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We present various performance trades for multiantenna global navigation satellite system (GNSS) multisensor attitude estimation
systems. In particular, attitude estimation performance sensitivity to various error sources and system configurations is assessed.
This study is motivated by the need for system designers, scientists, and engineers of airborne astronomical and remote sensing
platforms to better determine which system configuration is most suitable for their specific application. In order to assess
performance trade-offs, the attitude estimation performance of various approaches is tested using a simulation that is based on a
stratospheric balloon platform. For GNSS errors, attention is focused on multipath, receiver measurement noise, and carrier-
phase breaks. For the remaining attitude sensors, different performance grades of sensors are assessed. Through a Monte Carlo
simulation, it is shown that, under typical conditions, sub-0.1-degree attitude accuracy is available when using multiple antenna
GNSS data only, but that this accuracy can degrade to degree level in some environments warranting the inclusion of additional
attitude sensors to maintain the desired level of accuracy. Further, we show that integrating inertial sensors is more valuable
whenever accurate pitch and roll estimates are critical.

1. Introduction

For any airborne sensing platform, the pointing accuracy
is dependent on and can be limited to the accuracy of
the onboard attitude solution [1, 2]. As such, a key to
high pointing accuracy is a robust attitude-determination
system. This paper outlines the development, simulation,
and testing of a multisensor attitude determination algo-
rithm intended for airborne astronomical and remote
sensing platforms.

Attitude determination using multiantenna global
navigation satellite system (GNSS) observations is a well-
established technology, first proposed by Cohen and
Parkinson in 1991 for spacecraft applications [3]. It was
also adapted for aircraft use [4] and tested by the same
author [5]. Multiantenna GNSS attitude determination
has been tested on ground, waterborne, and flight vehicles
[6], and the technology has matured to the level that multiple
commercially available products [7, 8] are available. The
technology has been used for remote sensing platforms

since shortly after its proposal [9], and it is in use on mul-
tiple stratospheric balloon platforms [10].

There has been considerable effort to simulate gyroscope-
free attitude determination using 3-axis magnetometers,
2-axis sun sensors, or both, for spacecraft applications
[11]. Highlights include the use of a magnetometer-
only sun-pointing algorithm by Ahn and Lee in 2003 [12].
The magnetometer-derived attitude was within 3° of a
gyroscope-derived “truth.” Psiaki modeled an orbit- and
attitude-determination algorithm [13]. Using a 10 nT 3-axis
magnetometer and a 0.005°-σ sun sensor, this approach
showed less than 0.1° error in all axes. Crassidis and Markley
created a sun sensor and magnetometer Kalman filter and
showed that a magnetometer-only attitude estimate is mark-
edly improved (error reduced by approximately half) with
the inclusion of sun sensor data [11]. Considering the
increasing presence of small uninhabited aerial system
(UAS) applications in remote sensing, sensor fusion prom-
ises high attitude performance with low-cost, lightweight,
and compact hardware [10, 14].
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This paper outlines the design of a GNSS-based attitude
estimator that is then optionally augmented with various
other attitude sensors for use in other airborne remote sens-
ing or astronomy applications and offers the contribution of
assessing performance sensitivity to various design configu-
ration and common error sources. This paper makes up part
of the first author’s graduate thesis [15] and is a significant
extension upon our previous conference paper [16] in which
we improve upon the presented algorithm formulation and
revamp our Monte Carlo simulation study design. Through
a simulation that is built upon multiple sensor models,
the GNSS-only-based attitude solution is shown to work
well, but is significantly improved when additional sensors
are optimally fused. Specifically, we show the benefits of
including inertial, sun sensor, and magnetometer measure-
ments. This paper is expected to aid system designers and
scientific investigators as they propose or implement an
attitude determination system that is required to meet a
certain accuracy level.

The remainder of this paper is organized as follows. In
Section 2, the design of the baseline estimation filter and
attitude estimation filter is discussed. In Section 3, the
simulation environment and the sensor data simulation
are discussed. In Section 4, the performance of the GNSS-
based and multisensor attitude estimators is presented
and discussed. Section 5 summarizes this study’s findings
and discusses future work.

2. Attitude Estimation

2.1. Algorithm Overview. Figure 1 shows the overall algo-
rithm considered in this study. First, a carrier-phase differ-
ential GNSS filter, as detailed in Section 2.2, estimates the
baseline separations between antennas. Next, this informa-
tion is used within a GNSS-only multiple antenna attitude
estimator as described in Section 2.3. Finally, the resulting
estimated attitude state is optionally fused with a multisen-
sor estimator that also incorporates information from iner-
tial sensors, magnetometers, and sun sensors, as discussed
in Section 2.4.

