
Graduate Theses, Dissertations, and Problem Reports

2020

Navigation under Obstacle Motion Uncertainty using Markov Navigation under Obstacle Motion Uncertainty using Markov

Decision Processes Decision Processes

Jennifer Quyen Nguyen
West Virginia University, jqnguyen@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Nguyen, Jennifer Quyen, "Navigation under Obstacle Motion Uncertainty using Markov Decision
Processes" (2020). Graduate Theses, Dissertations, and Problem Reports. 7516.
https://researchrepository.wvu.edu/etd/7516

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F7516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/7516?utm_source=researchrepository.wvu.edu%2Fetd%2F7516&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Navigation under Obstacle Motion Uncertainty
using Markov Decision Processes

Jennifer Nguyen

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science in
Mechanical Engineering

Yu Gu, Ph.D., Chair
Jason Gross, Ph.D.

Powsiri Klinkhachorn, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia
2020

Keywords: Navigation, Obstacle Avoidance, MDP, POMDP, QMDP
Copyright © 2020 - Jennifer Nguyen

CCBY-NC 4.0

https://creativecommons.org/licenses/by-nc/4.0/

Abstract

Navigation under Obstacle Motion Uncertainty using Markov Decision
Processes

Jennifer Q. Nguyen

In terms of navigation, a central problem in the field of autonomous robotics is obstacle avoid-
ance. This research explores how to navigate as well as avoid obstacles by leveraging what is known
of the environment to determine decisions with new incoming information during execution. The
algorithm presented in this work is divided into two procedures: an offline process that uses prior
knowledge to navigate toward the goal; and an online execution strategy that leverages results ob-
tained offline to drive safely towards the target when new information is encountered (e.g., ob-
stacles). To take advantage of what is known offline, the navigation problem was formulated as a
Markov Decision Process (MDP) where the environment is characterized as an occupancy grid.
Baseline dynamic programming techniques were used to solve this, producing general behaviors
that drive the robot (or agent) toward the goal and a value function which encodes the value of
being in particular states. Then during online execution, the agent uses these offline results and sur-
rounding local information of the environment to operate (e.g., data from a LIDAR sensor). This
locally acquired information, which may contain new data not seen prior, is represented as a small
occupancy grid and leverages the offline obtained value function to define local goals allowing the
agent to make short term plans. When the agent encounters an obstacle locally, the problem be-
comes aPartiallyObservableMarkovDecisionProcess (POMDP) since it is uncertainwhere these
obstacles will be in the next state. This is solved by utilizing an approximate planner (QMDP) that
uses uncertainty of the obstacle motion and considers all possible obstacle state combinations in
the next time step to determine the best action. The approximate planner can quickly solve the
POMDP, due to the small size of the local occupancy grid and by using the behaviors produced
offline to help speed up convergence, which opens the possibility for this procedure to be executed
in real time, on a physical robot. Two simulated environments were created, varying in complexity
and dynamic obstacles. Simulation results under complex conditions with narrow operable spaces
andmany dynamic obstacles show the proposed algorithm has approximately an 85% success rate,
in test cases with cluttered environments andmultiple dynamic obstacles, and is shown to produce
safer trajectories than the baseline approach, which had roughly a 37% success rate, under the as-
sumptions that dynamic obstacles can only move a short distance by the next time step.

Acknowledgments

Without the support from friends, family, and colleagues this work would not be possible. I
wish to thank everyone who provided assistance and briefly acknowledge a few of them.

I would first like to thank Jared Strader , who was instrumental in helping cultivate the proper
methodology and understanding needed to make this research possible. For his assistance and
ideas throughout the process.

Next, I would like to show gratitude to Dr. YuGu for being a great advisor in graduate school
and life. Thank you for always being available to offer valuable guidance and support. For
providing the opportunity to expand my knowledge, the freedom to explore ideas, and helping
me grow.

Additionally, I would like to recognize all members of the Interactive Robotics Laboratory
(IRL) , who have always been there for help whenever needed. I am extremely grateful for the
kindness, willingness to assist, and constant enthusiasm which all helped sustain my motivation.
For creating a fun work environment and always finding ways to laugh in difficult times. To
mention a few, I would like to thank Nicholas Ohi for encouraging me to attend graduate school
and always being ready to contribute solutions to help me get unstuck and to Conner Castle for
helping me build the omnidirectional robot used in this research.

Also, I would like to acknowledge the assistance provided by the NASAWest Virginia Space
Grant Consortium (Training Grant #NNX15AI01H) and West Virginia Education Policy
Commission (Award #HEPC.dsr.18.5), making this research possible.

Last, I express my deepest gratitude to DavidDonley for his tremendous support and
encouragement. For his help during difficult graduate school and life challenges. I am truly
grateful and look forward to our future.

iii

Contents

List of Symbols x

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Thesis Outline . 4

2 Literature Review 6
2.1 Static Environments . 7
2.2 Dynamic Environments . 9

3 Background 12
3.1 Markov Decision Processes . 13
3.2 Reinforcement Learning . 14
3.3 Model . 15
3.4 Policy . 15
3.5 Reward . 15
3.6 Value Function . 16
3.7 Optimal Policies & Value Functions . 17
3.8 Policy Iteration . 18
3.9 Partially Observable Markov Decision Processes 18
3.10 QMDP . 19

4 Algorithm Design 21
4.1 Offline: Determining General Behaviors and Values 23

4.1.1 Global Policy Iteration (G-PI) . 23
4.2 Online: Leverage Prior Information and Motion Uncertainty 26

4.2.1 Local Policy Iteration (L-PI) . 26
4.2.2 Local QMDP . 29

iv

4.3 Combined Policy Iteration & QMDP . 33

5 Evaluation 38
5.1 Evaluation Setup . 39

5.1.1 Simulation Setup . 39
5.1.2 Hardware Setup . 40

5.2 Simulation Evaluation . 43
5.2.1 Simple World Results . 45
5.2.2 Maze World Results . 53
5.2.3 Simulation Results Summary . 59

6 Conclusion 61
6.1 Discussion . 62
6.2 Future Work . 64

References 69

v

List of Figures

3.2.1 General Reinforcement Learning system . 14

4.0.1 A high-level overview of the algorithm where the blue box is the offline process
and the green is the online. 23

4.1.1 The order of available actions: N, W, E, S, NW, NE, SW, SE. 24
4.1.2 The possible next states sti for all actions. 26
4.2.1 When the agent is in the global state sGi , the equivalent local world is shaded in

blue and sGi ≡ sLcenter. 27
4.2.2 The local rewards structure: (Orange) has -5 rewards. (Green) contains a reward

of 30 where the maximum extracted local value function are located and follows
the same global rewards defined in Equation 4.1 otherwise. (Blue) uses the same
global rewards defined in Equation 4.1. 28

4.2.3 The localworld is 7×7 containing 2 obstacles (black) and the agent’s location is in
the center (×). The top left obstacle has 5 positions that are out of the local area
(gray), while the other obstacle has 0. Green represents the possible next states
for each obstacle. The number of possible obstacle combinations (i.e., QMDP
states) is (9-5)(9−0)=36. 30

4.2.4 (a)Obstacle connectivity and (b)-(c) local world examples. 31
4.2.5 Continuing on the example of a 7×7 local world containing two obstacles. Each

Q state sQj is a combination the obstacle could be in at the next time step alongside
the corresponding belief b(sQj). 32

5.1.1 OmniBot operating on the custom air hockey table with projected obstacles. . . . 42
5.2.1 Simple World - Evaluation 1: Global Worlds . 45
5.2.2 Simple World - Evaluation 1: Policy Iteration and QMDP (PI+QMDP) versus

Policy Iteration only (PI only) trajectories and collisions. 47
5.2.3 Simple World - Evaluation 2: Known World . 48
5.2.4 Simple World - Evaluation 2: PI+QMDP versus PI only trajectories and collisions. 49

vi

5.2.5 Simple World - Evaluation 2: PI+QMDP known world in last Monte Carlo Sim-
ulations (MC-sims) trial. 50

5.2.6 Simple World - Evaluation 3: Actual World . 51
5.2.7 Simple World - Evaluation 3: PI+QMDP versus PI only trajectories and collisions. 52
5.2.8 Maze World - Evaluation 1: Actual world where dynamic obstacles are circled in

red. 53
5.2.9 Maze World - Evaluation 1: PI+QMDP versus PI only trajectories and collisions. . 54
5.2.10Maze World - Evaluation 2: Global Worlds . 55
5.2.11Maze World - Evaluation 2: PI+QMDP versus PI only trajectories and collisions. . 56
5.2.12Maze World - Evaluation 3: Actual world where dynamic obstacles are circled in

red. 57
5.2.13Maze World - Evaluation 3: PI+QMDP versus PI only trajectories and collisions. . 58

vii

List of Tables

5.2.1 Simple World - Evaluation 1: Results . 46
5.2.2 Simple World - Evaluation 2: Results . 49
5.2.3 Simple World - Evaluation 3: Results . 51
5.2.4 Maze World - Evaluation 1: Results . 54
5.2.5 Maze World - Evaluation 2: Results . 56
5.2.6 Maze World - Evaluation 3: Results . 58
5.2.7 Summary of all results. 60

viii

List of Acronyms

RRT Rapidly-exploring Random Trees . 7

GP Gaussian Process . 9

ORCA Optimal Reciprocal Collision Avoidance . 9

APF Artifical Potential Field . 7

MDP Markov Decision Process . 2

RL Reinforcement Learning . 8

PI Policy Iteration . 18

G-PI Global Policy Iteration . 23

L-PI Local Policy Iteration . 26

POMDP Partially Observable Markov Decision Process . 4

NN Neural Network . 7

MC Monte Carlo . 44

MC-sims Monte Carlo Simulations . vii

PI+QMDP Policy Iteration and QMDP . vi

PI only Policy Iteration only . vi

ix

List of Symbols

s state st vi, 13, 15, 16, 17, 18, 19, 20, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 44, 45

