�

(ï¿�). Therefore, if the nominal belief 𝒙â�
(ï), 𝑃ã�

(ï) is too different 

from 𝒙â�
(ï¿�), 𝑃ã�

(ï¿�), then the policy in Equation 102 may not select a good action, which 

in turn may lead to higher total expected cost than the previous iteration. To mitigate this 

issue, van den Berg et al. [118] suggest augmenting this algorithm with line search such 

that a candidate trajectory is only accepted if it has lower total expected cost than the 

current nominal trajectory by introducing the parameter 𝜀.  

𝒖â�
(ï) = 𝐿�

(ï¿�)+𝒙â�
(ï) − 𝒙â�

(ï¿�), + 𝜀𝒍�
(ï¿�) + 𝒖â�

(ï¿�) (106) 

If the total expected cost of the candidate trajectory is greater than the cost of the current 

nominal trajectory, 𝜀 is divided and half and a new candidate trajectory is computed. If 

the candidate trajectory is accepted, the candidate trajectory becomes the new nominal 

trajectory, 𝜀 is reset to 1, and value iteration continues. Since it is costly to perform back-

propagation using the method in Section 4.4.2, an approximation be found efficiently by 

computing the expected cost of the candidate trajectory with respect to the control policy 

of the current nominal trajectory. This avoids the need to recompute the values in 

Equations 95 and 100 in order to evaluate the expected cost of the candidate trajectory. 

More details on this approach are given in [118]. However, a different approach was 

employed in this work. 

In this work, an artificial cost 𝑅��  was introduced to regulate the magnitude of the 

terms which are added to the nominal control input in Equation 103.  This was 

accomplished by imposing the cost 𝑅��  on the deviation of the input from the nominal 

value.  
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𝑐�� [𝒙Í�, 𝑃�, 𝒖�] = 𝑐�[𝒙Í�, 𝑃�, 𝒖�] +
1
2
(𝒖� − 𝒖â�)Û𝑅�� (𝒖� − 𝒖â�) (107) 

The net result is that a damping factor is introduced into the value of 𝐷� in Equation 95, 

similar to what is used in the Levenberg-Marquardt algorithm [65]. This parameter was 

then manually tuned to optimize the rate of convergence while minimizing the probability 

the nominal trajectory would diverge, which eliminated the need for estimating the total 

expected cost and generating new candidate trajectories. This method is ad hoc and may 

not work well for other systems. The tuning of 𝑅��  is discussed in Section 6.2.1.1. 

4.5 COMPLEXITY ANALYSIS 

The complexity of the iLQG algorithm will be analyzed in terms of the size of the 

state space, 𝑛, and the length of the time horizon, ℓ. In this analysis, it is assumed that the 

multiplication of a 𝑝 × 𝑞 matrix and a 𝑞 × 𝑟 requires 𝑂[𝑝𝑞𝑟] time to compute and that 

the inversion of a 𝑛 × 𝑛 matrix requires 𝑂[𝑛&] time. The complexity of the iLQG 

algorithm presented here is dependent on the size of the input and measurement spaces, 

and on the complexity of the functions 𝒇, 𝒉, 𝑀, 𝑁, and 𝑐�. For the sake of comparison, 

the sizes of these spaces and the complexities of these functions are assumed based on the 

assumptions presented in [118]. First, it is assumed that the size of the input and 

measurement spaces are 𝑂[𝑛]. Furthermore, it is assumed that that the functions 𝒇 and 𝒉 

can be evaluated in 𝑂[𝑛½] time, and the functions 𝑀 and 𝑁 can be evaluated in 𝑂[𝑛&] 

time, which is the case if each element requires 𝑂[𝑛] time to compute. The size of the 

variance is 𝑛½, which is implied by the size of the state space. Referencing Equations 20 

and 33 and by the assumption on the time of matrix multiplication and inversion, this 

implies that Φ and 𝑊 each require 𝑂[𝑛&] time to evaluate. The function 𝑐� is assumed to 
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be quadratic in the size of the mean and input but linear in the variance, which would 

imply that it takes 𝑂[𝑛½] time to evaluate. 

Throughout this analysis, the time complexity of several numerical derivatives is 

indicated rather than the time complexity of the analytic derivative. This is because the 

time to take an analytic derivative is largely dependent on the function being 

differentiated, while the numerical derivative can be found in predictable time using the 

assumptions. In many cases, using the analytic derivative may be more or less efficient 

than the numerical derivative, so it is up to user discretion to implement the most efficient 

form. The derivatives 𝐹�, 𝐻�, and 𝐺� may be found numerically in 𝑂[𝑛&]. The numeric 

partial derivatives in Equations 67, 69, and 85-86 can each be determined in 𝑂[𝑛&]. Each 

of these derivatives must be performed 𝑂[𝑛] times in order to calculate the vectors 𝒂�, 

𝒃�, 𝒕�, and 𝒗�, so these vectors can be computed in 𝑂[𝑛$] time. 

The complexity analysis thus far has been consistent with the results given by 

[118]. However, the variance derivatives calculated in Section 4.4.1 are calculated more 

efficiently in this work than they are in [118]. The matrices 𝑋�, and 𝑉� from Equations 62 

and 79 may be determined analytically in 𝑂[𝑛&] time, and each are done in lieu of 

computations which are 𝑂[𝑛$] in [118]. This is because the method presented in [118] 

requires a partial derivative with respect to each element of 𝑃�. Each partial derivative 

requires 𝑂[𝑛½] time to evaluate, and there are 𝑛½ elements in 𝑃�, so in total 𝑂[𝑛$] time is 

required to differentiate with respect to every element, which results in an 𝑛½ × 𝑛½ 

matrix. Then, the 𝑛½ × 𝑛½ matrix is multiplied with a vector of dimension 𝑛½, which also 

requires 𝑂[𝑛$] time. This occurs in two instances, which are given in Appendix A as 

Equations 177 and 181. These products are the same as what is given in Equations 62-63 
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and 79-80 of this work, respectively. As noted by [118], all other computations take at 

most 𝑂[𝑛&] time, which is also true for this work. 

Therefore, a single Bellman backup using the method presented here requires 

𝑂[𝑛$] time, which is the same order as what is presented in [118]. However, this method 

is strictly more efficient because the calculation of variance derivatives is performed 

more efficiently, while all other calculations remain the same. The advantages are even 

more pronounced in special situations. For example, the complexity analysis presented 

here did not account for situations in which measurement and input spaces may be 

significantly smaller than the state space, or  for when the functions 𝒇 and 𝒉 have special 

structures (e.g. linearity), which may allow analytic differentiation of the vectors 𝒂�, 𝒃�, 

𝒕�, and 𝒗� in time less that 𝑂[𝑛$]. If the structure of 𝑐� (e.g. the form used in Section 

6.2.1) also allows for the efficient analytic differentiation of 𝑄�, 𝑅�, 𝐽�, 𝑈�, 𝒑� and 𝒒� in 

time less than 𝑂[𝑛$], then the modifications employed in this paper can enable an 

increase in efficiency by up to an order of magnitude. In these cases, the bottleneck for 

the method presented by [118] would be the calculations of the partial derivatives with 

respect to elements in 𝑃�, which would still take 𝑂[𝑛$] time to evaluate. The methods 

presented in this work would allow an equivalent calculation to be performed in 𝑂[𝑛&] 

time, which would thus allow Bellman back-propagation to be calculated in time less 

than 𝑂[𝑛$] under special circumstances. Further analysis of these special circumstances 

will also be the subject of future work. 

A full iteration of value iteration consists of ℓ Bellman backups, so the 

complexity of a single iteration is 𝑂[ℓ𝑛$]. The number of iterations required to converge 

to a locally optimal trajectory cannot be expressed in terms of ℓ or 𝑛, but convergence to 
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the locally optimal trajectory occurs with a second-order convergence rate, as noted by 

[118]. 

5 MODELING 

To evaluate the feasibility of catching heuristics, most researchers to date have 

considered simple models for the ball’s trajectory, either by modeling the ball’s trajectory 

as parabolic or by including a drag force. While it is desirable to evaluate control 

paradigms using high fidelity models of ball and fielder dynamics (e.g. inclusion of 

Magnus forces), more research is necessary using simplified models to resolve several 

outstanding issues related to both heuristic and optimal control. For example, previous 

works into stochastic optimal control in the outfielder problem (including [11] and [38]) 

assume that the global position of the fielder may be directly measured at each time step 

with a high degree of accuracy and that the full global position of the ball may be directly 

measured with accuracy that may be state dependent. This work assumes that the only 

measurement that the fielder receives is the relative direction from the fielder to the ball 

in the fielder’s local coordinate system, which measured with noise by a camera. 

Additionally, it does not appear that any previous work has included the uncertainty in 

the fielder’s heading. Belousov’s [11] model includes process noise in the fielder’s 

heading, however it is measured with zero uncertainty at each time step, which 

effectively nullifies the uncertainty introduced by the process noise and is not feasible for 

practical fielders. The inclusion of uncertainty in the fielder’s estimate of their heading is 

important because it is expected that the fielder’s sense of global direction will drift as 

they fixate on the ball. This noise is also relevant in the implementation of heuristic 

controllers, which has not been evaluated in previous research. So, while it is desirable to 
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have a high-fidelity model of ball dynamics, there are other important factors which must 

be evaluated first in the parabolic model, for which the heuristics were originally 

designed.  

Additionally, this work seeks to remove the assumption of maximum likelihood 

observations in predictive control. While progress is made in this regard, a maximum 

likelihood assumption is still used for the prediction of the time-to-impact. There also 

remain more outstanding issues related to input constraints which are also not resolved in 

this work. This work contributes to the steady progress of predictive models, but there are 

important issues that were not resolved here that require further study before progressing 

to models with higher fidelity. 

5.1 BALL TRAJECTORY MODEL 

The ball’s motion was modeled with a deterministic parabolic trajectory with 

uncertain initial conditions. A deterministic trajectory was chosen to minimize the 

number of noise parameters for which the sensitivity analysis was performed, and the 

case in which ball’s trajectory is deterministic given the initial conditions was complex 

enough to provide rich information about behaviors of each control paradigm.  

The state of the ball is thus fully represented by its three-dimensional position and 

velocity, 𝒙« = [𝑥« 𝑦« 𝑧« �̇�« �̇�« �̇�«]Û, and the continuous time transition function 

is given by 

�̇�« =

⎣
⎢
⎢
⎢
⎢
⎡
�̇�«
�̇�«
�̇�«
0
0
𝑔 ⎦
⎥
⎥
⎥
⎥
⎤

 (108) 
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where 𝑔 = −9.81	𝑚/𝑠½ is the acceleration of gravity. The solution to this differential 

equation is, of course, a parabola 

𝒑«[𝑡, 𝑡] = �
𝑥«[𝑡]
𝑦«[𝑡]
𝑧«[𝑡]

� = 4

𝑥«[𝑡] + �̇�«[𝑡](𝑡 − 𝑡)
𝑦«[𝑡] + �̇�«[𝑡](𝑡 − 𝑡)

𝑧«[𝑡] + �̇�«[𝑡](𝑡 − 𝑡) +
1
2𝑔

(𝑡 − 𝑡)½
5 (109) 

While this analytic form of a parabola is used to generate sample trajectories for the ball, 

the fielder implements first order backward Euler integration throughout this work to 

perform discretization of continuous time transition functions. 

𝒙«,��� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥«,� + �̇�«,�Δ𝑡
𝑦«,� + �̇�«,�Δ𝑡
𝑧«,� + �̇�«,�Δ𝑡

�̇�«,�
�̇�«,�

�̇�«,� + 𝑔Δ𝑡 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (110) 

The length of the time step Δ𝑡 was chosen to be the maximal value Δ𝑡 ≤ 0.03	𝑠 such that 

the time in which the ball lands, 𝑡ï¯8s9ø, is an integer multiple of Δ𝑡. First,	𝑡ï¯8s9ø is 

solved for in Equation 109 with 𝑧« = 0 to find the time at which the ball lands. The value 

of 𝑡ï¯8s9ø is used to find the length of the planning horizon, ℓ. 

ℓ = ceil�𝑡ï¯8s9ø/0.03	� (111) 

Then, the size of the time step Δ𝑡 was determined by discretizing the interval �0, 𝑡ï¯8s9ø� 

into ℓ equally-sized segments: Δ𝑡 = 𝑡ï¯8s9ø/ℓ. This way, the ball will land at time step ℓ 

and each time step is uniform, otherwise the length of the final time step would have to 

be abbreviated in order to determine the state of the ball and the fielder at the time in 

which the ball lands. The variation in the time step size is small between trials (< 1% 

difference), so its effect on the numerical integration is insignificant – especially since the 

equations of motion for the ball are linear and the nonlinearities in the fielder’s dynamics 
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are only due to a small rotation angle. The variation in the step size also has an impact of 

the noise model as well, since the rate at which measurements are received fluctuates 

slightly from trial to trial. However, because the maximal difference in the time step 

difference is small, this effect is insignificant. Additionally, each controller is applied to 

the same data sets, so whatever effects do exist are similarly experienced fairly amongst 

each control paradigm.  

To reduce the number of free parameters, the ball is always initialized at the 

origin. The initial velocity of the ball is determined by randomly generating a magnitude 

and direction. 

𝒗«, = 4
=𝒗«,= sin[𝜗] sin[𝜑]
=𝒗«,= cos[𝜗] sin[𝜑]

=𝒗«,= cos[𝜑]
5, 

=𝒗«,=~𝒩[30, 3½], 𝜑~𝒩[𝜋/4	, (5𝜋/180)½], 𝜗~𝒩[0	, (6𝜋/180)½] 

(112) 

The variance of the initial velocity var�𝒗«,� was determined via a first order 

approximation of Equation 112. 

 

Figure 10: Geometric description of the random 
parameters used to generate the ball’s initial state. 
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5.2 FIELDER MODEL 

The state of the fielder is given by its position (𝑥@,	𝑦@) and velocity (�̇�@,	�̇�@) in the 

global reference frame, and the rotation angle 𝜃@ which describes the orientation of the 

fielder reference frame with respect to the global reference frame, so that the fielder’s 

state 𝒙@ is defined as 𝒙@ = [𝑥@ 𝑦@ �̇�@ �̇�@ 𝜃@]Û. The input 𝒖 = [𝑢A 𝑢B]Û is a 

specific force – a force divided by the mass of the fielder with units of acceleration – that 

is applied in the fielder’s reference frame, and the magnitude of the input is constrained 

‖𝒖‖ ≤ 𝑢¯sA. Similar, to Belousov [11], a linear damping coefficient 𝑏 is applied to the 

fielder’s velocity, which in effect limits the maximum velocity of the fielder given that 

the input 𝒖 is also constrained. The values of 𝑢¯sA = 10	𝑁/𝑘𝑔 and 𝑏 = 10/12	𝑠¿� that 

were used in this work were determined by [11] to emulate world record sprint data.   

