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ABSTRACT 

Fully Compressible Hydrodynamic Simulation of Non-Equidiffusive 

Premixed Flames Propagation in Channels 

Olatunde Ayodeji Abidakun 

Premixed combustion remains of fundamental interest in energy generation and propulsion 

systems as well as in implementation of safety measures for residential and industrial accidental 

fire explosions. While the fast pace and complex nature of the combustion process has previously 

necessitated the analytical and computational studies to employ the simplifying assumption of 

equidiffusivity, when the Lewis number defined as the thermal-to-mass diffusivities ratio is unity 

(𝐿𝑒 = 1), the ongoing advancements in technology and the requirements for efficiently operating 

combustors over a wide range of conditions make the combustion process more non-equdiffusive 

(𝐿𝑒 ≠ 1) than ever. The impact of non-equidiffusivity on the dynamics and morphology of a flame, 

and thereby on the combustion efficiency, becomes aggravated by the interactions with combustor 

geometric parameters as well as thermochemical properties of the fuel mixture. 

Therefore, by representing combustors as channels with various extreme conditions (open 

channels, when both ends are open, or semi-open, when one end is closed, while the other one 

remains open), boundary conditions (non-slip or free slip, adiabatic or isothermal walls) and 

internal structures (obstructed or unobstructed), the current work addresses the effects of non-

equidiffusivity and its interplays with other parameters on flame propagation in channels. 

Specifically, propagation of non-equidiffusive flames in channels is investigated by means of the 

computational simulations of the reacting flow equations with fully-compressible hydrodynamics 

and Arrhenius chemical kinetics. A detailed parametric study is performed for the Lewis numbers 

in the range 0.2 ≤ 𝐿𝑒 ≤ 2; the channel half-width 10 ≤ 𝑅/𝐿𝑓 ≤ 48, where 𝐿𝑓 is the thermal flame 

thickness; the blockage ratios, 𝛼, being from 0 to 2/3; and the spacing between the obstacles being 

1/4 ≤ ∆𝑍/𝑅 ≤ 1. 

The diffusional-thermal combustion instability, associated with 𝐿𝑒 < 1, and the flame 

thickening at 𝐿𝑒 > 1 are found to play a major role in determining the flame dynamics in a channel. 

Regarding finger flame acceleration in semi-open channels with adiabatic slip walls, it is shown 

that the 𝐿𝑒 > 1 flames accelerate slower than equidiffusive ones. In contrast, the 𝐿𝑒 < 1 flames 

acquire stronger distortion, associated with the diffusional-thermal combustion instability, and 

thereby accelerate much faster than at 𝐿𝑒 = 1. Increased surface area of the flame front and thus, 

a higher burning rate and stronger acceleration is also obtained in wider channels. Presence of 

equally spaced obstacles in such channel produced higher acceleration, with the increase being 

more significant at 𝐿𝑒 < 1 and high blockage ratio. 

When both ends of the channels are open, the flames show oscillations, acceleration or a 

sequence of both, depending on other parameters. For a channel with adiabatic non-slip walls, the 

oscillation amplitude and frequency decreases with 𝐿𝑒, and the low-𝐿𝑒 flames exhibiting different 

morphologies. A drastic change in flame dynamics is however seen for channel with isothermal 

wall. In narrow channels with small blockage ratios, the oscillations amplitude and frequency 

changes with 𝐿𝑒, with the frequency decreasing and the amplitude increasing as 𝐿𝑒 grows from 

0.3 to 2. In other conditions, a transition from flame oscillations to its sudden acceleration or 

propagation at constant velocity, is singularly influenced by the Lewis number, or by 𝐿𝑒 coupling 

to the geometric parameters. The delay time before the onset of flame acceleration, especially at 

𝐿𝑒 < 1, also varies as channel width and the blockage ratio changes. In all cases, the Lewis number 

shows both quantitative and qualitative effects on flame propagation in obstructed channel. 



iii 
 

 

 

 

To my beloved wife, Esther Abidakun, and my daughters, 

Tola and Bola Abidakun. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my advisor, Dr. Vyacheslavv Akkerman for his 

guidance and support through the course of this program, and for always being committed to 

helping me succeed. His in-depth knowledge of the subject field and expert guidance has helped 

me grow professionally. 

My profound appreciation also goes to the National Science Foundation, the West Virginia 

Higher Education Policy Commission for the support and the financial resources provided for me 

during the period of my PhD program. I also appreciate the WVU Division of Diversity, Equity 

and Inclusion for the support made available to me through the Chancellor Scholarship Program. 

My sincere appreciation goes to all the members of my dissertation committee: Dr. Hailin 

Li, Dr. Patrick Browning, Dr. Songgang Qiu and Dr. Hayri Sezer. Their relentless support, 

constructive criticism and timely response is highly appreciated. 

I also thank my colleagues: Abdulafeez Adebiyi, Gbolahan Idowu, Mohammed Alkhabaz, 

Furkan Kodakoglu, Samuel Ogunfuye, Sunita Pokharel, Ansan Pokharel, Alain Islas Montero, and 

Lateef Kareem, who helped me get started on my research and who have been of tremendous 

support over time. I appreciate you all. 

Finally, I express deepest appreciation to my beloved wife Esther Abidakun, my daughters 

Tola Abidakun and Bola Abidakun, all members of the extended Abidakun and Akano families, 

for their unconditional love, sacrifices, support and encouragement during this program. Your 

contributions in making this a success are invaluable and highly appreciated. 

 

 

 

 

 

 



v 
 

Table of Contents 
List of Tables ................................................................................................................................ vii 

List of Figures .............................................................................................................................. viii 

List of Symbols ............................................................................................................................. xv 

1 Introduction ............................................................................................................................. 1 

 Overview .......................................................................................................................... 1 

 Motivation and Objectives ............................................................................................... 2 

 Structure of the Dissertation ............................................................................................. 5 

2 Literature Review .................................................................................................................... 5 

 Premixed Combustion ...................................................................................................... 5 

2.1.1 Deflagration (Flame) ................................................................................................. 6 

2.1.2 Detonation ................................................................................................................. 6 

2.1.3 Deflagration-to-Detonation Transition (DDT) ......................................................... 7 

 Premixed Flame Structure ................................................................................................ 8 

 Flame Propagation in Channels...................................................................................... 10 

2.3.1 Flame propagation in Semi-open channels ............................................................. 10 

2.3.2 Flame Propagation in Channels with both Ends Open (Fully-Open Channels) ..... 13 

 The Lewis Number ......................................................................................................... 13 

 Relevant Flame Acceleration Theory ............................................................................. 16 

3 Research Methodology .......................................................................................................... 18 

 The Governing Equations and Numerical Approach ..................................................... 18 

 Channel Geometry.......................................................................................................... 19 

3.2.1 Semi-Open Channels .............................................................................................. 19 

3.2.2 Fully-Open Channels .............................................................................................. 20 

 Boundary Conditions...................................................................................................... 21 

3.3.1 Boundary Conditions at the Channel Walls ............................................................ 21 

3.3.2 Boundary Conditions at the Channel Ends ............................................................. 21 

 The Ignition Model......................................................................................................... 21 

 Grid/Mesh Generation .................................................................................................... 22 

 Validations ..................................................................................................................... 24 

 Details of Parametric Study............................................................................................ 26 

3.7.1 Semi-open channel with slip wall ........................................................................... 27 

3.7.2 Semi-open channels with obstruction ..................................................................... 27 

3.7.3 Open Channels with smooth wall ........................................................................... 28 



vi 
 

3.7.4 Obstructed channels with open ends ....................................................................... 28 

 Flame Characterization .................................................................................................. 29 

4 Propagation of Non-equidiffusive Flames in Semi-open Channels with Smooth Walls ...... 30 

 Effect of Lewis number on Morphology and Dynamics of Non-equidiffusive Flames . 30 

 Effects of Flame Reynold Number on Non-equidiffusive Finger Flame ....................... 33 

 Impact of Thermal Expansion Ratio on Non-equidiffusive Flames .............................. 34 

5 Propagation of Non-equidiffusive Flames in Obstructed Semi-Open Channels ................... 35 

 Flame Morphology in Obstructed Semi-open Channels ................................................ 35 

 Statistical Significance of the Effects of R, α, and Le on Flame Propagation ............... 36 

 Effects of Lewis number on Flame propagation ............................................................ 37 

 Impact of Blockage ratio on Flame propagation ............................................................ 39 

 Effect of Channel Width on flame Propagation ............................................................. 42 

 Quantitative Analysis of Flame Acceleration Rate ........................................................ 44 

6 Propagation of Non-equidiffusive Flames in Unobstructed Channel with Open Ends ......... 45 

 Morphology of Θ = 5 Flames in Fully-Open Adiabatic Channel ................................. 45 

 Dynamics of Θ = 5 Flames in Adiabatic Channels with Open Ends ............................ 47 

 Flames in Fully-Open Adiabatic Channel with Θ = 8 and 10 ...................................... 50 

 Propagation of Flames in Fully-Open Channels with Non-Slip and Isothermal Walls . 53 

7 Propagation of Non-equidiffusive Flames in Obstructed Channels with Open Ends ........... 57 

 Statistical Significance of the Effects of R, α, and Le .................................................... 57 

 Propagation of Non-Equidiffusive Flame in Narrow Channels with Low Blockage Ratio

 58 

 Nonequidiffusive Flame Propagation in Fully-Open Channels with High Blockage 

Ratio 64 

 Impact of 𝐿𝑒 − 𝛼 Interplay on Flame Propagation in Fully-Open Obstructed Channel 68 

 Impact of the Le-Re Interplay on Flame Propagation in Fully-Open Channel .............. 71 

 Impact of Le-ΔZ Interplays on Flame Propagation in Fully Open Channel .................. 73 

7.7. Oscillation-to-Acceleration Transitions of Low-Le Flames in Obstructed Channels with 

Open Ends ................................................................................................................................. 75 

8 Conclusions and Recommendations ...................................................................................... 78 

 Conclusions .................................................................................................................... 78 

 Recommendations .......................................................................................................... 80 

Reference ...................................................................................................................................... 81 

 

 



vii 
 

List of Tables 

1.1 Lewis number of H2-air mixtures diluted with He, Ar and CO2……………………….…  3 

1.2 Effective Lewis number of multicomponent fuel-air mixture diluted with CO2…………  3 

1.3 Effective Lewis number of diffusion flame of CH4 and C3H8 – air mixtures diluted with He 

and Ar……………………………………………………………………………………   4 

3.1 Resolution test for semi-open channel…………………………………………………..  23 

3.2 Factors and values considered in the study……………………………………………..  26 

5.1 Analysis of variance table for flame acceleration in obstructed semi-open channel…….  36 

7.1 Analysis of variance table for flame acceleration in obstructed fully open channel…….. 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 

2.1 Premixed flame configuration…………………………………………………………... 9 

2.2 Characteristic temperature and density distribution inside a planar flame…………….… 9 

2.3 Reaction level flame structure………………………………………………………...… 10 

2.4 Evolution of a finger flame in a channel………………………………………………… 16 

3.1 Schematic of a semi-open channel with smooth walls………………………………...… 20 

3.2 Schematic of a semi-open channel with evenly spaced obstacles on the internal wall 

surface…………………………………………………………………………………... 20 

3.3 Schematic illustration of a channel with both ends open………………………………... 20 

3.4 Schematic of an obstructed channel with both end open………………….……………... 20 

3.5 Planar ignition of fuel premixture in obstructed channel……………………………..…. 22 

3.6 Hemispherical ignition of channel with smooth wall………………………………….… 22 

3.7 Schematic of the grid used in the numerical simulations………………………………... 23 

3.8 Resolution Test: The scaled tip position 𝑍𝑡𝑖𝑝/𝑅 versus the scaled time 𝜏 = 𝑈𝑓𝑡/𝑅 for 𝐿𝑒 =

0.2 and 𝑅 =  20 for different mesh sizes……………………………………………….. 23 

3.9 Resolution Test: The scaled flame position versus the scaled time for α = 1/3, 𝐿𝑒 = 0.2 and 

various square mesh sizes……………………………………………………………….. 24 

3.10 Validation: Scaled tip velocity vs the scaled time charts with both numerical and 

experimental results for R = 0.25 mm…………………………………………………. 25 

3.11 Validation: Scaled tip velocity vs the scaled time charts with both numerical and 

experimental results for R = 0.5 mm…………………………………………………… 25 

3.12 Experimental and simulation results for flame tip evolution in a channel of width 0.75 

mm…………………………………………………………………………………….… 25 

3.13 Semi-open channel for finger flame acceleration mechanism…………………………... 27 

3.14 Semi-open obstructed channel illustrating the Bychkov mechanism of FA…………….. 27 

3.15 schematic of an unobstructed channel with both extremes open…………………….…... 28 

3.16 A schematic of an obstructed channel with both extremes open (only an upper half is 

shown)…………………………………………………………………………………... 28 

4.1 The temperature snapshots of the flame evolution with 𝑅𝑒 = 20,  = 8 and 𝐿𝑒 = 0.2... 30 

4.2 The temperature snapshots of the flame evolution with 𝑅𝑒 = 20,  = 8 and 𝐿𝑒 =  1…. 30 

4.3 The temperature snapshots of the flame evolution with 𝑅𝑒 = 20,  = 8 and 𝐿𝑒 = 2….. 30 



ix 
 

4.4 The scaled total burning rate 𝑈𝑤/𝑆𝐿 versus the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 for 𝑅𝑒 = 10 and 

 = 8………………………………………………………………………………….... 32 

4.5 The scaled flame tip velocity 𝑈𝑡𝑖𝑝/𝑆𝐿 versus the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 for 𝑅𝑒 = 10 and 

 = 8…………………………………………………………………………………… 32 

4.6 The scaled total burning rate 𝑈𝑤/𝑆𝐿 versus the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 in the 2D planar 

geometry for 𝐿𝑒 = 0.2, 2 and 𝑅𝑒 = 10, 20…………………………………………….... 33 

4.7 The scaled flame surface area 𝑆𝑤/𝜋𝑅2 vs the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 for 𝐿𝑒 = 0.2 with 

 = 5, 8, 10 and 𝑅𝑒 = 20……...……………………………………………………….. 34 

4.8 The scaled flame surface area 𝑆𝑤/𝜋𝑅2 vs the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 for 𝐿𝑒 = 1.5 with 

 = 5, 8, 10 and 𝑅𝑒 = 20…………………………………………………………….… 34 

5.1 Temperature snapshots taken at the same scaled time instant, τ = t SL / R = 0.075 for Re = 

24 Lf and various Le and α. (Total of nine different simulation runs, with each snapshot 

representing different combinations of Le and α)……………………………...……… 35 

5.2 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for R = 24 Lf and α 

= 1/3…………………………………………………………………………………...… 37 

5.3 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for R/Lf = 24 and α 

= 1/2…………………………………………………………………………………...… 37 

5.4 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for R/Lf = 24 and α 

= 2/3…………………………………………………………………………………….. 38 

5.5 The scaled flame tip velocity Utip / SL at τ = 0.075 versus Le for different values of α = 1/3, 

1/2, 2/3…………………………………………………………………………………... 39 

5.6 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R  for R/Lf  = 24 and 

Le = 0.2………………………………………………………………………………….. 39 

5.7 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R  for R/Lf  = 24 and 

Le = 0.5………………………………………………………………………………….. 40 

5.8 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R  for R/Lf  = 24 and 

Le = 1……………………………………………………………………………………. 41 

5.9 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R  for R/Lf  = 24 and 

Le = 2……………………………………………………………………………………. 41 

5.10 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for α = 2/3 and Le 

= 0.2…………………………………………………………………………………...… 42 



x 
 

5.11 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for α = 2/3 and 

 Le = 0.5………………………………………………………………………………….. 42 

5.12 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for α = 2/3 and Le 

= 1.0……………………………………………………………………………………... 43 

5.13 The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for α = 2/3 and Le 

= 2.0…………………………………………………………………………………..…. 43 

5.14 The exponential acceleration rate σ versus the Lewis number Le for R/Lf  = 24 (a), 36 (b), 

48 (c) with α = 0, 1/3, 1/2, and 2/3……………………………………………………… 44 

6.1 The temperature snapshots for the evolutions of the Θ = 5 flames in adiabatic channels 

with R = 10 𝐿𝑓, and 𝐿𝑒 = 0.2 (a), 𝐿𝑒 = 1 (b), 𝐿𝑒 = 2 (c)…………………………........ 45 

6.2 The  temperature snapshots for the evolutions of the Θ = 5 flames in adiabatic channels 

with R = 20 𝐿𝑓, and 𝐿𝑒 = 0.2 (a), 𝐿𝑒 = 1 (b), 𝐿𝑒 = 2 (c)……………………. 47 

6.3 The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus 

scaled time 𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 5 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in 

the adiabatic channel of 𝑅 = 10 𝐿𝑓……………………………………………………… 48 

6.4 The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus 

scaled time 𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 5 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in 

the adiabatic channel of 𝑅 = 20 𝐿𝑓…………………………………………………..….. 49 

6.5 The temperature snapshots for the evolutions of the Θ = 5 flames in adiabatic channels 

with R = 20 𝐿𝑓, and 𝐿𝑒 = 0.2 (a), 𝐿𝑒 = 1 (b), 𝐿𝑒 = 2 (c)……………………...………. 50 

6.6 The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus 

scaled time 𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 10 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating 

in the adiabatic channel of 𝑅 = 10 𝐿𝑓………………………………………………….... 51 

6.7 The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus 

scaled time 𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 8 flames with various 𝐿𝑒 = 0.2, 0.5, 1, 1.5 and 2 

propagating in the adiabatic channel of 𝑅 = 10 𝐿𝑓……………………………………… 52 

6.8 The Color temperature snapshots for the evolutions of the Θ = 8 flames propagating in 

isothermal channels with R = 10 𝐿𝑓, and 𝐿𝑒 = 0.2 (a), 𝐿𝑒 = 1 (b), 𝐿𝑒 = 2 (c)………... 53 



xi 
 

6.9 The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus 

scaled time 𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 8 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in 

the isothermal (𝑇𝑤 = 300 K) channel of 𝑅 = 10 𝐿𝑓…………………………………….. 55 

6.10 The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus 

scaled time 𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 8 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in 

the isothermal (𝑇𝑤 = 300 K) channel of 𝑅 = 20 𝐿𝑓………………………………….…. 56 

7.1 Temperature snapshots for the flame evolution, with 𝑅 = 12𝐿𝑓,  = 8, 𝛼 = 1/3, and 𝐿𝑒 =

0.3 (a) and 𝐿𝑒 = 2 (b)…………………………………………………………………... 58 

7.2 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the blockage ratio 𝛼 = 1 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-

width R = 12 𝐿𝑓, and various Lewis numbers 𝐿𝑒 = 0.3 (a), 0.6 (b), 1 (c), and 2 (d)…... 59 

7.3 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled frequency (sf) for the thermal expansion 

ratio Θ = 8, the blockage ratio 𝛼 = 1 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-

width R = 12 𝐿𝑓, and various Lewis numbers 𝐿𝑒 = 0.3 (a), 0.6 (b), 1 (c), and 2 (d).….. 60 

7.4 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the blockage ratio 𝛼 = 1 2⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-

width R = 12 𝐿𝑓, and various Lewis numbers 𝐿𝑒 = 0.3 (a), 0.6 (b), 1 (c), and 2 (d)…... 61 

7.5 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled frequency 𝑠𝑓 = 𝑅 𝜏𝑆𝐿⁄  for the thermal 

expansion ratio Θ = 8, the blockage ratio 𝛼 = 1 2⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the 

channel half-width 𝑅 = 12 𝐿𝑓, and various Lewis numbers 𝐿𝑒 = 0.3 (a), 0.6 (b), 1 (c), and 