2.2. Antenna Baseline Filter. This attitude estimation algo-
rithm begins with antenna baseline determination using a
Kalman filter. The Kalman filter estimator is a linear state
estimator which was developed by Kalman, Swerling, and
Bucy in a series of papers which detail its formulation and
implementation [17–19]. A full derivation of the Kalman
filter can be found in Crassidis and Markley and Groves
[11, 20]. This section will focus on the state, covariance,
and tuning of the Kalman filter applied in this study.

This implementation uses pseudorange and carrier-phase
differential GNSS (CD-GNSS) measurements to estimate the
relative position vectors between the antennas [21]. The state
vector, x, for this filter consists of the relative position vector
components between antennas A and B, xA,B, yA,B, and zA,B,
and a set of double-differenced pseudoranges and carrier-
phase biases, NA,B.

xbaseline =

xA,B
yA,B
zA,B
N1,k

A,B

⋮

Nj,k
A,B

1

The measurement models used to model the double-
differenced carrier-phase observables follow the same
approach outlined in [22], as is discussed next.

The model for an undifferenced GNSS pseudorange,
ρ, and carrier-phase measurement, ϕ, (with units of carrier
cycles) is given as [21]

ρ = r + Iρ + Tρ + c δtu − δts + ερ,

ϕ = λ−1 r + Iϕ + Tϕ +
c
λ

δtu − δts +N + εϕ,
2

where λ is the wavelength corresponding to the frequencies
L1 and L2 and expressed in meters. The geometric range r
between the receiver and GNSS satellite is also expressed in
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Figure 1: Block diagram showing the three main estimators: antenna baseline filter, GNSS-only attitude estimator, and multisensor attitude
estimator. This figure is an updated version of what was presented in the conference paper version of this work [16].
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meters, as are the ionospheric and tropospheric delays I and
T . The speed of light c is expressed in meters per second. The
clock biases of the receiver and satellite, δtu and δts, respec-
tively, are expressed in seconds. The unmodeled error
sources, which include multipath and thermal noise, are
included in ε in units of meters.

First, range and phase measurements for the master
antenna A (antenna 1) and B (antennas 2, 3, or 4) are differ-
enced to form single-differenced phase measurements:

Δρj
A,B = r jA,B + cδtA,B + εjρ,A,B,

Δϕj
A,B = λ−1r jA,B +

c
λ
δtA,B +Nj

A,B + εjϕ,A,B

3

Within (3), due to the very short baseline separation
between the antennas, the atmospheric delays completely
cancel along with any satellite clock bias and ephemeris
errors. Next, the single differenced measurements are then
differenced between satellites. For example, between satellite
j and reference satellite k,

∇Δρj,k
f ,A,B = rA/Bk∣k−1

+ εj,kρ,A,B,

∇Δϕj,k
f ,A,B = −λ−1 1 j

A − 1kA
T
rA/Bk∣k−1 +Nj,k

A,B + εj,kϕ,A,B,
4

where the remaining receiver clock bias errors are eliminated,

leaving only the unknown phase biases Nj,k
A,B, which are

known to be integers.
Because the GPS and GLONASS satellite constellations

operate at different frequencies, both a GPS and a GLONASS
satellite are used as separate reference satellites [23]. GLO-
NASS satellites operate using frequency division multiple
access (FDMA), and the wavelength varies from satellite to
satellite. The resulting interchannel bias is negligible when
using like receivers, as in this model [24]. Because of this,
double differences were only formed within each satellite
constellation (i.e., GPS and GLONASS) and a different refer-
ence satellite was identified for each.

The observation matrix, H, transforms the state x to
predicted measurements. The first three rows of this filter’s
observation matrix consist of the difference of two three-
component unit vectors, which point from the user to
the satellite used in the double differencing and to a refer-
ence satellite, R.