G global . vi, 24, 25, 27, 28, 29, 33, 34, 35, 37, 44, 45

L local . vi, 27, 29, 34, 36, 37

Q QMDP . vi, 30, 32, 33, 34, 36

b belief state (a probability distribution) . vi, 19, 20, 32, 33, 36

S state space . 13, 17, 18, 19, 24, 27, 30, 32, 33, 34, 35, 36, 37

A action space . 13, 17, 19, 35, 36

p(s′|s, a) state transition model . 13, 15, 17, 18, 19, 20, 25, 35

r(s, a, s′) reward function . 13, 18, 19, 20, 35

γ discount factor . 13, 14, 16, 17, 18, 19, 20, 33, 34, 35, 36, 37

a action . 13, 15, 16, 17, 18, 19, 20, 33, 35, 36, 37

t discrete time step . 13, 15, 16, 17

s′ next state st+1 from state st . 13, 17, 18, 19, 20, 33, 35, 36

π policy . 15, 16, 17, 18, 20, 29, 33, 34, 35, 36, 37

π(s) deterministic policy, maps an action to a state s . 15, 35

Vπ(s) value function, value or expected return of state s following policy π 16, 17, 18, 35

r scalar reward . 16, 17, 18, 33, 35, 36

Qπ(s, a) Q function, value of taking action a in state s following policy π 16, 17

x

π∗ optimal policy . 17, 34, 37

V∗(s) optimal value function, value or expected return of state s following the optimal policy π∗
17

Q∗(s, a) optimal Q function, value of taking action a in state s following the optimal policy π∗ . .
17, 18

b(s) probability (i.e., belief) of being in state s . 19, 20, 32

∀ for all . 35, 36, 37

xi

1
Introduction

1

1.1 Motivation

The field of robotics is an increasingly growing area of interest with various applications including

service robotics (e.g., personal, healthcare, agriculture, and educational), industrial robots, and

space exploration. As time goes on, researchers will find more ways to solve various problems us-

ing robotics. Advances in perception, localization, mapping, and decision making have provided

many capable autonomous navigation strategies with several in the form of path planning. One of

the central problems to navigation is obstacle avoidance, especially in domains such as navigating

around pedestrians, multi-agent coordination, and self-driving cars.

In cases where the environment is simple, known prior, and contain few static obstacles it is

quite easy to navigate around to a specified goal position through simple, pre-programmed instruc-

tions (e.g., obstacle on the left, turn right). In these situations, it can be said that the robot is not

truly autonomous but following delayed guidance fromahumanprogrammer. This becomesmuch

more difficult and infeasible in cluttered, unknown environments, especially in the presence of dy-

namic obstacles. To handle these difficult environments, some solutions use velocity estimates of

obstacles to determine the robot’s own velocities to avoid hazards [1–4] but require perfect percep-

tion and can be difficult to implement due to ambiguous parameters. Several solutions attempt to

model the trajectory or intent of obstacles throughmachine learning, which are used to determine

a navigation strategy around them [5–8]. Unfortunately, the real world is stochastic and complex

making it difficult to properly prepare these models. Another issue is these solutions tend to be

case specific, meaning it works for that particular robot and is not generalized in a way that can be

easily applied to other robots. Solutions including artificial potential fields [9–13] can be compu-

tationally expensive and difficult to execute in real time. The advantage of Markov Decision Pro-

2

cess (MDP) is that they provide a framework to make decisions in stochastic environments but it

is difficult to formulate the problem such that the state space captures all the necessary information.

Several techniques attempt to include position and velocity in the states such as [14] but the explo-

sion of states makes it difficult to train quickly or well (i.e., curse of dimensionality). Other MDP

techniques attempt to discretize the states including [15] but are typically not able to generalized

well enough to handle new situations.

Themotivation behind this work is to avoid using traditional navigation and obstacle avoidance

planners by utilizing the flexibleMDP framework, to be able to provide a solution at any location in

the operating environment given limited information, and quickly consider possible obstacle states

to produce safer actions.

1.2 Problem Statement

The objective of this research is to determine a solution for dynamic obstacle avoidance, which

began with the following questions:

1. Given what is known prior, whichmay not be accurate, how can this information be used in

an offline training process to offload online computation and provide a closed-loop solution

at any location?

2. Then during online operation, is there a way to leverage this prior knowledge to quickly

determine new actions when encountering new information not previously seen and still

account for uncertainty of the obstacle motion?

3. How can we generalize the solution so that it can be applicable to other robots that have the

same drive-train?

3

This work presents an algorithm that provides solutions to the above questions and will be

directly answered in the conclusion. The terms ‘robot’ and ‘agent’ will be used interchangeably

throughout this thesis.

To narrow the scope and focus, the algorithm was designed for a holonomic (i.e., omnidirec-

tional) robot, meaning the robot is able to drive in any direction, operating in a 2-dimensional en-

vironment. It is assumed that the robot will be able to accurately localize itself in the global frame

as well as accurately map the local surroundings (i.e., 360 degrees) within a squared meter range

since it has become a common capability following advances in readily available depth sensors (e.g.,

2D LIDAR) and Simultaneous Localization and Mapping (SLAM) techniques. It is also assumed

that occulusions do not occur and the obstacles move small distances randomly. Additionally, the

global goal is provided and at a minimum the size of the operating environment is known prior.

1.3 Thesis Outline

The remainder of the thesis will be organized as follows:

Chapter 2: This chapter provides a literature review on several obstacle avoidance meth-

ods in static and dynamic environments including traditional, current, and learning based

approaches.

Chapter 3: This chapter details the necessary background to understand Markov Decision

Process (MDP) and Partially Observable Markov Decision Process (POMDP) fundamen-

tals and methods utilized throughout this thesis.

Chapter 4: Within this chapter, defines the design and formulation of the algorithm used to

solve navigation in the presence of dynamic obstacles.

4

Chapter 5: This chapter provides the setups used for evaluation and details the results.

Chapter 6: Lastly, concluding the thesis, is a discussion on the overall results, directly an-

swered questions listed in the problem statement, closing remarks, and proposed future

work.

5

2
Literature Review

6

This chapter provides a literature reviewonnavigation in terms of obstacle avoidance. Discussed

will be methods used static environments including reaction based techniques. Followed by a re-

view on dynamic environments including MDP based approaches.

2.1 Static Environments

Reaction-based methods include condition-based (e.g., human designed heuristics) or one-step

look ahead interaction guidelines based on the current state configuration to determine local obsta-

cle avoidance maneuvers instead of planning paths. These approaches are normally coupled with

high-level global path planners including Rapidly-exploring Random Trees (RRT) [16] or Dijk-

stra’s algorithm [17] that find suitable paths to a goal location and perform reaction maneuvers

when an obstacle is detected locally along the route. This requires manually creating decision rules

that anticipate all potential scenarios, normally determined through trial and error, using fuzzy

logic [18–20], and/or finite state machines [21, 22]. These techniques can work well in simple

environments but unfortunately, the real world can be stochastic and complex making it infeasible

to account for all situations. Also, this type of implementation becomes case dependent, which

reduces adaptability when transitioning to new environments and generalization for other robot

configurations. It could be said that these heuristic schemes are not truly autonomous but delayed

human implemented logic and instructions.

Several Artifical Potential Field (APF) approaches exist including [9–13], which use virtual

forces to determine paths while avoiding obstacles. Attractive forces are given to the goal and re-

pulsive forces are given to the obstacle. A major disadvantage is when the attractive and repulsive

force are equal or closely equal, the robot becomes trapped in local minima.

Some learning methods, leverage Neural Network (NN)s to learn navigation in the presence of

7

static obstacles. Tai et al. [23] formulated a mapless motion planner trained end-to-end through

asynchronous deep-Reinforcement Learning (RL) for continuous control of a differential drive

mobile robot. The authors used a custom asynchronous Deep Deterministic Policy Gradients

(DDPG) to train their motion planner where the input was the state and the output was the ac-

tion. The state was comprised of sparse 10-dimensional laser range readings, the previous action,

and the goal position relative to the robot and the actionwas linear and angular velocity commands.

Training was done in simulation and the model was evaluated in both simulation and reality. The

robot was able to navigate successfully to a goal location in unseen static environments. Kahn et

al. [24] formulated a model-based RL algorithm that learns a collision prediction model after ex-

periencing low-impact collisions. This model estimates the probability of collision coupled with

an uncertainty estimate, allowing a robot to operate cautiously (low velocities) in unknown envi-

ronments, learn more about it after experiencing safe collisions, and increase its velocity once it

becomes highly confident. The capability to learn how to avoid collisions after experiencing them

was provided by their uncertainty-aware collision prediction model using deep NNs. The inputs

to this network were raw camera data as well as a sequence of controls and the output was the colli-

sion probability along with an associated uncertainty estimate. These uncertainty-aware collision

estimates were utilized with a speed-dependent collision cost to generate safe trajectories. The lim-

itation to this is that success relies on the accuracy of the model’s uncertainty estimate, if an overly

optimistic estimation is reported in error then it could lead to disastrous collisions. Also, learn-

ing from raw camera data can be risky because small changes such as lighting can drastically alter

perception.

These approaches are successful when obstacles are static but do not provide solutions for dy-

namic environments. Most robots operating in the real world need to account for movement of

8

obstacles. A review on navigation in the presence of dynamic obstacle avoidance is provided next.

2.2 Dynamic Environments

Trajectory-based methods attempt to determine collision free paths by predicting the motion of

obstacles. In these techniques, past observations are used to determine the intent of the obstacle.

Aoude et al. [5] use Gaussian Process (GP) mixture models to predict the future motion of ob-

stacles to determine safe paths using chance constraint RRT. Other strategies use a cooperative

approach, extending on trajectory-based methods, where they attempt to model how their own

maneuvers will affect the motion of other neighboring agents. Trautman et al. [6] modeled the in-

teractions betweenpedestrians and the robot used for planning in crowded areas usingGP. Amajor

pitfall to GPs is that the real-time performance degrades as it receives more data, making it chal-

lenging to learn unanticipated trajectories online. Another approach is to use thesemotionmodels

to determine probability of collision [25, 26] and plan paths accordingly. A major limitation to

most of these implementations is that when the environment is too diverse, the agent is unable

to determine collision free paths and freezes in place. Also, these methods can be computation-

ally expensive and incorrect predictions could result in catastrophic collisions. Another approach

incorporates vehicle dynamics to determine possible future paths using state lattices [27, 28] and

can handle constraints such as time, velocity, and/or position. The disadvantage is that evaluating

possible future paths can require intensive calculations, making it difficult to be utilized online.