2 (d)……………………………………………………………………………………... 62 

7.6 Variation of the scaled oscillation amplitude, ∆𝑈𝑤 𝑆𝐿⁄ , and the scaled oscillation frequency, 

1 𝜏𝑝⁄  (here 𝜏𝑝 is the scaled oscillation period) with the Lewis number, Le, for the thermal 

expansion ratio Θ = 8, the channel half-widths 𝑅 = 12 𝐿𝑓, the blockage ratio 𝛼 = 1 2⁄ , 

and the obstacle spacing ∆Z = 𝑅 4⁄ .…………………………………………………….. 63 

7.7 Variation of scaled oscillation amplitude, ∆𝑈𝑤 𝑆𝐿⁄ , and scale oscillation frequency, 1 𝜏𝑝⁄  

(here 𝜏𝑝 is the scaled oscillation period) versus the Lewis number, Le, for the thermal 

expansion ratio Θ = 8, the channel half-widths 𝑅 = 12 𝐿𝑓, the blockage ratio 𝛼 = 1 3⁄ , 

and the obstacle spacing ∆Z = 𝑅 4⁄ . ……………………………………………………. 63 

7.8 Temperature snapshots for the flame evolution, with  = 8, 𝛼 = 2/3, 𝑅 = 12𝐿𝑓……... 64 



xii 
 

7.9 Temperature snapshots for the flame evolution, with  = 8, 𝛼 = 2/3, 𝑅 = 24𝐿𝑓 …….. 64 

7.10 The scaled flame tip 𝑍𝑡𝑖𝑝 𝐿𝑓⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio 

Θ = 8, the blockage ratio 𝛼 = 2 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 

𝑅 = 12 𝐿𝑓 for various Lewis numbers 𝐿𝑒 = 0.3, 0.6, 1, and 2………………………….. 65 

7.11 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the blockage ratio 𝛼 = 2 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-

width 𝑅 = 12 𝐿𝑓 for various Lewis numbers 𝐿𝑒 = 0.3, 0.6, 1, and 2………………….... 65 

7.12 The scaled flame tip 𝑍𝑡𝑖𝑝 𝐿𝑓⁄  versus scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ =

8, the blockage ratio 𝛼 = 2 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 =

24 𝐿𝑓 for various Lewis numbers 𝐿𝑒 = 0.3, 0.6, 1, and 2……………………………….. 66 

7.13 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the blockage ratio 𝛼 = 2 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄  the channel half-

width 𝑅 = 24 𝐿𝑓 for various Lewis numbers 𝐿𝑒 = 0.3, 0.6, 1, and 2..………..……...… 66 

7.14 The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal 

expansion ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, 

various 𝛼 = 1 3⁄ , 1/2, 2/3   and 𝐿𝑒 = 0.3……………………………………………... 68 

7.15 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 

𝛼 = 1 3⁄ , 1/2, 2/3 and 𝐿𝑒 = 0.3.…………………………………………………...….. 68 

7.16 The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal 

expansion ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, 

various 𝛼 = 1 3⁄ , 1/2, 2/3 and 𝐿𝑒 = 1………………..………………………………. 69 

7.17 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 

𝛼 = 1 3⁄ , 1/2, 2/3 and 𝐿𝑒 = 1.……………………………...…………………………. 69 

7.18 The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal 

expansion ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, 

various 𝛼 = 1 3⁄ , 1/2, 2/3 and 𝐿𝑒 = 2.………………………………………….…….. 70 



xiii 
 

7.19 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 

𝛼 = 1 3⁄ , 1/2, 2/3 and 𝐿𝑒 = 2.……………………………...……………………….… 70 

7.20 The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal 

expansion ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the blockage ratios 𝛼 = 2 3⁄ , the 

Lewis number 𝐿𝑒 = 0.3 and various channel half-widths 𝑅 =

12 𝐿𝑓 , 24 𝐿𝑓, 36 𝐿𝑓, 48 𝐿𝑓……………………………………………………………… 71 

7.21 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the blockage ratios 𝛼 = 2 3⁄ , the Lewis 

number 𝐿𝑒 = 0.3 and various channel half-widths 𝑅 = 12 𝐿𝑓 , 24 𝐿𝑓, 36 𝐿𝑓, 48 𝐿𝑓…… 72 

7.22 The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal 

expansion ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the blockage ratios 𝛼 = 2 3⁄ , the 

Lewis number 𝐿𝑒 = 2 and various channel half-widths 𝑅 =

12 𝐿𝑓 , 24 𝐿𝑓, 36 𝐿𝑓, 48 𝐿𝑓………………………………………………………………. 72 

7.23 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the obstacle spacing ∆Z = 𝑅 4⁄ , the blockage ratios 𝛼 = 2 3⁄ , the Lewis 

number 𝐿𝑒 = 2 and various channel half-widths 𝑅 = 12 𝐿𝑓 , 24 𝐿𝑓, 36 𝐿𝑓, 48 𝐿𝑓……... 73 

7.24 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the channel size 𝑅 = 24 𝐿𝑓, the Lewis numbers 𝐿𝑒 = 0.3, blockage ratio 𝛼 = 

1 2⁄  and various 𝛥𝑍/𝑅 = 1 4⁄ , 1/2, 1.………………………………...………….…… 74 

7.25 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion 

ratio Θ = 8, the channel size 𝑅 = 24 𝐿𝑓, the Lewis numbers 𝐿𝑒 = 0.3, blockage ratio 𝜶 = 

𝟐 𝟑⁄  and various 𝛥𝑍/𝑅 = 1 4⁄ , 1/2, 1.……………………………...…………………. 74 

7.26 The temperature snapshots for evolution of a flame with  = 8, 𝐿𝑒 = 0.3 propagating in 

an obstructed channel of half -width 𝑅 = 12 𝐿𝑓 with the blockage ratio 𝛼 = 2/3 (a partial 

section view).…………………………………………………………………………..... 75 

7.27 The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  and the flame tip Mach number 𝑀𝑎𝑡𝑖𝑝 versus the scaled 

time 𝑡𝑆𝐿 𝑅⁄  for the 𝐿𝑒 = 0.3, Θ = 8 flames in the obstructed channels with 𝛼 = 2 3⁄ , ∆Z =

𝑅 4⁄ , and various 𝑅/𝐿𝑓 = 12, 24, 36…………………………………………………..... 76 



xiv 
 

7.28 The fuel temperature at the flame tip 𝑇𝑡𝑖𝑝 and the flame tip Mach number 𝑀𝑎𝑡𝑖𝑝 versus the 

scaled time 𝑡𝑆𝐿 𝑅⁄  for the 𝐿𝑒 = 0.3, Θ = 8 flames in the obstructed channels with 𝛼 =

2 3⁄ , ∆Z = 𝑅 4⁄ , and 𝑅/𝐿𝑓 = 12, 24, 36……………………………………...……….... 76 

7.29 Oscillating and accelerating regimes of flame propagation for: various R, Le, 𝛼 = 1 2⁄ , 

∆𝑍 = 𝑅 4⁄  & Θ = 8 (a); various 𝛼, Le, 𝑅 = 24𝐿𝑓, ∆𝑍 = 𝑅 4⁄  & Θ = 8 (b); various Θ, Le, 

𝑅 = 24𝐿𝑓, ∆𝑍 = 𝑅 4⁄ , & 𝛼 = 1 3⁄  (c). ………………………………………………..... 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

  List of Symbols 

English Letters 

a Thermal diffusivity 

𝐶𝑉            Specific heat capacity at constant volume 

𝐶𝑃 Specific heat capacity at constant pressure 

𝑐0 Speed of the sound in the unburned fuel mixture 

ctip Speed of sound associated with the flame tip 

𝐷      Mass diffusivity of deficient reactant 

𝐸𝑎 Activation energy 

𝐿𝑏 Markstein length 

𝐿𝑒 Lewis number (ratio of thermal diffusivity to mass diffusivity) 

𝐿𝑓            Flame thickness 

𝑚             Molecular weight 

𝑀𝑎         Mach number 

𝑀𝑘 Markstein number 

𝑛̄               Normal vector 

𝑃   Pressure 

𝑃𝑓 Initial pressure 

𝑃𝑟            Prandtl number 

𝑄 Specific energy released in a chemical reaction 

𝑟𝑓              Radial position of the flame as function of time 

𝑅              Channel half-width 

𝑅𝑒            Flame Reynolds number 

𝑅𝑢           Universal gas constant 

𝑆𝑐             Schmidt number 

𝑆𝐿             Laminar flame speed 

𝑇             Temperature 

𝑇𝑓             Initial fuel mixture temperature 

𝑇𝑎𝑑            Adiabatic flame temperature 

𝑢              Velocity component 

𝑈𝑡𝑖𝑝          Flame tip velocity 

𝑈𝑊           Corrugated flame velocity or burning rate 

𝑈1            Flow velocity at burned extreme end 

𝑈2            Flow velocity at cold extreme end 

𝑋𝑖            Specie mole fraction 

𝑌             Mass fraction of the fuel mixture. 

𝑍𝑓            Flame tip position 

𝑧              Axial direction 



xvi 
 

Greek Letters 

𝛼            Blockage ratio 

𝛾            Specific heat ratio 

Θ            Thermal expansion ratio 

Δ𝑍          Obstacle spacing 

τ             Scaled time 

τ𝑅           Reaction time constant 

σ             Exponential acceleration rate 

λ Thermal conductivity 

ρ             Density 

𝜂             Dynamic viscosity 

ν             Kinematic viscosity 

𝑒             Energy release per unit volume 

ξ              Reduced low pressure inverse viscosity 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1 Introduction 

 Overview 

The usual saying of fire being a good servant, and a bad master indicates a clear recognition of the 

positive and destructive tendencies of combustion by humanity. Indeed, fire has proven to be a 

good servant in many respects, when handled appropriately, as it occupies the central stage in 

human civilization. Without it, many accomplishments attained in the history of mankind would 

be a mirage. From the medieval period till the present day, its usefulness has spanned many areas 

of human endeavors, ranging from cooking, heating, and lighting, to powering rockets [1]. Another 

interesting application of combustion is in the synthesis of advanced nanomaterials, that is, the 

technique popularly called combustion synthesis or self-propagating high-temperature synthesis 

(SHS) [2].  

On the other hand, when out of control, combustion can lead to catastrophic incidents. 

Unwanted combustion often results in urban and wildland fires, explosion in locations like power 

plants and coal mines [3,4]. Destruction of properties and loss of human lives always accompany 

combustion, whenever it becomes uncontrollable and results in explosion. These potential adverse 

effects of combustion, as well as the need to fully harness the energy available through combustion, 

while reducing pollution and the accompanying health concerns to the barest minimum, makes 

combustion studies essential. Based on this premise, promotion/facilitation of combustion where 

it is useful; and its prevention and control when it may have catastrophic tendency, become crucial. 

Generally, combustion involves a redox reaction between a combustible (fuel) and an oxidizer 

to form an oxidized product. Methane, propane, hydrogen, wood and coal are common examples 

of fuel, and typical oxidizer includes pure oxygen or oxygen present in air, and fluorine. Depending 

on the stage at which fuel and oxidizer are mixed, combustion can be classified into premixed and 

non-premixed. In premixed combustion, the fuel and oxidizer are perfectly mixed at the molecular 

level before ignition. Spark ignition (SI) engines, lean-premixed gas turbine combustors, and gas-

leak explosions, are examples of applications and situation in which premixed combustion is 

encountered. In situation when there is no prior mixing of the fuel and oxidizer before their 

involvement in the reaction zone, the process is termed non-premixed (diffusion) combustion, with 

burning of candle wax and diesel (compression ignition) engine being typical examples [5]. 
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 Motivation and Objectives 

Reasonable percentage of world energy is still derived from burning of fuel, in one form or another, 

and this will possibly remain so, for many years to come. In the USA, about 80 % of the total 

energy consumed in 2017 [6], and about 63 % of electricity generation in 2019 [7] are from fossil 

fuels. However, stringent emission regulations and the push towards improved efficiency has 

placed higher requirements on the combustion process, which originally, is a very complex one. 

The complex nature of combustion requires the involvement of many subject areas, such as 

thermodynamics, fluid mechanics, chemical kinetics, and heat and mass transfer, all coming into 

play in its analysis [8]. In some cases, it requires accounting for phase changes in conditions 

ranging from atmospheric to supercritical conditions [9]. In view of this complexity, analyzes of 

the combustion processes have often been achieved by taking simplifying assumptions. Many of 

these assumptions include: considering one-step reaction, isobaric approximation, infinitely thin 

flame, equidiffusion of mass and heat in the flame front, i.e. the unity Lewis number, 𝐿𝑒 = 1. 

Further advancements that have been recorded in many areas, ranging from micro combustion 

in powering micro devices [10,11] to detonations in powering rockets [12], or in providing 

understanding for designing devices to enable prevention and control in case of unwarranted 

explosion [13,14], demonstrated that we can no longer rely on these assumptions to address 

ensuing challenges. For instance, engines and combustors are being designed to operate over a 

wide range of equivalence ratios (the ratios of the actual fuel-to-oxidizer ratio to the stoichiometric 

ones), with a capability to burn varieties of fuels, including blends of hydrocarbons, hydrogen, 

biofuel and syngas, to mention a few [15]. Many other approaches, such as exhaust gas 

recirculation [16], diluted combustion [17,18], re-ignition of the combustion process in case of 

extinction in critical situation [19], all geared towards improving efficiency, safe operation and 

reducing pollutants emission, have placed more constraint on an extent to which these assumptions 

can be relied upon. 

Of special interest among the simplifying assumptions is that of equidiffusivity, 𝐿𝑒 = 1, which 

is directly related to the reactivity of the fuel-oxidizer mixtures. Obviously, this assumption can 

no longer be expected to hold in all practical situations, as many of the measures being taken to 

extend the application of combustion or improve performance, directly or indirectly affects either 

or both the thermal and mass transport. For instance, 𝐿𝑒 < 1 for lean hydrogen-air mixture, and 

conversely, 𝐿𝑒 > 1 for a fuel-rich hydrogen. The reverse is the case for propane and other heavier 
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hydrocarbon, so 𝐿𝑒 < 1 and 𝐿𝑒 > 1 correspond to rich and lean mixtures, respectively. However, 

dilution with such gas as He, Ar or CO2 alters the thermal and mass transfer properties of the fuel-

oxidizer mixtures and consequently, their Lewis number [18]. Tables 1.1 - 1.3 show the changes 

recorded in the values Lewis number of the fuel-oxidizer mixtures based on the level of dilution 

and other operating conditions. 

Table 1.1: Lewis number of H2-air mixtures diluted with He, Ar and CO2 [18]. 

Dilution (%v) Lewis number 

0% 1.02 

20% He 0.962 

40% He 0.980 

60% He 1.013 

20% Ar 1.324 

40% Ar 0.956 

60% Ar 0.679 

20% CO2 1.380 

40% CO2 0.853 

60% CO2 0.528 

Table 1.2  Effective Lewis number of multicomponent fuel-air mixture diluted with CO2 [15] 

Pressure (MPa) Temperature (K) CO2 ratio in fuels (%) Leeff 

0.5 298 0 1.603 

0.5 298 10 1.560 

0.5 298 20 1.515 

0.5 298 30 1.469 

0.1 298 0 1.040 

0.1 298 10 1.021 

0.1 298 20 0.999 

0.1 298 30 0.975 

0.1 298 40 0.946 

0.1 375 0 1.025 

0.1 375 10 1.006 

0.1 375 20 0.984 

0.1 375 30 0.956 

0.1 375 40 0.931 

0.1 450 0 1.020 

0.1 450 10 1.000 

0.1 450 20 0.978 

0.1 450 30 0.952 

0.1 450 40 0.923 
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Table 1.3 Effective Lewis  number of diffusion flame of CH4 and C3H8 – air mixtures diluted with He and Ar [20] 

Dilution (%v) CH4-air C3H8-air 

0%   

20% He 0.489 0.379 

40% He 0.700 0.696 

60% He 1.028 1.461 

20% Ar 1.085 0.775 

40% Ar 1.041 0.949 

60% Ar 1.004 1.270 

Another important factor is a configuration of the combustor or the enclosure in which the 

combustion process occurs. The interactions between the flame and the geometric parameters is of 

importance in determining the dynamics and morphology of the flames. The enclosures can be of 

different shapes and configurations, with each producing different effects on the flame. An 

enclosure, where both ends of the channel are open can produce flame that oscillates, accelerates 

or a sequence of both [21–24]. Also, in enclosure where one end is close and the other is open, 

flame acceleration (FA) and deflagration-to-detonation (DDT), if length permits, are often 

experienced, with the acceleration rate being influenced by the channel width and channel internal 

structures [25–27]. Flow-flame interactions and impact of acoustic becomes paramount when both 

ends of the channel are close, and thus, produce a different effect on the flame [28–30]. The type 

thermal boundary condition [31], or mechanistic boundary condition [32] also contributes to 

determining the flame behavior. 

The effect of these interactions is expected to be even more substantial for non-equidiffusive 

flames. Therefore, the main aim of the present work is to investigate and analyze what impact non-

equidiffusivity and its interactions with geometric parameters would have on a flame propagating 

in a channel, with channel providing a good representation of many enclosure where combustion 

occurs. Therefore, providing an understanding of the flame behavior caused by non-equidiffusive 

burning in channels, and also creating approaches essential for the promotion or mitigation of 

flame acceleration as required in practical situations. 

Hence, the specific objectives of this work are to… 

i. Investigate the impact of non-equidiffusivity on FA occurring at the early stage of burning 

in a pointy-ignited flame propagating from the close end to the open end of a pipe; 

ii. Scrutinize the effects of channel obstruction on the propagation of non-equidiffusive 

flames in enclosures where one end is closed, and the other end is open; 
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iii. Explore the propagation mechanisms of non-equidiffusive flames in channels with both 

ends open, considering a frictional interaction between a flame and the channel walls; and 

iv. Analyze the effects of obstacles and non-equidifusivity, as well as their interplay, on flame 

propagation in obstructed channel with both ends open. 

 Structure of the Dissertation 

The remaining part of this dissertation is arranged as follows: Chapter 2 presents the relevant 

literature overview related to non-equidiffusive burning and flame propagation in channels. In 

chapter 3, the computational methodology employed in this study are described. This includes the 

presentation of the hydrodynamic and transport equations, brief description of the grid resolution 

tests, validation of the computational platform by experimental data, description of the parametric 

studies, and finally, a description of how the flame was characterized. In chapter 4, the impact of 

non-equidiffusivity on finger FA in semi-open channel with adiabatic and free slip walls is 

analyzed. Chapter 5 contains the results and discussions on the effect of Lewis number on FA in 

obstructed semi-open channels, describing the impacts of the channel width, blockage ratio, 

obstacle spacing and their interplay with the Lewis number. Propagation of non-equidiffusive 

flames in channels with both ends open and adiabatic, non-slip walls is discussed in chapter 6. In 

chapter 7, the morphology and dynamics of non-equidiffuve flames propagating in adiabatic fully 

open channels laden with equally spaced obstacles are scrutinized. Finally, chapter 8 contains the 

conclusions of this work and presents the recommended directions for the future works. 

2 Literature Review 

 Premixed Combustion 

Premixed combustion, encountered in various applications, such as in spark ignition (SI) engines 

[33], lean-premixed gas turbine combustors [34], pulse-detonation engines [35], or in the situations 

such as gas-leak explosions [36] requires that the fuel and oxidizer are perfectly mixed at the 

molecular level before ignition. As the premixture ahead of the flame is being consumed, there is 

generation of combustion waves in the unburnt premixture. The travelling velocity of the generated 

waves with respect to a stationary reference frame can be in the subsonic or supersonic range. 