Figure 11: Artist’s rendition of the fielder model. 
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�̇�@ =

⎣
⎢
⎢
⎢
⎢
⎡

�̇�@
�̇�@

𝑢A cos�𝜃@� − 𝑢B sin�𝜃@� − 𝑏�̇�@
𝑢A sin�𝜃@� + 𝑢B cos�𝜃@� − 𝑏�̇�@

0 ⎦
⎥
⎥
⎥
⎥
⎤

 (113) 

The continuous-time dynamics are used again in Section 6.2.1.2 to assist in cost shaping 

for the iLQG. However, the fielder implements first-order backward Euler integration to 

model the dynamics.  

𝒙@,��� =

⎣
⎢
⎢
⎢
⎢
⎡

𝑥@,� + �̇�@,�Δ𝑡	
𝑦@,� + �̇�@,�Δ𝑡

�̇�@,� + Ü𝑢A,� cos�𝜃@,�� − 𝑢B,� sin�𝜃@,�� − 𝑏�̇�@,�ÝΔ𝑡
�̇�@,� + Ü𝑢A,� sin�𝜃@,�� + 𝑢B,� cos�𝜃@,�� − 𝑏�̇�@,�ÝΔ𝑡

𝜃@,� ⎦
⎥
⎥
⎥
⎥
⎤

 (114) 

 To reduce the number of free parameters, the fielder is always initialized in the 

same position, velocity, and orientation. 

𝒙@, =

⎣
⎢
⎢
⎢
⎡
0	
90
0
0
0 ⎦
⎥
⎥
⎥
⎤
 (115) 

5.3 PROCESS MODEL 

 The full system state 𝒙� consists of a concatenation of 𝒙«,� and 𝒙@,�. Additionally, 

additive noise 𝒎�~𝒩[𝟎,𝑀�] is introduced to reflect motor noise and uncertainty about 

the angular rate:  



79 

𝒙��� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥«,� + �̇�«,�Δ𝑡
𝑦«,� + �̇�«,�Δ𝑡
𝑧«,� + �̇�«,�Δ𝑡

�̇�«,�
�̇�«,�

�̇�«,� + 𝑔Δ𝑡
𝑥@,� + �̇�@,�Δ𝑡
𝑦@,� + �̇�@,�Δ𝑡

�̇�@,� + Ü𝑢A,� cos�𝜃@,�� − 𝑢B,� sin�𝜃@,�� − 𝑏�̇�@,�ÝΔ𝑡
�̇�@,� + Ü𝑢A,� sin�𝜃@,�� + 𝑢B,� cos�𝜃@,�� − 𝑏�̇�@,�ÝΔ𝑡

𝜃@,� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝒎�,					 

𝒎�~𝒩[𝟎,𝑀�], 

𝑀� = diag�0, 0, 0, 0, 0, 0, 0, 0, 𝜎𝒖½, 𝜎𝒖½, 𝜎Ċ
½� 

(116) 

where 𝜎𝒖½ reflects motor noise and 𝜎Ċ
½ reflects uncertainty in the angular rate �̇�@,�. The 

values of 𝜎𝒖½ and 𝜎Ċ
½ which were tested in the sensitivity analysis are given in Chapter 8. 

5.4 MEASUREMENT MODEL 

A camera mounted on an actuated gimbal allows tracking of the ball, and it is 

assumed that an independent subsystem automatically tracks the ball while keeping the 

ball approximately at the center of the image. The gimbal is instrumented with a sensor to 

measure the angle of the camera with respect to the robot’s reference frame. Together, the 

potentiometers and the pixel coordinates of the ball in the image can be used to derive the 

unit vector direction from the fielder to the ball in the fielder’s reference frame, which is 

noisy due to assumed inaccuracies of ball detection in the image and noise in the 

potentiometers. These two sources of error may be lumped together into one error term, 

which manifests itself as an angular error of the unit vector. First, let 𝓭� be the relative 

distance vector from the fielder to the ball in global coordinates. 
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𝓭� = �
𝒹A,�
𝒹B,�
𝒹E,�

� = ð
𝑥«,� − 𝑥@,�
𝑦«,� − 𝑦@,�

𝑧«,�
ò (117) 

The measurement 𝒚� that the fielder receives is the direction of 𝓭� in the fielder’s 

reference frame, which is perturbed by the measurement noise 𝒏� 

𝒚� =
1

‖𝓭�‖
4
𝒹A,� cos�𝜃@,�� + 𝒹B,� sin�𝜃@,��
−𝒹A,� sin�𝜃@,�� + 𝒹B,� cos�𝜃@,��

𝒹E,�

5+ 𝒏�,									𝒏�~𝒩[𝟎,𝑁�]	 (118) 

Rather than define 𝑁�, it is more convenient to define its inverse 𝑁�¿�. This is done 

because no information is provided about the distance from the fielder to the ball, only 

the direction is measured, i.e. a perturbation of 𝒚� in the direction of 𝒚� would change 

the length of 𝒚�, but not the direction. However, information is provided in the directions 

orthogonal to 𝒚� – a perturbation of 𝒚� in a direction orthogonal to 𝒚� would change the 

direction of 𝒚�. To express this, let 𝑁�¿� be represented as 𝑁�¿� = 𝒱Λ𝒱Û, where 𝒱 =

[𝒚� 𝒗½ 𝒗&]Û and Λ = diag�0, 𝜎B¿½, 𝜎B¿½�. The vectors 𝒗½ and 𝒗& are arbitrarily 

chosen unit vectors such that 𝒱 is orthonormal, (which were obtained in practice via 

Gram-Schmidt orthonomalization [22]). If the ball is at the center of image, then the 

vector 𝒚� represents the direction of the camera’s optical axis in the fielder’s reference 

frame, and the vectors 𝒗½ and 𝒗& form a basis for the image plane expressed in the 

fielder’s reference frame. Note that the directions of 𝒗½ and 𝒗& need not be specific (as 

Figure 12: The image noise 𝜎B is approximately equal 
to the angular noise 𝜎G when the angular error is small, 
given that the direction vector is unit length. 
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long as they are orthogonal to 𝒚�) since the noise is assumed to be isotropic. If the 

magnitude of 𝜎B½ is small, then 𝜎B½ ≈ 𝜎G½, where 𝜎G½ is the variance of the angular 

perturbation to the direction of 𝒚� (see Figures 11 and 12). 

5.5 EXTENDED KALMAN FILTER CONSIDERATIONS 

 An EKF was used to perform state estimation for each controller (see Section 

4.2). The ball was simulated as always starting in the same position to reduce the number 

of free parameters, as were the position, velocity, and orientation of the fielder. However, 

the initial variances of these variables were set to nonzero values to both avoid over-

convergence and ensure that Γ� is nonsingular for iLQG control. For similar reasons, 

small additive noise is incorporated into 𝑀� for purposes of the EKF and iLQG stability 

that does not exist in the process model. 

 The initial variance 𝑃 is defined using the initial distribution with which 

simulated fly ball trajectories were simulated that is given in Section 5.1,  

𝑃 =

⎣
⎢
⎢
⎢
⎡
𝐼&×& 𝟎 𝟎 𝟎 𝟎
𝟎 var�𝒗«,� 𝟎 𝟎 𝟎
𝟎 𝟎 𝐼½×½ 𝟎 𝟎
𝟎 𝟎 𝟎 1e¿$𝐼½×½ 𝟎
𝟎 𝟎 𝟎 𝟎 1e¿$⎦

⎥
⎥
⎥
⎤

 (119) 

The value of 𝑀� that was used in the EKF similarly replaces the zero-valued entries on 

the diagonal with small nonzero values. 

𝑀� = diag�1e¿H, 1e¿H, 1e¿H, 1e¿H, 1e¿H, 1e¿H, 1e¿H, 1e¿H, 𝜎𝒖½, 𝜎𝒖½, 𝜎Ċ
½� (120) 

In the measurement model, 𝑁�¿� is defined as a singular matrix, therefore 𝑁� does not 

exist. Therefore, the bottom definitions of the variance update and the Kalman gain are 

used in Equation 20 and 22 since only 𝑁�¿� is required.  
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5.6 OBJECTIVE FUNCTION 

 The overall goal is to quantify the probability that the fielder will catch the ball in 

a particular noise configuration, where a catch is made if the fielder is within some radius 

𝜖 of the ball at the time of impact. To express this concisely, first define 𝜒 to be 

𝜒 = �1 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0� (121) 

so that  

𝒙øÛ𝜒Û𝜒𝒙ø = Ü𝑥«,ø − 𝑥@,øÝ
½ + Ü𝑦«,ø − 𝑦@,øÝ

½ (122) 

Then the continuous time reward ℛ[𝒙ø, 𝒖ø] is given by 

ℛ[𝒙ø, 𝒖ø] = J1,														if	𝑧«,ø = 0	and	(𝒙øÛ𝜒Û𝜒𝒙ø)�/½ ≤ 𝜖
0,																																	otherwise

 (123) 

where the trial terminates at the state 𝑧«,ø = 0. If a large number of trials are simulated, 

then the sum of the rewards from each trial will indicate the number of successful 

catches, which gives an estimate of the probability of a catch for a given policy when it is 

divided by the number of trials. Note that the amount of effort which the fielder exerts 

has no influence over the total reward, nor does the agent receive any reward except at 

the terminal state. Therefore, the reward is considered to be sparse, which generally 

makes the resulting POMDP difficult to solve [68]. 

6 PREDICTIVE CONTROLLERS 

In predictive control, the fielder can use the current state estimate of the ball to 

predict where the ball will land. Ideally, the fielder can then choose a running path such 

that the fielder will be at the landing spot when then ball arrives. For the deterministic 

case, there are an infinite number of controls which could be considered optimal, except 
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in the case where the landing spot it at the fringe of the reachable space, in which case the 

only solution is for the fielder to run towards the goal with maximal effort. Seemingly, 

however, there is an advantage to reaching the predicted landing spot as quickly as 

possible; the fielder would then have time to make the appropriate adjustments if there is 

a perturbation to the ball’s trajectory or otherwise an error in the predicted landing spot. 

The use of a deterministic time-optimal controller has also been suggested by Gigerenzer 

[35]. Therefore, a deterministic time-optimal control which acts on the mean of the belief 

state was one method that was tested. The other predictive method is the modified iLQG 

method presented in Section 6.2, which is functionally the same as the one presented in 

[118]. 

In each predictive method, the predicted landing time of the ball was calculated 

using the current state estimate. Due how Δ𝑡 was selected (see Section 5.1), the true time 

of impact will occur exactly at the beginning of the final time step ℓ; however, the 

predicted impact using the current state estimate will occur between time steps. 

Therefore, the length of the time step Δ𝑡 for the final interval is shortened so that impact 

will also occur at the beginning of the final time step in the prediction. 

6.1 DETERMINISTIC TIME-OPTIMAL CONTROL 

The deterministic time-optimal controller has a modified objective in which it is 

desirable to reach and stop at the predicted landing spot in minimum time. In the case in 

which it is possible to reach the predicted landing spot, but not stop before the ball lands, 

then the objective is to arrive at the predicted landing spot as the ball lands with 

minimum velocity. Finally, in the case in which it is not possible to reach the predicted 
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landing spot before the ball lands, then it is desired to minimize the distance between the 

fielder and the landing spot of the ball at the time when the ball lands. 

Deterministic time-optimal control was approximately achieved via a simple 

single-shooting method. Ideally, the time-optimal controller will be a bang-bang type 

controller in which the fielder is always exerting maximum effort. Analytic solutions are 

available for the one-dimensional case or the two-dimensional case in which box 

constraints are used – such that the optimal controller is essentially comprised of two 

independent one-dimensional solutions. However, in the case in which the magnitude of 

the total input is constrained within a disk, a closed form analytic solution was not found 

in research, so numerical methods were used. Due to linearity of the deterministic 

transition function, it was determined that a single-shooting-method was sufficient to 

quickly obtain approximately optimal results. Linearity in the fielder’s motion exists 

because the fielder does not expect to rotate if process noise is not considered, so 𝒖� is 

always applied in a fixed reference frame. However, the magnitude constraint on 𝒖� is 

nonlinear. An ad hoc approach was used to achieve quick convergence to a locally 

optimal solution by iteratively stepping in the direction of a locally optimum sequence of 

inputs and then enforcing the input constraint at each time step.  

First, let 𝓾 to be a vector concatenation of the inputs 𝒖� for all 𝑘 < ℓ. An initial 

guess 𝓾() for the optimal input must be made; 𝓾() = 𝟎 was used in this work. Then, 

given a guess 𝓾(ï) in iteration 𝑖, the predicted final state of the fielder 𝒙@,ℓ�𝓾(ï)� can be 

calculated using the fielder transition model in Equation 113. Also note that only 

positions and velocities are necessary to calculate, as the fielder’s orientation is not 

controllable. A new guess for the  𝓾(ï��) was then determined by: 
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𝓾(ï��) = 𝓾(ï) +𝒲(ï)𝐽LÛMÛ Ü𝐽LÛM𝒲(ï)𝐽LÛMÛ + ΛÝ
¿�
Ü𝒙@,ℓ�𝓾(ï)� − 𝒙@,N¢sOÝ (124) 

where Λ is a diagonal static damping matrix, 𝒲(ï) is a diagonal weighting matrix used in 

iteration 𝑖, 𝒙@,N¢sO is the goal position and velocity of the fielder (which is the predicted 

landing spot of the ball and zero velocity) and  

𝐽LÛM =
𝜕𝒙@,ℓ
𝜕𝓾  (125) 

To ensure the input constraint was not violated, it was then enforced at each time step 𝑘. 

𝒖�
(ï��) = min �P𝒖�

(ï��)P, 𝑢¯sA	�
𝒖�
(ï��)

P𝒖�
(ï��)P

 (126) 

The diagonal weighting matrix 𝒲(ï) was included to “anchor” inputs at values of 𝑘 in 

which the input was saturated. Let 𝔀�
(ï) be a vector of weights which correspond to the 

input 𝒖�
(ï), such that all such vectors 𝔀�

(ï) form the diagonal of 𝒲(ï). The weights 𝔀�
(ï) 

are defined as: 

𝔀�
(ï) = R

[10¿H, 10¿H]Û,																			P𝒖�
(ï)P = 𝑢¯sA

[1, 1]Û										,																							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (127) 

This effectively discounts the predicted contribution of a deviation from 𝒖�
(ï) if the input 

is saturated, since any deviation induced by Equation 124 to a saturated input will likely 

be reversed by the enforcement of the constraint in Equation 126. The diagonal damping 

matrix Λ controls the rate at which the local optimum is approached and may also be used 

to influence the rate of convergence with respect to each error term. Two different values 

of the diagonal damping matrix Λ were used depending on the objective. Thus, in a single 

iteration, a step is taken in the direction of the unconstrained local optimum, and then the 

new guess is projected back onto the constraint boundary if necessary. The net result is 
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thus a step along the constraint boundary towards the local minimum on the constraint 

boundary if projection onto the constraint boundary is necessary. 