H =

u1x − uRx u1y − uRy u1z − uRz λL1,1

⋮ ⋮ ⋮ ⋱

unx − uRx uny − uRy unz − uRz λL1,n

u1x − uRx u1y − uRy u1z − uRz λL2,1

⋮ ⋮ ⋮ ⋱

unx − uRx uny − uRy unz − uRz λL2,n

5

The measurement vector, z, consists of double-
differenced pseudorange and phase measurements for each

satellite relative to the reference satellite, including measure-
ments for each L1 and L2 frequencies:

z = ∇Δρi,kL1,A,B ∇Δρi,kL2,A,B ∇Δϕi,kL1,A,B ∇Δϕi,kL2,A,B 6

Operating in parallel with the baseline estimation
Kalman filter, the floating point estimated phase biases

(for GPS satellites only); Nj,k
A,B and their estimated error-

covariance are fed into an integer ambiguity resolution
algorithm. In particular, the least-squares ambiguity dec-
orrelation adjustment (LAMBDA) method [25] is used
to determine the integer biases and adjust the estimated
relative positions.

The Kalman filter process noise, Q, and measurement
noise, R, and initial error-covariance, P0, assumptions
selected for the differential GNSS baseline estimator are out-
lined in Table 1:

2.3. Baseline to Attitude. Once the antenna relative baselines
with respect to a master antenna are estimated using the
baseline estimation filter, an earth-centered, earth-fixed
(ECEF) antenna relative position matrix, Le, is constructed
at each epoch by vertically concatenating the estimate relative
vectors of each of nonmaster antenna, as adopted from
Cohen and Parkinson [3]:

Le =
x2,e y2,e z2,e
x3,e y3,e z3,e
x4,e y4,e z4,e

7

This matrix is used to estimate the platform attitude
given by the antenna baseline vectors. The known body-
centric antenna coordinate matrix, Lb, with its origin
defined as the reference antenna’s position, makes up the
list of reference vectors.

Next, the singular value decomposition (SVD) method,
as proposed by Markley and Mortari and described in (9),
(10), and (11), is used to find the rotation matrix Cb

e between
the ECEF, e, and body, b, frames [26]. This is then trans-
formed into the local navigation frame using, n, the earth-
to-nav rotation, which is dependent on the master antennas’
latitude and longitude and is defined in many texts [20]:

Cb
n =Ce

nCb
e 8

This solution requires the construction of a matrix B
using the measured vectors vi and reference vectors wi:

Table 1: Baseline filter assumed parameters, same as in [16].

Filter parameter Assumed values

State error covariance P0
Baseline states: 1m

Ambiguity states: 225m

Measurement noise covariance R σϕ = 4 ⋅ 10−4 m

Process noise covariance Q
Attitude states:

in‐run bias ⋅ 10−2 m/ s
Ambiguity states 0m/ s
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B = 〠
n

i=1
vi wi

T 9

A SVD is performed on B, resulting in unitary matricesU
and V. A diagonal, 3× 3 matrix M is constructed using the
determinants of U and V:

M =

1

1

U V
10

By multiplying U, M, and V, one can find the rotation
matrix R:

R =UMVT 11

The SVD rotation solution also provides a straightfor-
ward attitude error covariance matrix which was used as an
error covariance matrix in the GNSS-only attitude filter
and for the measurement covariance of the GNSS-attitude
estimates when fusing the solution in a multisensor Kalman
filter [27].

In order to obtain the attitude error covariance matrix,
the matrix B is multiplied by the transpose of the nontrans-
formed rotation matrix Cb

e .

D = B Cb
e

T
12

D can then be used to find the inverse of the error covari-
ance matrix:

P−1 = tr D ∗ I 3 × 3 −D 13

This is then scaled by multiplying the nominal standard
deviation of attitude error attributed to noise in the baseline
measurements, in this case 0.01°, to obtain a measurement
error covariance matrix to be used for GNSS measurements
in the nonlinear filter.

The attitude dilution of precision, as proposed by Yoon
and Lundberg, and will be used in the paper to assess trades
with respect to multiple GNSS constellations, is a similar
metric which assesses the ability to measure the Euler angles
[28] depending on the GNSS satellite constellation geometry.
It is defined as [28]

ADOP = tr nI − SST −1 , 14

where n is the number of satellites in view, I is the 3× 3 iden-
tity matrix, and S is a 3×N matrix comprising the unit vec-
tors to each satellite, including the reference satellite [28].

2.4. Multisensor Unscented Kalman Filter. Finally, a non-
linear estimator is used for attitude determination using
all sensor data, due to the nonlinear nature of attitude to sen-
sor observation transformation. Several nonlinear attitude
determination methods exist. The QUEST, or quaternion
estimation method, seeks the unique quaternion solution
for a set of vector measurements and reference vectors [29].