Depending on the velocity of these waves, the premixed combustion process is categorized into 

two distinguishable modes, which are deflagration (flame) and detonation [8].  
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2.1.1 Deflagration (Flame) 

In most engineering applications or industrial explosions, combustion is often initiated from a 

weak ignition source. Deflagration represents the process following weak ignition of a combustible 

mixture. In this combustion mode, a chemical reaction, which occur at near constant pressure, 

propagates at a subsonic velocity, and it occur mainly due to thermal conduction and diffusion 

between the burnt gas and the pre-mixture ahead of the flame front. The chemical reaction wave 

velocities for deflagration are of the order of 1 m/s [35], signifying a strongly subsonic flow. A 

small scale deflagration experiment conducted by Rocourt et al. [37] on the influence of reactivity, 

volume and congestions on the deflagration process of hydrogen-air mixtures in cylindrical pipe 

with congested volume revealed an impact on the flame speed and overpressure. The volume was 

however reported to have a weaker effect on the flame, compared to the effect of congestion with 

different number of obstacle layers. In large obstructed channel, the computational simulation of 

FA by Kessler et al. [38] have revealed that flame stretching and folding, flame-front wrinkling 

caused by turbulent eddies and fluid-dynamic instabilities, and flame-surface creation by shock-

flame interactions are the stages of acceleration for stoichiometry methane-air mixture 

combustion. Final choking velocity attained by the flames is reported to be the same for all 

geometric configurations and only depends on properties of the gas mixture. 

2.1.2 Detonation 

Unlike deflagration, the combustion reaction in detonation propagates due to rapid shock and 

compression waves, with the shock wave and the trailing reaction zone coupled [1]. The reaction 

front in fuel-air mixture propagates with a typical velocity of the order of 2 km/s; and it can be as 

high as 3 km/s in oxy-fuel detonations [35]. This high velocity is also accompanied by the pressure 

rise, by a significant factor of 10~20, being responsible for the damages caused by the accidental 

explosions [35]. The computational work on propagation of regular detonation waves in narrow 

channel by Chinnaya et al. [39] revealed that the detonation wave speed decreases as compared to 

the Chapman-Jouguet (CJ) detonation velocity, due to the wall dissipative effects, with transverse 

instabilities being damped by the reduced channel height. The development of the thermo-diffusive 

boundary layers behind the leading shock wave is also reported in Ref. [39].   

Rudy et al. [40] performed a large-scale experiment involving detonation propagation in the 

uniform and non-uniform hydrogen-air mixtures in a partially confined enclosure, which was open 

at the bottom. Detonation was reported to propagate in a uniform, stoichiometry mixture only if 
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the mixture layer height exceeds a threshold of approximately 3 cm. For non-uniform hydrogen–

air mixture, where H2 concentration slope is approximately -1.1% per cm, the critical hydrogen 

concentration at the top of the layer is approximately 26 % and the mean detonation layer height 

is close to 8.5 cm. 

Han et al. [41] identified pulsating instability and cellular structure analyzing propagation of 

globally planar detonations in free space. The pulsations are found to include three stages, namely: 

(i) rapid decay of the overdrive; (ii) approaching the Chapman-Jouguet state and emergence of the 

weak pulsations; and (iii) formation of the strong pulsations. The three stages are also characterized 

by different cellular structures such as (i) no cell formation; (ii) formation of small-scale, irregular 

cells, and (iii) formation of regular large-scale cells, respectively. The average shock pressure in 

the detonation front has been reported to consist of fine-scale oscillations, reflecting the collision 

dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation.  

2.1.3 Deflagration-to-Detonation Transition (DDT) 

DDT incorporates the sequence of events occurring when an accelerating flame is transitioning 

into a detonation. It represents all events relating to the creation of the conditions for the onset of 

the detonation up to the actual onset of detonation. It is known to appear as a sudden explosion in 

the vicinity of the flame, which could occur in the region containing the turbulent flame, or in the 

compressed, preheated premixture between the leading shock wave and the flame front [1,42].  

Han et al. [43] conducted a computational study to understand the specific mechanism of DDT 

and subsequent detonation propagation modes in micro and macro channels. It was reported DDT 

proceeds differently in the two channels due to viscous effect. The DDT in micro channel is found 

to be controlled by viscosity, while establishment of a turbulent flame is the controlling factor in 

macro channel. The entire DDT process in a micro channel is reported to consist of (i) exponential 

FA due to viscous stretch; (ii) linear FA due to compressibility; (iii) abrupt FA to overdriven 

detonation due to direct ignition of the unreacted gas by the strong and curved leading shock; and 

finally, (iv) steady detonation with a velocity below the CJ value. On the other hand, the DDT 

process in a macro channel takes a different route, including: initially slow FA due to combustion 

instability; transition to turbulent flame with precursor compression wave; overdriven detonation 

due to local explosion induced by a strong shock; and cellular detonation with the average velocity 

close to the CJ value. 
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An experimental study of DDT limits, which defines the quasi-detonation regime, in obstacles- 

filled tube was conducted by Cross and Ciccarelli [44] using hydrogen-air and ethylene-air as fuel 

mixtures at atmospheric pressure. The experiment was conducted to determine if the DDT limits 

are dictated by the DDT event or by the quasi-detonation wave propagation requirements, using a 

traditional and a modified experimental set up. It was reported that the DDT limit depends to great 

extent on the ratio of the orifice-plate diameter to the detonation cell size. It is also indicated that 

the DDT limits obtained depends largely on the detonation propagation mechanism, and not the 

initiation process. The process of DDT in obstructed small channels with decreasing blockage ratio 

was reported by  Goodwin et al. [45], and their results have revealed different causes for DDT for 

different range of blockage ratios. Specifically, for the blockage ratios in the range of 0.35 – 0.5, 

creation of hot spots in a gradient of reactivity that forms behind a Mach reflection was cited as 

the cause. On the other hand, shock collisions that increase the temperature, pressure and density 

of the unburnt material was reported for the blockage ratios in the range 0.05 – 2. Both mechanisms 

are reported to be in effect at a higher blockage ratio of 0.8. 

The experimental work on DDT in stoichiometry hydrogen-methane-air mixtures in 

obstructed tubes of various blockage ratios and obstacle spacing by Porowski & Teodorczyk [46] 

revealed that DDT occurred for blockage ratios ranging from 0.4 to 0.6. Higher obstacle densities 

was reported to cause quasi-detonation regime for mixtures containing from 30 % to 50 % of 

methane, with the velocities of 1500 m/s. Hydraulic resistance as a mechanism for DDT was 

investigated by Brailovsky and Sivashinsky [47], where it was stated that hydraulic resistance 

causes a gradual precompression and preheating of the unburned gas adjacent to the advancing 

deflagration. This condition was reported to lead to a localized thermal explosion triggering an 

abrupt transition from deflagration to detonation. Thomas [48] identified the conditions required 

for the development of detonation in ethylene-oxygen and hydrogen-methane-oxygen mixtures at 

elevated temperatures and pressures. The study [48] also included methane-ammonia-oxygen 

mixture at standard initial temperature and temperature. The results indicate that at the fuel lean 

limit, neither increasing temperature nor pressure has any significant effect on the limit of 

establishment of detonation.  

 Premixed Flame Structure 

By the nature of premixed combustion, burnt matter and premixture exists on opposite sides of the 

flame front being a discontinuity between them. As a result, the structure of the flame is determined 
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by such phenomena as convection, transport, that is, heat and mass diffusion, and chemistry [49]. 

As illustrated in Fig. 2.1, a flame structure is made up of the reaction zone and the flame front, and 

there exists variations of the fuel concentration, temperature, and reaction rate, across the flame 

(Fig. 2.2). In representing the premixed flame, various approaches are employed, depending on 

the level of complexity and details desired. In the first approach, which is also the simplest, the 

flame is considered as an interface separating two fluids (flame sheet). In the second case, the 

flame sheet is expanded to contain a preheat zone, with consideration given to the transport 

properties in the flame. While, in the third approach, illustrated by Fig. 2.3, the thermal and 

molecular diffusions is taken into consideration [8]. 

 

Figure 2.1: Premixed flame configuration. 

 

Figure 2.2: Characteristic temperature and density distribution inside a planar flame. 
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Figure 2.3: Reaction level flame structure [49]. 

 Flame Propagation in Channels 

The process of FA in a channel can occur through variety of mechanisms [4], which include: 

acceleration caused by formation of a finger-shaped flame front [50,51], that caused by friction at 

the walls [43,52], and that due to obstructions in the channel [53–55]. 

2.3.1 Flame propagation in Semi-open channels 

In a semi-open channel with free-slip walls, where there is no friction-based flame-wall interaction, 

responsible for producing a curved flame front that can cause a flame to accelerate, a time-limited 

acceleration mechanism is exhibited. This FA, which results in a formation of a tulip flame was 

first experimentally studied by Clanet and Searby [50], who revealed different stages of the flame 

propagation process in this scenario. The interaction between the flame front and gas dynamics 

was found to result in a formation of finger-shaped flame, and later a “tulip flame” due to inversion 

of the flame front curvature. The process through formation of a finger-shaped flame and a tulip 

flame was reported by Ponizy et al. [56] to be a purely hydrodynamic phenomenon, due to the 

competition between the backward movement of deflected burned gases expanding from the lateral 

flame skirts and the forward movement of unburned gases. 

 The finger flame acceleration process was also studied computationally by Bychkov et al. [51] 

and provided detailed description on the acceleration mechanism as follows. Specifically, a hemi-

spherical flame embryo is initiated at the closed end of a pipe. At the first stage, it exhibits uniform 

outward expansion in all directions. At the second stage, the “axial tip” of the flame front receives 

a significant push from the coupled effects of expanding burnt gas and flow restriction in the lateral 

or radial direction. Such a push results in a formation of a finger-like shape of the flame front, 
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leading to an increased surface area of the front and, consequently, higher acceleration. This goes 

on until a “skirt” of the flame front contacts a sidewall, at which instant acceleration stops, resulting 

in the flame skirt catching up with the flame tip, to form an almost flat shape of the front and 

eventually overtakes it to form a concave flame. The impact of gas compression on this 

acceleration process was studied by Valiev et al. [57], with the result that gas compression reduces 

the acceleration rate and the maximum flame tip velocity, and thereby moderates FA noticeably. 

Similar to previous works, Ref. [57] showed that finger FA is followed by formation of a ‘‘tulip 

flame”, which indicates termination of the early acceleration process. Experimental results on 

hydrogen-oxygen mixtures with considerable initial values of the Mach number, reported in the 

same study, revealed finger FA with the acceleration rate much smaller than that found previously 

for hydrocarbon flames. 

For semi-open channels with non-slip walls, the friction-based acceleration mechanism is in 

effect. Uneven flow of burnt gas in a channel results in a flame curvature and leads to the Darrieus-

Landau (DL) instability. This causes further increase in the surface area of the flame front and, 

subsequently, promoted FA. The effects of thermal expansion on the multiplicity of the steady 

flame propagation regimes in cylindrical channel, considering both axisymmetric and non-

axisymmetric configurations, was reported in Ref. [58]. The results show that axisymmetric 

flames, concave towards the burnt gas, are more unstable against the three-dimensional (3D) 

perturbations than convex flames, and the non-axisymmetric property of the flame is also found to 

push back the critical flashback limits at larger flow rate. Flame propagation and DDT in micro-

channels with one end closed is reported in Ref. [59], with the focus on the final saturation stages 

in the process of flame acceleration. It is shown that an intermediate stage with quasi-steady 

velocity may occur, noticeably below the Chapman-Jouguet deflagration speed. The intermediate 

stage is followed by additional FA and subsequent saturation to the Chapman-Jouguet deflagration 

regime. Viscous heating at the channel wall was also found to provide additional velocity. 

The acceleration mechanism encountered in the semi-open obstructed channels produces the 

fastest known regime of burning [42]. While flame propagation through obstacles is oftentimes 

associated with turbulence, shocks, or hydraulic resistance [1], Bychkov et al. [54] identified and 

scrutinized a conceptually laminar, shockless mechanism of ultrafast flame acceleration in semi-

open channels or tubes equipped with a toothbrush-like array of obstacles. This mechanism relies 

mainly on the delayed burning of fuel premixture in the pockets between adjacent obstacles which 
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eventually results in a stronger push of the flame front. The impact of surface friction on the 

acceleration process was studied by Adebiyi et al. [60] employing an obstructed cylindrical pipe. 

The authors reported a minor impact of surface friction on acceleration. Also, Ciccarelli et al. [61] 

demonstrated the role of shock-flame interactions on FA in a channel filled with obstacles on the 

top and bottom walls. Special attention has been paid to the later stage of FA, when compression 

waves and, eventually, a shock wave, are formed ahead of the flame. The interactions between the 

flame front and the reflected shock waves is reported to govern the later stage of the flame 

acceleration process and to provide oscillations of the flame tip velocity.  

Gamezo et al. [55] worked on the effects of obstacle spacing on FA and DDT in obstructed 

channels using hydrogen-air mixture. It was reported that higher number of obstacles per unit 

length create more perturbations, causing a quicker increase in the flame surface area, and therefore 

a faster flame acceleration. Also, DDT is reported to occur more easily when the obstacle spacing 

is large enough for the shock waves caused by the fusion of the incident and reflected shock waves 

(Mach stems) to form between the obstacles. Three flame acceleration regimes were reported to 

be caused by this effect, and they are: detonation ignition when a Mach stem formed by the 

diffracting shock collides with an obstacle; there is no detonation because Mach stems do not form, 

and lastly, detonation when leading shock becomes strong enough to ignite a detonation by direct 

collision with the top of an obstacle.  

An experimental work of Ciccarelli et al. [62] on the effect of the obstacle size and spacing on 

the initial stage of FA in obstructed tube revealed that the flame run-up distance decreased with 

the blockage ratio as well as with the mixture reactivity. For higher blockage ratio, FA was also 

reported to be highest when the obstacle spacing is in the range of one tube diameter. Also, Boeck 

et al. [63] reported the experimental study on FA for stoichiometric H2/O2 flames in an obstacle 

laden rectangular channel. The results showed the occurrence of vortex shedding off obstacle 

edges over long time-scales in the slow-flame regime. The fast-flame regime is marked by the 

presence of compression waves, which interact with the flame and cause macroscopic deformation 

of the flame and the small-scale wrinkling. Similarly, Toedorczyk et al. [64] investigated, 

experimentally, the deflagration and DDT of hydrogen-air mixtures in a small rectangular channel 

with obstacles on the bottom wall. It was found [64] that while a large blockage ratio provides the 

turbulizing effects on the flame, such an effect appeared destructive to the flame propagation. The 
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optimum obstacle separation distance required for DDT was also reported to be larger for the 

channels with high blockage ratios. 

2.3.2 Flame Propagation in Channels with both Ends Open (Fully-Open Channels)  

Flame propagation in a channel where both ends are open is oftentimes qualitatively different from 

that of semi-open channels [21,24]. This is primarily because a flame-generated flow a fully-open 

channel is distributed between the upstream and the downstream flows. Akkerman et al. [24] 

investigated the propagation of premixed flames in pipes with non-slip walls and both ends open. 

The results showed a flame front oscillating due to flame-wall interaction. The flame oscillations 

involved the variations of the curved flame shape and velocity. The oscillation period was found 

to depend on the channel width, with the oscillations being weak in narrow channel, and stronger 

in wider channels. Di Stazio et al. [65] conducted an experimental study on oscillating methane-

air flames in micro-combustors and reported an existence of various flame propagation regimes 

such as stable flames, oscillating flames with repetitive extinction and ignition, and oscillating 

weak flames. 

Bychkov et al. [22] showed that flames in open/vented obstructed cylindrical pipes accelerate 

strongly, but at a slower rate than in semi-open pipes. On the other hand, the study [21] reported a 

nonlinear quasi-steady oscillations of the burning rate, with the oscillation period growing with 

the blockage ratio but decreasing with thermal expansion ratio. The authors of Ref. [21] also 

identified the possibility of FA to replace the oscillations in wider channels. Both experimental 

and numerical results [66] revealed the existence of slowly propagating flame, which undergoes 

instant acceleration without generating shock waves. The authors [66] reported pressure 

oscillations, flame-obstacles interactions, and hydrodynamic resistance as the cause of the sudden 

acceleration. 

 The Lewis Number 

The Lewis number and the thermal expansion ratio are two of the main dimensionless parameters 

describing premixed flames, and they are important to characterize the reactivity, diffusivity and 

exothermicity of the premixtures. The Lewis number 𝐿𝑒 is also coupled to the flame Markstein 

length 𝐿𝑚 = 𝑀𝑘𝐿𝑓, as it affects the flame response to curvature and stretch. Here, the Markstein 

number 𝑀𝑘 describes the effect of local heat release of a propagating flame on the flame curvature. 

The practical implications of 𝐿𝑒 on the combustion process includes the impact on the ease of 
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ignition [67], and possibility of flame extinction during its propagation [68], as well as to determine 

the flame speed and thickness 𝐿𝑓 = 𝜂 𝑃𝑟𝜌𝑓𝑆𝐿⁄ . The Lewis number is determined based on the ratio 

of the thermal diffusivity to the mass diffusivity of the deficient reactant, namely, as the fuel or 

oxidizer species for lean and rich mixtures, respectively,   

𝐿𝑒𝑖 =
𝑎

 𝐷 
=

𝜆

𝜌𝐷𝑐𝑝
=

𝑆𝑐

𝑃𝑟
,                                                            (2.1) 

where 𝛼 is the thermal diffusivity of the fuel-air mixture, 𝜆 the thermal conductivity, 𝑐𝑝 the specific 

heat capacity at constant pressure, 𝑆𝑐 the Schmidt number, 𝑃𝑟 the Prandtl number, and D, which 

can be represented as 𝐷𝑖𝑗 or 𝐷𝑖,𝑚𝑖𝑥, being the mass diffusivity of the deficient reactants. In the 

situations where nitrogen (𝑁2) is assumed to be the abundant specie, 𝐷𝑖𝑗 connotes the mass 

diffusion of the deficient reactant 𝑖 towards 𝑁2, 𝑗, at the free stream temperature. In other cases, 

such as a 𝐻2-air mixture, the mixture-average coefficient of mass diffusion, 𝐷𝑖,𝑚𝑖𝑥 is adopted, 

𝐷𝑖,𝑚𝑖𝑥 = (1 − 𝑌𝑖,𝑚𝑖𝑥) (∑
𝑋𝑠

𝐷𝑖𝑠

𝑁

𝑠=1
𝑠≠𝑖

),                                                               (2.2) 

where Y is the mass fraction and 𝜒 is the molar fraction of each specie, 𝑠, in the mixture. The use 

of 𝐷𝑖,𝑚𝑖𝑥 instead of 𝐷𝑖𝑗 has been shown to yield the Lewis number in closer agreement with the 

experimentally determined ones [69]. However, the determination of 𝐿𝑒 when multiple fuels are 

blended together can be quite complex, especially for a lean mixture [69–71].  

Behavior of non-equidiffusive flames in channels accelerating due to wall friction have been 

studied by Bilgili et al. [72], with drastic promotion of flame acceleration observed for the 𝐿𝑒 < 1 

mixtures, as compared to equidiffusive burning, and moderation of acceleration encountered when 

𝐿𝑒 > 1. Kurdyumov [73] reported a possibility of symmetric and non-symmetric flames at various 

𝐿𝑒 in narrow adiabatic channels, with the stability analysis performed [73]. It is shown that an 

increase in the flow rate leads to a loss of stability with subsequent formation of the non-symmetric 

solutions for the symmetric flames with low 𝐿𝑒, while the Poiseuille flow produces a stabilization 

effect for high-𝐿𝑒 flames. Kagan and Sivashinky [74] studied the effect of 𝐿𝑒 on flame propagation 

through the vortical flows and reported that in the presence of volumetric heat losses, the stirring 

will invariably promote extinction and reduce the flammability limits, provided 𝐿𝑒 > 1. At 𝐿𝑒 <

1 this holds only for the sufficiently strong stirring, whereas the moderate stirring actually expands 
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the flammability limits. At 𝐿𝑒 > 1, the deficient reactant is fully consumed up to the quenching 

point, while at 𝐿𝑒 < 1, prior to the total extinction, a part of the deficient reactant will escape the 

reaction zone and remain unconsumed. Chakraborty et al. [75] showed formation of a multicellular 

flame with a “funnel-like” shape when 𝐿𝑒 ≪ 1 in the presence of high heat loss, while at 𝐿𝑒 > 1, 

the 𝐿𝑒-dependence of the reaction rate is reversed as the heat loss increases. 