First, it was checked to see if convergence to the goal could be achieved within 

tolerance Ü=𝒙@,ℓ�𝓾(ï)� − 𝒙@,N¢sO= < 10¿$Ý at the predicted landing time and within a 

maximum number of iterations (maximum iterations = 100). For this, the damping matrix 

Λ = 10¿$diag[1, 1, 1, 1] was used. If convergence to the goal could be achieved within 

a maximum number of iterations, the planning time interval was iteratively halved using 

a bisection method to find the minimum time in which the goal can be reached. 

If the convergence to the goal at the predicted landing time could not be achieved 

within a maximum number of iterations, then the fixed damping matrix Λ was modified 

so that convergence to the goal position is prioritized over convergence to the goal 

velocity: Λ = diag[10¿S, 10¿S, 10¿&, 10¿&].  This weighting term heavily biases 

minimizing the distance error compared to the velocity error, which results in behavior 

that causes the final distance error to be very small with respect to the velocity error. 

Thus, if the goal is reachable so that the distance error can be made arbitrarily small, the 

optimization then progresses to decrease the velocity as much as possible. If the goal is 

not reachable, then the planner effectively ignores the velocity error in favor of 

minimizing the distance error. Thus, both cases in which the goal position may or may 

not be reachable at time step ℓ are considered simultaneously using the same damping 

matrix. 

An approximately optimal sequence of inputs undergoes a single abrupt transition 

where the input jumps from one region of the constraint boundary to another. At time 

steps close to the transition time, the input may not be at maximum effort. This is due to 



87 

the algorithm’s inability to find a solution using maximum effort over the whole interval 

(except for maybe at a single time step) when the planning horizon is one-time step 

shorter. However, maximum effort over the whole interval is usually not required for the 

length of the planning horizon in which the solution was found. 

6.2 iLQG CONTROL 

The second predictive method that was used was the belief space variant of iLQG. 

However, the belief space variant of the reward function given in Equation 123 is not 

amenable to the iLQG method presented in Chapter 4 because there are beliefs in which 

the Hessian is indefinite, which violates the assumptions given in Equation 168. 

Additionally, there are constraints on the magnitude of the input, which are not directly 

accounted for in the back-propagation equations. Therefore, it was necessary to shape a 

cost function [68] which would optimize the total expected reward by proxy. 

6.2.1 COST SHAPING 

Developing a sufficient cost function is complicated by the fact that the time of 

impact is uncertain. At each time step 𝑘, there is a probability that the ball lands (i.e. 

𝑧«,� = 0) and the trial ends, and there is a probability that the ball does not land (i.e. 

𝑧«,� > 0) and the trial continues. However, it was difficult to develop a cost function 

which reflected the probability of the ball landing across multiple time steps while also 

satisfying the constraints on the Hessians in Equation 16 and exhibiting the desired 

 

8 See Appendix D. 
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behavior9. Therefore, a maximum likelihood assumption was employed about the time of 

impact. Specifically, it was assumed that the ball lands with probability 1 at the time in 

which impact occurs in the nominal trajectory, which is also an assumption that is 

implicitly employed by other researchers as well, (e.g. [11] and [38]). Under this 

assumption, the probability of a catch is equal to the probability that the ball is within a 

disk of radius 𝜖 given that the ball has landed at time step ℓ, i.e. 𝑧«,ℓ = 0. 

Pr[𝐶𝑎𝑡𝑐ℎ] = Pr�(𝒙ℓÛ𝜒Û𝜒𝒙ℓ)�/½ ≤ 𝜖	T𝑧«,ℓ = 0� (128) 

As noted by Belousov [11], the probability that the ball lands within a disk is maximized 

when the expected error is zero and the variance of the error approaches 0�, since 𝒙ℓ is 

Gaussian. The expected squared error is minimized under the same conditions, and thus it 

is commonly optimized by proxy because it is a convex quadratic function which is 

relatively easy to optimize.  

argmax
𝒙ℓ

�Pr�(𝒙ℓÛ𝜒Û𝜒𝒙ℓ)�/½ ≤ 𝜖	T𝑧«,ℓ = 0�� = argmin
𝒙ℓ

�E�𝒙ℓÛ𝜒Û𝜒𝒙ℓT𝑧«,ℓ = 0�� (129) 

Therefore, the cost function is given by  

𝑐ℓ[𝒙Íℓ, 𝑃ℓ] = E�𝒙ℓÛ𝜒Û𝜒𝒙ℓT𝑧«,ℓ = 0� (130) 

Note that the expected value in the right side of Equation 130 is evaluated given that 

𝑧«,ℓ = 0, i.e. given that the ball has landed. To simplify the evaluation of this expectation, 

the observation that 𝑧«,ℓ = 0 is introduced as a new kind of “measurement” which is only 

applied within the evaluation of the cost function 𝑐ℓ[𝒙Íℓ, 𝑃ℓ], since it is assumed that the 

ball lands at the final time step ℓ with probability 1. Therefore, the belief state at time 

 

9 The negated log-probability as a cost function by proxy in situations where it is desirable to maximize the probability of a 

Gaussian event. However, this was not well suited for the time-wise nature of this problem. See Appendix D. 
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step ℓ is updated using the measurement 𝑧«,ℓ = 0, which has variance that approaches 0� 

to reflect that there is no uncertainty.  

𝒚ℓ� = 0 = 𝑧«,ℓ + 𝑛ℓ� ,																𝑛ℓ�~𝒩[0, 𝑁ℓ� → 0�] (131) 

The distribution of 𝒙ℓ�~𝒩[𝒙Íℓ� , 𝑃ℓ�] is determined by applying the measurement in the 

above equation to the belief 𝒙Íℓ, 𝑃ℓ. 

𝒙Íℓ� = 𝒙Íℓ + 𝐾ℓ�(0 − 𝐻ℓ�𝒙Íℓ)	

= (𝐼 − 𝐾ℓ�𝐻ℓ�)𝒙Íℓ 
(132) 

𝑃ℓ� = (𝐼 − 𝐾ℓ�𝐻ℓ�)𝑃ℓ (133) 

Thus, the belief state 𝒙Íℓ� , 𝑃ℓ� reflects that 𝑧«,ℓ = 0 is given, so the cost function at time step 

ℓ may simply be expressed as 

𝑐ℓ[𝒙Íℓ, 𝑃ℓ] = E[𝒙ℓ�Û𝜒Û𝜒𝒙ℓ� ]	

= 𝒙Íℓ�Û𝜒Û𝜒𝒙Íℓ� + tr[𝜒Û𝜒𝑃ℓ�] 
(134) 

since the random variable 𝒙ℓ�  has distribution 𝒩[𝒙Íℓ� , 𝑃ℓ�] and from the identity in Equation 

37. Also, since the final time step Δ𝑡 is shortened so that impact will occurs at the final 

time step in the prediction; it is assumed that no measurement with the camera is made at 

the final time step. This was done because the time interval may be quite short, so the 

camera may not be prepared. Additionally, this avoids possibly singular conditions when 

the planned final positions of the ball and the fielder are very close.  

So, to summarize the methodology so far, the final cost 𝑐ℓ[𝒙Íℓ, 𝑃ℓ] that the fielder 

incurs at time step ℓ is the expected squared distance between the fielder and the ball 

given that the ball has landed. The immediate cost 𝑐�[𝒙Í�, 𝑃�, 𝒖�] has not yet been defined 

time steps 𝑘 < ℓ. Objectively, the value 𝑐�[𝒙Í�, 𝑃�, 𝒖�] is 0 under the assumptions that 

have been presented so far. Firstly, the fielder is not at risk of missing a catch at time step 
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𝑘 < ℓ since the ball is assumed to land at time step ℓ, so it seems there is no objective 

reason to assign an immediate cost to a belief 𝒙Í�, 𝑃�. Secondly, the fielder has no 

incentive to conserve effort; instead, the fielder should exert as much effort as possible 

(subject to the input constraints) to minimize the total expected cost. However, in the 

iLQG framework, it is necessary for 𝑐�[𝒙Í�, 𝑃�, 𝒖�] to have a positive-definite Hessian 

with respect to the input in order for the algorithm to solve for a local optimal policy, so 

𝑐�[𝒙Í�, 𝑃�, 𝒖�] ≠ 0, which is further explained in the following paragraph. Furthermore, it 

will be demonstrated that input constraints can be addressed by assigning costs to belief 

states at times 𝑘 < ℓ. 

6.2.1.1 Penalizing Deviations from Nominal Values 

If 𝑐�[𝒙Í�, 𝑃�, 𝒖�] = 0, then it follows that 𝑅� = 𝟎. From Equations 16 and 88, it 

can be seen that 𝑅� = 𝟎 violates the constraints assumed by the iLQG algorithm. This 

issue was addressed by imposing the cost 𝑅ø�  on the deviation of the input from the 

nominal value, as was mentioned in Section 4.4.3.  

𝑐�� [𝒙Í�, 𝑃�, 𝒖�] =
1
2
(𝒖� − 𝒖â�)Û𝑅�� (𝒖� − 𝒖â�) + 𝑐�[𝒙Í�, 𝑃�, 𝒖�] (135) 

This cost essentially enforces a penalty if it is anticipated that future actions differ 

from the nominal input. However, this cost is also beneficial because it causes 𝑅� to be 

positive definite and increasing values of 𝑅��  incentive the inputs of the next iteration to 

stay close to the nominal values during replanning (see Equations 95-98 and 103). Thus, 

it can be used to slow the rate at which the local minimum is approached, which helps 

avoid overshoot and divergence. Additionally, it can be used to mitigate overestimating 
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the values of actions which violate the constraints. It is not believed that this method 

changes the argument of local optima; however, more research on this is needed. 

The value of 𝑅��  was tuned manually so that the algorithm achieved fast 

convergence while also having a low probability of divergence. It was found that the 

reliability of convergence was dependent on the length of the time horizon because small 

perturbations in early planning can cause large deviations later. Therefore, it was 

necessary to enforce a larger value of 𝑅��  when the length of the horizon was longer 

because this reduced the deviations of the new trajectory from the nominal values. 

However, it was also determined empirically that it was desirable for each time step 

within a single value iteration to use the same value of 𝑅�� , or else unstable behavior 

resulted. The function used to determine 𝑅��  was developed largely ad hoc based on these 

principles, and the resulting function is  

𝑅�� =
atan �ℓ5 − 4� − atan[−4]

2𝜋 − 2 atan[−4] 𝐼 (136) 

6.2.1.2 Cost Shaping due to Input Constraints 

As noted before, input constraints are not directly accounted for in the back-

propagation equations. Thus, the linear locally optimal policy given by Equation 96 does 

not account for inputs which violate the constraints, so the planner implicitly assumes 

that an agent can exploit infeasible inputs in the execution of the locally linear policy. 

This is especially problematic if nominal inputs are close to the constraint boundary, 

since the policy from iLQG will not be valid for states which are close to the nominal 

value.  
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Therefore, it was determined that intermediate belief states which maximize the 

fielder’s reachability of highly probable landing positions were desirable10. From the 

continuous time model of the fielder in Equation 113, observe that the following is the 

solution for the position of the fielder 𝒑@[𝑡, 𝑡] = �𝑥@[𝑡], 𝑦@[𝑡]�
Û
 at time 𝑡 when a 

constant input 𝒖 is applied beginning at 𝑡: 

𝒑¾[𝑡, 𝑡] = 𝒑@[𝑡] + Ü1 − 𝑒¿«(ø¿øW)Ý�̇�@[𝑡] (137) 

𝒑8[𝑡, 𝑡] =
Ü𝑏(𝑡 − 𝑡) − 1 + 𝑒¿«(ø¿øW)Ý

𝑏½ 𝒖 (138) 

𝒑@[𝑡, 𝑡] = 𝒑¾[𝑡, 𝑡] + 𝒑8[𝑡, 𝑡] (139) 

where 𝒑¾[𝑡, 𝑡] is the homogeneous solution, 𝒑8[𝑡, 𝑡] is the particular solution, and 

𝒑@[𝑡, 𝑡] is the complete solution of the position at time 𝑡 when the position 𝒑@[𝑡] and 

velocity �̇�@[𝑡] of the fielder at time 𝑡 are given. The particular solution 𝒑8[𝑡, 𝑡] 

represents the distance travelled due to the constant input 𝒖. Noting that the maximum 

magnitude of 𝒖 is the same in any direction, the reachable positions of 𝒑@[𝑡, 𝑡] form a 

disk with center 𝒑¾[𝑡, 𝑡] and radius  Ü«(ø¿øW)¿��X
YZ([Y[W)Ý

«\
𝑢¯sA (see Figure 13). If  

𝒑¾[𝑡, 𝑡] is the same position as the expected landing spot of the ball, then the disk of 

reachable positions has the maximum overlap with the distribution of the error. This 

would allow the fielder the maximum potential to adjust to new information about the 

landing spot. Therefore, the fielder positions and velocities which result in the fielder 

arriving at the expected landing spot at the same time as the ball without applying any 

effort have the maximum potential to adjust to updated estimates of the landing spot.  

 

10 See Appendix D. 
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 This knowledge was used to shape the cost function to account for the input 

constraints. Specifically, the immediate cost 𝑐�[𝒙Í�, 𝑃�, 𝒖�] was weighted proportionally 

to the squared distance between the expected value of the homogeneous solution at the 

expected landing time and the expected landing spot of the ball: 

𝑐�[𝒙Í�, 𝑃�, 𝒖�] = 𝜅Ü𝒑Í¾�𝑡[𝑘], 𝑡[ℓ]� − 𝒑Í«�𝑡[𝑘], 𝑡[ℓ]�Ý
ÛÜ𝒑Í¾�𝑡[𝑘], 𝑡[ℓ]�

− 𝒑Í«�𝑡[𝑘], 𝑡[ℓ]�Ý 
(140) 

where 𝒑Í¾�𝑡[𝑘], 𝑡[ℓ]� returns the expected position of the fielder at time step ℓ using the 

state estimate at time step 𝑘 and by assuming the input is zero, 𝒑Í«�𝑡[𝑘], 𝑡[ℓ]� returns the 

expected position of the ball at time step ℓ using the state estimate at time 𝑘, and 𝜅 is a 

weighting factor. This value of 𝑐�[𝒙Í�, 𝑃�, 𝒖�] was then used in Equation 135 to specify 

the shaped cost function 𝑐�� [𝒙Í�, 𝑃�, 𝒖�] which was used in planning. The weighting factor 

𝜅 was chosen to be	2.5 × 10¿& based simply on the reasoning that the sum of the total 

costs of intermediate states would be weighted half as much as the terminal state given 

that the flight of the ball lasts 6 seconds, which is a relatively long flight among the 

Figure 13: The area that is reachable by the fielder before impact overlaps with the highest-probability  
positions of the landing spot whenever the mean of the distribution of the landing spot and 𝒑¾[𝑡, 𝑡] 
coincide. 
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trajectories that were considered. However, future work should develop more rigorous 

justification for the value of the weighting factor 𝜅 if this method is used. The quadratic 

form of the cost function in Equation 140 also seems to implicate that the variance of the 

error term 𝒑Í¾�𝑡[𝑘], 𝑡[ℓ]� − 𝒑Í«�𝑡[𝑘], 𝑡[ℓ]� should be included in the cost function. 