Velocity-based solutions are another form of reaction-based technique that has become attrac-

tive because of their robustness and guarantees of local collision free motions [1–4]. A popular

approach is Optimal Reciprocal Collision Avoidance (ORCA) [2] which is a rule-based method

that uses the position and velocity of its neighbors (i.e., obstacles) to determine a vector of feasible

9

velocities. Themain disadvantages with most velocity-based approaches are that they are sensitive

to perception uncertainty (i.e., require perfect sensing of the world to determine collision free mo-

tions) and may require hand-tuning several parameters including geometric properties as well as

number of obstacles [29].

Some learning-based approaches, incorporate NNs to learn how to operate in dynamic environ-

ments. Chen et al. [7] developed a non-communicating multi-agent collision avoidance method

using deep-RL. They use deep-RL to learn a value function that encodes cooperative behaviors

mapping an agent’s own state and its neighbors’ states to an action that is collision free but requires

perfect sensing. The authors extend their work to induce socially norm pedestrian behaviors in dy-

namic environments [8]. For both of these works, assumptions of other agents (e.g., pedestrians)

trajectories in short time periods are made. The work is further extended without making assump-

tions onparticular obstaclesmotionmodels [14]. However, the complex implemented approaches

require estimates of themoving obstacles position, velocity, and radius to determine obstacle avoid-

ance policies in dynamic environments making the solution less robust to perception uncertainty

and requires heavy online computation.

Navigation amongst pedestrians by formulating the problem into POMDP has been addressed

(e.g., [30]) but prior assumptions and the high computational cost limit the applicability to various

scenarios. Mueller et al. [15] formulated the collision avoidance problem for small, multi-rotor air-

crafts into a POMDP and used QMDP to determine an approximately optimal policy. Although

this thesis also uses POMDP and QMDP, the formulation is not the same. In Mueller’s formu-

lation, the POMDP consisted of 8 states that are all naturally continuous (e.g., velocities and dis-

tances). These states were discretized to be able to use QMDP offline for finding a solution. For

the coarse set of discretized states, there were 765,625 states, which took under 3 hours on a single-

10

core processor to find a solution. The fine set was 9,529,569 discrete states and using the Q(s, a)

matrix found in coarse set to help speed convergence, determining a solution took more than 11

days. The discretization scheme considerably impacts performance and needs to be balanced with

the high computational cost. Other than the high demand of resources, another limitation is when

working with continuous variables in the state space and attempting to discretize them, they do

not typically generalize well enough to handle new situations. Although approaches that are able

to provide plans for continuous states exist [31, 32], they are too computationally expensive to

determine solutions online.

11

3
Background

12

Anoverviewof the necessary background is providedwithin this chapter. The aim is to provided

the foundation needed to develop an understanding of concepts andmethods utilized throughout

this thesis. To cultivate this understanding, aMarkovDecision Process (MDP) is described in Sec-

tion 3.1 and RL in Section 3.2 followed by details on their main subcomponents. An iterative solu-

tion is discussed in Section 3.8. Lastly, an introduction on Partially Observable Markov Decision

Process (POMDP) in Section 3.9 along with an approach for producing approximate solutions in

Section 3.10.

3.1 MarkovDecision Processes

A finite Markov Decision Process (MDP) is a mathematical process used for modeling sequential

decisions in stochastic environments. A MDP is defined as a tuple ⟨S,A, p(s′|s, a), r(s, a, s′), γ⟩,

where

• S is the set of states (i.e., state space) with s ∈ S

• A is the set of actions (i.e., action space) with a ∈ A

• p(s′|s, a) = Pr(st+1 = s′|st = s, at = a) is the probability of transitioning to the next state

s′ after taking an action a from state s (i.e., state transition model)

• r(s, a, s′) is the expected immediate reward from taking action a in state s transitioning to

state s′ (i.e., reward function)

• γ ∈ [0, 1] is the discount factor

The transitionprobabilityp(s′|s, a) characterizes the dynamics of the environment andholds the

Markov property (i.e., the future is independent of the past given the present). ThismeansMDPsdo

not rely on prior history and assume the present contains all the necessary information to predict

the future.

13

The discount factor γ is used to weigh the importance of immediate verses long-term rewards.

When γ is closer to 0, immediate rewards are favored whereas values closer to 1 puts more weight

towards long-term rewards.

3.2 Reinforcement Learning

Figure 3.2.1: General Reinforcement Learning system

Reinforcement Learning (RL) is a branch of machine learning commonly used in sequential

decision making problems where the dynamics (i.e., state-transition) and reward models are un-

knownor uncertain. RL canbemodeled as aMDP,where an agent (i.e., learner)must interactwith

its environment to determine the actions that maximizes the long-term accumulation of rewards.

Figure 3.2.1 illustrates an overall RL process. The agent observes the state of the environment, re-

ceives a reward, then based on the current state uses the policy (or behavior function) to determine

the action to execute. The agent executes the action in the environment and this cycle continues.

The learner learns how to act through experience and is not told what actions to take but learns

the actions that result in the highest return through trial-and-error. The main challenges in RL

14

include: balancing exploration and exploitation; delayed reward (i.e., actionsmay not affect imme-

diate reward but subsequent rewards); and generalization. The designer needs to consider these

challenges when crafting the RL algorithm such that the implementation optimizes the desired

behavior of the agent. For more information on RL, please refer to [33].

The main subcomponents of a MDP and RL system are a model, a policy, a reward, and a value

function. These elements will be detailed in the following next sections.

3.3 Model

The state-transition model p(s′|s, a) is the agent’s representation of the world or environment. The

model predictswhat the environmentwill do nextwhen taking some action a in some state s. These

models considers potential future situations to determine actions.

3.4 Policy

The policy π can be thought of as the decision-making rule. It is the agent’s behavior functionwhich

is a mapping of states to actions. There are two types of policies:

• Deterministic: π(s)

• Stochastic: π(a|s) = Pr(at = a|st = s)

The focus within this thesis will be on deterministic policies π(s).

3.5 Reward

The reward function defines the goal(s) of the agent and returns a numerical value (i.e., reward)

given a current state, action, and future state at every time step (shown in Figure 3.2.1). The reward

15

defines the immediate good and bad situations (i.e., states) and closely relates to how animals in

nature experience positive and negative reward signals when learning how to achieve a task.

The reward function is the main source for adjusting the policy. During execution, if the pol-

icy’s action results in a low reward signal then the policy may update to better handle the scenario

in future since the primary goal of the agent is to maximize the received total reward over time.

Designing a reward function is one of the most challenging aspects because it requires manually

crafting rewards such that the agent achieves desirable behavior and often requires fine-tuning un-

til the desired behavior is achieved.

3.6 Value Function

Whereas the reward function represents the immediate reward, the value function estimates the ex-

pected long-term, accumulated reward from an observed state. Meaning, the value function repre-

sents how good it is to be in a state and the total rewards expected to be accumulated when starting

from that state. For example, the immediate reward of a given state may be low but the value of the

state may be high.

The value function Vπ(s) is defined as the expected total sum of rewards starting at state s and

following the policy π thereafter:

Vπ(s) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s

]

Equivalently, the Q-function Qπ(s, a), also known as the action-value function, is defined as the

expected total sum of rewards taking action a in state s following the policy π thereafter:

16

Qπ(s, a) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s, at = a

]

3.7 Optimal Policies & Value Functions

An optimal policy π∗ is a policy that maximizes the expected sum of rewards: π ≥ π′ if and only if

Vπ(s) ≥ Vπ′(s) for all s ∈ S. A policy π can be bad or good actions but an optimal policy π∗ are

the best actions. The optimal policy optimizes the amount of reward that the agent is expected to

receive over its lifetime [34]:

π∗ = argmax
π

Vπ(s), ∀ s ∈ S

Therefore, the optimal value function V∗(s) is defined as:

V∗(s) = max
π

Vπ(s), ∀ s ∈ S

Correspondingly, the optimal Q-function Q∗(s, a) is defined by:

Q∗(s, a) = max
π

Qπ(s, a), ∀ s ∈ S and a ∈ A

Expanding these two equations, the Bellman optimality equation for V∗(s) and Q∗(s, a), respec-

tively, are:

V∗(s) = max
a

∑
s′

p(s′|s, a)[r+ γV∗(s′)]

17

Q∗(s, a) =
∑
s′

p(s′|s, a)[r+ γ max
a′

Q∗(s′, a′)]

Please refer to [33] for formal derivations.

3.8 Policy Iteration

Policy Iteration (PI) is a dynamic programming approach to solving finite MDPs, which involves

iteratively improving the policy through roll-outs until convergence of the optimal policy and opti-

mal value function. There are twomain steps in PI, policy evaluation, which computes a consistent

value function for the current policy, and policy improvement, which greedily improves the pol-

icy given the current value function. Given an intial, arbitrary policy π the algorithm steps are as

follows:

1. Policy Evaluation: Compute Vπ(s) from π

Vπ(s) =
∑

s′ p(s
′|s, π(s))[r(s, π(s), s′) + γVπ(s′)], ∀ s ∈ S

2. Policy Improvement: Improve π from Vπ(s)

π(s) = argmaxa
∑

s′ p(s
′|s, a)[r(s, a, s′) + γVπ(s′)], ∀ s ∈ S

These steps are repeated until the policy can not be further improved or for a finite number of

iterations specifiedby the algorithmdesigner. Theend result is the optimal (or near optimal) policy

and value function. The full algorithm is shown in algorithm 1.

3.9 PartiallyObservableMarkovDecision Processes

Section 3.1 introduced a fully observable MDP, meaning the current state is fully observable (i.e.,

the current state is known). This section introduces PartiallyObservableMarkovDecision Process

18

(POMDP), an extension ofMDP, where the current state is not precisely known (e.g., due to noisy

sensors) and uses a belief of the current state.

A POMDP is defined as a tuple ⟨S,A, p(s′|s, a), r(s, a, s′), γ,Ω,O⟩, where the first 5 elements

represent the underlying MDP (see Section 3.1 for details) and

• Ω is the set of observations with o ∈ Ω

• O is the set of conditional observation probabilities p(o|s′, a)

The agent in some state s takes some action a, causing the agent to transition to some next state

s′ with probability p(s′|s, a). The agent also receives an observation o on the next state s′ with prob-

ability p(o|s′, a). Decisions are based on a history of actions and observations or tracking the belief

state. A belief state b is a probability distribution over the underlyingMDP states, where a probabil-

ity b(s) is attributed to being in state s. A MDP policy maps states to actions whereas a POMDP

policy maps belief states to actions.