Zhou et al. [76] studied the impacts of 𝐿𝑒 on the ball-like lean limit for methane-air, methane-

hydrogen-air and hydrogen-air mixtures. The authors of Ref. [76] reported formation of cellular-

like methane-air flames with only the leading edge of the lean limit located inside the recirculation 

zone, while for the two other mixtures, the ball-like lean limit flames have been observed, with the 

entire flame located inside a recirculation zone. Yoon et al. [77] studied the effects of 𝐿𝑒 on the  

generation of acoustic instability in downward-propagating flames. It was shown [77] that for 𝐿𝑒 <

1, where the reaction rate increases with reducing reaction zone thickness, a relatively strong sound 

is produced under the same coupling constant (a product of the Zeldovich number and the Mach 

number) because the chemical reaction rate becomes very sensitive to the gas temperature 

fluctuations in the acoustic field. It was also reported [77] that a larger coupling constant is required 

to generate the primary acoustic instability as 𝐿𝑒 grows. Subsequently, Berger et al. [78] found a 

periodic sequence of formation/destruction of the flame fingers caused by the diffusional-thermal 

instability in the lean hydrogen flames. Salusbury and Bregthorson [68] investigated the impact of 

𝐿𝑒 on a stretched, laminar, premixed counter-flow flame, focusing on the flame speed and the 

extinction limit. Specifically, the flame extinction at a lower stretch rate has been observed in the 

𝐿𝑒 > 1, propane-air mixture, while the extinction appeared limited to a reduced residence time for 

the 𝐿𝑒 ≪ 1, hydrogen-air flame. 

Patel and Chakraborty [67] analyzed the effects of 𝐿𝑒 on the evolution of the flame curvature 

in the expanding turbulent premixed flames and found that the overall burning rate and the extent 

of flame wrinkling grows with decreasing 𝐿𝑒. Higher tendency of wrinkling is found prevalent for 

the 𝐿𝑒 < 1, due to the occurrence of the thermo-diffusive instability. It was also stated that flame 

propagation at 𝐿𝑒 < 1promotes flame curvature, while propagation tends to smoothen the surface 

of the 𝐿𝑒 ≥ 1 flames. It was also revealed that the maximum values of the temperature and reaction 

rate increase with decreasing fuel 𝐿𝑒 during the period of external energy deposition. The initial 

value of the fuel Lewis number was also shown to have significant effects on the extent of burning 

of stratified mixtures following localized ignition, as the burning rate decreases with 𝐿𝑒. 
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Chakraborty and Cant 2009a and b also a positive correlation between the surface density 

function and tangential strain rate. A positive correlation is also obtained between curvature and 

SDF for the 𝐿𝑒 < 1 flames, negative correlation is obtained for the 𝐿𝑒 > 1 flames, while a weak 

correlation exists at 𝐿𝑒 = 1. As for the effects of the Lewis number on the scalar transport in 

turbulent flames, it is reported [79] that the condition 𝐿𝑒 ≪ 1 exhibit counter gradient transport, 

while the extent of the gradient transport increase with increasing global Lewis numbers [80,81]. 

 Relevant Flame Acceleration Theory 

At the early stage of burning in unobstructed channels with slip walls, the acceleration mechanism 

of interest is termed finger flame acceleration, i.e. formation of a finger-shaped flame front with 

an increasing surface area. The evolution of the flame tip, shown in Fig. 2.4, is described by [51] 

𝑑𝜉𝑡𝑖𝑝

𝑑𝜏
− (Θ − 1)𝜉𝑡𝑖𝑝 = Θ.                                                                      (2.3) 

Taking the initial condition 𝜉𝑡𝑖𝑝(0) = 0, the solution to Eq. (2.3) reads 

𝜉𝑡𝑖𝑝 =
Θ

Θ − 1
{𝑒𝑥𝑝[(Θ − 1)𝜏] − 1} ,                                                         (2.4) 

where 𝜉𝑡𝑖𝑝 is the dimensionless axial coordinate for the flame tip, and 𝜏 =  𝑆𝐿𝑡 𝑅⁄  is the scaled 

time. Equations representing the flame tip and acceleration as affected by gas compression are [57] 

𝑑𝜉𝑡𝑖𝑝

𝑑𝜏
= −𝑀𝑎𝛾(Θ − 1)2𝜉𝑡𝑖𝑝

2 + 𝜎1,𝑝𝑙𝜉𝑡𝑖𝑝 + Θ1,                                       (2.5) 

with  

𝜎1,𝑝𝑙 = (Θ − 1)[1 − 𝑀𝑎(Θ + 2(𝛾 − 1)(Θ − 1))],                                    (2.6) 

Θ1 = Θ − 𝑀𝑎(𝛾 − 1)(Θ − 1)2.                                                     (2.7) 

 

Figure 2.4 Evolution of a finger flame in a channel. 

 

At the early stage, 𝜉𝑡𝑖𝑝 → 0, the flame acceleration is moderated by the linear terms of Eq. (2.5), 

and the solution becomes 
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𝜉𝑡𝑖𝑝 =
Θ1

𝜎1,𝑝𝑙
[exp(𝜎1,𝑝𝑙𝜏) − 1],                                                       (2.8) 

with the solution given as 

𝜉𝑡𝑖𝑝 =
2Θ1[exp(𝜎2𝜏) − 1]

(𝜎2 − 𝜎1,𝑝𝑙)𝑒𝑥𝑝𝜎2𝜏) + (𝜎2 + 𝜎1,𝑝𝑙)
 ,                                                (2.9) 

where  

𝜎2 ≡ √𝜎1,𝑝𝑙
2 + 4𝑀𝑎𝛾Θ1(Θ − 1)2 ,                                                      (2.10) 

and 𝑀𝑎 is the initial Mach number and 𝛾 is the specific heat ratio. 

For semi-open channel with obstacles, the flame tip position and acceleration at the early stage, 

where incompressibility assumption appears reasonable, are given by [52,54] 

𝑍𝑓

(1 − α)𝑅
=

Θ

Θ − 1
[𝑒𝑥𝑝(σ𝑆𝐿𝑡/𝑅 − 1)],                                               (2.11) 

σ =
Θ − 1

1 − α
 ,                                                                            (2.12) 

and at the later stage where the effect of gas compression becomes significant [82] as  

𝑍𝑓 =
2Θ1𝑆𝐿[𝑒𝑥𝑝(σ1𝑡) − 1]

(σ2 − σ1)𝑒𝑥𝑝(σ2𝑡) + (σ2 + σ1)
  ,                                             (2.13) 

σ2 = √σ1
2 + 4𝑀𝑎XΘ1σ0

2 ,                                                          (2.14) 

σ1 = σ0 [1 − 𝑀𝑎 (
Θ

1 − α
+ 2(γ − 1)(Θ − 1))],                                      (2.15) 

where 𝑀𝑎 is the initial Mach number and 𝛾 is the specific heat ratio. 

For an obstructed channel with both ends open [22], the flame tip position 𝑍𝑓 and the scaled 

acceleration rate of the flame tip σ0 for inviscid flow are given by 

𝑍𝑓 =
Θ𝑅

σ0

{𝑒𝑥𝑝(σ0𝑆𝐿𝑡/𝑅) − 1},                                                      (2.16) 

σ0 =
Θ − 1

√(Θ + 1)(1 − α)
 .                                                        (2.17) 

Considering viscous effects, the flame tip position obeys the equation [22] 

𝑑𝑍𝑓

𝑑𝑡
≈

σ𝑆𝐿

𝑅
[𝑍𝑓 +

𝑇

σ
] ≈ 𝑈2(𝑍𝑓 , 𝑅𝑒) + 𝑆𝐿 .                                   (2.18) 

where 𝑈2 is the exit velocity of fuel mixture at channel exit 𝑧 = 𝐿. 
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3 Research Methodology 

The present research work is centered on analyzing the roles of nonequidiffusivity in propagation 

of premixed flames in channels of various geometric configurations. The investigation is carried 

out by means of computational simulations of reacting flow equations, with fully-compressible 

hydrodynamics and Arrhenius chemical kinetics. The simulated equations are that of mass, 

momentum, energy and species transport in their 2D forms, as a rectangular channel used is 

reduced to a 2D problem.  

 The Governing Equations and Numerical Approach 

The basic governing equations which represents the conservation equations of mass, momentum, 

energy and species take the form: 

𝜕

𝜕𝑡
𝜌 +

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖) = 0,         (3.1) 

𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝛿𝑖𝑗𝑃 − 𝛾𝑖,𝑗) = 0,     (3.2) 

 
𝜕

𝜕𝑡
(𝜌𝑒 +

1

2
𝜌𝑢𝑖𝑢𝑗) +

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖ℎ +

1

2
𝜌𝑢𝑖𝑢𝑗𝑢𝑗 + 𝑞𝑖 − 𝑢𝑗𝛾𝑖,𝑗) = 0,  (3.3) 

 
𝜕

𝜕𝑡
(𝜌𝑌) +

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝑌 −

𝜂

𝑆𝑐

𝜕𝑌

𝜕𝑥𝑖
) = −

𝜌𝑌

𝜏𝑅
𝑒𝑥𝑝(−𝐸𝑎/𝑅𝑝𝑇),   (3.4) 

where 𝑌 is the mass fraction of the fuel mixture, 𝑒 = 𝑄𝑌 + 𝐶𝑉𝑇 and ℎ = 𝑄𝑌 + 𝐶𝑃𝑇 are the specific 

internal energy and enthalpy, respectively; 𝑄 = 𝐶𝑃𝑇𝑓( − 1) the energy release in the reaction, 

and 𝐶𝑉, 𝐶𝑃 the specific heats at constant volume and pressure, respectively. Both the unburned and 

burnt matters are assumed to be two-atomic ideal gases of the same constant molecular weight,  

𝑚, with 𝐶𝑉 = 5𝑅𝑝/2𝑚, 𝐶𝑝 = 7𝑅𝑝/2𝑚, the universal gas constant 𝑅𝑝 = 8.314 J/(mol ∙ K) and 

the equation of state 

𝑃 = 𝜌𝑅𝑝𝑇/𝑚.                                                                                                                              (3.5) 

The stress tensor ,i j  and the energy diffusion vector iq  are given by  

 𝛾𝑖,𝑗 = 𝜂 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖,𝑗),          (3.6) 

𝑞𝑖 = −𝜂 (
𝐶𝑃

𝑃𝑟

𝜕𝑇

𝜕𝑥𝑖
+

𝑄

𝑆𝑐

𝜕𝑌

𝜕𝑥𝑖
),              (3.7) 
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where 𝜂 = 𝜌𝜈 is the dynamic viscosity in the fuel mixture, Pr and 𝑆𝑐 are the Prandtl and Schmidt 

numbers, respectively. 

Equation (3.4) describes an irreversible one-step Arrhenius reaction of the first order, with the 

activation energy 𝐸𝑎 and the constant of time dimension 𝜏𝑅. A conventional unit of velocity 

dimension is the unstretched laminar flame velocity 𝑆𝐿. A useful unit of length dimension is the 

thermal flame thickness, which is conventionally defined as 𝐿𝑓 ≡ 𝜂𝑓/𝜌𝑓𝑆𝐿Pr. All channel half-

widths, R, in this study are therefore measured in terms of 𝐿𝑓. 

The governing equations presented above are solved with an in-house solver which is based 

on the cell-centered, finite volume approach. The ordinary differential equations obtained from the 

finite volume discretization are explicitly solved using the 4th-order Runge-Kutta method, with the 

implementation carried out in Fortran and C programming languages. The solver is the 2nd-order 

accurate in time, 4th-order accurate in space for the convective terms, and 2nd-order accurate in 

space for the diffusive term. The code is based on the ideal gas equation of state (IG EoS), with 

the Sutherland formulation used to calculate the viscosity. The embryo of this solver was first 

developed at Volvo Aero Co. by Dr. Eriksson, and later revised and updated by many research 

groups, including the groups of Drs. Liberman (Uppsala University), Bychkov (Umea University), 

Valiev (Tsinghua University) and Akkerman (West Virginia University). 

 Channel Geometry 

Given the effects of geometric parameters on the propagation of flames, channels with various 

geometries are considered in this work to represent enclosures like pulse detonation engines, gas 

turbines, oil and gas pipelines, relieve pipes, coal mine passage and underground tunnel.  

3.2.1 Semi-Open Channels 

The first case of channel geometry considered is that in which one end is closed and the other end 

remains open, with ignition being initiated at the close end. In addition, the internal surface of the 

side walls is either smooth (Fig. 3.1) or contains obstacles to form the obstructions along the 

channel walls (Fig. 3.2). The obstructed channel is further defined by the ratio of the channel 

internal diameter that is blocked by the obstacles, the blockage ratio, 𝛼, and the spacing between 

adjacent obstacles, ΔZ. 
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Figure 3.1: Schematic of a semi-open channel with smooth walls. 

  

Figure 3.2: Schematic of a semi-open channel with evenly spaced obstacles on the internal wall surface.  

3.2.2 Fully-Open Channels 

The second type is when the channel is open at both ends, thus, permitting distributed flow of the 

content. The internal wall is also considered to be either smooth (Fig. 3.3) or obstructed (Fig. 3.4). 

 

Figure 3.3: Schematic illustration of a channel with both ends open. 

 

Figure 3.4: Schematic of an obstructed channel with both ends open. 
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 Boundary Conditions 

The type of boundary conditions imposed at the interface between a propagating flame and other 

surfaces depends on the specific objective that is to be achieved in each case, and it determines the 

type of flame-surface interactions occurred. Therefore, various thermal and mechanistic boundary 

conditions are considered in the present study. 

3.3.1 Boundary Conditions at the Channel Walls 

Possible extreme cases of thermal boundary conditions are considered in this work. The thermal 

boundary conditions are adiabatic, 𝐧 ∙ ∇𝑇 = 0, or isothermal, 𝑇𝑤 = (𝑇𝑖𝑛 + 𝑇𝑜𝑢𝑡)/2, with 𝑇𝑤 being 

the isothermal wall temperature calculated as the average value at the mid-point from both surface 

boundaries. Also, the mechanistic boundary conditions at the walls are free-slip, 𝐧 ∙ 𝐮 = 0, or 

nonslip, 𝐮 = 0, where 𝐧 is a normal vector at a surface. 

3.3.2 Boundary Conditions at the Channel Ends 

Depending on a channel geometry being considered, different conditions are encountered at the 

channel ends. When a channel end is closed, the same boundary conditions at the channel walls 

applies. In contrast, different sets of boundary conditions are applied at the open end of the channel. 

Nonreflecting boundary conditions, 𝑃 =  𝑃𝑎𝑚𝑏,  𝜌 =  𝜌𝑓, (𝑢𝑥, 𝑢𝑦)  =  0 and 𝑌 =  1 are applied 

to prevent the propagating flame from interacting with reflecting shocks. 

 The Ignition Model 

The initial flame structure is imitated by the Zeldovich-Frank-Kamenetskii (ZFK) solution [84],  

𝑌 = (Θ − 𝑇/𝑇𝑓)/(Θ − 1), 𝑃 = 𝑃𝑓 , 𝑢𝑥 = 0, 𝑢𝑧 = 0,                (3.9) 

such that the mass fraction of the fuel mixture 𝑌 (which is the reaction progress variable) is 𝑌 = 0 

in the burnt matter and 𝑌 = 1 in the fresh fuel mixture. The pressure 𝑃 in the channel is equal to 

the initial fuel mixture 𝑃𝑓 and the velocity components are set to zero at the beginning. Such a 

solution is shown for both planar and spherical ignition in Figs. 3.5 and 3.6, respectively. The 

temperature profiles in the domain before and after a planar flame front are   

𝑇 = 𝑇𝑓 + 𝑇𝑓(Θ − 1)𝑒𝑥𝑝(𝑧/𝐿𝑓)                   𝑖𝑓      𝑧 > 0                             (3.24) 

𝑇 = Θ𝑇𝑓                   𝑖𝑓      𝑧 < 0                             (3.25) 
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Figure 3.5: Planar ignition of fuel premixture in obstructed channel. 

For a hemispherical flame, the temperature profile in the domain created from a point ignition is  

𝑇 = 𝑇𝑓 + (𝑇𝑏 − 𝑇𝑓)𝑒𝑥𝑝 ((−√(𝑥2 + 𝑧2) + 𝑟𝑓) /𝐿𝑓)        𝑖𝑓       𝑧2 + 𝑥2 ≥ 𝑟𝑓
2               (3.26) 

𝑇 = Θ𝑇𝑓       𝑖𝑓       𝑧2 + 𝑥2 < 𝑟𝑓
2              (3.27) 

where 𝑟𝑓 is the initial flame radius position and 𝑇𝑏 is the temperature of the burned matter.  

 

Figure 3.6: Hemispherical ignition of channel with smooth wall. 

 Grid/Mesh Generation 

Given the wide disparity in dimension between the flame thickness and the length of the channel, 

the solver used in this work adopts a dynamic and self-adaptive mesh generation approach. The 

mesh around the flame is made finer to allow adequate resolution of the flame front. In order to 

save computational resources, the finer mesh is confined to the travelling flame front with the 

surrounding mesh being about 2% coarser. An illustration of the adaptive mesh is shown in Fig. 

3.7. After adequate resolution tests, a minimum grid size of 0.2 𝐿𝑓 is found to adequately resolve 

the flame front, and it is adopted in this work. Therefore, the computational grid used in this work 

consists of square cells of size 0.2 𝐿𝑓 × 0.2 𝐿𝑓. Figure 3.8 and Table 3.1 show different parameters 

describing a flame propagating in a semi-open channel with smooth wall for grid size ranging from 

0.1 to 0.8 𝐿𝑓. It is seen that no significant improvement is achieved below the grid size of 0.2 𝐿𝑓. 

Planar Ignition 

Hemispherical Ignition 
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Similar result is also presented for an obstructed channel in Fig. 3.9 where a mesh size of 0.2 𝐿𝑓 is 

also found appropriate 

 

 
Figure 3.7: Schematic of the grid used in the numerical simulations [57] 

 

Figure 3.8: Resolution Test: The scaled tip position 𝑍𝑡𝑖𝑝/𝑅 versus the scaled time 𝜏 = 𝑈𝑓𝑡/𝑅 for Le = 0.2, 𝑅 =  20 

and various mesh sizes. 

Table 3.1: Resolution test for semi-open channel. 

∆𝒛𝒇/𝑳𝒇 𝑼𝒘,𝒎𝒂𝒙/𝑼𝒇 ∆𝑼𝒘,𝒎𝒂𝒙/𝑼𝒇  𝝉𝑼𝒘,𝒎𝒂𝒙 |∆𝝉𝑼𝒘,𝒎𝒂𝒙| 𝒁𝒕𝒊𝒑/𝑹 |∆𝒁𝒕𝒊𝒑/𝑹|  

0.8 7.0053 - 0.1446 - 7.3983 - 

0.4 7.5247 0.5194 0.1390 0.0056 7.8568 0.4585 

0.2 7.5904 0.0657 0.1373 0.0017 7.9227 0.0659 

0.1 7.5914 0.0010 0.1374 0.0001 7.9262 0.0035 
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Figure 3.9: Resolution Test: The scaled flame position versus the scaled time for α = 1/3, Le = 0.2 and various 

square mesh sizes. 

 Validations 

The validity and accuracy of the solver used in this work has previously been evaluated through 

experimental study of ethylene-oxygen combustion in a smooth tube of diameters 0.25 and 0.5 

mm with 1.5 m long. The scaled tip velocity versus the scaled time were calculated numerically 

and compared to the experimental results shown in Figs. 3.10 and 3.11. Further validation of the 

solver is performed by comparing the simulation results for semi-open obstructed channel with the 

experimental results of Sahoo [85]. The simulation result is for  = 8 flame propagating in 24𝐿𝑓 

wide channel with a blockage ratio of 2.3, with 𝐿𝑓 = 4.0 × 10−5m and 𝑆𝐿 = 0.364 m/s. The 

experiment was conducted using stochiometric methane/air burning in a 7.5 cm x 7.5 cm channel 

and 2 m in length, with the obstacle spacing of 1/16 of the channel width and with a blockage 

ratio of 2/3. The simulation result is in good agreement with the experimental result (see Fig. 3.12). 
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Figure 3.10: Validation: Scaled tip velocity vs the scaled time charts with both numerical and experimental results 

for R = 0.25 mm [86]. 