However, the variance was omitted because its effects were not well understood at the 

time of this writing, but its use may be explored more in future work. 

6.2.2 ITERATING UNTIL CONVERGENCE 

The nominal input is updated using Equation 103. However, since Equation 103 

does not consider input constraints, it is possible that the updated nominal value will be 

violate the input constraint. Therefore, the magnitude of the input is normalized to 

Figure 14: It can be seen that the behavior after 100 iterations of iLQG is qualitatively similar to the 
behavior after 1000 iterations, although the algorithm has not yet fully converged. Further iterations 
exhibit similar diminished returns. 
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maximum allowable magnitude if the constraint on the input is violated. 

The iLQG algorithm is intended to be iterated until convergence (see Section 

4.4.3). However, it was observed that in this model that iLQG algorithm converge slowly, 

which is likely due to accommodations made for the input constraint (i.e. the cost shaping 

of Section 6.2.1.1 and input normalization mentioned above). Therefore, an upper bound 

on the number of iterations that was permitted was enforced, which in this work was 

chosen to be 100. This did not permit full convergence of the algorithm, but it seemed to 

be enough to allow for good performance (see Figure 14). 

7 HEURISTIC CONTROLLERS 

The intent of the catching heuristics presented in Chapter 3 is to speculate how 

human fielders may be able to catch a fly ball despite their apparent inability to a quickly 

and accurately predict a ball’s trajectory based on their internal model (see Section 3.1) 

by defining control variables which enable the fielder to decide how to act based on 

visual cues alone. This work differs from that premise by allowing the fielder to have 

access to a Bayesian state estimate to assist in the estimation and control of the controlled 

variables that are characteristic to the heuristic methods, as well as a one-step look ahead 

to predict the result of an action. Several factors motivated this approach.  

First, as noted in [38], the task of making a fair comparison between heuristic and 

optimal approaches is complicated by the fact that each control method relies on different 

information. For instance, OAC requires information about the optical acceleration of the 

ball, whereas an iLQG controller does not need to consider optical acceleration. To 

determine optical acceleration for OAC, Höfer [38] uses the numerical second derivative 

to calculate optical acceleration from image data, since no known sensor exists which can 
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directly measure optical acceleration. However, numerical derivatives are sensitive to 

noise in the data, with the effect becoming more pronounced with higher order 

derivatives. Therefore, Höfer [38] proposes an alternative approach that relies on averaged 

velocities to mitigate these effects. In essence, Höfer [38] is seeking a more reliable way 

of estimating optical acceleration using readily available information, even if slightly 

more computation is required. However, by extension of this reasoning it is argued here 

that the fairest way to perform estimation of optical acceleration for the sake of 

comparing different controllers is to use the optimal estimate, i.e. the Bayesian estimate.  

Therefore, it was determined that the only way a fair comparison could be made is to 

allow each heuristic method to access the Bayesian estimates of the controlled variables.  

Next, it is necessary to perform control so that the errors between the estimated 

values of the controlled variables and their set-points are immediately minimized. Only 

the immediate error needs to be considered since the immediate minimization of the 

errors is intended to lead to desirable overall behavior without the explicit consideration 

of the future consequences. The control methods implemented by most researchers are 

variants of PID control (see Section 3.5) that operate on the errors between the controlled 

variables and their set-points, although there remains the issue of how to properly select 

Figure 15: Consider visual servoing being performed in two 
dimensions, where the heuristic is to immediately align the 
goal with the center of the image and the control variable is 
the image coordinate of the goal. If the agent has access to 
the state estimate, then the agent may optimize the action to 
immediately minimize the error in the next time step, 
whereas control based on the error in the control variable 
(e.g. PID control) may be appropriate at some states but not 
at others.  



97 

the gains which would result in the best performance. As was noted earlier, the heuristics 

analyzed in this work provide desired set-points for control variables which are intended 

to be attained immediately. Therefore, the optimal action with respect to a given heuristic 

is the one that immediately minimizes the errors of the heuristic’s control variables. The 

optimal action with respect to a given heuristic may be determined in a straightforward 

way by using short-term (one-step) predictions of the control variables by numerically 

calculating the action which results in the minimum error of the controlled variables with 

respect to their set-points. 

While the hypothesis that catching heuristics may perform well based on limited 

information was not tested in this work, it should be noted that finding good policies in 

continuous POMDPs is a difficult problem even if the full Bayesian estimate is available. 

Therefore, each heuristic controller has access to an approximately Bayesian state 

estimate as determined by an EKF, and the controller itself is optimal in the sense that it 

immediately minimizes the expected error of the controlled variables. Only one-time step 

is considered because each heuristic approach is intended to operate using immediately 

available information, thus avoiding the complexity of predicting the result of a sequence 

of actions. 

Of the catching heuristics presented in Chapter 3, two were tested in this work 

with the aforementioned modifications in the estimation, prediction, and control of the 

controlled variables. The first is based on Tresilian’s method [114] (see Section 3.2), in 

which OAC is employed along with the requirement that the rate at which the fielder 

turns to track the ball is zero. However, the controller that is used to track the set-points 

of the control variables in this work is different from what is employed by Tresilian 



98 

because more information is available to the fielder in this work than what is assumed by 

Tresilian. This method will be referenced as �̇�-nulling control. The second heuristic that 

was tested is the generalized LOT heuristic that was presented in Section 3.4, which was 

based on the work of McBeath et al. [56]. Again, the fielder has access to an 

approximately Bayesian state estimate, which allows for different control methods than 

was originally proposed by McBeath et al. [56]. 

It will be useful in the development the heuristic controllers to define 𝒑� as the 

positions of the ball and the fielder at time 𝑘: 

𝒑� =

⎣
⎢
⎢
⎢
⎡
𝑥«,�
𝑦«,�
𝑧«,�
𝑥@,�
𝑦@,� ⎦

⎥
⎥
⎥
⎤
 (141) 

The vectors �̇�� and �̈�� then consist of the velocities and accelerations, respectively, of 

the ball and of the fielder. Under the discretization method used in this work, �̇�� is not a 

function of the input 𝒖� at time 𝑘. However, �̇���� is a function a function of the input 𝒖� 

at time 𝑘, and will be needed in the derivation of the heuristic controllers. 

�̇���� =

⎣
⎢
⎢
⎢
⎢
⎡
�̇�«,���
�̇�«,���
�̇�«,���
�̇�@,���
�̇�@,���⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

�̇�«,�
�̇�«,�

�̇�«,� + 𝑔Δ𝑡
�̇�@,� + Ü𝑢A,� cos�𝜃@,�� − 𝑢B,� sin�𝜃@,�� − 𝑏�̇�@,�ÝΔ𝑡
�̇�@,� + Ü𝑢A,� sin�𝜃@,�� + 𝑢B,� cos�𝜃@,�� − 𝑏�̇�@,�ÝΔ𝑡⎦

⎥
⎥
⎥
⎥
⎤

 (142) 

�̈�� =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
𝑔

𝑢A,� cos�𝜃@,�� − 𝑢B,� sin�𝜃@,�� − 𝑏�̇�@,�
𝑢A,� sin�𝜃@,�� + 𝑢B,� cos�𝜃@,�� − 𝑏�̇�@,�⎦

⎥
⎥
⎥
⎥
⎤

 (143) 
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These derivatives are utilized in the heuristic controllers in order to numerically calculate 

the value of the input 𝒖� which minimizes the error of the control variables. 

7.1 �̇�-NULLING CONTROLLER 

The �̇�-nulling controller is based on the work of Tresilian [114] (see Section 3.2). 

Specifically, it was observed that if the fielder chooses a trajectory such that the optical 

acceleration is zero and the rate at which the fielder turns to track the ball is zero (hence 

�̇�-nulling), then the fielder will catch the ball. As a complement to OAC, basing the 

second constraint on the angular rate is appealing because it may be directly measured by 

a MEMS sensor in artificial agents. 

 Optimal estimates of the optical acceleration and the angular rate �̇� can be 

obtained from the full state estimate from the EKF.  

𝑜𝑝𝑡𝑖𝑐𝑎𝑙	𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑑½ tan[𝛼�]

𝑑𝑡½ =
𝜕 tan[𝛼�]
𝜕𝒑�

�̈�� + �̇��Û
𝜕 tan[𝛼�]
𝜕𝒑�𝜕𝒑�

�̇�� (144) 

�̇�� =
𝜕𝛿�
𝜕𝒑�

�̇�� (145) 

Figure 16: Constrained optimization under different weightings of parameters 𝑥� and 𝑥½. In a), greater 
importance is assigned to the optimization of 𝑥�, whereas in b) greater importance is assigned to the 
optimization of 𝑥½. The points marked in red are the local optima on the constraint boundary, and the 
points marked in green are the point on the constraint boundary which is closest to the global optimum, 
and is invariant with respect to any weighting of 𝑥� and 𝑥½. 
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where 

tan[𝛼�] =
𝒹E,�

Ü𝒹A,�½ + 𝒹B,�½ Ý�/½
 (146) 

𝛿� = atan æ
𝒹A,�
𝒹B,�

ç (147) 

Note that due to the time-discretization that was used in this work, the optical 

acceleration at time step 𝑘 is a direct function of the input at time 𝑘. However, �̇� is not 

controllable until the following time step 𝑘 + 1, since the input needs a time step to act 

on the velocity �̇�� before a change in �̇� can be observed in the following time step (see 

Equations 142 and 145). Therefore, it is not possible to null the angular rate �̇�� using 𝒖� 

under the method of time discretization that was employed. Instead, the input 𝒖� will be 

used to null the angular rate �̇���� in the next time step: 

�̇���� =
𝜕𝛿���
𝜕𝒑���

�̇���� (148) 

where �̇����  (and thus �̇����) is expressible as a function of 𝒖�, as seen by Equation 142. 

Therefore, the controller will seek to null the optical acceleration at time step 𝑘 and the 

angular rate �̇���� at time step 𝑘 + 1, which are the most immediate times at which the 

input 𝒖� may influence each controlled variable under the discretization method used in 

this work. The Levenberg–Marquardt algorithm [65] with fixed damping was used to 

minimize the squared error, with the constraints being enforced at the end of each 

iteration.  

𝜻`̇[𝒖�] = �
𝑑½ tan[𝛼�]

𝑑𝑡½
�̇����

� (149) 
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𝒖�
(ï��) = 𝒖�

(ï) + Ü𝐽 ̇Û𝐽`̇ + ΛÝ
¿�𝐽 ̇Û𝜻`̇�𝒖�

(ï)� (150) 

where Λ is a static damping matrix and  

𝐽`̇ =
𝜕𝜻`̇
𝜕𝒖�

ì
𝒖³Ñ𝒖³

(a)
 (151) 

Only small damping Λ = 10¿H𝐼  was needed to ensure convergence. To ensure the 

constraint on the input was not violated, the constraint was enforced at the end of each 

iteration: 

𝒖�
(ï��) = min �P𝒖�

(ï��)P, 𝑢¯sA	�
𝒖�
(ï��)

P𝒖�
(ï��)P

 (152) 

Thus, in a single iteration, a step is taken in the direction of the unconstrained 

local optimum, and then the new guess is projected back onto the constraint boundary if 

necessary. The net result is thus a step along the constraint boundary towards a local 

minimum on the constraint boundary. This algorithm converges to some point on the 

constraint boundary between the local optimum on the constraint boundary and the 

closest point to the unconstrained local optimum on the constraint boundary. When the 

value of the damping matrix Λ is large, convergence will be closer to the local optimum 

on the constraint boundary. In this work, the value of Λ is small, so convergence is nearer 

to the closest point to the unconstrained local optimum on the constraint boundary. It 

should be noted that the local optimum on the constraint boundary can be manipulated by 

changing the weighting of the controlled variables which results in different fielding 

behaviors; however, these effects were not explored in this work.  
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7.2 GENERALIZED LOT CONTROLLER 

The generalized LOT controller is based of the work of McBeath et al. [56], in 

which an equivalent set of conditions which are amiable for control were developed in 

Section 3.4. As was mentioned in Section 3.4, the generalized LOT heuristic provides a 

general condition for a linear optical trajectory between the ball and home plate 

independent of the rotation of the camera’s image plane, provided that the horizon is 

always oriented in the same direction in the image. However, the most sensible option 

would be for the fielder to fix their gaze on the ball, as was implemented in [120], which 

is the assumption that is used in this work. First, note that the direction vector from the 

fielder to the ball may be parameterized using the angles 𝛼 and 𝛿 (see Figure 10), which 

may also be used to define the orientation of the camera’s reference frame with respect to 

the global reference frame by assuming that the orientation of the horizon is horizontal in 

the image. The rotational transformation 𝑅Ã,�𝑅`,� describes the sequence of rotations 

from the global reference frame to the camera reference frame. 

𝑅`,� = ð
cos[𝛿�] sin[𝛿�] 0
− sin[𝛿�] cos 𝛿� 0

0 0 1
ò (153) 

𝑅Ã,� = ð
1 0 0
0 cos[𝛼�] sin[𝛼�]
0 − sin[𝛼�] cos[𝛼�]

ò (154) 

The relative position vector 𝓭«,� between the fielder and the ball can thus be expressed in 

the camera’s reference frame. 

𝓭«,�� = �
𝒹«A,��

𝒹«B,��

𝒹«E,��
� = 𝑅Ã,�𝑅`,�𝓭«,� (155) 
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A standardized pinhole camera model is assumed to find the position of the ball 𝓿«,� in 

image coordinates:  

𝓿«,� =
1

𝒹«B,�� æ
𝒹«A,��

𝒹«E,�� ç (156) 

The position of home plate 𝓿¾,� in the image coordinates may be found similarly: 

𝓭¾,�� = �
𝒹¾A,��

𝒹¾B,��

𝒹¾E,��
� = 𝑅Ã,�𝑅`,� ð

−𝑥@,�
−𝑦@,�
0

ò (157) 

𝓿¾,� =
1

𝒹¾B,�� æ
𝒹¾A,��

𝒹¾E,�� ç (158) 

The relative distance 𝓻� and velocity �̇�� from home plate to the ball in image 

coordinates is thus: 

𝓻� = 𝓿«,� −𝓿¾,� (159) 

�̇�� =
𝜕𝓻�

𝜕𝒑�
�̇�� +

𝜕𝓻�

𝜕𝛿�
�̇�� +

𝜕𝓻�

𝜕𝛼�
�̇�� (160) 

and the magnitude of the angle between 𝓻� and �̇�� may then be determined from the dot 

product. 

|𝛾�| = acos À
𝓻� ⋅ �̇��

‖𝓻�‖‖�̇��‖
Á (161) 

The generalized LOT heuristic specifies that 𝛾� = 0. Note that since |𝛾�|½ = 𝛾�½, 

it is not necessary to determine the sign of 𝛾� in order to minimize the squared error with 

respect to the reference. Similar to the controlled variable �̇�� in the �̇�-nulling controller, 

the variable 𝛾� at time step 𝑘 cannot be expressed as a function of the input 𝒖� under the 

discretization used in this work, so it is not possible to null the angle 𝛾� using 𝒖�. 