The benefit of POMDPs is that it provides a means of addressing uncertainty. Unfortunately,

exact solutions for finding the optimal policy are computationally expensive and can be intractable

to solve. Instead approximation methods can generally solve POMDPs well.

3.10 QMDP

QMDP is method of solving POMDPs by using the solution of the underlyingMDP to determine

an approximate optimal policy [35] and is said to be almost as computationally efficient as MDPs

[36]. It computes upper bounds of the exact optimal value function, which can be used to deter-

mine actions corresponding to the highest value. A QMDP does not require use an observation

model and instead incorporates uncertainty by calculating beliefs used to determine a policy de-

fined over belief states assuming all state uncertainty disappears on subsequent steps:

19

π(b) = argmax
a

∑
s

b(s)QMDP(s, a)

whereQMDP(s, a) uses the underlying MDP’s value function V(s′) described in Section 3.6 and

Section 3.7:

QMDP(s, a) =
∑
s′

p(s′|s, a)[r(s, a, s′) + γV(s′)]

The main advantages of QMDPs are that they are simple and provide fast approximations to

small domained POMDP problems. Major limitations to this approach is that performance de-

grades and can become infeasible to compute for large POMDPs. Also, it does not take advantage

of information gathering actions that could help identify the partially observable environment.

20

4
Algorithm Design

21

Within this chapter, contains the formulation of the Markov Decision Process (MDP) and Par-

tially Observable Markov Decision Process (POMDP) used to solve the problem of navigating

uncertain dynamic obstacles. The idea for the algorithm was to have the capability of determin-

ing the general policies offline to some specified goal position with limited or possibly inaccurate

prior information of the global environment. The intention was for the procedure to be general

enough so they could be later transferred to the robot. Then during online execution, the agent

would use surrounding local information, that could contain new information, to determine the

policy to execute. Since the size of the local world would be quite small, providing a solution for

real time operation would be possible. The presented algorithmwas designed for a holonomic (i.e.,

omnidirectional) robot.

There are two main phases to the implemented approach and can be visualized in Figure 4.0.1:

1. Offline: A known prior global world in the form of an occupancy grid is trained using policy

iteration to determine the optimal global policies to a given goal location.

2. Online: Leveraging data from the offline training phase, the agent uses local information

to determine if the world has changed. If the world has not changed and no obstacles are

present, it follows theglobal policiesdetermined in theofflinephase. If theworldhas changed

or an obstacle is detected, the agent performs a local procedure to determine the new opti-

mal local policy to execute that avoids potential dynamic obstacles usingQMDP. In parallel,

global policy iteration is performed with the updated information. Due to the small size of

the local region, the local procedure is able to determine the best action to execute before the

global policy iteration has completed. Then the agent executes the action and the process

repeats until the agent has reached the goal or a collision occurred.

22

Figure 4.0.1: A high-level overview of the algorithm where the blue box is the offline process
and the green is the online.

4.1 Offline: DeterminingGeneral Behaviors and Values

This section describes the algorithm used to extract general global policies and the value function

from known or possibly inaccurate prior knowledge of the environment. Of which will be used in

local online procedure (discussed in Section 4.2) to incorporate the gained informationbydefining

local goal states and speed convergence when computing new local policies.

4.1.1 Global Policy Iteration (G-PI)

Discussed in this section, is the formulation of the MDP for navigation in a occupancy grid (or

grid world) setting. This is solved using Global Policy Iteration (G-PI), which is a dynamic pro-

gramming technique, to determine the general behaviors and the value functionwhichwill be used

during the offline process.

23

States

The environment is represented as a two-dimensional grid world. The global states SG consist of all

obstacle free sG = (xG, yG) grid cells.

Actions

Since the algorithm is designed for a omnidirectional robot, there are 8 available actions that will

take the agent to the next grid cell. The actions (depicted in Figure 4.1.1) areNorth (N or ↑),West

(Wor←), East (E or→), South (S or ↓), North-West (NWor↖), North-East (NEor↗), South-

West (SW or↙), and South-East (SE or↘). It is important to note the order of the actions, they

are as such so when determining the policy, if there are multiple actions that yield the maximum

value then non-diagonal actions are selected first.

a5 =NW a1 =N a6 =NE
↖ ↑ ↗

a2 =W a3 = E
← →

a7 = SW a4 = S a8 = SE
↙ ↓ ↘

Figure 4.1.1: The order of available actions: N, W, E, S, NW, NE, SW, SE.

24

Rewards

The global rewards are defined as follows,

RG(sG) =



−50 if obstacle

−10 if surrounding obstacle

50 if goal

−1 otherwise

(4.1)

Rewards surrounding obstacles in the immediate next cells are −10 to encourage the agent to

stay further away from obstacles. All other free space is given a reward of−1 to motivate the agent

to reach the goal quickly.

Transition Model

The state-transition model p(s′|s, a) used for calculating the value function (and policies) can be

modeled and updated online during execution. Initially, all possible state-action transitions are

unity. The possible states (shown in Figure 4.1.2) for determining the transition probabilities are

the immediate cells that surround the agent aswell as the cell that the agent occupies (i.e., the center

cell).

Online, for each action, the agent tracks the number of times the action took the agent to the

next state. Then when estimating the value function, for each action and each possible next state,

the transition probability equals the number of times the action took the agent to that particular

state divided by the sum of all the action’s next states. For each action, all transitions to each state

sum to one. For example, if a5 took the agent to st1 twice, st4 once, and st5 once. Then the transition

25

probabilities for a5 would be st1 = 2
4 = 1

2 , st4 =
1
4 , and st5 =

1
4 .

st1 st2 st3
st4 st5 st6
st7 st8 st9

Figure 4.1.2: The possible next states sti for all actions.

4.2 Online: Leverage Prior Information andMotionUncertainty

The global world is given and known prior whereas the local world may contain new knowledge of

the world not seen during offline training. During online execution, the agent uses newly gathered

surrounding information from sensors such as a 2D LIDAR and compares the neighboring region

to the global world (at the local context). If no change or obstacles are detected, the agent follows

the global policy. If a change or obstacles have been detected, then the known global world is up-

dated and G-PI is executed in parallel of local procedures, which determines the new best policy.

Two local procedures Local Policy Iteration (L-PI) and QMDP were designed and are described

in Section 4.2.1 and Section 4.2.2 respectively.

4.2.1 Local Policy Iteration (L-PI)

When obstacles are detected, the problem becomes a POMDP because it is uncertain where the

obstacle will move to at the next time step. This is solved by using an approximator, QMDP, which

finds a solution by solving the underlying MDP and will be detailed in Section 4.2.2. This section

describes the solution to solving the underlyingMDP using L-PI. The environment is represented

as a smallm×m gridworldwhere the robot is always in the center. This process provides a m+1
2 -step

look ahead path (i.e., short term plan) to a specified local goal.

26

States

Figure 4.2.1: When the agent is in the global state sGi , the equivalent local world is shaded in
blue and sGi ≡ sLcenter.

Similarly to the global policy iteration states described in Section 4.1.1, the local states SL are all

theobstacle free sL = (xL, yL) local grid cells. Thesizeof the local gridworld is squarem+ 2× m+ 2

wherem is an odd value so the agent is located in the very center. The center of the localworld repre-

sents the same location the agent occupies in the global world. The same goes for the surrounding

local region, which represents the same area in the global world, which will be termed local con-

text. This is illustrated in Figure 4.2.1. The additional 2 rows and columns serve as a protective

outer border since it is not known what lies beyond them× m grid.

Actions

The local actions are the same as the global actions described in Section 4.1.1.

27

Rewards

Figure 4.2.2: The local rewards structure: (Orange) has -5 rewards. (Green) contains a re-
ward of 30 where the maximum extracted local value function are located and follows the
same global rewards defined in Equation 4.1 otherwise. (Blue) uses the same global rewards
defined in Equation 4.1.

The local rewards are similar to the global rewards described in Section 4.1.1 with some minor

adjustments. When the agent is at the global state sGi , the agent extracts the equivalent m× m

value function. The value function represents the expected long-term received rewards for each

state. The location(s) of themaximumof the outerm× m rows and columns (i.e., 2nd andmth rows

and columns) that are not occupied by a local obstacle and are not zero are given a local goal of 30.

The the other outer m× m and inner m− 1× m− 1 follows the same global rewards as defined

in Equation 4.1. The outer protective border (i.e., 1st and (m+ 2)th rows and columns) are given a

−5 reward because it is unknown. A visual is shown in Figure 4.2.2 and the local reward function

28

is as follows,

RL(sL,VL
π) =



−5 if sL ∈ (m+ 2) outer protective border

−50 if obstacle sL ∈ innerm× m

−10 if surrounding obstacle sL ∈ innerm× m

50 if sL == sGgoal

30 if sLj == maxj(VL
π) of outerm× m

−1 otherwise

(4.2)

Transition Model

The same transition model from Section 4.1.1 is utilized.

4.2.2 Local QMDP

The previous sections describing G-PI and L-PI determine paths around obstacles but only works

well with static obstacles under a MDP. When dynamic obstacles are considered, the problem be-

comes a POMDP since the motion of the obstacles are not precisely known and uncertain. This

section describes the QMDP solution to solving the POMDP, using beliefs of the next possible

obstacle states to determine actions that avoid potential dynamic obstacles. The QMDP imple-

mentation considers one step look ahead and the motion of all locally detected obstacles (static or

dynamic) are assumed random. The formulation uses L-PI to solve each underlying MDP for all

potential next obstacle states in conjunction with its belief to determine the policy.

29

States

Similarly to the states described in Section 4.2.1, the size of the local world is a squarem× mwhere

m is anoddvalue so that the agent is located in the centerof the gridworld. InL-PI the stateswere all

the obstacle free local grid cells whereas in QMDP the states SQ are all the possible combinations

the detected obstacle could be in at the next time step. Since only one step look ahead is being

considered, for any given obstacle, there are 9 possible states the obstacle could end up in (i.e., in

the cells that it currently occupies and the surrounding immediate next cells). This means for n

number of obstacles, there are 9n possible states except for when the next possible positions of the

obstacles are out of the local area. Using a pessimistic approach, it is assumed that the obstacle will

not leave the local frame. Therefore, for each obstacle i, there are pi positions that could be out of

frame making the number of possible states sQ ∈ SQ be
n∏
i=1

(9− pi). An example is illustrated in

Figure 4.2.3.