 
Figure 3.11: Validation: Scaled tip velocity vs the scaled time charts with both numerical and experimental results 

for R = 0.5 mm [86]. 

 
Figure 3.12: Experimental and simulation results for flame tip evolution in a channel of width 0.75 mm and 

blockage ratio of 2/3 [85]. 
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 Details of Parametric Study 

The study is systematically designed to analyze the roles of various parameters and their interplay 

on propagation of non-equidiffusive flames, considering various combinations of channels widths, 

blockage ratios, obstacle spacing, thermal expansion ratios, and Lewis numbers. Other parameters 

used in the simulations include: molecular weight 𝑚 = 2.9 × 10−2kg/mol, initial fuel density 

𝜌𝑓 = 1.16 kg m3⁄ , initial fuel pressure 𝑃𝑓 = 100 kPa, initial fuel temperature 𝑇𝑓 = 300 K, dynamic 

viscosity 𝜂 = 1.7 × 10−5kg/(m ∙ s). The flame thickness 𝐿𝑓 = 4.22 × 10−5m and the laminar flame 

speed, 𝑆𝐿 = 34.7 cm/s, being 103 times smaller than the initial speed of sound in this fuel mixture 

𝑐0 = 347 m/s such that the hydrodynamics is almost incompressible at the initial stage of burning. 

Table 3.2 summarizes the geometry and thermo-chemical properties varied in the parametric study. 

Table 3.2: Factors and values considered in the study 

Factors Values 

S
em

i-
o
p
en

 c
h
an

n
el

 Smooth 

Channel half-width 10, 20, 30 

Thermal expansion ratio 5, 8, 10 

Lewis number 0.2, 0.5, 1.0, 1.5, 2.0 

Wall boundary condition Adiabatic, free slip 

Obstacle 

laden walls 

Channel half-width 24, 36, 48 

Blockage ratio 1/3, 1/2, 2/3 

Obstacle spacing R/4 

Thermal expansion ratio 8 

Lewis number 0.2, 0.5, 1.0, 1.2, 2.0 

Boundary condition Adiabatic, free slip 

F
u
ll

y
 o

p
en

 c
h
an

n
el

 Smooth 

Channel half-width 10, 20, 30 

Thermal expansion ratio 5, 8, 10 

Lewis number 0.2, 0.5, 1.0, 1.5, 2.0 

Wall boundary condition Adiabatic, isothermal  

(Tw = 300K), non-slip 

Obstacle 

laden walls 

Channel half-width 12, 24, 36, 48 

Blockage ratio 1/3, 1/2, 2/3 

Obstacle spacing R/4, R/2, R 

Thermal expansion ratio 5, 8, 12 

Lewis number 0.3, 0.5, 1.0, 1.5, 2 

Boundary condition Adiabatic, free slip 
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3.7.1 Semi-open channel with slip wall 

For a semi-open channel, where the aim is to analyze the impact of non-equidiffusive burning at 

the early stage of flame propagation, through the finger flame acceleration mechanism [51]. The 

channel half-width in the range 10 ≤ 𝑅/𝐿𝑓 ≤ 30, thermal expansion ratio 5 ≤ Θ ≤ 10 and Lewis 

number 0.2 ≤ 𝐿𝑒 ≤ 2. The nonreflecting boundary conditions are employed at the open end of the 

channel to prevent the reflection of the sound waves and weak shocks. The walls of the channel 

are taken to be free-slip and adiabatic. Various tube radii and channel half-widths were considered 

in the range 10 ≤ 𝑅 𝐿𝑓 ≤ 30⁄ , which corresponds to a relatively low flame propagation Reynolds 

number, 𝑅𝑒 = 𝑈𝑓𝑅 𝜈⁄ = 𝑅 Pr𝐿𝑓 = 10~30⁄ . The flame is ignited on the center line at the closed end 

with initial hemispherical radius 𝑟𝑓, of 1.5 𝐿𝑓. 

 

Figure 3.13: Semi-open channel for finger flame acceleration mechanism. 

3.7.2 Semi-open channels with obstruction 

For an obstructed channel with one end closed and the other open, with non-slip and adiabatic 

surfaces of the wall and obstacles, the acceleration mechanism experienced in this type of 

configuration is that of Bychkov [54]. The parametric study adopted here include the channel half-

width 𝑅 (describing the Reynolds number associated with flame propagation 𝑅𝑒 = 𝑅/𝐿𝑓Pr ) in the 

range 𝑅/𝐿𝑓 = 24, 36, 48; the blockage rato 𝛼 = 1/3, 1/2, 2/3 and obstacle spacing Δ𝑍 = 𝑅/4. The 

Lewis numbers in the range 0.2 ≤ 𝐿𝑒 ≤ 2.0, and the thermal expansion ratio  = 𝜌𝑓/𝜌𝑏 = 8 are 

used. A flame is ignited on the center line at the closed end with a hemispherical radius 𝑟𝑓 = 5.1𝐿𝑓. 

 

Figure 3.14: Semi-open obstructed channel illustrating the Bychkov mechanism of FA [54]  
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3.7.3 Open Channels with smooth wall 

For channel with both ends open, the non-reflecting boundary condition is applied at both ends, 

while a combination of the no-slip and adiabatic or isothermal boundary conditions are applied at 

the channel walls. For the isothermal case, only cold wall maintained at 𝑇𝑤 = 300𝐾 is considered. 

Channel half-width in the range 𝑅 𝐿𝑓⁄ = 10, 20, 30, thermal expansion ratios  = 5, 8, 10 and the 

Lewis numbers in the range 0.2 ≤ 𝐿𝑒 ≤ 2.0 are the governing parameters considered. The initial 

flame structure is imitated by the Zeldovich-Frank-Kamenetskii (ZFK)-like solution for a planar 

flame front [8] initiated at the distance 50 𝐿𝑓 from the left end of the channel. 

 

Figure 3.15: schematic of an unobstructed channel with both extremes open. 

3.7.4 Obstructed channels with open ends 

For the obstructed channel with open ends (Fig. 3.16), adiabatic and free-slip boundary conditions 

are applied on the surfaces, consisting of the wall and obstacle surfaces. Non-reflecting boundary 

condition is applied at both ends of the channel. Other parameters considered here include: the 

channel half-width 𝑅/𝐿𝑓 = 12, 24, 36,48, the blockage ratio 𝛼 = 1/3, 1/2, 2/3, spacing between 

the obstacles Δ𝑍 = 𝑅/4, 𝑅/2, 𝑅, the thermal expansion ratio  = 5, 8, 12. The Lewis number is 

varied in the range 0.3 ≤ 𝐿𝑒 ≤ 2.0, by keeping constant Pr = 1 and adjusting 𝑆𝑐 accordingly. The 

initial flame structure is imitated by the ZFK-like solution for a planar flame front initiated at a 

distance 60 𝐿𝑓 from the left extreme of the channel. 

 

Figure 3.16: A schematic of an obstructed channel with both extremes open (only an upper half is shown) [21] 
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 Flame Characterization 

Resulting flames from the simulations are characterized by monitoring the flame tip position at 

every instant during the flame propagation. The flame tip velocity 𝑈𝑡𝑖𝑝 is estimated from the flame 

tip position 𝑍𝑡𝑖𝑝. The burning rate is calculated as 

     𝑈𝑤 =
1

2𝑅𝜌𝑓
∫

𝜌𝑌

𝜏𝑅
𝑒𝑥𝑝 (−

𝐸𝐴

𝑅𝑝𝑇
) 𝑑𝑥𝑑𝑧.                                                                               (3.28) 

The flame tip velocity and the burning rate is scaled by the laminar flame velocity 𝑆𝐿. A convenient 

measure of the instantaneous flow compressibility and thereby, the stage of DDT, is instantaneous 

Mach number associated flame propagation, which is defined as   

𝑀𝑎𝑡𝑖𝑝 =
𝑈𝑡𝑖𝑝

𝑐𝑡𝑖𝑝
,                                                                                                                                 (3.29) 

where 

𝑐𝑡𝑖𝑝 = √(
𝐶𝑝

𝐶𝑣
⁄ ) × (

𝑅𝑝
𝑀

⁄ ) × 𝑇𝑡𝑖𝑝                                                                                             (3.30) 

is the instantaneous speed of sound in the fuel mixture at the flame tip. It is noted that 𝑀𝑎𝑡𝑖𝑝 ≪ 1 

at the initial, quasi-isobaric stage of burning, while it will approach an order of unity by the onset 

of detonation. 
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4 Propagation of Non-equidiffusive Flames in Semi-open Channels 

with Smooth Walls 

 Effect of Lewis number on Morphology and Dynamics of Non-equidiffusive 

Flames 

 
Figure 4.1: The temperature snapshots of the flame evolution with 𝑅𝑒 = 20,  = 8 and 𝐿𝑒 = 0.2. 

 
Figure 4.2: The temperature snapshots of the flame evolution with 𝑅𝑒 = 20,  = 8 and 𝐿𝑒 =  1. 

 

Figure 4.3: The temperature snapshots of the flame evolution with 𝑅𝑒 = 20,  = 8 and 𝐿𝑒 = 2. 
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The results of parametric study on the effects of 𝐿𝑒 on the finger FA scenario in a 2D planar 

geometry is presented. Comparison of the flame dynamics, morphology and quantitative results of 

the 𝐿𝑒 ≠ 1 flames to the 𝐿𝑒 = 1 ones is made. Figures 4.1 – 4.3 show the temperature snapshots 

of the flame evolution with various Lewis numbers, 𝐿𝑒 = 0.2 (4.1), 1 (4.2), and 2 (4.3) for the 

same 𝑅𝑒 = 20 and  = 8. In all these cases, a flame embryo has been ignited at the centerline at 

the closed end of the channel, and it expands mainly axially because its expansion in the radial 

direction is inhibited by the lateral walls of the channel. As a result, the flame elongates to acquire 

a finger shape of the front. At this stage, the flame surface area and the total burning rate experience 

near-exponential growth for a limited time. This is due to such finger FA, which lasts until the 

lateral sides of the flame front (the flame skirt) contact the sidewalls of the channel. At the next 

stage, the flame tip starts decelerating, with flame morphology reverting from a concave finger 

flame front to a convex tulip flame shape. 

In the case of 𝐿𝑒 = 1, the temperature evolution is uniform during flame propagation, which 

indeed indicates the balance of the diffusive properties. For the non-equidiffusive fuel mixtures 

with the mass diffusivity higher than the thermal diffusivity, i.e. Le < 1, shown in Fig. 4.1, it is 

observed that such flames accelerate much faster than the 𝐿𝑒 ≥ 1 flames. The hemispherical flame 

expands axially, where the flame surface area, the velocity of its tip, as well as the total burning 

rate grow near-exponentially, promoting acceleration. The accelerating regime ends when a flame 

skirt contacts a sidewall of the channel. The flame front subsequently decelerates and, eventually, 

acquires a concave, tulip shape where the upper and lower crests almost exhibit the so-called flame 

“channeling”. Another interesting stage of FA occurs when a secondary finger-shaped flame front 

is formed. The latter effect is presumably related to the onset of the diffusional-thermal instability. 

For 𝐿𝑒 = 2, Fig. 4.3, while the flame dynamics is qualitatively the same as that for 𝐿𝑒 = 1, it is 

observe that there is some local increase in the flame temperature, as the flame inverts to a tulip 

shape. This effect is due to more intensive burning at the convex part of the flame surface caused 

by the presence of diffusion-thermal instability. The appearance of a preheated localized region 

around the flame skirt and the flame tip is attributed to the effect of the high thermal diffusivity. 

Quantitative comparison of the flames at various 𝐿𝑒 is next depicted, while the other flow 

parameters are kept constant. Specifically, Figs. 4.4 and 4.5 present the evolution of scaled total 

burning rate 𝑈𝑤/𝑆𝐿 (Fig. 4.4) and the scaled flame tip velocity 𝑈𝑡𝑖𝑝/𝑆𝐿 (Fig. 4.5) for the Lewis 

number in the range 0.2 ≤ 𝐿𝑒 ≤ 2 with the fixed 𝑅𝑒 = 10 and  = 8. It is demonstrated that 𝐿𝑒 
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plays a serious role in flame propagation. Specifically, due to the onset of the diffusional-thermal 

instability, the 𝐿𝑒 < 1 flames acquire the higher acceleration rate as compared to the 𝐿𝑒 ≥ 1 cases.  

 
Figure 4.4:  The scaled total burning rate 𝑈𝑤/𝑆𝐿 versus the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 for 𝑅𝑒 = 10 and  = 8. 

 
Figure 4.5:  The scaled flame tip velocity 𝑈𝑡𝑖𝑝/𝑆𝐿 versus the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 for 𝑅𝑒 = 10 and  = 8. 

For a small Lewis number, 𝐿𝑒 = 0.2, fast FA is observed, manifesting in both the burning rate and 

the flame tip velocity. The peak values of the scaled burning rate and the flame tip velocity are 

also found to be higher as compared to all other values of 𝐿𝑒. However, at 𝐿𝑒 = 0.5, while 

acceleration is weaker than that in the case of 𝐿𝑒 = 0.2 and stronger than that at 𝐿𝑒 = 1, the peak 
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values are comparable to what is seen when 𝐿𝑒 ≥ 1. Also, in the situation of 𝐿𝑒 < 1, an intriguing 

secondary phase of finger-like FA is observed, following the distortion of the tulip flame front. On 

the other hand, due to an increased thickness of the flame front for 𝐿𝑒 > 1, such a flame accelerates 

slightly slower than the respective equidiffusive flame. Another difference seen is immediate sharp 

deceleration of a 𝐿𝑒 ≥ 1 flame as compared to the 𝐿𝑒 < 1 one, and such a point on the graph 

corresponds to the instant, when the flame skirt contacts the channel sidewall. A response of the 

lateral flows to this obstruction is noticed to provide a delay in propagation of the 𝐿𝑒 < 1 flames. 

 Effects of Flame Reynold Number on Non-equidiffusive Finger Flame 

The impact of Re on propagation of a flame with 𝐿𝑒 ≠ 1 is next investigated. Figure 4.6 depicts 

the scaled total burning rate 𝑈𝑤/𝑆𝐿 for the flames with 𝐿𝑒 = 0.2 and 2, 𝑅𝑒 = 10 and 20. It is 

shown that the impact of 𝑅𝑒 in the case of 𝐿𝑒 = 0.2 is minor as 𝑈𝑤/𝑆𝐿 exhibits only a slight 

difference. In contrast, a more significant impact of 𝑅𝑒 is observed for 𝐿𝑒 > 1 such as a near-

exponential growth during the finger FA regime. Here, the flames burning rate grow exponentially 

for 𝑅𝑒 = 10, showing less growth rate as compared to higher 𝑅𝑒. These results are associated with 

the fact that the flame thickness increases with 𝐿𝑒, thereby reducing the flame stretch. The lower 

flame stretch prevents adequate corrugation of the flame front, causing some reduction of the flame 

surface area and, thus, a lower burning rate. Similarly, a wider flame front would be easier to 

corrugate than a small one, explaining the higher burning rate observed for larger 𝑅𝑒, 𝑅𝑒 = 20. 

 

Figure 4.6: The scaled total burning rate 𝑈𝑤/𝑆𝐿 versus the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 in the 2D planar geometry for 

𝐿𝑒 = 0.2, 2 and 𝑅𝑒 = 10, 20. 
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 Impact of Thermal Expansion Ratio on Non-equidiffusive Flames  

 
Figure 4.7: The scaled flame surface area 𝑆𝑤/𝜋𝑅2 vs the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 for 𝐿𝑒 = 0.2 with  = 5, 8, 10 

and 𝑅𝑒 = 20. 

 
Figure 4.8: The scaled flame surface area 𝑆𝑤/𝜋𝑅2 vs the scaled time 𝜏 = 𝑆𝐿𝑡/𝑅 for 𝐿𝑒 = 1.5  with  = 5, 8, 10 

and 𝑅𝑒 = 20. 

In addition, the thermal expansion ratio is varied in the range 5 ≤  ≤ 10, to identify its effect 

on the finger FA scenario for the 𝐿𝑒 ≠ 1 flames. The quantitative analysis of the impact of 

thermal expansion is presented in Figs. 4.7 and 4.8, where the time evolutions of the flame 

surface area are shown for 𝐿𝑒 = 0.2 (Fig. 4.7) and 𝐿𝑒 = 1.5 (Fig. 4.8), with  = 5, 8 and 10 in 

each figure. An increase in  promotes acceleration of a 𝐿𝑒 > 1 flames in Fig. 4.7. In contrast, 
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we surprisingly see an opposite trend for a 𝐿𝑒 < 1 flame in Fig. 4.7: acceleration weakens with 

the increase in . 

5 Propagation of Non-equidiffusive Flames in Obstructed Semi-

Open Channels 

 Flame Morphology in Obstructed Semi-open Channels 

 

Figure 5.1: Temperature snapshots taken at the same scaled time instant, τ = t SL / R = 0.075 for Re = 24 Lf and 

various Le and α. (Total of nine different simulation runs, with each snapshot representing different combinations of 

Le and α). 

Results of the extensive computational simulations of premixed flames with various 𝐿𝑒 in semi-

open, obstructed channels of various Reynolds numbers reveals the impact of non-equidiffusivity 

on the shape of the flame front. Specifically, Fig. 5.1 (a-i) shows the flame shapes and positions 

attained at various 𝐿𝑒 = 0.2, 1.0, 2.0 and 𝛼 = 1/3, 1/2, 2/3 at the same scaled time instant, 𝜏 =

0.075, and for the same 𝑅/𝐿𝑓 = 24 in all nine simulation runs. The respective Mach numbers 
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associated with flame tip at scaled time of 0.075, 𝑀𝑎𝑡𝑖𝑝|𝜏 = 0.075, are also depicted. The flames 

are represented by the temperature snapshots, with a temperature ranging from 300 K in the fuel 

till 2400 K in the burnt matter. It is seen that the role of the Lewis number is paramount and as 

strong as that of the blockage ratio. Indeed, when both the effect of large α and nonequidiffusivity 

(with 𝐿𝑒 < 1) work together, Fig. 5.1c for α = 2/3 and 𝐿𝑒 = 0.2, then the flame front is drastically 

folded; having propagated over considerable distance, with the flame tip Mach number being as 

high as 𝑀𝑎𝑡𝑖𝑝 = 0.6. In contrast, a 𝐿𝑒 > 1 flame in a channel with small blockage ratio accelerates 

very slow, as observed in Fig. 5.1g for α = 1/3 and 𝐿𝑒 = 2.0. In other cases of Fig. 5.1, the effects 

of α and 𝐿𝑒 on FA compete, such that almost equivalent flame structures and 𝑀𝑡𝑖𝑝 
are observed in 

the pairs of Figs. 5.1d and 5.1h; Figs. 5.1a and 5.1e; an even Figs. 5.1b and 5.1i. 

 Statistical Significance of the Effects of R, α, and Le on Flame Propagation 

Analysis of variance (ANOVA) is used to determine the factors which significantly affects the 

propagation of a flame in obstructed channel with one end closed and the other being open. The 

combined effects of the factors on flame propagation are also scrutinized by statistically analyzing 

the interactions among the factors. 

Table 5.1: Analysis of variance table for flame acceleration in obstructed semi-open channel 

Factors Sum of 

squares 

Degree of 

Freedom 

Mean Square F Prob>F 

(95% CL) 

Half-width (R) 72.4 2 36.18 1.31 0.3144 

Blockage ratio (α) 7970.8 2 3985.39 147.81 0.0371 

Lewis number (Le) 9469.3 2 4734.65 175.59 0.0371 

R*α 102.5 4 24.63 0.95 0.2831 

R*Le 133.1 4 33.27 1.23 0.3695 

BR*Le 12476.2 4 3119.06 115.68 0.0371 

Error 215.7 8 26.96   

Total 30440 26    

The analysis of variance results shown in Table 5.1, indicates that at 95% confidence level (𝑝 ≤

0.05), the effects of blockage ratio, α and the Lewis number, 𝐿𝑒, are found to be statistically 

significant (0.0371 < 0.05), and so is the effects of the interaction between these two factors. The 

three sources appear to be of equal significance in determining the flames dynamics. On the other 

hand, the channel width, 𝑅, is not statistically significant, as the F-value is greater than 0.05 



37 
 

(0.3144 > 0.05). This confirms the Reynolds independence of the Bychkov mechanism of flame 

acceleration as reported in previous study [54]. The interactions between the channel width and 

the blockage ratio, as well as between channel width and the Lewis number are found to be 

statistically insignificant. 