Instead, the input 𝒖� will be used to null the angle 𝛾��� in the next time step: 
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𝓻��� = 𝓿«,��� −𝓿¾,��� (162) 

�̇���� =
𝜕𝓻���

𝜕𝒑���
�̇���� +

𝜕𝓻���

𝜕𝛿���
�̇���� +

𝜕𝓻���

𝜕𝛼���
�̇���� (163) 

|𝛾���| = acos À
𝓻��� ⋅ �̇����

‖𝓻���‖‖�̇����‖
Á (164) 

The generalized LOT heuristic is combined with OAC in the controller 

implemented in this work. Therefore, the controller attempts to null the optical 

acceleration at time step 𝑘 and the angle  𝛾��� at time step 𝑘 + 1, which are the most 

immediate times at which the input 𝒖� may influence each controlled variable. Similar to 

the �̇�-nulling controller, the Levenberg–Marquardt algorithm [65] with fixed damping 

was used to minimize the squared error, with the constraints being enforced at the end of 

each iteration.  

𝜻cMÛ[𝒖�] = �
𝑑½ tan[𝛼�]

𝑑𝑡½
|𝛾���|

� (165) 

𝒖�
(ï��) = 𝒖�

(ï) + (𝐽cMÛÛ 𝐽cMÛ + Λ)¿�𝐽cMÛÛ 𝜻cMÛ�𝒖�
(ï)� (166) 

where Λ is a static damping matrix and  

𝐽cMÛ =
𝜕𝜻cMÛ
𝜕𝒖�

ì
𝒖³Ñ𝒖³

(a)
 (167) 

Only small damping Λ = 10¿H𝐼  was needed to ensure convergence. To ensure the 

constraint on the input was not violated, the constraint was enforced at the end of each 

iteration: 

𝒖�
(ï��) = min �P𝒖�

(ï��)P, 𝑢¯sA	�
𝒖�
(ï��)

P𝒖�
(ï��)P

 (168) 
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Thus, in a single iteration, a step is taken in the direction of the unconstrained 

local optimum, and then the new guess is projected back onto the constraint boundary if 

necessary. The net result is thus a step along the constraint boundary towards the local 

minimum on the constraint boundary. Similar to the �̇�-nulling controller, this algorithm 

converges to some point on the constraint boundary between the local optimum on the 

constraint boundary and the closest point to the unconstrained local optimum on the 

constraint boundary. Different behaviors may result by varying the weighting of the 

controlled variables; however, no other weights were tested for this method either.   

8 SIMULATION, RESULTS, AND DISCUSSION 

A data set consisting of 500 parabolic trajectories which were reachable by the 

fielder before the time of impact was simulated. The distribution of the initial conditions 

is described in Section 5.1, and Equation 138 was used to determine if ball was reachable 

by the fielder. In order for a ball to be considered reachable, it was required that it was 

possible for fielder’s position to exactly coincide with the ball’s position at the time of 

impact, so trajectories in which the fielder could theoretically catch the ball due to the 

catch radius were rejected if the fielder could not center itself directly beneath the ball. 

Figure 17 shows the distribution of the landing spots along with the reachable area of the 

fielder as a function of time. 

 Each controller was then tested in 27 different noise configurations, which were 

generated by 3 different levels of noise for each of the noise parameters 𝜎È, 𝜎Ċ, and 𝜎B. 
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Table 1: Settings of the noise parameters 𝜎È, 𝜎Ċ, and 𝜎B that were used in simulation. 

Noise Settings 

Parameter Small Medium Large 

𝜎𝒖½ 2.5e¿& 2.5e¿½ 2.5e¿� 

𝜎Ċ
½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

𝜎𝒚½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

 

 Only the maximal noise configuration was tested for the iLQG controller.  This 

was done because the time to generate results was significantly longer using the iLQG 

controller compared with the other methods; therefore, only one configuration was 

selected for evaluation in the interest of time. The maximal noise configuration was 

Figure 17: The distribution of the landing spots of simulated fly balls which are reachable by the fielder. 
The points are colored according to the length of time in which the ball is in flight, and the concentric 
circles indicate the boundary of the fielder’s reachable area in a given amount of time. 
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selected for analysis because it produced the most statistically relevant discrepancies 

among the data sets generated by the other controllers; therefore, it was hypothesized that 

this configuration would similarly produce the most statistically relevant results for the 

iLQG method as well11. 

8.1 RESULTS 

While each of the 500 simulated fly balls is theoretically reachable by the fielder, 

the running paths generated by the heuristic controllers were not efficient enough for the 

fielder to intercept each one in the deterministic case in which the initial states of the ball 

and the fielder are given and the transitions are deterministic. Unsurprisingly, the 

deterministic time-optimal controller was able to intercept each fly ball. The results for 

each controller in the deterministic configuration are given in Table 2. Since the iLQG 

controller was only tested in the maximal noise configuration, no results are provided for 

the deterministic case. 

Table 2: The percentage of simulated balls which were caught by the fielder using each type of controller in 
the deterministic case. 

Deterministic Control: Percentage of Balls Caught vs. Controller 

Controller DTO �̇�-Nulling LOT 

% of Balls Caught 100 98.4 91.2 

 

 

11 It was the opinion of the author that the reader would likely be more interested in a complete data set for a single configuration 

rather than partial data sets for several configurations, given that the author had only allotted time to generate results for 500 trials.  
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From Table 2, it can be seen that the LOT controller is already disadvantaged 

compared to the other controllers, which implies that the running paths generated by the 

LOT controller are not as efficient as the other methods.  

The results of 500 trials in each of the 27 noise configurations are summarized in 

Tables 3-5, with 95% confidence intervals generated by assuming that the result of each 

trial (catch or miss) may be treated as a Bernoulli random variable. Predictably, it can be 

seen that the percentage of balls caught generally decreases as the value of each noise 

parameter increases. As the value each noise parameter is increased, the performance of 

controllers does not significantly degrade until somewhere between the medium and large 

noise settings, at which point there is a sharp decline in performance. At noise values just 

slightly greater than the large setting of each noise parameter was observed to render ball 

nearly uncatchable and were not included in this work. While the sharpest decline in the 

results occurs due to noise in the fielder’s angular rate, this should not be interpreted to 

imply that the performances of the controllers are “most sensitive” to noise in the angular 

rate. Rather, the performances of each controller are sensitive to each noise parameter; 

the setting for the noise to the angular rate was simply chosen such that the performance 

decay was more progressed than in the other noise settings, which was not known a 

priori. 
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Table 3: Percentage of simulated balls caught by the fielder when using deterministic time-optimal control 
under each noise configuration. 

Deterministic Time Optimal: Percentage of Balls Caught [95% Confidence Interval] 

𝜎B½ 
𝜎È½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

2.5e¿& 97.2 
95.8, 98.6 

97.2 
95.8, 98.6 

87.0 
84.0, 89.9 

97.0 
95.5, 98.5 

97.0 
95.5, 98.5 

86.6 
83.6, 89.6 

39.2 
34.9, 43.5 

42.8 
38.5, 47.1 

35.6 
31.4, 39.8 

2.5e¿½ 95.4 
93.6, 97.2 

96.4 
94.8, 98.0 

87.2 
84.3, 90.1 

96.2 
94.5, 97.9 

95.4 
93.6, 97.2 

86.6 
83.6, 89.6 

34.6 
30.4, 38.8 

34.0 
29.9, 38.1 

30.0 
26.0, 34.0 

2.5e¿� 87.4 
84.5, 90.3 

86.4 
83.4, 89.4 

65.4 
61.2, 69.6 

85.8 
82.7, 88.9 

85.4 
82.3, 88.5 

66.0 
61.8, 70.1 

34.2 
30.0, 38.4 

34.6 
30.4, 38.8 

26.8 
22.9, 30.7 

𝜎Ċ
½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

 

Table 4: Percentage of simulated balls caught by the fielder when using �̇�-Nulling control under each noise 
configuration. 

�̇�-Nulling: Percentage of Balls Caught [95% Confidence Interval] 

𝜎B½ 
𝜎È½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

2.5e¿& 95.6 
93.8, 97.4 

96.6 
95.0, 98.2 

81.4 
78.0, 84.4 

94.4 
92.4, 96.4 

94.8 
92.9, 96.7 

78.2 
74.6, 81.8 

29.4 
25.4, 33.4 

29.8 
25.8, 33.8 

21.0 
17.4, 24.6 

2.5e¿½ 93.6 
91.5, 95.7 

93.6 
91.5, 95.7 

74.8 
71.0, 78.6 

92.6 
90.3, 94.9 

92.4 
90.1, 94.7 

70.2 
66.2, 74.2 

23.6 
19.9, 27.3 

23.6 
19.9, 27.3 

15.8 
12.6, 19.0 

2.5e¿� 82.2 
78.8, 85.6 

81.4 
78.0, 84.8 

51.4 
47.0, 55.8 

80.0 
76.5, 83.5 

80.2 
76.7, 83.7 

48.6 
44.2, 53.0 

18.0 
14.6, 21.4 

17.0 
13.7, 20.3 

10.8 
8.1, 13.5 

𝜎Ċ
½ 1.0e¿$ 1.0e¿& 1.0e¿½ 
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Table 5: Percentage of simulated balls caught by the fielder when using LOT control under each noise 
configuration.  

LOT: Percentage of Balls Caught [95% Confidence Interval] 

𝜎B½ 
𝜎È½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

2.5e¿& 89.6 
86.9, 92.3 

90.0 
87.4, 92.6 

79.6 
76.1, 83.1 

87.6 
84.7, 92.3 

87.6 
84.7, 90.5 

74.8 
71.0, 78.6 

23.4 
19.7, 27.1 

23.6 
19.9, 27.3 

12.6 
9.7, 15.5 

2.5e¿½ 87.0 
84.1, 89.9 

86.4 
83.4, 89.4 

70.2 
66.2, 74.2 

85.4 
82.3, 88.5 

85.0 
81.9, 88.1 

66.2 
62.1, 70.3 

16.6 
13.3, 19.9 

16.4 
13.2, 19.6 

11.4 
8.6, 14.2 

2.5e¿� 69.0 
64.9, 73.1 

68.6 
64.5, 72.7 

42.8 
38.5, 47.1 

66.8 
62.7, 70.9 

66.0 
61.8, 70.2 

38.8 
34.5, 43.1 

10.0 
7.4, 12.6 

10.0 
7.4, 12.6 

5.8 
3.8, 7.8 

𝜎Ċ
½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

 

The relative sensitivities of each controller with respect to the noise parameters 

may be analyzed by directly comparing the results generated by each controller. Tables 6-

7 provide direct comparisons between each control method presented in Tables 3-5, with 

95% confidence intervals generated by assuming that the result of each trial (catch or 

miss) may be treated as a Bernoulli random variable. From Table 6, it can be seen that the 

deterministic time-optimal controller significantly dominates the �̇�-nulling in nearly 

every noise configuration. It can be seen that the significance of the dominance is 

amplified as the noise is increased, indicating the performance of the �̇�-nulling controller 

degrades more rapidly in the presence of noise. Similarly, Table 7 demonstrates the 

dominance of the �̇�-nulling controller versus the LOT controller in every noise 

configuration, which transitively also indicates the dominance of the deterministic time-

optimal controller over LOT.  
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Table 6: Each cell indicates the percentage-point differential between deterministic time-optimal and �̇�-
Nulling control in each noise configuration. Positive values indicate a greater percentage of balls are caught 
using deterministic time-optimal control, and the bottom values indicate the 95% confidence interval. 

DTO vs. �̇�-Nulling: Percent Difference [95% Confidence Interval] 

𝜎B½ 
𝜎È½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

2.5e¿& 1.6 
-0.7, 3.9 

0.6 
-1.5, 2.7 

5.6 
1.1, 10.1 

2.6 
0.1, 5.1 

2.2 
-0.3, 4.7 

8.4 
3.7, 13.1 

9.8 
3.9, 15.7 

13.0 
7.1, 18.9 

14.6 
9.1, 20.1 

2.5e¿½ 1.8 
-1.0, 4.6 

2.8 
0.1, 5.5 

12.4 
7.6, 17.2 

3.6 
0.8, 6.4 

3.0 
0.0, 6.0 

16.4 
11.4, 21.4 

11.0 
5.4, 16.6 

10.4 
4.8, 16.0 

14.2 
9.1, 19.3 

2.5e¿� 5.2 
0.8, 9.6 

5.0 
0.5, 9.5 

14.0 
8.0, 20.0 

5.8 
1.1, 10.5 

5.2 
0.5, 9.9 

17.4 
11.4, 23.4 

16.2 
10.8, 21.6 

17.6 
12.3, 22.9 

16.0 
11.3, 20.7 

𝜎Ċ
½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

 

 

Table 7: Each cell indicates the percentage-point differential between �̇�-Nulling and LOT control in each 
noise configuration. Positive values indicate a greater percentage of balls are caught using �̇�-Nulling 
control, and the bottom values indicate the 95% confidence interval. 

�̇�-Nulling vs. LOT: Percent Difference [95% Confidence Interval] 

𝜎B½ 
𝜎È½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 1.0e¿$ 1.0e¿& 1.0e¿½ 

2.5e¿& 6.0 
2.8, 9.2 

6.6 
3.5, 9.7 

1.8 
-3.1,6.7 

6.8 
3.3, 10.3 

7.2 
3.7, 10.7 

3.4 
-1.9, 8.7 

6.0 
0.5, 11.5 

6.2 
0.7, 11.7 

8.4 
3.8, 13.0 

2.5e¿½ 6.6 
3.0, 10.2 

7.2 
3.5, 10.9 

4.6 
-0.9, 10.1 

7.2 
3.3, 11.1 

7.4 
10.9, 11.3 

4.0 
-1.8, 9.8 

7.0 
2.1, 11.9 

7.2 
2.3, 12.1 

4.4 
0.2, 8.6 

2.5e¿� 13.2 
7.9, 18.5 

12.8 
7.5, 18.1 

8.6 
2.4, 14.8 

13.2 
7.8, 18.6 

14.2 
8.8, 19.6 

9.8 
3.7, 15.9 

8.0 
3.7, 12.3 

7.0 
2.8, 11.2 

5.0 
1.6, 8.4 

𝜎Ċ
½ 1.0e¿$ 1.0e¿& 1.0e¿½ 
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The comparison of the iLQG controller to the other controllers in the maximal 

noise configuration is provided in Table 8. It can be seen that at this noise setting, iLQG 

outperforms the heuristic controllers by a wide margin, although its performance over the 

deterministic time-optimal controller was not significant. It is also important to note that 

the performance of the iLQG controller relative to the other controllers at other noise 

configurations – specifically with respect to the deterministic time-optimal controller – 

cannot be definitively inferred based on the singular result provided by the maximal noise 

configuration. Nevertheless, it seems that, contrary to observations made by [11] when 

studying similar heuristics (e.g. OAC and LOT), catching heuristics do not seem to 

generate optimal policies, despite the fact that that approximately optimal trajectories 

may appear to satisfy the heuristics. However, this does not imply that the catching 

heuristics do not generate good policies, especially if computation time is taken into 

account. Instead, the percentage of balls that can be caught in real time would be the most 

appropriate criterion by which each control method should be judged. Table 9 shows the 

computation time per time step of each approach, which includes the time required to 

perform state estimation. The comparison is carried out in Matlab on a PC with two 

3.40GHz 8-Core Intel Xeon CPUs and 32GB RAM running Windows 10. Note that the 

iLQG controller and the deterministic time-optimal controller each have a planning time 

which is a function of the horizon. In the worst case, the computation time for the iLQG 

controller would effectively rule out the application of the iLQG controller in real time12, 

while the other methods may be applied in real time. 