Figure 4.2.3: The local world is 7×7 containing 2 obstacles (black) and the agent’s location
is in the center (×). The top left obstacle has 5 positions that are out of the local area (gray),
while the other obstacle has 0. Green represents the possible next states for each obstacle.
The number of possible obstacle combinations (i.e., QMDP states) is (9-5)(9−0)=36.

The number of obstacles n is determined based on their connectivity of each cell. If their edges

30

touch along the horizontal and vertical direction then it is considered to be part of the obstacle

(Figure 4.2.4a). If their corners touch and not their edges then they are considered two separate

obstacles (example shown in Figure 4.2.4c).

(a) Obstacle connectivity

(b) 2 obstacles (c) 3 obstacles

Figure 4.2.4: (a) Obstacle connectivity and (b)-(c) local world examples.

Beliefs

The local world was treated as an image matrix, where ones represented an obstacle and zeros rep-

resented free space. The motion of all locally detected obstacles was assumed random following

a Gaussian distribution. Using a 2D Gaussian smoothing kernel with standard deviation of 0.5

on the local world to blur the obstacles such that the highest values were the current location of

the obstacle and the lower values in the surrounding cells. For each blurred obstacle, the values

summed to 1. Using a pessimistic approach, it is assumed that all locally detected obstacles (static

31

or dynamic) will move and unlikely stay in the same location. To determine the beliefs of obstacle

states at the next time step, required inverting the Gaussian so that for each obstacle the current

location of the obstacle had the lowest value, the surrounding cells were higher, and each summed

to 1. These values were used to determine the probability b(s). If there were multiple obstacles,

then the belief was a product of beliefs corresponding to each obstacle state:

b(sQj) =
n∏
i=1

ui,sQj (4.3)

where j is the index of a possible state sQj ∈ SQ and n is the number of obstacles. An illustrative

example is shown in Figure 4.2.5 (continuing on example Figure 4.2.3).

Figure 4.2.5: Continuing on the example of a 7×7 local world containing two obstacles.
Each Q state sQj is a combination the obstacle could be in at the next time step alongside the
corresponding belief b(sQj).

32

These potential next states become the beliefs used to determine the next action:

π(b) = argmax
a

∑
sQ

b(sQ)QMDP(scenter, a) (4.4)

where scenter is the center of the localm× m world andQMDP(scenter, a) for each state sQ is solved

by using value function VMDP from L-PI:

QMDP(scenter, a) =
∑
s′

p(s′|scenter, a)[r(scenter, a, s′) + γVMDP(s′)]

Actions

The local QMDP actions are the same as the global actions detailed in Section 4.1.1.

Rewards

For each possible state sQ ∈ SQ the same rewards described in Figure 4.2.1 are utilized.

Transition Model

The same transition model from Section 4.1.1 is used.

4.3 Combined Policy Iteration&QMDP

Thus far, the global solution in Section 4.1 and local solutions in Section 4.2 have been described.

This section details how these solutions are combined and utilized for online execution. Both the

Offline and Online procedures use policy iteration, which is specified in algorithm 1. The Offline

procedure (algorithm 2), requires the agent’s goal location sGgoal andwhat is known about the global

33

world known_worldG. If nothing is known about the world, then known_worldG is empty with the

size of the environment the agentwill be operating in. This procedure determines the optimal value

function VG
∗ and the optimal policies πG∗ , which are used in the Online procedure. The discount

factor γG is 0.9 to put more weight towards long-term rewards.

The Online procedure, formalized in algorithm 4, is executed at run time and operating in the

globalworld. Theagentuses locally collecteddata (e.g., 2DLIDAR)andcompares it toknown_worldG

in the local context. If the worlds match and no obstacles are detected, then the agent executes the

global policy π∗ at the current state sGcurr. If a change is detected and no obstacles are present, L-PI

is executed leveraging the locally extracted policies from global to speed up computation. When

obstacles are detected, then the agent extracts the local equivalent from the global value function

VG
∗ and policies πG∗ to be used in QMDP (algorithm 3). In QMDP (introduced in Section 4.2.2),

the beliefs for each detected obstacle is determined by inverting the response of the Gaussian filter

such that each obstacle sums to 1. The set of possibleQ states SQ are all the combinations the obsta-

cle could be in at the next time step. Then for each Q state sQ, L-PI determines the value function

VMDP, using the local policies extracted from global to quicken convergence. Since this is a short-

term planner, the local discount factor γL is 0.4. Then VMDP is used to calculate QMDP from the

center state of them×m local world. Only the center state is being considered because we are only

interested in determining the best action to execute from the center of the locally detected world

(i.e., sGcurr). The policy which yields the maximum action value from the center state is executed.

Then G-PI, which can be done in parallel, is re-executed on the updated known_worldG to renew

the global value function VG
∗ and global policies πG∗ . ThisOnline process is repeated until the agent

has reached the goal, has collided with an obstacle, or has reached the maximum number of steps

34

Algorithm 1: Policy Iteration
1 Function policy_iteration(S, r,Vπ, π, γ,max_iterations):

2 for iter = 1 tomax_iterations do
// 1. policy evaluation

3 Loop
4 Vtemp = Vπ

5 foreach s ∈ S do
6 Vπ(s) =

∑
s′ p(s

′|s, π(s))[r(s, π(s), s′) + γVπ(s′)] // following policy

7 until Vtemp == Vπ;

// 2. policy improvement
8 πtemp = π
9 foreach s ∈ S do
10 π(s) = argmaxa

∑
s′ p(s

′|s, a)[r(s, a, s′) + γVπ(s′)]
11 if πtemp == π then
12 break // break iterations loop

Return: [V∗ ≈ Vπ, π∗ ≈ π]

Algorithm 2:Global Policy Iteration (Offline)
Input: known_worldG

sGgoal

Initialize: SG = all free space∈ known_worldG
Vπ(s) ∈ R and π(s) ∈ A arbitrarily ∀ s ∈ SG
r(s) = RG(s) ∀s ∈ SG // Equation 4.1
γG = 0.9
max_iterations = 500

Result: [VG
∗ , πG∗] = policy_iteration(SG, r,Vπ, π, γG,max_iterations)

35

that was allowed.

Algorithm 3: Local QMDP
1 FunctionQMDP(worldL,VL

π, πL, γL,max_iterations):

2 u = beliefs(worldL) // inverted Gaussian filter on worldL

3 SQ = all possible world combinations of obstacles∈ worldL at next time step
4 Q = zeros(3) // 3× 3 matrix representing each a ∈ A

5 foreach sQ ∈ SQ do

6 SL = all free space in sQ
7 r(sL) = RL(sL,VL

π) ∀sL ∈ SL // Equation 4.2
8 Vπ = zeros(size(sQ))
9 π = πL // using extracted local policies to speed up convergence
10 [VMDP,∼] = policy_iteration(SL, r,Vπ, π, γL,max_iterations)

11 b(sQ) =
∏n

i=1 ui,sQ // Equation 4.3

12 foreach a ∈ A do
/* where scenter is the center of worldL and s′ is the next state from

scenter when executing action a */
13 QMDP(scenter, a) =

∑
s′ p(s

′|scenter, a)[r(scenter, a, s′) + γLVMDP(s′)]
14 Q(scenter, a) += b(sQ)QMDP(scenter, a)

Return: π = argmaxa Q(scenter, a)

36

Algorithm 4:Online procedure
Input: known_worldG , sGgoal , VG

∗ , πG∗ , max_iterations

Initialize: max_steps =maximum number of steps to reach goal
γL = 0.4
sGcurr = current [x, y] global position

1 for step = 1 tomax_steps do

2 if sGcurr == sGgoal then
Return: success

3 if sGcurr == obstacle then
Return: failure

4 actual_worldL = actual local world // (e.g., from sensors)

5 if actual_worldL == known_worldG(local_context) then
6 a = π∗G(sGcurr) // following global policy

7 else
8 known_worldG(local_context) = actual_worldL // update known global

world
9 r(s) = RG(s) ∀s ∈ SG // update global rewards (Equation 4.1)

/* Extract global value function and policies for local context */
10 VL

π = VG
∗ (local_context)

11 πL = πG∗ (local_context)

12 a = QMDP(actual_worldL,VL
π, πL, γL,max_iterations)

/* Re-run global policy iteration (can be done in parallel) */
13 πG∗ (sGcurr) = a // update policy to speed up convergence
14 [VG

∗ , πG∗] = policy_iteration(SG, r,Vπ, π, γG,max_iterations)

15 sGcurr += a // execute action and transition to next state

Return: failure // did not reach sGgoal in max_steps

37

5
Evaluation

38

This chapter describes how the proposed algorithm (defined in chapter 4) was evaluated. Sec-

tion 5.1 details the setup for simulation and for hardware. Originally, the simulation was used to

verify proof of concept and experiments were going to be conducted on the physical robot. In

response to the COVID-19 pandemic, the university closed down all on-campus operations and

unfortunately the hardware implementation was halted. The simulation setup is specified in Sec-

tion 5.1.1 followed by the hardware setup in Section 5.1.2, with a brief explanation of intended ex-

periments. Lastly, the chapter ends with a discussion on results from the simulation in Section 5.2.

5.1 Evaluation Setup

5.1.1 Simulation Setup

To validate and test the proposed algorithm, a simulation environment was setup in MATLAB.

The agent is operating in a 2D grid representation of the world. Each world used for evaluation

was 100× 100 binarymatrix where zeros represented free space and ones represented obstacles. In

each test, a knownworldwith or without static obstacles is used for offline training (all with a static

obstacle border to keep the agent in the environment) outlined in algorithm 2. This known world

as well as the resultant value function and policies are used in the online procedure. Before the

online procedure begins, a newmatrix depicting the actual world containing static and/or dynamic

obstacles not seen in training is created. During execution of the online procedure, the agent is at

some global [x, y] (i.e., state) location in the grid. From there, the equivalent 7 × 7 local matrix

(with the agent being in the center) is extracted from the actual world. Meaning, at some global

[x, y] position, 3 rows above and below as well as 3 columns to the left and right are extracted. This

local actual world represents new information that could be obtained through sensors such as a 2D

39

LIDAR.The same extraction is performed on the knownworld and comparedwith the actual. This

was how the known and actual information used in the formulation presented in algorithm 4. The

worlds used for evaluation are presented in Section 5.2.