 Effects of Lewis number on Flame propagation 

 
Figure 5.2: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for R = 24 Lf and α = 1/3. 

 
Figure 5.3: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for R/Lf = 24 and α = 1/2.  
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To quantify the impacts of  𝐿𝑒, in Figs. 5.2 – 5.5, the evolution of the scaled flame tip velocity, 

𝑈𝑡𝑖𝑝/𝑆𝐿, is presented for several blockage ratios, α = 1/3 (Fig. 5.2), 1/2 (Fig. 5.3), and 2/3 (Fig. 

5.4), with different 𝐿𝑒 = 0.2, 0.5, 1.0, 1.2, 2.0 in each plot. It is seen that the effect of 𝐿𝑒 is very 

strong, especially for the 𝐿𝑒 < 1 flames. Indeed, in all three Figs. 5.2 – 5.5, 𝐿𝑒 = 0.2 leads to an 

increase in 𝑈𝑡𝑖𝑝 almost by an order of magnitude as compared to the equidiffusive case, 𝐿𝑒 = 1. 

The effect of 𝐿𝑒 > 1 is substantially weaker, but 𝐿𝑒 = 2.0, nevertheless, noticeably moderates FA 

as compared to the 𝐿𝑒 = 1 cases. Figure 5.5 depicts the variation of the logarithm of scaled tip 

velocity with 𝐿𝑒 at 𝑅/𝐿𝑓 = 24  at the scaled time instant 𝜏 = 0.075 (similar to Fig. 5.1). It is 

shown that the flame velocity increases as 𝐿𝑒 decreases for all values of α, with the greatest 

increase observed at 𝐿𝑒 < 1, and minimal changes at 𝐿𝑒 above unity. 

 
Figure 5.4: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for R/Lf = 24 and α = 2/3. 
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Figure 5.5: The scaled flame tip velocity Utip / SL at τ = 0.075 versus Le for different values of α = 1/3, 1/2, 2/3. 

 Impact of Blockage ratio on Flame propagation 

 
Figure 5.6: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R  for R/Lf  = 24 and Le = 0.2. 
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Figure 5.7: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R  for R/Lf  = 24 and Le = 0.5. 

Figures 5.6–5.9 illustrate the role of the blockage ratio α in acceleration of the flame tip. It is seen 

that α-dependence is significant and much stronger than the 𝑅𝑒-dependence for all the Lewis 

numbers considered. At the same time, the impact of 𝐿𝑒 on the α-dependence is smaller than that 

on the 𝑅𝑒-dependence: specifically, the α-dependence does not change sign due to 𝐿𝑒, but there is 

a noticeable quantitative effect: the α-dependence is stronger for the 𝐿𝑒 < 1 flames. For different 

values of 𝐿𝑒, the flames exhibit weaker acceleration in unobstructed channel, 𝛼 = 0, as compared 

to acceleration in obstructed ones.  
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Figure 5.8: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R  for R/Lf  = 24 and Le = 1. 

 
Figure 5.9: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R  for R/Lf  = 24 and Le = 2. 
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 Effect of Channel Width on flame Propagation 

 
Figure 5.10: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for α = 2/3 and Le = 0.2. 

 

Figure 5.11: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for α = 2/3 and Le = 0.5. 

While the effect of channel width is found to be insignificant, most especially at 𝐿𝑒 = 1, some 

effects are noticeable at 𝐿𝑒 ≠ 1. The role of channel width for various 𝐿𝑒 and α is presented in 

Figs. 5.10 – 5.13. It is seen that the impact of Re is minor as all the plots for 𝑅/𝐿𝑓 = 24, 36, 48 in 

Figs. 5.10 – 5.13 attain very similar acceleration rates. This supports the Bychkov formulation [54] 

predicting Re-independent FA. On the other hand, the figures show a very intriguing result: the 

impact of 𝐿𝑒 modifies the Re-dependence up to the opposite one. Indeed, FA weakens with 𝑅𝑒 for 
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the 𝐿𝑒 ≥ 1 flames, due to a decreasing flame stretch, but it is promoted with Re in the 𝐿𝑒 < 1 case 

for the opposite reason, see Fig. 5.13. This indicates the existence for a potential threshold Lewis 

number corresponding to the change of a trend and thus providing the complete Re-independence. 

While adiabatic walls are assumed here, it is important to note that the presence of heat losses at 

the walls may modify the flow behind the flame front and, thus, change the flame tip dynamics. 

 
Figure 5.12: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for α = 2/3 and Le = 1.0. 

 
 Figure 5.13: The scaled flame tip velocity Utip / SL versus the scaled time τ = t SL / R for α = 2/3 and Le = 2.0. 
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 Quantitative Analysis of Flame Acceleration Rate 

Finally, the acceleration trends are analyzed in the cases when the exponential trends are exhibited. 

The exponential acceleration rate σ is related to flame tip position by 𝑍 ≈ 𝑒𝜎𝜏 and was estimated 

as the slope from plot of scaled flame tip position 𝑍 versus scaled time τ. The resulting σ is plotted 

versus 𝐿𝑒 in Fig. 5.14 for Re = 24 (a), 36 (b) and 48 (c), respectively, with α = 0, 1/3, 1/2, 2/3 in 

each figure. The acceleration rate 𝜎 is largest for non-equidiffusive cases of 𝐿𝑒 < 1. 

   

 
Figure 5.14: The exponential acceleration rate σ versus the Lewis number Le for R/Lf  = 12 (a), 24 (b) and 48 (c) with 

α = 0, 1/3, 1/2, and 2/3 in each figure. 
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6 Propagation of Non-equidiffusive Flames in Unobstructed 

Channel with Open Ends 

 Morphology of Θ = 5 Flames in Fully-Open Adiabatic Channel 

 
Figure 6.1 The temperature snapshots for the evolutions of a Θ = 5 flame in an adiabatic channel with R = 10 𝐿𝑓, 

and 𝐿𝑒 = 0.2 (a), 𝐿𝑒 = 1 (b), 𝐿𝑒 = 2 (c). 

The morphology of flames with various Lewis numbers, initiated as the ZFK planar flame and 

propagating through a channel with open ends, presents some interesting features that can help in 

gaining understanding of such flame dynamics. Right after flame initiation, there is distortion of 

the flame front due to the impact of the thermal expansion ratio and the flame-wall interactions. 

The evolution of a flame in channel with half-width R = 10 𝐿𝑓 and thermal expansion ratio Θ = 5 
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is shown in Fig. 6.1. For the 𝐿𝑒 = 0.2 flame, shown in Fig. 6.1a, it is revealed that the flame front 

becomes corrugated showing concave shape with three leaves, such that the center is behind the 

other segments. As the flame propagation continues, its segments close to the wall moves further 

into the premixtures, while the central flame segment becomes deeper, causing formation of a cusp 

at the center of the channel, and thus increasing the flame surface area. This results in bifurcation, 

causing unburnt fuel to be entrapped between the flame segments, further increasing the surface 

area. The flame segments eventually collapse when the entrapped fuel is consumed. This process 

is repeated because of the competing momenta of the burnt gas and the fuel mixture. Since both 

ends of the channel are open, the flow is not restricted in any direction, and therefore, distributed 

towards both exits. 

The cycle of the cusp formation, flame bifurcation, and the collapse of the flame segments 

continues, resulting in deceleration and acceleration of the flame tip. The flame tip is found to 

decelerate during formation of the cusp and bifurcation, and accelerates during the collapse of the 

segments. Such an extent of the flame front distortion, observed for a flame with 𝐿𝑒 = 0.2, can be 

devoted to the thinner flame front, which make corrugation easier, and the increased flame stretch 

due to the diffusional-thermal instability. For 𝐿𝑒 = 1, shown in Fig. 6.1b, the flame front is less 

distorted as compared to the 𝐿𝑒 < 1 flames. Here, the cusp formed in the flame is not as deep as 

that of the 𝐿𝑒 < 1 flames, and there is no bifurcation of the flame. Due to the less distorted flame 

front, the flame surface area is lower, and therefore, the extent to which the flame would accelerate 

or decelerate is reduced. The flame at 𝐿𝑒 = 2, shown in Fig. 6.1c, shows similar behavior as that 

of 𝐿𝑒 = 1. However, the cusp, and consequently, the flame surface area is slightly lower. Less 

distortion of the 𝐿𝑒 ≥ 1 flames can be attributed to the thicker flame front, which makes the flame 

less susceptible to corrugation, and as well, the absence of the diffusion-thermal instability. 

In a wider channel with R = 20 𝐿𝑓, the flame propagation still shows a similar trend as that of 

𝑅 = 10 𝐿𝑓, especially at 𝐿𝑒 ≥ 1. While the 𝐿𝑒 = 0.2 flame also shows a similar behavior of a cusp 

formation, flame bifurcation, and a collapse of the flame segments, as described for R = 10 𝐿𝑓, 

the wider channel allows stronger corrugation of the flame front. The flame is almost divided into 

two halves along the center line, before the collapse of the flame segments is completed. 
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Figure 6.2: The temperature snapshots for the evolutions of the Θ = 5 flames in adiabatic channels with R = 20 𝐿𝑓, 

and 𝐿𝑒 = 0.2 (a), 𝐿𝑒 = 1 (b), 𝐿𝑒 = 2 (c). 

 Dynamics of Θ = 5 Flames in Adiabatic Channels with Open Ends 

To describe the dynamics of a flame propagating through an open channel with adiabatic and non-

slip walls, the plots of scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  and scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the 

scaled time 𝜏 = 𝑡𝑆𝐿 𝑅⁄  for a channel of half-width 10 𝐿𝑓 and a flame of thermal expansion ratios 

5 are shown in Figs. 6.3a and 6.3b, respectively. Both plots in Fig 6.3 shows the flame oscillating 

as it propagates through the channel. The oscillations are however found to be more prevalent for 
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a 𝐿𝑒 = 0.2 flame. This can be devoted to the combustion instability inherent to the low-𝐿𝑒 flames. 

The oscillations observed here for the 𝐿𝑒 = 0.2 flame further confirms an implication of the trough 

formation, and the subsequent collapse of the flame segments, identified in Figs. 6.1a and 6.2 a. It 

is also seen that the amplitude of the oscillations decreases as the flame propagates through the 

channel, signifying a reduction in the flame oscillations with distance.  

 

 
Figure 6.3: The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus the scaled time 

𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 5 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in the adiabatic channel of 𝑅 = 10 𝐿𝑓. 

For 𝐿𝑒 = 1 and 2, only minor oscillations are observed at the initial stage of flame propagation. 

The flame is subsequently stabilized, and propagates with a constant velocity, as indicated by the 

(a) 

(b) 
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plots of the scaled flame tip position and the scaled burning rate in Figs. 6.3a and 6.3b, respectively. 

It is important to mention here that FA (found in a semi-open channel, with a closed left end) is 

not observed here. This is due to the fact that the flow is not constrained to any direction when 

both channel ends are open and, therefore, the fluid flow is distributed towards both ends. The 

resulting effect of this condition is that the opposing momenta of the burnt gas behind the flame 

and the fuel mixture ahead of the flame, more or less balance each other, thereby, preventing 

significant push from the burnt gas. 

 

 
Figure 6.4: The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus the scaled time 

𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 5 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in the adiabatic channel of 𝑅 = 20 𝐿𝑓. 

(a) 

(b) 
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With an increased channel half-width to 𝑅 = 20 𝐿𝑓, the plots of the scaled flame positon and the 

scaled burning rate versus scaled time in Figs. 6.4a and 6.4b show that the flame still oscillates 

through the channel. However, here the flame oscillations are observed to be of lower frequency 

as compared to the flame in the 𝑅 = 10 𝐿𝑓 channel. In such a wider channel, the flame exhibits 

stronger oscillations when 𝐿𝑒 ≥ 1, similar to the findings of Akkerman et al. [24]. This is as a 

result of the easier corrugation experienced by a flame in a wider channel. 

 Flames in Fully-Open Adiabatic Channel with Θ = 8 and 10 

   

 

Figure 6.5: The temperature snapshots for the evolutions of the Θ = 5 flames in adiabatic channels with R = 20 𝐿𝑓, 

and 𝐿𝑒 = 0.2 (a), 𝐿𝑒 = 1 (b), 𝐿𝑒 = 2 (c). 

 

(a) (b) 

(c) 
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The thermal expansion ratio, which is an indication of the density jump across the flame front. 

Therefore, higher level of Darius-Landau instability is expected in the flame when the value of 

thermal expansion ratio is higher. This is indicated in the temperature snapshots for the Θ = 10 

flames in the adiabatic channels with R = 20 𝐿𝑓, shown in Fig. 6.5. The morphology of the flame 

at this condition is qualitatively similar to that exhibited when the thermal expansion ratio is 5, 

with higher distortion of the flame front experienced at 𝐿𝑒 = 0.2. The flame corrugation and, 

consequently, oscillations decrease as the Lewis number grows from 0.2 to 2. Figures 6.6a and 

6.6b show the plots of the scaled flame tip position and the scaled burning rate versus the scaled 

time for flames with higher thermal expansion, Θ = 10, respectively. Similar plots are also shown 

in Fig. 6.7 for Θ = 8 flames.  

 

 
Figure 6.6: The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus the scaled time 

𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 10 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in the adiabatic channel of 𝑅 = 10 𝐿𝑓. 

(b) 

(a) 
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It is observed that increasing the thermal expansion ratio from 5 to 8 and 10 does not have any 

qualitative effect on the flame dynamics, as oscillations still remain the mode of propagation 

experienced. A minor quantitative difference is noticed, in terms of the oscillation parameters. 

Another important finding of this result is the damping effect of 𝐿𝑒. Indeed, it is observed that, as 

𝐿𝑒 grows from 0.2 to 2, the oscillation amplitude decreases. The flames with the Lewis number 

lower than unity show clear oscillations with decreasing amplitude and frequency as the 𝐿𝑒 → 1. 

This reduction in the oscillation parameters are the indications of the flame stability as 𝐿𝑒 grows.  

 

 
Figure 6.7: The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus the scaled time 

𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 8 flames with various 𝐿𝑒 = 0.2, 0.5, 1, 1.5, 2 in the adiabatic channel of 𝑅 = 10 𝐿𝑓. 

(a) 

(b) 
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 Propagation of Flames in Fully-Open Channels with Non-Slip and Isothermal 

Walls 

 

   
 

 

Figure 6.8: The temperature snapshots for the evolutions of the Θ = 8 flames propagating in isothermal channels 

with R = 10 𝐿𝑓, and 𝐿𝑒 = 0.2 (a), 𝐿𝑒 = 1 (b), 𝐿𝑒 = 2 (c). 

Flame propagation in fully-open channels with non-slip and isothermal boundary conditions at the 

wall is also scrutinized, in order to identify the effects of the changes in the thermal boundary 

condition on the flame. The temperature snapshots shown in Fig. 6.8 is for the Θ = 8 flame with 

various Lewis numbers in the range of 0.2 ≤ 𝐿𝑒 ≤ 2, propagating in channels of half-width 10 𝐿𝑓. 

(a) (b) 

(c) 



54 
 

The flame morphology when the channel wall is maintained at a temperature of 300 K as shown 

in Fig. 6.8 shows a flame that is qualitatively different from that seen in the adiabatic channels. 

After the flame is initiated using the ZFK planar approach, the flame front is observed to retract, 

instead of propagating into the fuel premixtures, for all the 𝐿𝑒 considered. Contraction of the flame 

is also observed to take place as heat is being loss to the channel wall. However, the rate at which 

this flame front retraction and flame contraction occurs changes with the Lewis number. For 𝐿𝑒 =

0.2 in Fig 6.8a, where mass diffusivity is dominant, both the retraction and contraction occur at a 

slower rate. The higher rate of mass diffusion into the flame front attempts to balance the heat 

being lost to the cold wall. When the mass diffusion balances or exceeds the thermal diffusion, we 

see the flame retracting and contracting slightly faster. The heat loss from the burnt gas to the cold 

wall, coupled with the distributed flow towards both exits, prevents the burnt gas from having the 

momentum required to push the fuel ahead of the flame front. Figures 6.8b and 6.8c show the 

flames with 𝐿𝑒 = 1 and 𝐿𝑒 = 2 , where the mass diffusion equals or exceeds the thermal diffusion, 

respectively. The rate of flame front retraction, and flame contraction is shown to grow with 𝐿𝑒. 

The plots of scaled flame tip position and scaled burning rate for flames with Θ = 8 and various 

Lewis numbers, propagating in a fully-open channel of half-width 𝑅 = 10 𝐿𝑓 with isothermal wall 

is shown in Fig. 6.9. Evolution of the flame position shows the flame retraction earlier described. 

Namely, the plot of the scaled flame tip versus the scaled time, Fig. 6.9a, shows the flame tip 

moving towards the left open end of the channel, as opposed to travelling towards the right end, 

as was observed in semi-open channels as well as in adiabatic channels. The scaled burning rate 

versus the scaled time, Fig. 6.9b, also decreases for the 𝐿𝑒 ≥ 1 flames. This is expected, since the 

flame morphology seen in the snapshots of Fig. 6.9 does not show any increase in surface area. 

For a wider channel, 𝑅 = 20 𝐿𝑓, the scaled flame tip position and the scaled burning rate versus 

the scaled time are shown in Figs 6.10a and 10b, respectively. Again, we see the flame retreating, 

instead of advancing in Fig. 6.10a. However, the retraction here happened at a slower rate.  

Also, a deviation from the generally observed flame behavior is obtained for a low Lewis 

number, 𝐿𝑒 = 0.2, as such a flame is seen to have changed direction at a point in the channel. The 

scaled flame tip, thereafter shows an upward trend (Fig. 6.10a). The same trend is revealed in the 

plot of the scaled burning rate shown in Fig. 6.10b. This slight changes in the flame behavior when 

the channel half-width is increased from 10 𝐿𝑓 to 20 𝐿𝑓 can be attributed to the impact of heat loss 

to the channel wall. While both channels have their walls kept at 300 K, the impact of the heat loss 
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is more significant in a narrower channel. The reason being that, the narrower the channel, the 

higher the surface to volume ratio, and consequently, the higher the impact of the heat loss is. 

 
Figure 6.9: The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus the scaled time 

𝜏 = 𝑡𝑆𝐿 𝑅⁄  for the Θ = 8 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in the isothermal (𝑇𝑤 = 300 K) channel 

of 𝑅 = 10 𝐿𝑓. 

(a) 

(b) 
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Figure 6.10: The scaled flame tip positions 𝑍𝑡𝑖𝑝 𝑅⁄  (a) and the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  (b) versus scaled time 𝜏 =

𝑡𝑆𝐿 𝑅⁄  for the Θ = 8 flames with various 𝐿𝑒 = 0.2, 1 and 2 propagating in the isothermal (𝑇𝑤 = 300 K) channel of 

𝑅 = 20 𝐿𝑓. 

(a) 

(b) 
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7 Propagation of Non-equidiffusive Flames in Obstructed 

Channels with Open Ends 

 Statistical Significance of the Effects of R, α, and Le 

Analysis of variance (ANOVA) is used to determine the factors which significantly affects the 

propagation of a flame in obstructed channel where both extremes open. Combined effects of the 

factors on flame propagation are also scrutinized by statistically analyzing the interactions among 

the factors. 