 

12 On a faster system, with more efficient coding, it is likely that iLQG could be computed in real time. However, it must also be 

considered that a standalone fielder would be a mobile platform. 
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The version of iLQG with reward shaping described in this paper does not 

provide a significant advantage over the deterministic time-optimal controller, especially 

if the computational cost of the iLQG controller with respect to the deterministic time-

optimal controller is taken into account. Therefore, it is likely necessary to improve on 

the assumptions used in this work in order for iLQG to be considered worthwhile 

compared to simply employing deterministic time-optimal control when computing large 

data sets. 

Belousov et al. [11] observed that fielders running in approximately optimal 

trajectories may appear to satisfy the heuristics. However, in this work, it was seen that 

running paths which were generated by heuristic controllers under ideal conditions 

resulted in significantly degraded performance. To further explore this idea, a qualitative 

study of the running paths generated by each control method was performed. 

Table 8: First Row: Percentage of simulated balls which are caught using each controller in the maximal 
noise configuration. Second Row: Percent-point difference between each controller and iLQG control, 
where positive values indicate more balls were caught using iLQG control. The values on the bottom of 
each cell indicate the 95% confidence intervals. 

Maximal Noise Configuration: 𝜎È½ = 2.5e¿�, 𝜎Ċ
½ = 1.0e¿½, 𝜎B½ = 1.0e¿½ 

Controller iLQG DTO �̇�-Nulling LOT 

% Caught 
95% Confidence Interval 

28.8 
24.8, 32.8 

26.8 
22.9, 30.7 

10.8 
8.1, 13.5 

5.8 
3.8, 7.8 

% Less than iLQG 
95% Confidence Interval 

– 2.0 
-3.6, 7.6 

18.0 
13.2, 22.8 

23.0 
18.5, 27.5 
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Table 9: First Row: Run-time per iteration as a function of the length of the planning horizon ℓ. Second 
Row: Maximum run-time assuming the maximum length of the planning horizon is ℓ = 200 (6 seconds). 

Run-Time per Time-Step (seconds) 

Controller iLQG DTO �̇�-Nulling LOT 

Run-time per time-
step 0.27ℓ 1.2e¿$ℓ 7.1e¿& 8.4e¿& 

Maximum run-
time per time-step 54.4 0.025 7.1e¿& 8.4e¿& 

Figure 18: The figures in a) and b) show the initial planned running paths generated by each controller 
under different initial positions of the fielder. The figures in c) and d) provide the values of the controlled 
variables and input magnitude that are experienced by each path provided in a) and b), respectively. 
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Figure 18 shows nominal trajectories generated by iLQG given an initial state 

estimate in which the fielder is at rest, as well as trajectories that would be generated by 

the other methods under the same initial conditions. It can be seen that the nominal 

trajectories of iLQG have the fielder move in-line with the trajectory of the ball before 

moving towards the predicted landing spot while moving outwardly from home plate, 

whereas the other methods employ a more direct path towards the predicted landing spot.  

This behavior may be qualitatively interpreted in a couple different ways. 

Superficially, it may seem that its best for the fielder to run in the same direction as the 

ball in the time interval close to impact since the fielder is uncertain about the time at 

which ball will land, therefore the fielder should move with the ball in case the ball 

impacts at moment during the time interval. Note, however, that the maximum likelihood 

estimate of the time-to-impact is used in planning, so that the time-to-impact is treated as 

deterministic. Therefore, there would be no benefit in this approach if the time-to-impact 

is treated as a known deterministic value. Another hypothesis which may intuitively 

explain this behavior is that moving as close to the ball as possible maximizes the 

observability of the ball, but this must also be balanced with the fielder’s need to reach 

the predicted landing spot at the correct time. Additionally, there may also be a benefit 

for the fielder to move into the plane of the ball’s motion, as this would maximize the 

observability of the direction of the ball’s travel. Thus, the fielder would only have to 

worry about being at the correct radial distance in order to catch the ball successfully.  

Note that these running trajectories generated by the iLQG controller differ 

significantly from the approximately optimal running paths generated in [11], which were 
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generated assuming maximum likelihood observations that resulted in more direct 

running paths similar to the heuristic controllers. The running trajectories generated by 

the iLQG controller also differ from observed human behavior, in which the fielder 

moves in line with plane of the ball’s motion but with preference for approaching the ball 

Figure 19: The figures in a) and b) show the planned running paths generated by each controller for the 
remainder of the trial after the first 2.25 seconds were controlled using LOT in the maximal noise 
configuration. The figures in c) and d) provide the values of the controlled variables and the magnitude of 
the fielder’s velocity that are experienced by each path provided in a) and b), respectively. 
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while moving towards home plate rather than away from it [41]. However, the dynamics 

of a human fielder differ significantly from the model assumed in this work, as humans 

cannot accelerate equally well in any direction in the ground plane but rather are 

restricted by their heading. Additionally, the range of motion a human’s neck also 

influences their trajectory so that they can maintain visual contact with the ball. 

Furthermore, there are other considerations that arise when a fly ball is considered within 

the broader context of the game of baseball, in which the fielder may more easily make a 

play if they catch the ball while moving towards home plate and the fielder is also 

incentivized for keeping the ball in front of them in general. 

Also note that the fielder’s nominal trajectories generated by iLQG did not 

terminate at the predicted landing spot. It is unknown if convergence can be achieved 

with more iterations, although full convergence was not seen even after 10,000 iterations, 

compared to the 100-iteration limit used in this work. However, it was observed that 

convergence to the predicted landing spot would occur under short planning horizons in 

which the uncertainty in the predicted landing spot is reduced, which enables the fielder 

to make adjustments in the final moments to get closer to the ball.  

In Figures 18 c) and d), the values of the controlled variables used in �̇�-nulling 

control and LOT are shown for each running path in Figures 18 a) and b), respectively, as 

well as the magnitude of the input. It can be seen that the heuristic controllers are able to 

nullify their respective controlled variables whenever the input is not saturated. The 

nominal trajectory of iLQG seems to track the set-points of the controlled variables to 

some degree, despite having a drastically different trajectory.  
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In Figure 19, the fielder had been tracking the ball using LOT in the maximal 

noise configuration for the initial 2.25 seconds of the ball’s flight. Using the state 

estimate at 2.25 seconds, nominal trajectories were generated by iLQG, as well as 

trajectories that would be generated by the other methods under the same initial 

conditions if maximum likelihood measurements were observed. In Figure 19 a), it is 

Figure 20: The figures in a) and b) show the running paths that were executed by the fielder for selected 
trials which resulted in a) catches and b) misses when using each controller. The figures in c) and d) 
provide the values of the controlled variables that are experienced by each path provided in a) and b), 
respectively. 
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possible for the fielder to reach the predicted landing spot and wait for the ball to land, 

whereas in Figure 19 b) the fielder must catch the ball in motion, which can be seen from 

the norms of the velocities of the deterministic time-optimal controllers in Figures 19 c) 

and d), respectively. Again, it can be seen in Figures 19 a) and b) that the nominal 

trajectory from iLQG tracks the set-points of the controlled variables reasonably well, 

despite being generated by very different running paths compared to those generated by 

the heuristic methods.  

These results are similar to the observations made [11], in which approximately 

optimal running paths also appeared to track the expected set-points of the control 

variables in OAC and LOT. However, the running paths generated by iLQG in this work 

are drastically different from the running paths generated by the heuristic controllers and 

the controller presented in [11]. This seems to indicate that there are a wide variety of 

successful running paths in which the controlled variables are tracked “reasonably” well, 

thus it may be difficult reject a hypothesis that actual human fielding behaviors are 

generated by a particular catching heuristic, i.e. there exists a causal relationship. This 

also seems to give further credence to the hypothesis that the satisfaction of the heuristics 

may be a geometric consequence of the implementation of another control strategy, as 

postulated in [11], since the running paths presented in [11] and in this work are quite 

disparate yet qualitatively seem to satisfy the heuristics.  

This is illustrated again in Figure 20, in which Figures 20 a) and b) show a full 

simulated trial in the maximal noise configuration, where the trial in Figure 20 a) resulted 

in a catch by each controller, and the trial in Figure 20 b) resulted in a miss by each 

controller. It can be seen in Figures 20 c) and d) that each method qualitatively seems to 
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track each of the controlled variables similarly, despite the fact that the running paths 

generated by each method are dissimilar aside from the fact that they terminate in the 

same result. This again highlights the difficulty in rejecting the hypothesis of a causal 

relationship when evaluating human data and lends further credence to the hypothesis 

that the satisfaction of the heuristics may be a geometric consequence of the 

implementation of another control strategy 

8.2 DISCUSSION 

Cost shaping and the maximum likelihood assumption on the time-to-impact was 

employed as a means to make the outfielder problem accessible to the iLQG algorithm. 

So, while iLQG converges to a locally optimal solution, this solution by proxy is only 

valid if the shaped cost function leads to the same behavior that would result from 

optimizing with respect to the original reward function (i.e. Equation 123). The error in 

this approximation has not been studied in this work, so the validity of the approximate 

solutions determined in this work is debatable. Future work in iLQG should quantify the 

expected error induced by these assumptions or explore more precise means of handling 

input constraints and uncertainty in the time-to-impact. 

While one of the stated goals of this work was to statistically quantify an upper 

bound on the performance of the heuristic methods, there is a notable imprecision in the 

definition of the heuristics which makes this difficult to unambiguously achieve. 

Specifically, whenever the input which nullifies the control variables is not contained 

within the input constraint, an input on the constraint boundary which immediately 

minimizes the error with respect to the controlled variables is sought. However, the input 

on the constraint boundary which minimizes the error with respect to the control 
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variables is subject to the weighting of the control variables, with different weightings 

leading to different fielding behaviors (see Figure 16). Therefore, in order to truly find 

the maximum expected performance that can be achieved by immediately minimizing the 

errors of the controlled variables, the weighting of the controlled variables should be 

optimized. However, the time-cost of completing this task seemed to outweigh the 

immediate reward, so this was relinquished to future work. Alternatively, it may also be 

possible to quantify the maximum expected performance under any weighting of the 

controlled variables by allowing multistep prediction in the heuristic methods. However, 

this was not explored in this work since it seemed to convolute the intent of the heuristic 

methods but may be an approach employed in future work. 

Regardless, it could be seen that in moderate and low noise configurations, the 

heuristic controllers demonstrated successful catching behavior, specifically the �̇�-nulling 

controller. While the performance of the LOT controller was dominated by every other 

controller that was considered, it should be noted that LOT may benefit if additional 

information was included, specifically background image data. It was noted in [120] that 

human fielding behavior changed in response to variations of the flow in the background 

image data, which the authors attribute to the use of the LOT heuristic. While it is 

possible that variations in the flow of the background image data, it is also possible that 

background image data directly assists in the application of a LOT-type heuristic, so that 

the background image flows linearly as the fielder remains fixed on the ball. However, 

more research on this is needed. 

However, for many practical mobile platforms, the deterministic time-optimal 

controller presented in Section 6.1 would provide the best results, while also being 
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efficient enough to run in real-time. Therefore, the full benefit of heuristic controllers is 

only realized aboard agents in which it is impractical to obtain a full state estimate. 

As was noted in the previous section, rejecting a causal relationship between 

human fielding behavior and the aforementioned heuristics based on observed human 

fielding data alone is likely very difficult due to the fact that the control variables are not 

very sensitive to the successful trajectories of the fielder. Therefore, there is a need for 

experiments which can more precisely isolate each control variable. 

Perhaps the greatest insights from the study of the outfielder problem can be 

derived from the human reasoning that was employed in order to generate the various 

fielding heuristics. This may be indicative of a more general problem-solving strategy 

that is employed by humans which may be possible to imitate on a rudimentary level by 

an autonomous artificial agent. For instance, each fielding heuristic studied in this work 

may be reduced to a pair of control variables that are intended to be invariant throughout 

the flight of the ball, and satisfaction of the heuristics are guaranteed to result in 

successful fielding behavior. Guided by this principle, a new invariant was developed in 

Section 3.4, albeit the new heuristic relied heavily on the LOT heuristic developed in 

[56]. However, autonomously searching for invariants which result in globally desirable 

behavior may be a strategy which is realizable with further study. 

Research into the outfielder problem has demonstrated how human reasoning may 

be applied to develop simple rules to guide complex decision-making. Specifically, these 

rules may be applicable to allow a human fielder to quickly form high-quality decisions. 

While the researchers developed the heuristics as a product of deliberate effort, it is also 

possible that human fielders similarly develop such rules subconsciously as they learn to 
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catch fly balls. In either case, the generated rules seek to reliably catch fly balls, while 

also considering the resource constraints of a human fielder.  

9 CONCLUSIONS AND DIRECTION OF FUTURE WORK 

This research explored methodologies which enable decision makers to form good 

decisions for continuous POMDPs. The methodologies that were explored included 

heuristic approaches, in which reasoning is applied offline to form simple rules which 

guide the decision-making process, and a belief space variant of iLQG [118], which is a 

trajectory optimization method that exploits the dynamics model online. Conventional 

model-free reinforcement learning methods, including model-free methods which are 

applied to simulated models, were not studied in this work. Rather, it is proposed that the 

autonomous formation of heuristics is a method by which artificial agents may actively 

limit their resource demands by exploiting structure within the environment and 

exploiting a coupling between their sensing and actuation for fast decision-making, 

similar to how it is hypothesized that humans perform decision-making [35]. This may be 

used in conjunction with, or as alternative to, conventional model-free reinforcement 

learning methods. However, this methodology requires further research before it is 

applicable to practical problems. 

The  contributions of this work which may have the most immediate impact are 

the novel modifications to a belief space variant of iLQG [118] which reduced the time 

complexity of computing certain matrix derivatives from 𝑂[𝑛$] to 𝑂[𝑛&] by employing 

directional derivatives. Under special circumstances, such as those encountered in this 

work, the calculation of these derivatives forms the computational bottleneck of the 

algorithm, so the efficiency of the algorithm is greatly improved by the use of directional 
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derivatives. In addition to the application of the modified belief space variant of iLQG as 

a standalone planner, it may also be employed within the framework of a sample-based 

path planner (e.g. [4][19]). 