5.1.2 Hardware Setup

Amodified TurtleBot3 Burger fromROBOTIS [37] was used to implement the experiments. The

original TurtleBot3 was modified from a differential drive train to a holonomic with 3 Mecanum

wheels. The modified omnidirectional Turtlebot3 (OmniBot), designed by Castle [38], was mod-

ified further. The OpenCR board was removed and all low-level motor commands came from the

onboard Raspberry Pi 3 (RPi). The kinematic equations to drive OmniBot derived from [39] are

as follows:


u1

u2

u3

 =
1
r


−d 1 0

−d − 1
2 − sin(π3)

−d − 1
2 sin(π3)



ωz

vx

vy


where u1, u2, and u3 are the rotational velocity commands sent to the motors, r is the radius of

the Mecanum wheels, d is the distance from the center of OmniBot to each wheel (each wheel

evenly spaced 120° from each other), ωz is the rotational velocity, and vx and vy are the translational

velocities in the x and y directions.

OmniBot was designed such that RPi would only handle the low level actuator commands and

monitor battery status. All other computation was performed on a remote desktop computer and

control actions were sent wirelessly to OmniBot. The OmniBot software utilized the Robot Op-

erating System (ROS), a common robotics framework which handles communication between

40

different executable programs (i.e., nodes). Global localization came from a Viconmotion capture

system, which uses retro-reflective markers on top of the physical robot to determine the full pose

(x, y, z, roll, pitch, and yaw) of the robot in 3D space. OmniBot’s operating environment was on

an air hockey table equipped with 6 Vicon cameras, an overhead projector, and desktop computer

(see [38] for further details).

To execute the proposed approach in this thesis, several nodes were created. A control node,

given a relative goal position would use the Vicon’s global positioning data to move the OmniBot

to the relative position. Relative goal positions were given, instead of global, since a robot operat-

ing in the real world (without a motion capture system) would most likely be given relative goal

commands. A policy iteration node advertised two action services, one for G-PI and the other for

L-PI. G-PI was implemented as a ROS action server because it does not block the program that

called it. This allows for G-PI to be run in parallel so that OmniBot can continuing operating. The

operable space on top of the air hockey table was 100× 200cm and OmniBot was 20× 20cm. Ini-

tially, it was thought that the grid sizes (of the grid world) should be the same size as OmniBot. As

such, the global grid world used in G-PI was 5 rows by 10 columns (i.e., 50 states) and each grid

size was 20cm2. The local world size used in L-PI was 3 by 3. Finally, an executive node, which

would interact with all implemented nodes and control OmniBot autonomously.

The state transitions were monitored and updated in the executive node. The very first time

OmniBot was executed, all state-action transitions were unity. During operation, when a new state-

action transition was detected, the transitions were updated and saved so that these transitions

could be used again.

In these developmental stages, virtual obstacles were implemented. Similarly to the simulation

set up described in Section 5.1.1, there was a known world and an actual world. For the hardware

41

case, the knownworld was always empty and the actual world contained new obstacles not known

to OmniBot until detected locally (i.e., in the 3× 3 local world).

At executive start up, OmniBot would be at some arbitrary starting location and G-PI was ex-

ecuted with some arbitrary goal. Once G-PI completed, the equivalent 3 × 3 local world was ex-

tracted from the actual world and compared with the known. When a change was detected, the

world was updated and L-PI was executed. When L-PI completed, the global policy at the current

was updated with the center of the local policies. While G-PI was being re-ran, the policy to exe-

cute was sent to the control node and the robot moved to the next state. This process was repeated

until OmniBot reached the specified goal state. Figure 5.1.1 illustrates the OmniBot setup on the

air hockey table configuration.

Figure 5.1.1: OmniBot operating on the custom air hockey table with projected obstacles.

42

Preliminary tests showed that OmniBot was able to reach intended goal states at any starting

state but when diagonal actions were executed next to a virtual obstacle the robot would virtually

run into the obstacle while moving to the next state. This lead to adding the -10 penalty around

obstacles to the reward function to encourage the agent to stay further away from hazards but the

resolutionof the global and local gridworldswere not fine enough toproperly navigate and account

for dynamic obstacles.

Before the university closed laboratory operations in response to the COVID-19 pandemic, the

next stepswere to refine the resolutions to be 10×20 (i.e., 200 states) globally and 5×5 locally. Then

the QMDP portion was to be implemented. Once tested and verified, the final step was to build

2 more OmniBots, implement the proposed approach on each robot, then evaluate their indepen-

dent responses in a multi-agent scenario. After the university closed, since the OmniBots heavily

relied on the Vicon motion capture system for a ground truth state estimate, the implementation

and experiments could not be finished or conducted further.

5.2 Simulation Evaluation

This section describes the evaluation procedures used to measure performance. All global worlds,

known and actual, are of size 100× 100 and the local are 7× 7. This 7× 7 local environment pro-

vides a 3-step look ahead plan for newly obtained information (e.g., obstacles). The actual worlds

contained a number of dynamic obstacles not seen in the offline training process, which move ran-

domly based on a Gaussian distribution.

There are two presented case studies used for assessment, each containing 3 evaluations. The

first, is a simple world where the environment is divided into 4 quadrants. The second, embodies

a maze world. For each evaluation, 100 MC-sims (i.e., trials) were conducted, comparing results

43

from both the presented algorithm introduced in Section 4.3 termed Policy Iteration and QMDP

(PI+QMDP) and pure Policy Iteration only (PI only). Failures are defined as collisions and when

collisions occurred, theMonteCarlo (MC) trial was terminated. The results presented include the

total number of dynamic obstacles (# Obs.) in the environment, number of failures (# Fail.), the

average and median steps taken in the said failures (Avg. FS and Med. FS respectively), as well as

the average andmedian successful steps (Avg. SS andMed. SS respectively) taken to thegoal. What

is also presented for all evaluations are the frequency of which the agent followed a trajectory and

frequency of where collisions occurred. In all simulations, the goal state was set to sGgoal = [95, 95]

and the state where the agent started was s = [2, 2].

44

5.2.1 Simple World Results

Evaluation 1

(a) Known world used for offline
training, where the green circle indi-
cates the specified goal.

(b) Actual world used for online ex-
ecution with 4 dynamic obstacles.
The red circle (top left) indicates the
agent’s starting position.

Figure 5.2.1: Simple World - Evaluation 1: Global Worlds

For this scenario, the global world used for offline training (i.e., known world) is displayed in Fig-

ure 5.2.1a and the specified goal state sGgoal = [95, 95]. Online, the agent started at state s = [2, 2]

in the actual world (shown in Figure 5.2.1b) which contained 4 new obstacles that were not seen

in training and were dynamic. The results presented in Table 5.2.1, show that PI+QMDP finished

97% of the simulations successfully whereas PI only successfully reached the goal in only 63% of

the trials. In PI+QMDP, there were 3 collisions, which all occurred at the obstacle closest to the

goal (Figure 5.2.2b). These collisions took place because the obstacle had jumped two spaces over

from the previous time step which the PI+QMDP formulation does not consider, it only consid-

45

ers obstacles potentially moving in the immediate surrounding cells (i.e., one space). Figure 5.2.2

compare the frequency of the trajectories taken by the agent when using PI+QMDP versus PI only

as well as locations collisions occurred. In these figures, black areas are the obstacles that appear

in the actual world and the 4 dynamic obstacles are blurred to illustrate their movement in all 100

simulations. Areas that are closer to dark blue are closer to zero and red means higher frequency.

Although there are 4 dynamic obstacles, during the online procedure the agent only encounters 2

(the 2 in the bottom rooms). When looking at the PI+QMDP trajectories (Figure 5.2.2a) through

narrow passages (e.g., leaving the upper left hand room and into the lower left), it can be seen that

the agent prefers to be in the center of the two static obstacles that are to the left and right. Com-

paratively, the agent operating under PI only navigates much closer. Also in PI+QMDP, when

navigating around the closest dynamic obstacle to the goal, the agent prefers to go under the ob-

stacle whereas in PI only prefers over. Going under, reduces the amount of steps to reach the goal,

especially since the obstacle is moving. For example, when the agent goes above and the obstacle

moves up, then the agent will also need to move up to avoid colliding with the obstacle, moving

further away from the goal.

4Obs. # Fail. Avg. FS Med. FS Avg. SS Med. SS

PI+QMDP 3 124.67 120 157.76 152

PI only 37 104.97 114 160.46 163

Table 5.2.1: Simple World - Evaluation 1: Results

46

(a) PI+QMDP trajectories (b) PI+QMDP collisions

(c) PI only trajectories (d) PI only collisions

Figure 5.2.2: Simple World - Evaluation 1: PI+QMDP versus PI only trajectories and colli-
sions.

47

Evaluation 2

Figure 5.2.3: Simple World - Evaluation 2: Known World

In this evaluation, the sameexperimentwith the samenumber of dynamic obstacleswas conducted

except the prior known world used for training was unknown (Figure 5.2.3). The actual world is

the same as seen in Figure 5.2.1b. In this situation, the agent had no prior knowledge of the op-

erating environment other than the size. The produced global value function, in the offline pro-

cedure, encoded enough information to propel the agent in both PI+QMDP and PI only toward

the goal but required roughly 50 more steps to get there. The results shown in Table 5.2.2 show

that the PI+QMDP agent had 98% successful simulations and PI only successfully completed 52%.

Both trajectories in Figure 5.2.4a and Figure 5.2.4c demonstrate awall following strategy and in the

case of PI+QMDP, the agent chooses to stay slightly further away from the walls. What is interest-

ing is the updated known world after each online execution trial (an example is shown on the last

PI+QMDP MC-sims episode). It confirms that the global value function is expressive enough to

drive the agent to the goal with limited information. The final updated worlds after each MC-sims

in both PI+QMDP and PI only are roughly the same.

48

4Obs. # Fail. Avg. FS Med. FS Avg. SS Med. SS

PI+QMDP 2 169 169 207.86 203

PI only 48 100.52 102.50 214.02 215

Table 5.2.2: Simple World - Evaluation 2: Results

(a) PI+QMDP trajectories (b) PI+QMDP collisions

(c) PI only trajectories (d) PI only collisions

Figure 5.2.4: Simple World - Evaluation 2: PI+QMDP versus PI only trajectories and colli-
sions.

49

Figure 5.2.5: Simple World - Evaluation 2: PI+QMDP known world in last MC-sims trial.