The RE-QUEST, or recursive QUEST, applies the same
method, but rather than solving for a single epoch, it uses a
filtering approach to find the time-varying attitude profile
[30]. Other filtering techniques include the multiplicative
extended Kalman filter (M-EKF) [31] and the quadratic
extended Kalman filter (Q-EKF) [32].

In this paper, an unscented Kalman filter (UKF) was
chosen for its nonlinear transformation ability. The UKF
has been shown to perform nearly identically an EKF for
GPS/INS attitude estimation applications [33, 34], but offers
the implementation benefit of not requiring the analytic
evaluation of linearized partial derivatives of the process
and observation equations. The details of the UKF imple-
mentation followed in this study are offered in the tutorial
paper by Rhudy et al. [34], and as such, these details are
not discussed in detail herein. In this paper, an outline
of the state vector, state prediction f x , and observation
functions h x for each measurement update is discussed.

This unscented Kalman filter utilizes inertial measure-
ments for its state prediction, with bias estimation. The GNSS
Euler angles, as well as magnetometer and sun sensor data,
are used as measurement updates. Magnetometer measure-
ment updates occur at each filter time step, which take place
at 50Hz intervals. GNSS and sun sensor updates occur at
10Hz intervals.

The state vector, x estimated in the multisensor filter is
given as

xUKF =

ϕ

θ

ψ

bp

bq

br

15

where ϕ, θ, and ϕ are the platform’s roll, pitch, and yaw and
bp,q,r is the time-varying biases of the IMU’s roll rate, p, pitch
rate, q, and yaw rate, r, gyroscopes.

Within the UKF framework, at each epoch, the state vec-
tor is expanded into a group of 2L + 1 sigma points, χ, where
L = 6 is the length of the estimated state vector. For each
group of sigma points l, the attitude states are predicted by
integrating the IMU gyro data through the attitude kinematic
equations [35]:

f ϕ, θ, ψ :

ϕi

θi

ϕi

=

ϕi−1

θi−1

ϕi−1

+

1 t θi−1 s ϕi−1 t θi−1 c ϕi−1

0 c ϕi−1 −s ϕi−1 c θi−1

0
s ϕ
c θi−1

c ϕi−1
c θi−1

p

q

r

−

bp

bq

br

Δt,

16
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where s ⋅ represents sine, c ⋅ represents cosine, and t ⋅
represents tangent.

The delta angles p, q, and r, shown in Figure 2, are the
measured delta angles from the gyroscope, corrected for the
craft- and earth-rate rotations which were included in the
IMU model.

p

q

r

=
p′

q′

r′
−

pc

qc

rc

+

pe

qe

re

17

The earth-rate rotations pe, qe, and re can be found using
the earth’s rotation transformed to the body frame, then con-
verting to Euler angles [20]

Δθe =ΩE

0 sin L 0

−sin L 0 −cos L

0 cos L 0

Cb
n, 18

where ΩE is earth’s rotation rate and L is the craft’s latitude.
The craft-rate rotation component can be found in a similar
way [20]

Δθc =
0 −ωn

en,z ωn
en,y

ωn
en,z 0 −ωn

en,x

−ωn
en,y ωn

en,x 0

,

ωn
en =

vneb,E
REL + h

−
vneb,N

RNL + h

−vneb,Etan
L

REL + h

,

19

where vneb,N and vneb,E are the north and east components
of the craft’s velocity, h is the craft’s altitude, and RE is
earth’s radius.

Furthermore, ϕi−1, θi−1, and ψi−1 are the previous epoch’s
roll, pitch, and yaw sigma points and are the first three
elements of each column of χ, and bp,q,r is the sigma points
corresponding to the estimated IMU bias, which is predicted
as random walk parameters.

f bp,q,r :

bp,i

bq,i

br,i

=

bp,i−1

bq,i−1

br,i−1

+

wb,p

wb,q

wb,r

20

The measurement-prediction matrix Ψ is populated by
the predicted measurement vectors using each set of sigma-
points in χ. Because measurements occur at different rates
in this filter, it is necessary to have different measurement
updates occur at different rates. For epochs coinciding
with the sun sensor and GNSS attitude measurements,
each column Ψi is as follows:

Ψi =

Bb,x

Bb,y

Bb,z

∠X

∠Y

ϕ′

θ′

ψ′

, 21

where Bb, ∠X , and ∠Y are predicted magnetometer and sun
sensor measurements based on the ith sigma point.