This work applied modified belief iLQG algorithm to a target interception 

problem, specifically the outfielder problem. It was noted several limitations exist which 

impede the direct application of the iLQG algorithm, such as the uncertainty about the 

time-to-impact and input constraints. Similar issues would also arise in other target 

interception problems, such as missile defense [126]. In this work, these limitations were 

circumvented through the use of cost shaping. However, in future work it would be 

constructive to handle these problems using a more direct method (e.g. by considering the 

probability that the ball will land across multiple time-steps). While iLQG was made 

even more efficient by the methods developed in this work, it remains impractical to 

implement in real-time on a practical mobile platform due to its long running time (see 

Table 9). However, the deterministic time-optimal controller (see Section 6.1), which 

solves for a minimum time path from the mean of fielder’s position estimate to the 

predicted landing spot of the ball, is efficient enough to be implemented in real-time and 

also seems to provide performance comparable to the iLQG method presented in this 

work. It is possible that the cost shaping methods which were employed in this work (e.g. 

the maximum likelihood assumption used for the time-to-impact) greatly impeded the 

performance of the iLQG algorithm. Therefore, it is desirable in future work to develop 

methodology which more accurately approximates the solution to the true system. 

Part of the failure of the iLQG controller to achieve close to real-time 

performance may also be attributable to the cost shaping methods which were employed 
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in this work. Since divergence would occur for large step-sizes from the nominal 

trajectory, rather restrictive control of the step-size was implemented. This resulted in 

long convergence times which may be avoidable with improved cost shaping. 

Similar to the outfielder problem, trajectory optimization methods with quadratic 

costs have also been applied to missile defense [71], which makes the application of 

belief iLQG natural to account for the stochastic component of the problem. Unlike the 

fielders studied in this work, a missile interceptor would not be constrained to motion in 

the ground plane. Thus, the interceptor would need to determine a trajectory that provides 

the highest probability of interception in 3-dimensional space rather than a plane, as is 

considered in this work. Since the positions of the target and the interceptor through 3-

dimensional space vary rapidly with time, incorporating time-to-impact uncertainty into 

planning is crucial to maximizing the performance of the interceptor [100]. A ballistic 

missile defense system also has access to external sensing (e.g. ground-based radar 

[122]), which may be incorporated into the planner. Multiple interceptors may also 

coordinate to create a network of active sensors, allowing a belief space planner to 

coordinate the actions of each interceptor to maximize the probability of interception. 

Due to extreme time-sensitivity and high velocities that are involved, time delays must 

also be accounted for, which were not modeled in this work. Active ballistic missiles are 

also capable of performing avoidance maneuvers, so game theoretical modeling would be 

necessary for optimal behavior [95]. The application of the methods presented in this 

work to such game theoretic problems may be an area of future research.  

Heuristics have also been applied to missile target interception with the intent of 

achieving fast and reliable performance, similar to the catching heuristics studied in this 
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work.  For example, Proportional Navigation (PN, [71]) operates based on the intuition 

that if interceptor’s line-of-sight remains fixed on the target then interception will occur if 

the interceptor is faster and more maneuverable than the target, and thus PN has been a 

widely studied interception heuristic. However, as the capabilities of the target increase, 

more sophisticated algorithms are needed for successful interception, making optimal 

control approaches more suitable [71]. The persistent need of missile defense systems to 

make timely decisions would benefit from methodology to generate new heuristics which 

make fast and reliable decisions in these particularly demanding systems, which is 

especially true for the interception of ballistic missiles during the boost and midcourse 

phases. 

Heuristic controllers, which are specifically designed to exploit the system model 

in order to provide reliable results efficiently, are advantageous in that they may quickly 

arrive at a decision, and they may also operate using limited information [56][61], 

although this point was not studied in this work. However, the greatest benefit from the 

study of heuristics may be derived from the human thought process that develops the 

heuristic. Humans are experts at developing reliable behavior while simultaneously 

seeking to limit the resource demands of an agent. Through more extensive study of these 

mechanisms of human thought, it may be possible to enable artificial agents to similarly 

develop fast and reliable heuristics.  
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APPENDIX A: BELIEF iLQG 

The modified belief space variant of iLQG presented in Chapter 4 is based on the 

work of van den Berg et al. [118], which is summarized here. The problem statement is 

the same as presented in Section 4.1, so that the value function 𝜐�[𝒙Í�, 𝑃�] at time 𝑘 is 

approximated by a function that is quadratic in the mean and linear in the variance that is 

locally valid around some nominal belief 𝒙â�, 𝑃ã�; although the variance term in the value 

function is expressed as a vectorized matrix: 

𝜐�[𝒙Í, 𝑃] ≈ 𝑠� +
1
2
(𝒙Í� − 𝒙â�)Û𝑆�(𝒙Í� − 𝒙â�) + 𝒔�Û(𝒙Í� − 𝒙â�) + 𝒕�Ûvec[𝑃� − 𝑃ã�] (169) 

where at the final time-step 𝑘 = ℓ, 

𝑆ℓ =
𝜕½𝑐ℓ
𝜕𝒙Íℓ𝜕𝒙Íℓ

[𝒙âℓ, 𝑃ãℓ], 𝒔ℓÛ =
𝜕𝑐ℓ
𝜕𝒙Íℓ

[𝒙âℓ, 𝑃ãℓ], 

(170) 

𝑠ℓ = 𝑐ℓ[𝒙âℓ, 𝑃ãℓ], 𝒕ℓÛ =
𝜕𝑐ℓ

𝜕vec[𝑃ℓ]
[𝒙âℓ, 𝑃ãℓ], 

The approximation of the value function at time-steps 0 ≤ 𝑘 < ℓ are found by 

approximating the Bellman back-propagation of the approximate value function at time-

step 𝑘 + 1: 
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𝜐�[𝒙Í�, 𝒖�] = min
𝒖
Ü𝑐�[𝒙Í�, 𝑃�, 𝒖�] + E�𝜐���[𝒙Í���, 𝒖���]�Ý 

(171) 

 
≈ min

𝒖
å𝑐�[𝒙Í�, 𝑃�, 𝒖�]

+ E æ𝑠��� +
1
2
(𝒇[𝒙Í�, 𝒖�] + 𝒘 − 𝒙â���)Û𝑆���(𝒇[𝒙Í�, 𝒖�] + 𝒘 − 𝒙â���)

+ 𝒔���Û (𝒇[𝒙Í�, 𝒖�] + 𝒘 − 𝒙â���) + 𝒕���Û vec[Φ[𝒙Í�, 𝑃�, 𝒖�] − 𝑃ã���]çè	

≈ min
𝒖
Æ𝑐�[𝒙Í�, 𝑃�, 𝒖�] + 𝑠���

+
1
2
(𝒇[𝒙Í�, 𝒖�] − 𝒙â���)Û𝑆���(𝒇[𝒙Í�, 𝒖�] − 𝒙â���)

+ 𝒔���Û (𝒇[𝒙Í�, 𝒖�] − 𝒙â���)

+ 𝒕���Û vec[Φ[𝒙Í�, 𝑃�, 𝒖�] − 𝑃ã���]

+
1
2 vec

[𝑆���]Ûvec�𝑊[𝒙Í�, 𝑃�, 𝒖�]�Ê 

Where the following identities were employed to derive the last term of Equation 171: 

E[𝒛Û𝐴𝒛] = E[𝒛Û]𝐴E[𝒛] + tr�𝐴	Var[𝒛]� (172) 

tr[𝐴𝑍] = vec[𝐴Û]Ûvec[𝑍] (173) 

The following first order approximations were used to further simplify Equation 171: 

𝒇[𝒙Í�, 𝒖�] − 𝒙â��� ≈ 𝐹�(𝒙Í� − 𝒙â�) + 𝐺�(𝒖� − 𝒖â�) (174) 

vec[Φ[𝒙Í�, 𝑃�, 𝒖�] − 𝑃ã���] ≈ 𝑇�(𝒙Í� − 𝒙â�) + 𝑈�vec[𝑃� − 𝑃ã�] + 𝑉�(𝒖� − 𝒖â�) (175) 

vec�𝑊[𝒙Í�, 𝑃�, 𝒖�]� ≈ 𝒚� + 𝑋�(𝒙Í� − 𝒙â�) + 𝑌�vec[𝑃� − 𝑃ã�] + 𝑍�(𝒖� − 𝒖â�) (176) 

where 

 



142 

𝐹� =
𝜕𝒇
𝜕𝒙Í�

[𝒙â�, 𝒖â�], 𝐺� =
𝜕𝒇
𝜕𝒖�

[𝒙â�, 𝒖â�], 

(177) 

𝑇� =
𝜕vec[Φ]
𝜕𝒙Í�

[𝒙â�, 𝑃ã�, 𝒖â�], 𝑈� =
𝜕vec[Φ]
𝜕vec[𝑃�]

[𝒙â�, 𝑃ã�, 𝒖â�], 

𝑉� =
𝜕vec[Φ]
𝜕𝒖�

[𝒙â�, 𝑃ã�, 𝒖â�], 𝑋� =
𝜕vec[𝑊]
𝜕𝒙Í�

[𝒙â�, 𝑃ã�, 𝒖â�], 

𝑌� =
𝜕vec[𝑊]
𝜕vec[𝑃�]

[𝒙â�, 𝑃ã�, 𝒖â�], 𝑍� =
𝜕vec[𝑊]
𝜕𝒖�

[𝒙â�, 𝑃ã�, 𝒖â�], 

𝒚� = vec�𝑊[𝒙â�, 𝑃ã�, 𝒖â�]�,  

The immediate cost function 𝑐�[𝒙Í�, 𝑃�, 𝒖�] was approximated by a second-order 

approximation with respect to the mean and a first-order approximation with respect to 

the variance: 

𝑐�[𝒙Í�, 𝑃�, 𝒖�] ≈ 𝑞� +
1
2 À
𝒙Í� − 𝒙â�
𝒖� − 𝒖â�

Á
Û
À𝑄� 𝐽�Û
𝐽� 𝑅�

Á À𝒙Í� − 𝒙â�𝒖� − 𝒖â�
Á + �

𝒒�
𝒓��

Û
À𝒙Í� − 𝒙â�𝒖� − 𝒖â�

Á

+ 𝒑�Ûvec[𝑃� − 𝑃ã�]	 

(178) 

where 

𝑄� =
𝜕½𝑐�

𝜕𝒙Í�𝜕𝒙Í�
[𝒙â�, 𝑃ã�, 𝒖â�], 𝒒�Û =

𝜕𝑐�
𝜕𝒙Í�

[𝒙â�, 𝑃ã�, 𝒖â�], 

(179) 

𝑅� =
𝜕½𝑐�

𝜕𝒖�𝜕𝒖�
[𝒙â�, 𝑃ã�, 𝒖â�], 𝒓�Û =

𝜕𝑐�
𝜕𝒖�

[𝒙â�, 𝑃ã�, 𝒖â�], 

𝐽� =
𝜕½𝑐�

𝜕𝒖�𝜕𝒙Í�
[𝒙â�, 𝑃ã�, 𝒖â�], 

𝑞� = 𝑐�[𝒙â�, 𝑃ã�, 𝒖â�], 

𝒑�Û =
𝜕𝑐�

𝜕vec[𝑃�]
[𝒙â�, 𝑃ã�, 𝒖â�], 

 

 

Substituting Equations 174-179 into Equation 171, it can be seen that the value function 

at time 𝑘 may be approximated as 
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𝜐�[𝒙Í�, 𝑃�] ≈ min
𝒖
å𝑒� +

1
2 À
𝒙Í� − 𝒙â�
𝒖� − 𝒖â�

Á
Û
À𝐶� 𝐸�Û
𝐸� 𝐷�

Á À𝒙Í� − 𝒙â�𝒖� − 𝒖â�
Á + �

𝒄�
𝒅�
�
Û
À𝒙Í� − 𝒙â�𝒖� − 𝒖â�

Á

+ 𝒆�Ûvec[𝑃� − 𝑃ã�]è 

(180) 

where 

𝐶� = 𝑄� + 𝐹�Û𝑆���𝐹�, 𝒄�Û = 𝒒�Û + 𝒔���Û 𝐹� + 𝒕���Û 𝑇� +
1
2 vec

[𝑆���]Û𝑋�, 

(181) 

𝐷� = 𝑅� + 𝐺�Û𝑆���𝐺�, 𝒅�Û = 𝒓�Û + 𝒔���Û 𝐺� + 𝒕���Û 𝑉� +
1
2 vec

[𝑆���]Û𝑍�, 

𝐸� = 𝐽� + 𝐺�Û𝑆���𝐹�, 𝒆�Û = 𝒑�Û + 𝒕���Û 𝑈� +
1
2 vec

[𝑆���]Û𝑌�, 

 𝑒� = 𝑞� + 𝑠��� +
1
2 vec

[𝑆���]Û𝒚�. 

 A locally optimal policy 𝝅�[𝒙Í�, 𝑃�] at time step 𝑘 can be found by referencing 

Equation 180 and setting the first derivative of 𝜐�[𝒙Í�, 𝑃�] with respect to 𝒖� equal to zero 

and then solving for 𝒖�. 

𝒖� = 𝐿�(𝒙Í� − 𝒙â�) + 𝒍� + 𝒖â� (182) 

where 

𝐿� = −𝐷�¿�𝐸� (183) 

𝒍� = −𝐷�¿�𝒅� (184) 

By substitution of Equations 182-184 into Equation 180, the desired form of the value 

function approximation is obtained at time step 𝑘. 

 

𝜐�[𝒙Í, 𝑃] ≈ 𝑠� +
1
2
(𝒙Í� − 𝒙â�)Û𝑆�(𝒙Í� − 𝒙â�) + 𝒔�Û(𝒙Í� − 𝒙â�) + 𝒕�Ûvec[𝑃� − 𝑃ã�] (185) 

where 
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𝑆� = 𝐶� + 𝐿�Û𝐸�, 𝒔�Û = 𝒄�Û + 𝒍�Û𝐸�, 

(186) 
𝑠� = 𝑒� +

1
2𝒅�

Û𝒍�, 
𝒕�Û = 𝒆�Û, 

The process for iterating to a locally optimal policy is the same in both approaches. 

 It can be seen that the only changes made to [118] in this work (see Chapter 4) 

relate to the handling of the variance term. However, the method in [118] requires the 

partial derivative with respect to each element of 𝑃� to calculate the matrices 𝑈� and 𝑌�. 