50

Evaluation 3

Figure 5.2.6: Simple World - Evaluation 3: Actual World

This evaluation is similar to Evaluation 2 in that the prior known world is empty but in this case

the actual world (Figure 5.2.6) has changed. The doorway from the left hand room to the right

hand roomhas been closed off and now contains 3more dynamic obstacles (7 total). In this world,

PI+QMDP success rate was 96% outperforming PI only which had 38%. Shown in Table 5.2.3,

PI+QMDP had 4 collisions that occurred closer to the beginning of the trial and are shown in

Figure 5.2.7b whereas PI only had 62 collisions mainly occurring at the same obstacles and some

closer to the goal.

7Obs. # Fail. Avg. FS Med. FS Avg. SS Med. SS

PI+QMDP 4 37 28 308.75 308

PI only 62 110.97 58 301.76 301.5

Table 5.2.3: Simple World - Evaluation 3: Results

51

(a) PI+QMDP trajectories (b) PI+QMDP collisions

(c) PI only trajectories (d) PI only collisions

Figure 5.2.7: Simple World - Evaluation 3: PI+QMDP versus PI only trajectories and colli-
sions.

52

5.2.2 Maze World Results

Evaluation 1

The first evaluation for a world that resembles a maze, the prior known world used for offline train-

ing was empty and the actual world used during online execution is shown in Figure 5.2.8. There

were 5 dynamic obstacles but online the agent encountered only 4. Table 5.2.4 summarize the re-

sults from this worldwith PI+QMDPhaving fewer collisions (7% failure rate) compared to PI only

(47% failure rate) and in PI onlymost failures occurredwhen encountering the first dynamic obsta-

cle (Figure 5.2.9d). Figure 5.2.9a depicts the PI+QMDP agent staying further away from the walls

compared to the PI only agent shown in Figure 5.2.9c.

Figure 5.2.8: Maze World - Evaluation 1: Actual world where dynamic obstacles are circled
in red.

53

5Obs. # Fail. Avg. FS Med. FS Avg. SS Med. SS

PI+QMDP 7 380.29 170 733.53 737

PI only 47 188.32 167 734.21 733

Table 5.2.4: Maze World - Evaluation 1: Results

(a) PI+QMDP trajectories (b) PI+QMDP collisions

(c) PI only trajectories (d) PI only collisions

Figure 5.2.9: Maze World - Evaluation 1: PI+QMDP versus PI only trajectories and colli-
sions.

54

Evaluation 2

(a) Known world used for offline
training.

(b) Actual world with dynamic
obstacles are circled in red.

Figure 5.2.10: Maze World - Evaluation 2: Global Worlds

In this assessment, a provided knownworld containing static obstacles shown inFigure 5.2.10awas

used for the offline procedure and the actual world displayed in Figure 5.2.10b was utilized for on-

line operation. The actual world contained 5 dynamic obstacles along the agent’s anticipated path.

The results in Table 5.2.5 present PI+QMDP performing better (71% success rate) than PI only

(15% success rate). Looking at the paths from Figure 5.2.11a and Figure 5.2.11c it can be seen that

PI+QMDP took safer paths to the goal compared to PI only. Safer path selection can explicitly

be seen at the 3rd encountered obstacle at the bottom. PI only would attempt to go through the

narrow space between the wall and the obstacle, which is where most collisions in this scenario oc-

curred, but PI+QMDP used uncertainty of the obstacle’s motion to go around the obstacle. This

evaluation also shows how performance is increased with themore prior information given. In the

previous evaluation (Maze World - Evaluation 1) where the prior known world is unknown, the

agent needed to take more than 700 steps to reach the goal whereas in this case the agent took less

than 400 steps.

55

5Obs. # Fail. Avg. FS Med. FS Avg. SS Med. SS

PI+QMDP 29 313.97 359 383.69 382

PI only 85 173.75 152 362.67 359

Table 5.2.5: Maze World - Evaluation 2: Results

(a) PI+QMDP trajectories (b) PI+QMDP collisions

(c) PI only trajectories (d) PI only collisions

Figure 5.2.11: Maze World - Evaluation 2: PI+QMDP versus PI only trajectories and colli-
sions.

56

Evaluation 3

Figure 5.2.12: Maze World - Evaluation 3: Actual world where dynamic obstacles are circled
in red.

For the final evaluation, the prior known world is the same as in the previous assessment (Fig-

ure 5.2.10a) but now the actual world contains a total of 11 dynamic obstacles that are shown in

Figure 5.2.12. During execution, the agent encounters 9 dynamic obstacles and the results in Ta-

ble 5.2.6 show that the implemented PI+QMDP is able to complete more simulations successfully.

The failure rate for PI only close to 100% where most collisions occurred at the first encountered

obstacle because it does not use motion uncertainty to select actions and only operates on what is

observed at that time. The number for collisions in this PI+QMDP evaluation was greater partly

because the environment is much more complex and the agent needs to move between narrow

spaces. Also, in all cases where collision occurred, the obstacles jumped 2 spaces over instead of

one. This will be briefly discussed in Section 5.2.3 and more elaborated in the future work section

of the next chapter.

57

11Obs. # Fail. Avg. FS Med. FS Avg. SS Med. SS

PI+QMDP 43 244.53 255 429.65 433

PI only 97 77.72 48 392.33 392

Table 5.2.6: Maze World - Evaluation 3: Results

(a) PI+QMDP trajectories (b) PI+QMDP collisions

(c) PI only trajectories (d) PI only collisions

Figure 5.2.13: Maze World - Evaluation 3: PI+QMDP versus PI only trajectories and colli-
sions.

58

5.2.3 Simulation Results Summary

What has been shown is using limited or inaccurate information of the environment for prior train-

ing and incorporating QMDP into PI produces safer trajectories compared to when using only PI.

In total, PI+QMDP had approximately an 85% success rate versus PI only’s success rate of roughly

37%. Table 5.2.7 compiles all the results from all assessments: for each world (World), each eval-

uation (Eval.) and number of encountered dynamic obstacles (Obs.; Note: not the total number

in the environment), the algorithm used (Alg.), the number of collisions, average and median of

steps leading up to failure, along with average andmedian of steps in cases where the agent reached

the goal.

More collisions occurred inMazeWorld evaluation 2 and 3 partly due to the increased complex-

ity of the environment and because the obstacle jumped 2 spaces over. The presented algorithm in

chapter 4, assumes that the obstacle will only move to one of the immediate, surrounding spaces.

The solutions to mitigate this will be proposed and discussed in the next chapter’s future work sec-

tion. Themain takeaway is that the proposedmethod can work and produce safer trajectories with

some tuning and potential upgrades.

In all the presented simulations, the maximum number of obstacles seen locally were 4. The

average time QMDP took to determine a policy was around 6 seconds, which is acceptable for

real-time operation on some real robots. The simulations were run using an Intel Core i7 CPU @

4.20GHz with 4 cores in MATLAB, which does not have optimal performance in terms of speed

compared to C++.

59

World Eval. \Obs. Alg. # Fail. Avg. FS Med. FS Avg. SS Med. SS

Simple

Eval. 1 \Obs. 2
PI+QMDP 3 124.67 120 157.76 152

PI only 37 104.97 114 160.46 163

Eval. 2 \Obs. 2
PI+QMDP 2 169 169 207.86 203

PI only 48 100.52 102.50 214.02 215

Eval. 3 \Obs. 5
PI+QMDP 4 37 28 308.75 308

PI only 62 110.97 58 301.76 301.5

Maze

Eval. 1 \Obs. 4
PI+QMDP 7 380.29 170 733.53 737

PI only 47 188.32 167 734.21 733

Eval. 2 \Obs. 5
PI+QMDP 29 313.97 359 383.69 382

PI only 85 173.75 152 362.67 359

Eval. 3 \Obs. 9
PI+QMDP 43 244.53 255 429.65 433

PI only 97 77.72 48 392.33 392

Table 5.2.7: Summary of all results.

60

6
Conclusion

61

In this thesis, the problem of navigation in the presence of dynamic obstacles was formulated

into a MDP and POMDP. The solution used a combination of PI and QMDP to determine safer

policies by accounting for uncertainty of possible next obstacle states. This chapter concludes the

completed work by providing an overview of the contributions, a brief discussion on limitations,

and considerations for future work.

6.1 Discussion

Themajor contributions of thisworkwas formulating a solution to the problemof navigation in the

presences of dynamic obstacles when their motion is uncertain and leveraging prior information.

The following questions, which sparked motivation for this research, were asked in the problem

statement:

1. Given what is known prior, whichmay not be accurate, how can this information used in an

offline training process to offload online computation and provide a closed-loop solution at

any location?

2. Then during online operation, is there a way to leverage this prior knowledge to quickly

determine new actions when encountering new information not previously seen and still

account for uncertainty of the obstacle motion?

3. How can we generalize the solution so that it can be applicable to other robots that have the

same drive-train?

First, the navigation problem is formulated into a MDP in an occupancy grid setting. This grid

world expresses the known state of the environment, whichmay include obstacles. Theglobal prob-

62

lem is solvedusingPI, providinggeneral policies for all possible (known) states anda value function

that when used locally help propel the agent toward the goal.

Second, during execution, the agent leverages these results anduses locally obtained information

of the surrounding environment in the form of a small occupancy grid to provide a short term

plan around hazards. When a new obstacle is encountered, it is uncertain where the obstacle will

move next and the problem becomes a POMDP. The solution to the local problem was found

using a novel application of QMDP. It assumes all obstacles move randomly based on a Gaussian

distribution and uses beliefs of all possible obstacle state combinations at the next time step to

determine safer actions. Because the local resolution is small and by taking advantage of the global

policies in the local context (which helps speed up convergence), the presented approach has the

potential to operate in real time, on a real robot. Also, although G-PI is executed again online, this

process can be parallelized. Regardless, solutions are found quickly since the updated information

retrieved from the local world is small compared to the global and by leveraging the previous global

policies, the algorithm is able to converge quickly.

Finally, by using MDPs and POMDPs, the solution should be general enough to be applicable

to any holonomic robot. The only case specific requirement is the state transition model, which

can be obtained online while executing the proposed algorithm.

Simulation results show that the agent was able to determine safer maneuvers than when only

using PI. A limitation in the proposed approach is that it was designed for a holonomic robot and

most robots operating in the real-world are non-holonomic. Also, it is locally-short sighted and

does not use motion estimates of moving obstacles that could be beneficial in situations such as

self-driving cars on a highway. Another limitation is that it only considers the obstacle being in

one of the surrounding immediate spaces. If the obstacle moves more than that, then there is a

63

risk of collision. Although the results show that in much more complex environments there were

a relatively large number of collisions, the key take away is that this unique way of using QMDP to

approximate POMDPs proves the methodology and shows the potential to work well in terms of

navigating dynamic obstacles, providing a foundation for future directions discussed next.