CG

q
Yb

Zb

Xb
p

r

Figure 2: The roll, pitch, and yaw delta angles p, q, and r.
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The observation equations use Ĉb
n, the direction-cosine

representation of the predicted attitude states ϕ̂, θ̂, and ψ̂.
Modeling of the magnetometer measurements uses the atti-
tude state multiplied by the earth’s magnetic field vector:

hB ϕ, θ, ψ : B b = Ĉb
n B n 22

Sun sensor measurements begin with the navigation-
frame solar incidence vector Vsun,n, which are multiplied by
the attitude state to find the body-frame incidence vector

Vsun,b = Ĉb
nVsun,n, 23

and the solar incidence angles ∠X and ∠Y are then calculated
as follows:

h∠X
ϕ, θ, ψ : ∠X = π

2
+ atan2Vsun,z,b

Vsun,x,b
,

h∠Y
ϕ, θ, ψ : ∠Y =

π

2
+ atan2

sunz,b
suny,b

,
24

where atan2 is the four-quadrant tangent inverse.
The measurement update matrix z consists of the simu-

lated sensor measurement at each filter epoch. These are
similar in form to the columns of Ψ:

z =

Bb,x

Bb,y

Bb,z

∠X

∠Y

ϕGNSS

θGNSS

ψGNSS

25

For epochs without GNSS and sun sensor measurements,
Ψ and z consist only of magnetometer predictions and
measurements.

3. Data Simulation

3.1. Flight Profile. The simulated flight data used in this study
is based upon the recorded flight data of ANITA III balloon
experiment. That is, to simulate a balloon flight, the onboard
position and attitude solutions were accepted as truth for
simulation purposes, and sensor readings with realistic mea-
surement noise were simulated.

Figure 3 shows the Euler angle time histories during a
two-hour segment of the ANITA III flight. As indicated in
Figure 3, the platform had a small (<1°) oscillation in the roll
and pitch axes and a constant rotation about the yaw axis. A
variable starting location was used to investigate the effect of
the lower GDOP and ADOP at high latitudes.

3.2. GNSS Observable Simulation. For each simulation run,
four GNSS receivers were simulated with baseline

separations of one-meter each, such that they are arranged
in a square configuration. That is, the antennas were placed
according to the following matrix:

Lb =
x2,b y2,b z2,b
x3,b y3,b z3,b
x4,b y4,b z4,b

, 26

where xi,b, yi,b, and zi,b are the body-centric coordinates of
the ith antenna, i = 1, denoting the master antenna. GNSS
carrier-phase data was simulated for each flight profile at a
rate of 10Hz using the MATLAB SatNav toolbox [36],
which was modified by Watson et al. [37] to include addi-
tional GNSS error sources.

A number of deterministic and nondeterministic error
sources are associated with GNSS measurements [21]. Fortu-
nately, for attitude estimation applications, several of the pri-
mary GNSS error sources, including satellite and receiver
clock biases and atmospheric delays, are canceled through
the use of double-differenced GNSS observations [21].
However, two important error sources, namely, multipath
reflections and carrier-phase breaks, or cycle slips, remain
present. For example, when a metallic object reflects a GNSS
signal onto the antenna, the multiple paths induce errors
[21]. This could be a large problem on balloon-based scien-
tific platforms, as the antennas are spaced closely and in close
proximity to science payload. Thermal measurement noise
in the receiver is another error source; it is actually amplified
by double differencing GNSS data. As such, for this simula-
tion study, multipath, carrier-phase breaks, and receiver
thermal errors were assessed with respect to their effect on
the attitude estimator’s performance using the distributions
indicated in Table 2.

3.3. Inertial Measurement Simulation. In addition to GNSS
measurements, inertial measurement unit data was simulated
for each flight profile and data at a sampling rate of 200Hz.
In particular, four grades of IMU triaxial rate gyroscope
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Figure 3: Attitude profile used in this work. This figure has been
reproduced from the conference paper version of this work [16].
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and accelerometers were assessed in the simulation. To sim-
ulate the effect of IMU noise, these ideal measurements were
then polluted with both a time-varying bias bi with in-run
stability σin‐run and measurement noise σARW:

bi = bi−1 + X1σin‐run,

Δθi′ = Δθi + bi + X2σARW,
27

where X1 and X2 are normally distributed random num-
bers with a zero mean and unit standard deviation. The
magnitude of these two noise terms was selected based on
the grade of the inertial sensors assumed, which were varied
as indicated in Table 2.