Each partial derivative requires 𝑂[𝑛½] time to evaluate, and there are 𝑛½ elements in 𝑃�, 

so in total 𝑂[𝑛$] time is required to differentiate with respect to every element, which 

results in 𝑈� and 𝑌� being 𝑛½ × 𝑛½ matrix. Then, this pair of 𝑛½ × 𝑛½ matrices are each 

multiplied with a vector of dimension 𝑛½, which also requires 𝑂[𝑛$] time for each 

multiplication. These products from van den Berg et al.’s [118] method are calculated in 

𝑂[𝑛&] time in this work.  
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APPENDIX B: NOTES ON ANALYTIC DERIVATIVES 

 It was suggested in Section 4.4.1 that the vectors 𝒂�, 𝒃�, 𝒕�, and 𝒗� may be 

calculated numerically or analytically. Detailed here are the necessary derivatives for 

analytical calculation of these vectors. The variable 𝑧ï may be replaced by 𝑥îï or 𝑢ï to find 

the appropriate derivatives. In order to determine the analytic derivatives, it is necessary 

to compute the partial derivatives of 𝐹�, 𝐻�, 𝑀�, and 𝑁� with respect to each element 𝑥îï 

and 𝑢ï. First, the partial derivative of Φ[𝒙Í�, 𝑃�, 𝒖�] may be determined by 

𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]
𝜕𝑧ï

ë
𝒙â³,ñã³,𝒖â³

= −𝑃ã���
𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]¿�

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

𝑃ã��� (187) 

where 𝑃ã��� is given by Equations 34-35. The derivative of Φ[𝒙Í�, 𝑃�, 𝒖�]¿� may be found 

with reference to Equation 20. 

𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]¿�

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

=
𝜕
𝜕𝑧ï

ÜΓ�¿� + 𝐻�Û𝑁�¿�𝐻�Ýì
𝒙â³,ñã³,𝒖â³

	

=
𝜕Γ�¿�

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

+
𝜕
𝜕𝑧ï

𝐻�Û𝑁�¿�𝐻�ì
𝒙â³,ñã³,𝒖â³

 

(188) 

The first partial derivative in Equation 188 is given by 

𝜕Γ�¿�

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

= −Γã�¿�
𝜕Γ�
𝜕𝑧ï

ì
𝒙â³,ñã³,𝒖â³

Γã�¿� (189) 

where 

𝜕Γ�
𝜕𝑧ï

ì
𝒙â³,ñã³,𝒖â³

=
𝜕
𝜕𝑧ï

(𝐹�𝑃�𝐹�Û + 𝑀�)ì
𝒙â³,ñã³,𝒖â³

	

=
𝜕𝐹�
𝜕𝑧ï

ì
𝒙â³,ñã³,𝒖â³

𝑃ã�𝐹ã�Û + 𝐹ã�𝑃ã�
𝜕𝐹�Û

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

+
𝜕𝑀�

𝜕𝑧ï
ì
𝒙â³,ñã³,𝒖â³

 

(190) 

The second partial derivative in Equation 188 may be expressed as 
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𝜕
𝜕𝑧ï

𝐻�Û𝑁�¿�𝐻�ì
𝒙â³,ñã³,𝒖â³

=
𝜕𝐻�Û

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

𝑁â�¿�𝐻â� + 𝐻â�Û
𝜕𝑁�¿�

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

𝐻â�

+ 𝐻â�Û𝑁â�¿�
𝜕𝐻�
𝜕𝑧ï

ì
𝒙â³,ñã³,𝒖â³

 

(191) 

The necessary partial derivatives of 𝑊[𝒙Í�, 𝑃�, 𝒖�] may be found using 

𝜕𝑊[𝒙Í�, 𝑃�, 𝒖�]
𝜕𝑧ï

ë
𝒙â³,ñã³,𝒖â³

=
𝜕
𝜕𝑧ï

𝐾�𝐻�Γ�ì
𝒙â³,ñã³,𝒖â³

	

=
𝜕𝐾�
𝜕𝑧ï

ì
𝒙â³,ñã³,𝒖â³

𝐻�Γ� + 𝐾�
𝜕𝐻�
𝜕𝑧ï

ì
𝒙â³,ñã³,𝒖â³

Γ�	

+𝐾�𝐻�
𝜕Γ�
𝜕𝑧ï

ì
𝒙â³,ñã³,𝒖â³

 

(192) 

where the partial derivative of Γ� was determined in Equation 190, and the partial 

derivative of 𝐻� is assumed to be known. The partial derivative with respect to 𝐾� may 

be found with the aid of Equation 22. 

𝜕𝐾�
𝜕𝑧ï

ì
𝒙â³,ñã³,𝒖â³

=
𝜕
𝜕𝑧ï

Φ[𝒙Í�, 𝑃�, 𝒖�]𝐻�Û𝑁�¿�ì
𝒙â³,ñã³,𝒖â³

	

=
𝜕Φ[𝒙Í�, 𝑃�, 𝒖�]

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

𝐻â�Û𝑁â�¿� + 𝑃ã���
𝜕𝐻�Û

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

𝑁â�¿�

+ Φ[𝒙â�, 𝑃ã�, 𝒖â�]𝐻â�Û
𝜕𝑁�¿�

𝜕𝑧ï
ë
𝒙â³,ñã³,𝒖â³

 

(193) 

where the partial derivative of Φ[𝒙Í�, 𝑃�, 𝒖�] was determined in Equations 187-192 , and 

the partial derivative of 𝐻� is assumed to be known.  If necessary, the partial derivative of 
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𝑁�¿� may be found with the aid of the identity in Equation 44, given that the partial 

derivative of 𝑁� is assumed to be known.  
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APPENDIX C: SEPARABILITY OF FIRST-ORDER EXPANSIONS 

Consider a scalar function of two scalar variables, 𝑓[𝑥, 𝑦]. Take the first order 

Taylor expansion about �̅�, 𝑦ã: 

𝑓[𝑥, 𝑦] − 𝑓[�̅�, 𝑦ã] ≈
𝜕𝑓[�̅�, 𝑦ã]
𝜕𝑥

(𝑥 − �̅�) +
𝜕𝑓[�̅�, 𝑦ã]
𝜕𝑦

(𝑦 − 𝑦ã) (194) 

Now consider the expansions in which one variable is fixed. 

𝑓[𝑥, 𝑦ã] − 𝑓[�̅�, 𝑦ã] ≈
𝜕𝑓[�̅�, 𝑦ã]
𝜕𝑥

(𝑥 − �̅�) (195) 

𝑓[�̅�, 𝑦] − 𝑓[�̅�, 𝑦ã] ≈
𝜕𝑓[�̅�, 𝑦ã]
𝜕𝑦

(𝑦 − 𝑦ã) (196) 

By substitution of Equations 195-196 into Equation 194: 

𝑓[𝑥, 𝑦] − 𝑓[�̅�, 𝑦ã] ≈ (𝑓[𝑥, 𝑦ã] − 𝑓[�̅�, 𝑦ã]) + (𝑓[�̅�, 𝑦] − 𝑓[�̅�, 𝑦ã]) (197) 

which is valid to first order. A similar argument could be constructed for vector and 

matrix functions with more than two variables. 
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APPENDIX D: IMMEDIATE COST FUNCTION CONSIDERATIONS 

 The actual expected immediate reward is given by the probability that the ball 

will be caught given a belief 𝒙Íø, 𝑃ø. This may be expressed as 

𝜌[𝒙Íø, 𝑃ø, 𝒖ø] = E[ℛ(𝒙ø, 𝒖ø)] = f ℛ(𝒙ø, 𝒖ø)𝑝𝒙[(𝒙ø)𝑑𝒙ø

g

¿g

 

𝒙ø~𝒩(𝒙Íø, 𝑃ø) 

(198) 

where 𝜌[𝒙Íø, 𝑃ø, 𝒖ø] is the expected immediate reward of belief 𝒙Íø, 𝑃ø and input 𝒖ø, and 

𝑝𝒙[(𝒙ø) is the probability density function for 𝒙ø. From Equation 123, it can be seen that 

a reward of 1 is received only under the conditions in which the ball is caught. So 

Equation 198 may be decomposed into integration over two mutually exclusive spaces, 

with the value of the reward function being one in the region where the ball is caught and 

zero in the region in which the ball is not caught. 

f ℛ(𝒙ø, 𝒖ø)𝑝𝒙[(𝒙ø)𝑑𝒙ø

g

¿g

= f 1 ⋅ 𝑝𝒙[(𝒙ø)𝑑𝒙ø
«sOO	ï�	
9sÈN¾ø

+ f 0 ⋅ 𝑝𝒙[(𝒙ø)𝑑𝒙ø
«sOO	h¢ø	
9sÈN¾ø

 (199) 

Thus, 𝜌[𝒙Íø, 𝑃ø, 𝒖ø] is the probability that the ball is caught in belief  𝒙Íø, 𝑃ø, which is 

𝜌[𝒙Íø, 𝑃ø, 𝒖ø] = Pr�Ü𝑧«,ø = 0Ý ∩ Ü(𝒙øÛ𝜒Û𝜒𝒙ø)�/½ ≤ 𝜖Ý�	

= Pr�(𝒙øÛ𝜒Û𝜒𝒙ø)�/½ ≤ 𝜖	T𝑧«,ø = 0� Pr�𝑧«,ø = 0� 
(200) 

by the definition of conditional probability, where the event 𝑧«,ø = 0 is interpreted as the 

probability that the ball lands within the time interval considered by the current time step, 

since the probability of landing at a particular continuous time 𝑡 is zero. 

The reward function given by Equation 200 is not well suited for the iLQG 

method, since there are beliefs in which the Hessian is indefinite and thus does not satisfy 
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the constraints given in Equation 16.  A common approach to resolve this issue is to 

convert the reward function into a cost function using the negated log-probability, which 

yields the candidate cost function  

𝑐ø[𝒙Íø, 𝑃ø, 𝒖ø] = − log�Pr�(𝒙øÛ𝜒Û𝜒𝒙ø)�/½ ≤ 𝜖	T𝑧«,ø = 0� Pr�𝑧«,ø = 0��	

= − log�Pr�(𝒙øÛ𝜒Û𝜒𝒙ø)�/½ ≤ 𝜖	T𝑧«,ø = 0�� − log�Pr�𝑧«,ø = 0�� 
(201) 

This candidate cost function possesses a desirable positive-definite Hessian since 𝒙ø is 

Gaussian, however, this cost function results in undesirable behavior. The first term 

represents the cost associated with the distance error, given that the ball lands within the 

time interval considered by the current time step. This is problematic because this term 

incentivizes the fielder to track the most likely landing spot of the ball without regard to 

probability that the ball actually will land.  Meanwhile, the second term assigns a large 

cost to states in which the probability of the ball landing within the time interval 

considered by the current time step is close to zero. This runs counter to intuition, which 

dictates that the fielder should only be penalized if the ball has a high probability of 

landing, but the fielder is not correctly positioned to intercept it, rather penalizing the 

fielder simply because the catch must be made in the future.   
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APPENDIX E: BALL-CATCHING ROBOTS 

To date, there has not yet been any success in designing a robot that is capable of 

catching fly balls with anywhere near the proficiency of a human, as the maximum 

distances (<7 m; [12]) over which the ball has been thrown and successfully caught by a 

mobile robot are significantly less than those which are experienced in professional 

baseball, where distances of 100 m and velocities of 40 m/s are routine. Additionally, 

professional baseball players are exposed to ball trajectories which are shaped by much 

larger drag and Magnus forces, further disturbing the trajectory from the parabolic ideal.  

There have been several cases in which researches have successfully implemented 

robotic arms on fixed mounts in the catching task. Frese et al. [33] implemented a 7 DOF 

arm on fixed mount with net mounted on the end effector. Stereo cameras with a 1 m 

baseline on a fixed external mount were used to track the ball. The ball trajectory was 

modeled with drag effects and was estimated using an EKF. A heuristic was used to 

determine the catch point comfortably within the reachable space of the robot so that it 

can adjust to prediction errors. The success rate was about 66% for balls tossed across a 

room. Deguchi et al. [27] similarly implemented a 7 DOF arm with a cup mounted on the 

end effector to perform catching. Stereo cameras with a large baseline were also used to 

track the ball, and batch estimation was used to fit a parabolic trajectory from all 

available images. A point was then selected along this parabolic trajectory to be the catch 

point. Instead of optimizing the end effector motion, visual servoing was performed in 

epipolar coordinates using the stereo images to move the end effector (the cup) to the 

desired catch point. The basis of their strategy was that visual servoing was faster to 

compute and more robust to modeling errors, although the success rate was not reported.  
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Linderoth [54] implemented an industrial robot on a fixed mount for ball catching with a 

success rate of about 72%. A box was mounted on the end effector with a hole cut into it 

that was only slightly larger than the ball, such that less than 8 mm of error was needed 

for the ball to be caught. Target tracking was again performed using stereo vision using a 

large baseline and a fixed external mount. The ball trajectory was modeled as ballistic 

with drag and was estimated using a multiple hypothesis tracker with an EKF for each 

hypothesis. The visual detection could only be done reliably within 4 m with ball 

velocities up to 11 m/s, so the detection, estimation, planning, and implementation had to 

be performed rapidly, which was ultimately accomplished with only a 44 ms delay for the 

compute time. The planning was performed exceptionally fast (~4 µs) by planning each 

joint individually in joint space. The implementation of the planned control actions could 

also be performed very rapidly using the ABB IRB 140 industrial robot, for which max 

joint velocities range from 200-450°/s, which is similar to the rate of a human knee 

extension [125]. Additionally, motions could also be performed very accurately, with 

position repeatability of 0.03 mm. 

Lippiello et al. [53] implemented a monocular camera on the end effector of a 

fixed-mount robotic arm. The moveable monocular camera enabled the robot to employ 

active perception to increase the observability of the ball’s trajectory, which was modeled 

as a ballistic trajectory with drag. The directional vectors from the camera to the ball and 

the camera poses were used to estimate the ball’s trajectory through batch estimation with 

the Levenberg–Marquardt algorithm [65]. The estimated trajectory was used to determine 

a catch point, which was optimized to minimize torque at the arm’s joints. The 
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configuration enabled a 90% success rate for balls tossed within reach of the robot from 

across a room.  

In addition to fixed-mount robotic arms, there have been a few instances in which 

mobile robots were used for the ball catching task, which can be considered more akin to 

the problem considered in this research. Miyazaki and Mori [64] developed the Gaining 

Angle of Gaze (GAG) heuristic for use on a differential drive robot. The GAG heuristic is 

based on OAC for catching the ball using a differential drive robot in two dimensions 

with a monocular camera. The algorithm demonstrated limited ability to catch the ball 

over only short distances. Sugar et al. [107] developed a mobile robot employing OAC to 

catch balls in the sagittal plane using a monocular camera with some success, again only 

over short distances. The most complete ball catching robot to date has been a humanoid 

robot with a holonomic wheeled base that has demonstrated the ability to catch balls 

thrown from 5-7 m away at velocities around 7 m/s using a four-fingered hand with a 

success rate of about 80% [10][12]. The humanoid robot had stereo vision cameras with a 

short baseline mounted on its head, which induced shaking of the cameras when the robot 

would move. A head mounted IMU was implemented to compensate for the image noise 

induced by the shaking cameras. The robot performed estimation using a multiple 

hypothesis tracker with an Unscented Kalman Filter (UKF; [42]) for every hypothesis. 

The ball’s trajectory was modeled with drag but no Magnus forces, which are negligible 

at the velocities and spin rates that were considered. The overall delay from the camera 

shutter to the movement being implemented was estimated to be around 90 ms, with 

computation time being an important factor that was considered in the design process 
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[10]. The main sources of error leading to failure were attributed to the visual tracking 

system and prediction. 
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