6.2 FutureWork

Thefirst future course to implement and verify the proposed algorithmon a real robot, as described

in Section 5.1.2, and verify it’s application. Then expanding to a multi-agent scenario, where each

agent independently runs the PI+QMDP formulation and only sees each other as potential obsta-

cles. It would be interesting to observe how each agent reacts to one another.

The most collisions occurred in the Maze World evaluations 2 and 3 because the dynamic ob-

stacles were located in narrow corridors. In all test cases, all the collisions that occurred under

PI+QMDP were due to the obstacle jumping 2 states over (e.g., from [8, 6] to [6, 6]). The imple-

mented QMDP only considers cases where the obstacle would move to one of the immediate, sur-

rounding states (e.g., from [8, 6] to [7, 6] or [7, 5] and so on). To mitigate this, expanding the local

resolution froma 7×7 to a 9×9or 11×11 to allow expansion of the -10 reward border aroundobsta-

cles, would help deter the agent from getting too close to an obstacle. Themost likely best solution,

which should resolve the issue, is to consider dynamic obstacle uncertainty for 2-3 surrounding

states in theQMDP formulation. If the uncertainty were to expand to 2 surrounding cells, then the

number of potential Q states would be 25n where n is the number of detected obstacles. Depending

on the local resolution, this may still be possible to execute online especially if the calculation of

the value function for several Q states can be done in parallel. Expanding to 3 surrounding cells

would increase the number of possibleQ states to 49n, which could be infeasible to solve online for

64

a large number of obstacles. In these large domains, using NNwould be beneficial such as QMDP-

net [40] to learn all possible Q state combinations offline and use the learned model online. For

example, in a 7 × 7 local world setting and with the robot in the center, for scenario of 24 inde-

pendent obstacles (worst case) would mean approximately 4924 Q states. All combinations for all

number of obstacles, potential sizes, and potential next states can be pre-determined and trained

offline. Then during online execution, the agent could use the learned model for determining the

policy to execute.

65

References

[1] Jamie Snape, Jur Van Den Berg, Stephen J Guy, and DineshManocha. The hybrid reciprocal
velocity obstacle. IEEE Transactions on Robotics, 27(4):696–706, 2011.

[2] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body colli-
sion avoidance. In Robotics research, pages 3–19. Springer, 2011.

[3] JurVandenBerg,MingLin, andDineshManocha. Reciprocal velocity obstacles for real-time
multi-agent navigation. In 2008 IEEE International Conference on Robotics and Automation,
pages 1928–1935. IEEE, 2008.

[4] Daman Bareiss and Jur van den Berg. Generalized reciprocal collision avoidance. The Inter-
national Journal of Robotics Research, 34(12):1501–1514, 2015.

[5] Georges S Aoude, Brandon D Luders, Joshua M Joseph, Nicholas Roy, and Jonathan P How.
Probabilistically safemotion planning to avoid dynamic obstacleswith uncertainmotion pat-
terns. Autonomous Robots, 35(1):51–76, 2013.

[6] Pete Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause. Robot navigation in
dense human crowds: Statistical models and experimental studies of human–robot cooper-
ation. The International Journal of Robotics Research, 34(3):335–356, 2015.

[7] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentralized non-
communicating multiagent collision avoidance with deep reinforcement learning. In 2017
IEEE international conference on robotics and automation (ICRA), pages 285–292. IEEE, 2017.

[8] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware motion plan-
ning with deep reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 1343–1350. IEEE, 2017.

[9] Johann Borenstein, Yoram Koren, et al. The vector field histogram-fast obstacle avoidance
for mobile robots. IEEE transactions on robotics and automation, 7(3):278–288, 1991.

66

[10] Yunfeng Wang and Gregory S Chirikjian. A new potential field method for robot path plan-
ning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages 977–
982. IEEE, 2000.

[11] Gonzalo Ferrer, Anais Garrell, and Alberto Sanfeliu. Social-aware robot navigation in urban
environments. In 2013 European Conference on Mobile Robots, pages 331–336. IEEE, 2013.

[12] Min Cheol Lee and Min Gyu Park. Artificial potential field based path planning for mobile
robots using a virtual obstacle concept. InProceedings 2003 IEEE/ASME InternationalConfer-
ence on Advanced Intelligent Mechatronics (AIM 2003), volume 2, pages 735–740. IEEE, 2003.

[13] CharlesWWarren. Global path planning using artificial potential fields. In Proceedings, 1989
International Conference on Robotics and Automation, pages 316–321. Ieee, 1989.

[14] Michael Everett, Yu Fan Chen, and Jonathan P How. Motion planning among dynamic,
decision-making agents with deep reinforcement learning. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3052–3059. IEEE, 2018.

[15] Eric R Mueller and Mykel Kochenderfer. Multi-rotor aircraft collision avoidance using par-
tially observable markov decision processes. In AIAA Modeling and Simulation Technologies
Conference, page 3673, 2016.

[16] Steven M LaValle, James J Kuffner, BR Donald, et al. Rapidly-exploring random trees:
Progress and prospects. Algorithmic and computational robotics: new directions, (5):293–308,
2001.

[17] Huijuan Wang, Yuan Yu, and Quanbo Yuan. Application of dijkstra algorithm in robot path-
planning. In 2011 second international conference on mechanic automation and control engineer-
ing, pages 1067–1069. IEEE, 2011.

[18] Patrick Reignier. Fuzzy logic techniques for mobile robot obstacle avoidance. Robotics and
Autonomous Systems, 12(3-4):143–153, 1994.

[19] Mohammed Faisal, Ramdane Hedjar, Mansour Al Sulaiman, and Khalid Al-Mutib. Fuzzy
logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environ-
ment. International Journal of Advanced Robotic Systems, 10(1):37, 2013.

[20] Mohammed Faisal, Mohammed Algabri, Bencherif Mohamed Abdelkader, Habib Dhahri,
and Mohamad Mahmoud Al Rahhal. Human expertise in mobile robot navigation. IEEE
Access, 6:1694–1705, 2017.

67

[21] Kimberly McGuire, Guido De Croon, Christophe De Wagter, Karl Tuyls, and Hilbert Kap-
pen. Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance
on an autonomous pocket drone. IEEE Robotics and Automation Letters, 2(2):1070–1076,
2017.

[22] Stanislav Mikhel, Dmitry Popov, and Alexandr Klimchik. Collision driven multi scenario
approach for human collaboration with industrial robot. In Proceedings of the 2018 4th Inter-
national Conference on Mechatronics and Robotics Engineering, pages 78–84, 2018.

[23] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforcement learning: Con-
tinuous control of mobile robots for mapless navigation. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 31–36. IEEE, 2017.

[24] GregoryKahn, AdamVillaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-
aware reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182, 2017.

[25] Antoine Bautin, Luis Martinez-Gomez, and Thierry Fraichard. Inevitable collision states: a
probabilistic perspective. In 2010 IEEE international conference on robotics and automation,
pages 4022–4027. IEEE, 2010.

[26] Daniel Althoff, James J Kuffner, Dirk Wollherr, and Martin Buss. Safety assessment of robot
trajectories for navigation in uncertain and dynamic environments. Autonomous Robots,
32(3):285–302, 2012.

[27] Thomas M Howard, Colin J Green, Alonzo Kelly, and Dave Ferguson. State space sampling
of feasiblemotions for high-performancemobile robot navigation in complex environments.
Journal of Field Robotics, 25(6-7):325–345, 2008.

[28] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially constrained mobile
robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–333, 2009.

[29] Pinxin Long,Wenxi Liu, and Jia Pan. Deep-learned collision avoidance policy for distributed
multiagent navigation. IEEE Robotics and Automation Letters, 2(2):656–663, 2017.

[30] Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee. Intention-aware online
pomdp planning for autonomous driving in a crowd. In 2015 ieee international conference
on robotics and automation (icra), pages 454–460. IEEE, 2015.

[31] Josep M Porta, Nikos Vlassis, Matthijs TJ Spaan, and Pascal Poupart. Point-based value
iteration for continuous pomdps. Journal of Machine Learning Research, 7(Nov):2329–2367,
2006.

68

[32] Alex Brooks, Alexei Makarenko, Stefan Williams, and Hugh Durrant-Whyte. Paramet-
ric pomdps for planning in continuous state spaces. Robotics and Autonomous Systems,
54(11):887–897, 2006.

[33] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[34] Mykel J Kochenderfer. Decision making under uncertainty: theory and application. MIT press,
2015.

[35] Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. Learning policies for
partially observable environments: Scaling up. InMachine Learning Proceedings 1995, pages
362–370. Elsevier, 1995.

[36] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press, 2005.

[37] ROBOTIS. Turtlebot3 burger. http://www.robotis.us/turtlebot-3-burger-us/, 2020.

[38] Conner Todd Castle. Virtual morphology as a method of robotic control. 2019.

[39] Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University Press, 2017.

[40] Peter Karkus, David Hsu, and Wee Sun Lee. Qmdp-net: Deep learning for planning under
partial observability. In Advances in Neural Information Processing Systems, pages 4694–4704,
2017.

69

	Navigation under Obstacle Motion Uncertainty using Markov Decision Processes
	Recommended Citation

	List of Symbols
	 Introduction
	 Motivation
	 Problem Statement
	 Thesis Outline

	 Literature Review
	 Static Environments
	 Dynamic Environments

	 Background
	 Markov Decision Processes
	 Reinforcement Learning
	 Model
	 Policy
	 Reward
	 Value Function
	 Optimal Policies & Value Functions
	 Policy Iteration
	 Partially Observable Markov Decision Processes
	 QMDP

	 Algorithm Design
	 Offline: Determining General Behaviors and Values
	 Global Policy Iteration (G-PI)

	Online: Leverage Prior Information and Motion Uncertainty
	 Local Policy Iteration (L-PI)
	 Local QMDP

	 Combined Policy Iteration & QMDP

	 Evaluation
	 Evaluation Setup
	 Simulation Setup
	 Hardware Setup

	 Simulation Evaluation
	 Simple World Results
	 Maze World Results
	 Simulation Results Summary

	 Conclusion
	 Discussion
	 Future Work

	References