Table 7.1: Analysis of variance table for flame acceleration in obstructed fully open channel 

Factors Sum of 

squares 

Degree of 

Freedom 

Mean Square F Prob>F 

(95% CL) 

Half-width (R) 99533.7 2 49766.9 2.23 0.1701 

Blockage ratio (α) 327822.2 2 163911.1 7.34 0.0155 

Lewis number (Le) 90691.8 2 453456.9 20.31 0.0007 

R*α 79263.6 4 19815.8 0.89 0.5132 

R*Le 289686.6 4 72421.6 3.24 0.0735 

BR*Le 697750.5 4 174437.6 7.81 0.0072 

Error 178640 8 22330   

Total 2579610 26    

Similar to the result obtained for the semi-open channel, both the blockage ratio, α and the Lewis 

number, 𝐿𝑒, are found to be statistically significant in determining the flame position in a channel 

with both ends open, at 95% confidence level (𝑝 ≤ 0.05). The Lewis number appears to have the 

highest effect with a value of 0.0007, which is smaller than 0.0155 for α. The channel width does 

not have a significant effect on the as the F-value is greater than 0.05 (0.701 > 0.05). However, 

the channel width seems to be more important in determining the flame position in a fully open 

channel than it is in a semi-open channel. Among the interactions, that between 𝐿𝑒 and α is found 

to be significant (0.0072 < 0.05). While the interaction of 𝐿𝑒 with 𝑅 is not significant (0.0735 >

0.05), the F-value is indeed close. 
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 Propagation of Non-Equidiffusive Flame in Narrow Channels with Low 

Blockage Ratio 

 

Figure 7.1: Temperature snapshots for the flame evolution with 𝑅 = 12𝐿𝑓,  = 8, 𝛼 = 1/3, 𝐿𝑒 = 0.3 (a) and 2 (b).  

The temperature snapshots in Fig. 7.1 shows the morphology of the flame front as the non-

equidiffusive flame of 𝐿𝑒 = 0.3 (a) and 𝐿𝑒 = 2 (b) propagates through an obstructed channel. In 

both cases, the flames were initiated as the planar ZFK front, acquires curved shape, with the extent 

of curvature determined by the burning conditions. Variations in the shape of the flame front are 

largely dependent on the flame response to curvature caused by a rearward flow of the premixtures 

ahead of the flame front. Showing the temperature snapshots for 𝐿𝑒 = 0.3 at the scaled times that 

are different from that presented for 𝐿𝑒 = 2 is necessitated by the need to cover the full extent of 

the shape changes encountered in each case. At 𝐿𝑒 = 0.3, Fig. 7.1a, the planar flame front quickly 

acquires a concave shape at the center of the channel and convex shape towards the obstructed 

sides, resulting in increased surface area. The flame front also shows a wider preheated zone at the 

center of the channel, Fig. 7.1a ii. As the preheated fuel mixture is consumed, the cusp previously 

formed at the center of the channel decreases, Fig. 7.1a iii, causing FA as well as the reduction in 

concavity of the flame front. This acceleration is short lived as the distributed nature of the flow 

prevents the burnt gas from providing adequate push on the fuel mixture, causing the flame front 

to revert to the flame with a concave center and wide preheated zone, discussed earlier. The back 

and forth push from the burnt gas and the fuel premixtures continues, culminating in the periodic 

oscillation of the flame as it propagates through the channel. For 𝐿𝑒 = 2, Fig. 7.1b, it takes a longer 

time for the flame front to acquire an appreciable concave shape with a thinner preheated zone at 

the center, Fig. 7.1b ii. The flame curvature continues, almost forming a tulip shape, Fig. 7.1b iii, 
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before the fuel mixture is consumed and acceleration taking place. The process is repeated, causing 

periodic oscillations of the flame to occur. However, the oscillations are expected to have a higher 

period, as it takes longer for a flame to respond to curvature caused by a rearward premixture flow.  

 
Figure 7.2: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

blockage ratio 𝛼 = 1 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width R = 12 𝐿𝑓, and various Lewis 

numbers 𝐿𝑒 = 0.3 (a), 0.6 (b), 1 (c), and 2 (d). 

Further illustration of the effect of 𝐿𝑒 on flame propagation is achieved by plotting the scaled 

burning rate versus the scaled time and scaled frequency (sf) of the flame oscillations for various 

operating conditions. Additional characterization is done by examining the physical appearance of 

the waveform, estimating the average oscillation frequency, and the average amplitude of the 

oscillations. The plots of burning rates versus scaled time for various operating conditions, provide 

further illustration of flame propagation as affected by 𝐿𝑒. Figure 7.2 shows the scaled burning 
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rate versus scaled time for 𝑅 = 12 𝐿𝑓, 𝛼 = 1 3⁄ , Θ = 8  as well as the frequency spectra for the 

oscillations are shown at similar condition by plotting scaled burning rate versus scaled frequency 

in Fig. 7.3. The plots for the channel with the blockage ratio of 1/2 are shown in Figs 7.4 and 7.5. 

For clarity of the plots, each subplot pallet represents the plots related to different Lewis numbers. 

 
Figure 7.3: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled frequency (sf) for the thermal expansion ratio Θ = 8, 

the blockage ratio 𝛼 = 1 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width R = 12 𝐿𝑓, and various Lewis 

numbers 𝐿𝑒 = 0.3 (a), 0.6 (b), 1 (c), and 2 (d). 

For all 𝐿𝑒 considered, the flames exhibit oscillations as they propagate through a narrow channel. 

The oscillations, however, show varying quality in terms of the frequency and amplitude. In both 

Figs. 7.2 and 7.4, the waveforms produced from the flame oscillations are largely symmetric about 

the quasi-steady velocities, except for the flame with 𝐿𝑒 = 2, Fig. 7.4d, where flame spreads at a 

constant rate, without any oscillation. It is also observed, Fig. 7.3, that in the case of 𝐿𝑒 < 1, the 

flame oscillation amplitude decreases as the flame propagates through the channel. 
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Figure 7.4: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

blockage ratio 𝛼 = 1 2⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width R = 12 𝐿𝑓, and various Lewis 

numbers 𝐿𝑒 = 0.3 (a), 0.6 (b), 1 (c), and 2 (d). 

The spectra analysis of the flame oscillations shown in Figs. 7.3 and 7.5 reveals that most of the 

high-amplitude oscillations occur at a low scaled frequency in each case. When the blockage ratio 

is 1/3, Fig. 7.3, the 𝐿𝑒 < 1 flame shows a broad low-amplitude oscillation before a high amplitude 

oscillation. The amplitude of the broad pick oscillations decreases, while that of the high amplitude 

oscillation grows as 𝐿𝑒 increases from 0.3 to 0.6. Further increase in 𝐿𝑒 results in a disappearance 

of the broad pick, and an increase in the higher amplitude oscillation. At 𝐿𝑒 = 2, the low amplitude 

oscillations are also observed, at the higher scaled frequencies. Increasing the blockage ratio to 

𝛼 = 1 2⁄  results in suppression of the oscillations in the cases of 𝐿𝑒 = 0.3 and 2. However, multiple 

picks are obtained for the 𝐿𝑒 = 0.6 and 𝐿𝑒 = 1 flames, with the highest amplitude seen at 𝐿𝑒 = 1. 
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Figure 7.5: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled frequency 𝑠𝑓 = 𝑅 𝜏𝑆𝐿⁄  for the thermal expansion ratio 

Θ = 8, the blockage ratio 𝛼 = 1 2⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 12 𝐿𝑓, and various 

Lewis numbers 𝐿𝑒 = 0.3 (a), 0.6 (b), 1 (c), and 2 (d). 

Figure 7.6 shows that the flame oscillation amplitude increases as 𝐿𝑒 grows from 𝐿𝑒 = 0.3 to 𝐿𝑒 =

1, and then declines by increasing the Lewis number to 𝐿𝑒 = 2. There is no noticeable difference 

in the oscillation frequency, when 𝐿𝑒 grows from 0.3 to 0.6; however, further increase in 𝐿𝑒 to 

𝐿𝑒 = 2 results in the reduction of the scaled frequency from 3 to 1.9. Similarly, in Fig. 7.7, the 

scaled oscillation frequency decreases from a maximum value of 3.3 at 𝐿𝑒 = 0.3 to zero at 𝐿𝑒 =

2, which signifies no oscillation. For the equidiffusive flames, this oscillatory behavior can be 

attributed to the hydraulic resistance of the flow ahead of the flame front and the distributed flow 

of the burnt gas in a channel with both open ends. While the distributed flow is still encountered 

in non-equidiffusive burning, additional contributions to flame dynamics from non-equidiffusivity 

can be caused by the finite thickness of the flame front as well as the local flame temperature and 

stretch.  
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Figure 7.6: Variation of the scaled oscillation amplitude, ∆𝑈𝑤 𝑆𝐿⁄ , and the scaled oscillation frequency, 1 𝜏𝑝⁄  (here 

𝜏𝑝 is the scaled oscillation period) with the Lewis number, Le, for the thermal expansion ratio Θ = 8, the channel 

half-widths 𝑅 = 12 𝐿𝑓, the blockage ratio 𝛼 = 1 2⁄ , and the obstacle spacing ∆Z = 𝑅 4⁄ . 

  
Figure 7.7: Variation of scaled oscillation amplitude, ∆𝑈𝑤 𝑆𝐿⁄ , and scale oscillation frequency, 1 𝜏𝑝⁄  (here 𝜏𝑝 is the 

scaled oscillation period) versus the Lewis number, Le, for the thermal expansion ratio Θ = 8, the channel half-

widths 𝑅 = 12 𝐿𝑓, the blockage ratio 𝛼 = 1 3⁄ , and the obstacle spacing ∆Z = 𝑅 4⁄ .  

The thinner flame front and the high local flame temperature peculiar at 𝐿𝑒 < 1 results in faster 

response to the flame stretch caused by a backward flow of the unburnt premixtures, and thus, the 

lower amplitude and the higher frequency observed in the flame oscillations. On the other hand, a 

thicker flame front at 𝐿𝑒 ≥ 1 is able to withstand the higher stretch from a backward flowing 

premixtures, causing a delayed response and, consequently, lower oscillation frequency and higher 
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amplitude, compared to 𝐿𝑒 < 1. We are unable to perform this comparative analysis of oscillation 

properties for other cases, as different regimes of propagation are encountered. 

 Nonequidiffusive Flame Propagation in Fully-Open Channels with High 

Blockage Ratio 

 
Figure 7.8: Temperature snapshots for the flame evolution, with  = 8, 𝛼 = 2/3, 𝑅 = 12𝐿𝑓. 

 
Figure 7.9: Temperature snapshots for the flame evolution, with  = 8, 𝛼 = 2/3,  𝑅 = 24𝐿𝑓. 

The color temperature snapshots for the Θ = 8 and 𝐿𝑒 = 0.3 flame, propagating through channels 

with a high blockage ratio, 𝛼 = 2 3⁄ , of half-widths 𝑅 = 12 𝐿𝑓 and 𝑅 = 24 𝐿𝑓 are shown in Figs. 

7.8 and 7.9, respectively. The flames here exhibit a propagation mode different from the oscillatory 

mode discussed earlier. In both cases, the flames accelerate as they propagate through the channel. 

For 𝑅 = 12 𝐿𝑓, the initial ZFK planar flame swiftly forms a front with a prolonged convex shape, 

Fig. 7.8 i, signifying an increased surface area and thus, acceleration. However, propagation only 

occurs at the central, unobstructed part of the channel, with fuel in the side pockets left unburnt, 
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Fig. 7.68ii. While the consumption of the fuel premixture in the side pocket is delayed at the initial 

stage, lateral propagation is observed to increase as the flame propagates away from its ignition 

position, Fig. 7.8 iii. This poses the possibility of thermal explosion, as the contribution of delayed 

burning to the propagating front will be immense, when it finally happens. Widening the channel 

to 𝑅 = 24 𝐿𝑓 results in slightly delayed FA, with a flame bifurcation just after ignition, Fig. 7.9 i.  

 

Figure 7.10: The scaled flame tip 𝑍𝑡𝑖𝑝 𝐿𝑓⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

blockage ratio 𝛼 = 2 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 12 𝐿𝑓 for various Lewis 

numbers 𝐿𝑒 = 0.3, 0.6, 1, and 2. 

 
Figure 7.11: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

blockage ratio 𝛼 = 2 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 12 𝐿𝑓 for various Lewis 

numbers 𝐿𝑒 = 0.3, 0.6, 1, and 2. 
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A flame front changes to a convex shape, with propagation into the side pockets also occurring, 

Fig 7.9 ii. Due to the increased surface area, the flame accelerates and more lateral propagation 

also occurs away from the ignition position, Fig. 7.9 iii. Various regimes of flame propagation are 

clearly seen in the plots of the scaled flame tip position, Fig. 7.10, and the burning rate, Fig. 7.11.  

 
Figure 7.12: The scaled flame tip 𝑍𝑡𝑖𝑝 𝐿𝑓⁄  versus scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

blockage ratio 𝛼 = 2 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓 for various Lewis 

numbers 𝐿𝑒 = 0.3, 0.6, 1, and 2. 

 
Figure 7.13: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

blockage ratio 𝛼 = 2 3⁄ , the obstacle spacing ∆Z = 𝑅 4⁄  the channel half-width 𝑅 = 24 𝐿𝑓  for various Lewis 

numbers 𝐿𝑒 = 0.3, 0.6, 1, and 2. 
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At 𝐿𝑒 = 0.3 (see the scaled flame tip position and burning rate represented on the left vertical axis 

in Figs. 7.10a and 7.10b), the flame exhibits some slight initial quasi-steady propagation, and then 

a transition to an accelerating regime, with acceleration being quite strong. The strong and sudden 

acceleration observed here is similar to that reported and discussed in Ref. [22]. This is followed 

by slight deceleration before another round of quasi-steady oscillations, which occurs at the flame 

saturation velocity. Despite the effect of distributed flow, that is known to limit FA in channels 

with open ends, it is interesting to see that the combined effects of a low 𝐿𝑒, 𝐿𝑒 = 0.3, and a high 

blockage ratio of 2 3⁄  can produce enough momentum to overcome the hydraulic resistance, and 

eventually transit to acceleration. At 𝐿𝑒 = 0.6, Fig. 7.10, and 𝐿𝑒 = 1, Fig. 7.11, it is observed that 

the flame propagates by oscillating about a quasi-steady velocity, with a much lower oscillation 

frequency at 𝐿𝑒 = 1. On the other hand, at 𝐿𝑒 = 2, the scaled flame tip position plot shows that 

the flame is not actually propagating: the flame position remains practically the same. The scaled 

burning rate plot in Fig. 7.11 also shows that burning occurs at a constant rate, which indicates a 

balance between the push effect of the burnt gas and the resisting force. The scaled flame tip 

position and the burning rate for 𝐿𝑒 = 0.6, 1, 2 are represented by the right vertical axis in Figs. 

7.10 and 7.11, respectively. The plots for the evolution of the flame tip position and the burning 

rate for Θ = 8, 𝛼 = 2 3⁄ , ∆𝑍 = 𝑅 4⁄ , 𝑅 = 24 𝐿𝑓, depicted in Figs 7.12 and 7.13, demonstrate that 

a flame undergoes sudden acceleration at 𝐿𝑒 = 0.3, 0.6, 1. The flames however show near-steady 

initial propagation before such acceleration. The time of such initial propagation increases as 𝐿𝑒 

grows from 0.3 to 0.6. Similar behavior is also exhibited by the 𝐿𝑒 = 1 flame, while neither 

oscillations nor acceleration is observed for 𝐿𝑒 = 2. Also, the maximum burning rate attained by 

a flame before propagation at a saturation velocity is lower for 𝐿𝑒 = 0.3 as compared to the cases 

of 𝐿𝑒 = 0.6 and 1. However, the saturation velocity falls within the same range for all three cases. 

Establishing the occurrence of such transitions between the oscillations and the acceleration 

regimes under the impact of 𝐿𝑒 provides a fascinating result. Indeed, it is seen that the Lewis 

number has both qualitative and quantitative effects on flame propagation in channels with open 

ends. Another interesting phenomenon observed in this configuration is 𝐿𝑒-coupling to the channel 

geometric parameters such as the channel width and the blockage ratio. For clearer understanding 

of these interacting effects: 𝐿𝑒 − 𝛼 and 𝐿𝑒 − 𝑅 interplays are separately presented in the following. 



68 
 

 Impact of 𝐿𝑒 − 𝛼 Interplay on Flame Propagation in Fully-Open Obstructed 

Channel 

In a semi-open channel, with a flame ignited at the closed end and travelling towards the open one, 

both parameters such as 𝐿𝑒 and 𝛼 have been demonstrated, individually, to impact FA, for reasons 

including the changes in the flame thickness or in the local flame temperature, due to 𝐿𝑒-variations 

[87,88], and also the impact of delayed burning in the pockets between the obstacle varies with the 

blockage ratio [54]. Now, we consider both effects cumulatively. The impact of 𝐿𝑒 on the flame, 

as seen here, is either enhanced or suppressed by 𝛼. Figures 7.14 and 7.15 depict the evolution of 

the scaled flame tip position and the scaled burning rate, receptively, for the 𝛩 = 8, 𝐿𝑒 = 0.3 

flames propagating in the channels with 𝑅 = 24 𝐿𝑓, 𝛥𝑍 = 𝑅/4 and three various blockage ratios.  

 
Fig 7.14: The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, 

the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 𝛼 = 1 3⁄ , 1/2, 2/3   and 𝑳𝒆 = 𝟎. 𝟑. 

 
Fig 7.15: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 𝛼 = 1 3⁄ , 1/2, 2/3 and 𝑳𝒆 = 𝟎. 𝟑. 
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While Figs. 7.14 and 7.15 are for the 𝐿𝑒 < 1 flames, their respective counterparts for equidiffusive 

(𝐿𝑒 = 1) combustion are Figs. 7.16 and 7.17, while Figs 7.18 and 7.19 are for the 𝐿𝑒 = 2 flames. 

For 𝐿𝑒 = 0.3 in Figs 7.14 and 7.15, the flame accelerates for all three blockage ratios considered. 

However, the time taken for initial propagation to until a transition to acceleration decreases as 𝛼 

grows from 1 3⁄  to 2 3⁄ . Also, the maximum burning rate and the saturation velocities also differ.  

 
Fig 7.16: The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, 

the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 𝛼 = 1 3⁄ , 1/2, 2/3 and 𝑳𝒆 = 𝟏. 

 
Fig 7.17: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 𝛼 = 1 3⁄ , 1/2, 2/3 and 𝑳𝒆 = 𝟏. 
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Fig 7.18: The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, 

the obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 𝛼 = 1 3⁄ , 1/2, 2/3 and 𝑳𝒆 = 𝟐. 

 
Fig 7.19: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

obstacle spacing ∆Z = 𝑅 4⁄ , the channel half-width 𝑅 = 24 𝐿𝑓, various 𝛼 = 1 3⁄ , 1/2, 2/3 and 𝑳𝒆 = 𝟐. 

The decreasing trend of initial propagation period with blockage ratio, observed here, is similar to 

the increasing trend of the acceleration rate observed for various blockage ratios in a semi-open 

channel. Specifically, higher blockage ratios are found to provide faster acceleration according to 

the Bychkov mechanism [54,89], when other conditions are kept constant, because of the larger 

volume of the burnt gas released into the central unobstructed part after delayed burning in the 

side pockets. The decrease in the initial propagation period observed for 𝐿𝑒 = 0.3 with growing 𝛼   
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can be attributed to delayed burning interacting with other attributes of a low-𝐿𝑒 flame such as 

thinner flame front, higher local heating temperature and faster flame response to flame curvature 

and stretch – all of which enhances FA. On the other hand, no acceleration is observed for all the 

blockage ratios when 𝐿𝑒 = 2 (Figs 7.18 and 7.19). Namely, the flame is seen to oscillate at 𝛼 =

1 3⁄  and 1 2⁄ , while it simply propagates at a constant velocity at higher α of 2 3⁄ . Increasing the 

blockage ratio to 2 3⁄  in this case results in suppression of the oscillations observed at lower 𝛼. An 

interplay between the higher volume of gas produced from delayed burning in the sides pockets 

(promoting effect) and other conditions provided by 𝐿𝑒 > 1 (moderating effect) appear enough to 

balance the resisting force, therefore, resulting in flame propagation at a constant velocity. In the 

case of 𝐿𝑒 = 1, Figs. 7.16 and 7.17, transition to acceleration is only observed for 𝛼 = 2 3⁄ , with 

the flame propagating at a constant rate for the other two blockage ratios. 

 Impact of the Le-Re Interplay on Flame Propagation in Fully-Open Channel 

Also, an interplay between the flame Lewis and Reynolds numbers, 𝐿𝑒 and 𝑅e, is explored in Figs. 

7.20 – 7.23 by plotting the scaled flame tip position and the scaled burning rate versus the scaled 

time for Θ = 8 and 𝛼 = 2 3⁄  and various scaled channels half-width, 𝑅/𝐿𝑓 = 12, 24, 36, 48. While 

the first two figures presents the 𝐿𝑒 = 0.3 flames, the latter two are their counterparts for 𝐿𝑒 = 2. 

 
Figure 7.20: The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ =

8, the obstacle spacing ∆Z = 𝑅 4⁄ , the blockage ratios 𝛼 = 2 3⁄ , the Lewis number 𝑳𝒆 = 𝟎. 𝟑 and various channel 

half-widths 𝑅 = 12 𝐿𝑓 , 24 𝐿𝑓, 36 𝐿𝑓, 48 𝐿𝑓. 
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Figure 7.21: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

obstacle spacing ∆Z = 𝑅 4⁄ , the blockage ratios 𝛼 = 2 3⁄ , the Lewis number 𝑳𝒆 = 𝟎. 𝟑 and various channel half-

widths 𝑅 = 12 𝐿𝑓 , 24 𝐿𝑓, 36 𝐿𝑓, 48 𝐿𝑓. 

 
Figure 7.22: The scaled flame tip position 𝑍𝑡𝑖𝑝 𝑅⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ =

8, the obstacle spacing ∆Z = 𝑅 4⁄ , the blockage ratios 𝛼 = 2 3⁄ , the Lewis number 𝑳𝒆 = 𝟐 and various channel 

half-widths 𝑅 = 12 𝐿𝑓 , 24 𝐿𝑓, 36 𝐿𝑓, 48 𝐿𝑓. 

All the three propagation regimes (namely, that of initial propagation at constant velocity, that of 

sudden acceleration, and that of oscillations at a saturation velocity) are exhibited by the 𝐿𝑒 = 0.3 

flames in the channels of half-width ranging from 𝑅 = 12 𝐿𝑓 to 48 𝐿𝑓. The acceleration rates, the 

maximum scaled burning rate and the saturation velocities fall within the same range for all the 

channels considered. This supports the 𝑅𝑒-independence of the original Bychkov FA mechanism.  

However, an interesting situation is observed in the delay time before FA, i.e. the time taken 

for initial flame propagation. The increase in such a delay time observed when 𝑅 grows from 𝑅 =

12 𝐿𝑓 to 𝑅 = 24 𝐿𝑓 is reversed by further increasing 𝑅, to the value of 𝑅 = 36 𝐿𝑓, with the time 
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decreasing further by increasing 𝑅 to 𝑅 = 48 𝐿𝑓. Such a delay prior to acceleration was however 

attributed to the effect of hydraulic resistance (viscous effect) [22], with the delay period stated to 

decay to zero as 𝑅 → ∞. This assertion however does not hold under some conditions, in this case, 

for 12 𝐿𝑓 ≤ 𝑅 ≤ 24 𝐿𝑓. A reversal of such a trend experienced for 24 𝐿𝑓 ≤ 𝑅 ≤ 36 𝐿𝑓 indicates 

the presence of a threshold within this region, which might depend on the Peclet number (the ratio 

of the channel half-width to the flame thickness) or other effects. For the 𝐿𝑒 = 2 flame (Fig 7.23), 

acceleration is observed only in the 𝑅 = 36 𝐿𝑓 and 𝑅 = 48 𝐿𝑓 channels, with the delay time prior to 

acceleration decreasing as 𝑅 grows from 36 𝐿𝑓 to 48 𝐿𝑓. At narrower channels such as those with 

𝑅 = 12 𝐿𝑓 and 24 𝐿𝑓, a flame propagates with a constant velocity. 

 
Figure 7.23: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

obstacle spacing ∆Z = 𝑅 4⁄ , the blockage ratios 𝛼 = 2 3⁄ , the Lewis number 𝑳𝒆 = 𝟐 and various channel half-

widths 𝑅 = 12 𝐿𝑓 , 24 𝐿𝑓, 36 𝐿𝑓, 48 𝐿𝑓. 

 Impact of Le-ΔZ Interplays on Flame Propagation in Fully Open Channel 

Increasing the obstacle spacing from Δ𝑍 = 𝑅/4 to 𝑅/2 and 𝑅, most especially for cases of 𝐿𝑒 < 1, 

where the existence of different modes of flame propagation has been established, show that the 

delay time prior to acceleration is also impacted. Specifically, Fig. 7.24 shows the scaled burning 

rate versus the scale time for 𝐿𝑒 = 0.3, Θ = 8, 𝑅 = 24, and 𝛼 = 1 2⁄ , with the delay time before 

transition to sudden acceleration decreasing as the obstacle spacing grows from 𝑅/4 to 𝑅/2. This 

delay time, however, increases when the obstacle spacing is further increased to 𝛥𝑍 = 𝑅. While 

flame propagation is not affected qualitatively as the obstacle spacing varies, the changes observed 

in the delay time might be due to competing contributions of delayed burning in the pockets and 
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turbulence. Indeed, a supplementary role played by turbulence in the Byckhov mechanism of FA 

in obstructed conduits is known to increase as the obstacle spacing grows, and thus, expected to 

contribute to the reduction of the initial delay time. However, the time needed before a contribution 

of delayed burning is felt in the unobstructed part of the channel also increases with the obstacle 

spacing, due to the increased volume of fuel premixture per pocket. When 𝛼 grows to 2/3, Fig. 

7.25, similar to the case of 𝛼 = 1 2⁄ , the delay time grows by increasing the obstacle spacing from 

𝑅/4 to 𝑅/2, but decreased thereafter. The higher blockage ratio of 𝛼 = 2 3⁄ , however, altered the 

flame dynamics, and consequently, the time taken prior to sudden transition to acceleration. 

 
Figure 7.24: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

channel size 𝑅 = 24 𝐿𝑓, the Lewis numbers 𝐿𝑒 = 0.3, blockage ratio 𝜶 = 𝟏 𝟐⁄  and various 𝛥𝑍/𝑅 = 1 4⁄ , 1/2, 1. 

 
Figure 7.25: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for the thermal expansion ratio Θ = 8, the 

channel size 𝑅 = 24 𝐿𝑓, the Lewis numbers 𝐿𝑒 = 0.3, blockage ratio 𝜶 = 𝟐 𝟑⁄  and various 𝛥𝑍/𝑅 = 1 4⁄ , 1/2, 1. 
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7.7. Oscillation-to-Acceleration Transitions of Low-Le Flames in Obstructed 

Channels with Open Ends 

 

Figure 7.26: The temperature snapshots for evolution of a flame with  = 8, 𝐿𝑒 = 0.3 propagating in an obstructed 

channel of half -width 𝑅 = 12 𝐿𝑓 with the blockage ratio 𝛼 = 2/3 (a partial section view). 

The flame evolution leading to sudden acceleration, discussed above, is illustrated by the color 

temperature snapshots in Fig. 7.26. Specifically, at the scaled time 𝜏 = 0.4, Fig. 7.26 (i), the hot 

spots and the flame segments not connected to the major propagating flame segment are observed 

to be formed between the obstacles. Spontaneous combustion caused by this condition results in 

thermal explosion and formation of additional hotspots, as seen in Fig. 7. 26 (ii). The interplay of 

the thermal explosion and the eventual completion of delayed burning occurring upstream in the 

channel, Fig. 7.26 (iii), provides enough force to create sudden acceleration. Compression of the 

fuel mixture ahead of a propagating flame results in the increased pressure and temperature in the 

fuel mixture, which can cause formation of the hot spots. Figures 7.27 and 7.28 show the plots of 

the scaled burning rate 𝑈𝑤 𝑆𝐿⁄  and temperature at the fuel side of the flame tip, 𝑇𝑡𝑖𝑝, respectively. 

Also, depicted in Fig. 7.27 and 7.28 is the instantaneous flame tip Mach number 𝑀𝑎𝑡𝑖𝑝. Here, the 

lines of similar color and type represent each 𝑅, while the bold lines in both figures show 𝑀𝑎𝑡𝑖𝑝, 

faint lines represent 𝑈𝑤 𝑆𝐿⁄  and 𝑇𝑡𝑖𝑝 in Figs. 7.27 and 7.28, respectively. These plots reveal that 

the three parameters follow the same trend. However, it is observed that 𝑀𝑎𝑡𝑖𝑝 grows first, before 

the other two parameters. 
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Figure 7.27: The scaled burning rate 𝑈𝑤 𝑆𝐿⁄  and the flame tip Mach number 𝑀𝑎𝑡𝑖𝑝 versus the scaled time 𝑡𝑆𝐿 𝑅⁄  for 

the 𝐿𝑒 = 0.3, Θ = 8 flames in the obstructed channels with 𝛼 = 2 3⁄ , ∆Z = 𝑅 4⁄ , and various 𝑅/𝐿𝑓 = 12, 24, 36. 

 
Figure 7.28: The fuel temperature at the flame tip 𝑇𝑡𝑖𝑝 and the flame tip Mach number 𝑀𝑎𝑡𝑖𝑝 versus the scaled time 

𝑡𝑆𝐿 𝑅⁄  for the 𝐿𝑒 = 0.3, Θ = 8 flames in the obstructed channels with 𝛼 = 2 3⁄ , ∆Z = 𝑅 4⁄ , and 𝑅/𝐿𝑓 = 12, 24, 36. 

At the early stage, when 𝑀𝑎𝑡𝑖𝑝 is low, both the flame temperature and the scaled burning rate 

maintain low values too. Subsequently, both 𝑇𝑡𝑖𝑝 and 𝑈𝑤 𝑆𝐿⁄  grow swiftly, signifying a transition 

to sudden acceleration, when 𝑀𝑎𝑡𝑖𝑝 reaches a threshold value being in the range 1 ≤ 𝑀𝑎𝑡𝑖𝑝 ≤ 2 

for 𝑅 = 12 𝐿𝑓 , 24 𝐿𝑓 , 36 𝐿𝑓 considered. Sudden acceleration can be devoted to compressibility in 

a channel as the compression of the fuel mixture ahead of the flame front results in the increased 

temperature and, consequently, the increased burning rate. However, while compressibility was 
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previously found to moderate FA in obstructed semi-open channels [82], in the present geometry,  

it is found to be responsible for sudden flame acceleration such as that reported in Ref. [90]. 

 

 
Figure 7.29: Oscillating and accelerating regimes of flame propagation for: various R, Le, 𝛼 = 1 2⁄ , ∆𝑍 = 𝑅 4⁄  & 

Θ = 8 (a); various 𝛼, Le, 𝑅 = 24𝐿𝑓, ∆𝑍 = 𝑅 4⁄  & Θ = 8 (b); various Θ, Le, 𝑅 = 24𝐿𝑓, ∆𝑍 = 𝑅 4⁄ , & 𝛼 = 1 3⁄  (c).  

Finally, the contour maps in Fig. 7.29 show the regimes of flame propagation, namely, acceleration 

and oscillations, exhibited by the propagating flame at various geometrical and thermo-chemical 

conditions. In Fig. 7.29a, it is shown that the tendency of the flame to accelerate increases with the 

channel width, for all 𝐿𝑒. However, the critical width at which FA occurs is lower for 𝐿𝑒 = 0.3, as 

compared to the 𝐿𝑒 ≥ 1 flames. The map of the blockage ratio 𝛼 versus the Lewis number 𝐿𝑒 at 

𝑅 = 24𝐿𝑓, ∆𝑍 = 𝑅 4⁄ , Θ = 8 in Fig. 7.29b indicates that a flame oscillates at 𝐿𝑒 = 2 but accelerate 

at 𝐿𝑒 = 0.3 for all the blockage ratios. Variation of the thermal expansion ratio Θ at various 𝐿𝑒, 

𝑅 = 24𝐿𝑓, ∆𝑍 = 𝑅 4⁄  and 𝛼 = 1 3⁄  in Fig. 7.29c shows that an increase in Θ in from Θ = 5 to Θ =

12 causes only 𝐿𝑒 ≤ 1 flames to accelerate. The impact of the higher Θ does not provide enough 

push to cause acceleration of the 𝐿𝑒 = 2 flame. In all cases considered, it is observed that the flame 

tendency to transit to acceleration increases as 𝐿𝑒 decreases. 

(a) (b) 

(c) 
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8 Conclusions and Recommendations 

 Conclusions 

The impact of non-equdiffusivity on the flame dynamics and morphology in channels of various 

geometrical configurations associated with different flame propagation mechanisms have been 

investigated by means of the computational simulations of the reacting flow equations including 

fully-compressible hydrodynamics, transport properties (heat conduction, viscosity and diffusion) 

and the chemical kinetics imitated by a first-order, one-step Arrhenius reaction. Variables explored 

in this parametric study include: the Lewis number, the thermal expansion ratio; the Reynolds 

number associated with flame propagation and defined by the channel half-width; the blockage 

ratio and the obstacle spacing (in obstructed geometry); and the thermal and mechanistic boundary 

conditions. A deviation from equidiffusivity is measured by the Lewis number, with 𝐿𝑒 = 1 for 

equidiffusive burning. 

Starting with the effects of non-equidiffusivity (including such phenomena as diffusional-

thermal instability and flame thickening) on finger FA at the early stage of premixed burning in a 

pipe with adiabatic slip walls, it is seen that the 𝐿𝑒 < 1 flames exhibit higher acceleration as 

compared with the 𝐿𝑒 = 1 flames. In the case of very low 𝐿𝑒, it is shown that the flame Reynolds 

number 𝑅𝑒, has only a minor effect on the burning rate and, consequently, on FA (if occurs). In 

contrast, the 𝐿𝑒 > 1 flames experience moderation of acceleration, due to a thickening of a flame 

front, with 𝑅𝑒 playing a more significant role in the changes that occur. It can be concluded from 

the fact of promoted FA observed at higher 𝑅𝑒 that easier distortion of a flame front is possible in 

wider channels, causing increased surface area of the flame front and thus a higher burning rate 

and stronger acceleration. The effect of thermal expansion ratio appears non-monotonic. Namely, 

an increase in  weakens flame acceleration at a low 𝐿𝑒 such as 𝐿𝑒 = 0.2. In contrast, at 𝐿𝑒 =

1.5, we have found that FA increases, slightly, with . 

The flame propagation in semi-open channel was also extended to obstructed channels in order 

to investigate the impact of non-equidiffusive burning on the Bychkov mechanism of FA. 

Specifically, the impact of 𝐿𝑒 on this acceleration mechanism is found to be as strong as that of 

the blockage ratio α, which was identified to be very strong for equidiffusive flames. In the case 

of 𝐿𝑒 < 1, promotion of flame acceleration is discovered. It is found that the Lewis number has 

an influence on the α-dependence. In contrast, moderation of FA has been observed for the 𝐿𝑒 >
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1 flames. The interplay between 𝐿𝑒 < 1 and high α leads to FA with the highest acceleration rate. 

In addition, a unique trend is noticed for the 𝐿𝑒-impact on 𝑅𝑒. Specifically, the Lewis number may 

change a 𝑅𝑒-dependence of FA to an opposite trend. 

In continuation, the impacts of the Lewis number on flame propagation in channels with both 

ends open, and with smooth, no-slip, adiabatic walls are analyzed. Also scrutinized is the interplay 

of nonequidiffusive burning with the thermal expansion ratio  and the flame Reynolds number. 

It is found that flames oscillate at 𝐿𝑒 < 1, with the oscillation amplitude and frequency decreasing 

with 𝐿𝑒. The low-𝐿𝑒 flames exhibit the stages of cusp formation, flame bifurcation and the collapse 

of flame segments, repeatedly. As for the 𝐿𝑒 ≥ 1 flames, the slight oscillations are seen right after 

initiation, following which steady flame propagation proceed. While the impact of  on the flame 

is found to be minimal, the trend of its impact at 𝐿𝑒 = 0.2 is reversed when 𝐿𝑒 = 2. An increase 

in the channel width produces a slight difference in the flame behavior, with the difference in 

morphology and dynamics more noticeable at 𝐿𝑒 = 0.2. Change in the thermal boundary condition 

to isothermal significantly changed the flame dynamics as the flames began to retract.  

Finally, the effects of fuel mixture non-equidiffusivity, 𝐿𝑒 ≠ 1 in obstructed channels with 

open ends are investigated. The interplays of 𝐿𝑒 with the geometrical parameter such as the channel 

half-width, the blockage ratio, and obstacle spacing ratio are also scrutinized. The flames undergo 

either oscillations, or acceleration, or a combination of both the regimes. The Lewis number was 

found to have both quantitative and qualitative impact on flame propagation as there are transitions 

from oscillation to acceleration, and vice versa, when 𝐿𝑒 changes. In conditions where oscillations 

are experienced for all the cases considered (namely, at thermal expansion ratio Θ = 8, blockage 

ratio 𝛼 = 1 3⁄ , channel width; 𝑅 = 12 𝐿𝑓, obstacle spacing ∆Z = 𝑅 4⁄ ), the oscillation frequency 

decreases while the oscillation amplitude increase with 𝐿𝑒. The flame also showed various regimes 

of propagation, namely: near-steady oscillations, sudden acceleration, the oscillations around a 

saturation velocity or propagation with a constant velocity – depending on the impact of the Lewis 

number – independently, or because of its interplay with other parameters. The flames show higher 

tendency of exhibiting the sequence of initial flame propagation-sudden acceleration-oscillation at 

saturation velocity at 𝐿𝑒 < 1, while flame oscillation is encountered more for the 𝐿𝑒 > 1 flames.  

The time of quasi-steady propagation of a 𝐿𝑒 < 1 flame is found to be affected by the changes 

in the channel geometric parameters. Whether a flame oscillates or accelerates is determined by 

the ratio of two competing forces: one from the expanding burnt gas, and the other from viscous 
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effect due to fuel premixture ahead of the flame front. The Lewis number is found to contribute 

significantly to the magnitude of the push force and the flames response to the stretch caused by 

the hydraulic resistance, and thus, the dynamics and morphology of the flame as it propagates. At 

the early stage of burning, compressibility is found not to be significant, therefore, the flame may 

oscillate. However, as the Mach number associated with the flame tip, 𝑀𝑎𝑡𝑖𝑝, subsequently grows, 

accompanied by an increased fuel temperature, hot spots are formed ahead of the flame front. An 

interplay of the thermal explosion caused by flow compression and delayed burning in the pockets 

between the obstacles is found to be responsible for the sudden transition from the oscillations to 

acceleration. 

 Recommendations 

The focus in this work was to investigate how the propagation of flames in channels is affected by 

the variations in the thermal to mass diffusivity ratio. The areas of future research directions to 

provide further fundamental understanding and enhanced practical applications include: 

In the semi-open obstructed channels, the present work focus on the acceleration at the early 

stage of flame propagation. Given the strong acceleration associated with the flame propagation 

in this mechanism, the possibility of detonation is high. It is therefore important to investigate what 

the impact of non-equidiffusivity on the DDT process and eventual detonation propagation would 

be. Incorporation of the detailed chemistry in the analysis is also deemed essential, as chemistry 

plays a key role in the DDT process. 

Also, part of the present work involves situations where channel ends remain open all through 

the flame propagation process. However, many situations in practice requires the conditions at the 

ends to change from time to time as the flame propagates. It is therefore necessary to investigate 

the effect of Lewis number on the flame when there are dynamic changes at the channel ends. 

Lastly, it is desired to apply the results of the present study in designing combustion devices, 

such as in pulse detonation engine, micro gas turbine for powering microdevices and in the 

performance improvement of fire prevention equipment for residential and industrial usage. 
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