3.4. Magnetometer Simulation. Triaxial magnetometer data
was also simulated for each flight based on the measurement
models and uncertainties of available sensors [38]. In par-
ticular, the earth’s magnetic field along the flight profile
was calculated and sensor measurements were simulated
by polluting these true values with random noise based
on the measurement noises quoted by the manufacturers’
specification sheets as indicated in Table 2 [38].

The magnetometer data consists of magnetic field inten-
sity measurements (Bb) in three orthogonal directions corre-
sponding to the north, N, east, E, and down D axes in the
body frame, b. This begins with BE, a vector constraining
the simulated magnetic field intensities in the navigation
frame, generated at each location along the flight path:

B E
=

Bb,N

Bb,E

Bb,D

28

The magnetic field was generated using the World
Magnetic Model (WMM) [39] in an interface developed
by Hardy et al. [40].

Body-frame magnetic field measurements are simulated
by multiplying truth attitude (represented by the direction-
cosine matrix Cb

n) by the navigation-frame magnetic field:

B b =Cb
n B E 29

With three contributing error sources added: hard and
soft iron errors and measurement noise, in a simplified
method as described by Gebre-Egziabher et al. [41]:

B̂ =Asi B b + B hi, 30

where Asi is a 3× 3 matrix which describes the soft-iron error

effect and B hi is a 3× 1 vector containing the hard-iron off-
set, a magnetic field generated by ferromagnetic material on

the platform. For this study, nominal values for Asi and B hi
were used, based on the calibrations in the Gebre-Egziabher
et al. paper [41]. Simulated measurement noise was then
added to B̂, corresponding to the precision level of the mod-
eled magnetometer.

3.5. Sun Sensor Simulation. Simulated sun sensor data
consists of solar incidence angles ∠X and ∠Y relative to the
two horizontal body-frame axes Xb and Yb. These were gen-
erated using the apparent solar azimuth θsun and elevation
ϕsun calculated for each epoch of the flight duration. First,
the solar azimuth and elevation values are transformed into
a unit vector representing the sun’s position in the sky with
respect to the navigation frame, n:

Vsun,n = sunx,nsuny,nsunz,n 31

This unit-vector is then transformed using the nav-to-
body direction cosine matrix Cb

n:

Vsun,b =Cb
nVsun,n 32

Table 2: Sensor error source Monte Carlo simulation distribution parameters, same as in [16].

Error sources Model parameters Notes

Thermal noise σρ = 0 32m, σϕ = 0 16λ Linear scale factor randomly selected between 0 and 1

Multipath 1.0 intensity: σ = 0 4m, τ = 15 sec Linear scale factor randomly selected between 0 and 2

Tropospheric delay
Percent of error assumed handled by

broadcast correction
Modified Hopfield with linear scale factor
randomly selected between 0.95 and 1.05

Ionospheric delay
First-order ionospheric effects
mitigated with dual frequency

Linear scale factor randomly selected between 0.7 and 1

Carrier phase break
Likelihood set to 1 phase break per 24 minutes

to 1 phase break per 240 minutes

Gyroscope
In-run bias σ = 9 6e−6 rad/sec ,

ARW= 0 2 deg/ hr Scaled Honeywell HG1700AG72 SF = (1/50, 1/200, 1/400)

Sun sensor Zenith measurement noise σ = 0 1deg Scaled solar MEMS ISSDX-60 SF = (1, 2, 3, 4)

Magnetometer
Measurement noise σ = 2 67 nT

Asi terms scaled between 0.005 and 0.01

B hi terms scaled between 25 nT and 50 nT
ST LSM9DS0
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The incidence angles ∠X and ∠Y are calculated as
follows:

∠X =
π

2
+ atan2

sunz,b
sunx,b

,

∠Y = π

2
+ atan2 sunz,b

suny,b
,

33

as in the filter’s measurement prediction step.
As with the magnetometer measurements, simulated

measurement noise was added to the sun sensor measure-
ments, corresponding to the performance of available sensors
[42]. However, in the case of a sun sensor, as measurement
noise increases at low solar elevations, the measurement
noise was scaled according to solar elevation angle. Sun sen-
sor measurements were simulated at 10Hz intervals.

3.6. Error Sources and Monte Carlo. For this study, a total
of 50 one-hour flight profiles were simulated in a Monte
Carlo manner. In particular, the ECEF starting positions,
magnitude of GNSS error sources, and quality of IMU,
magnetometer, and sun sensor data were varied as indi-
cated in Table 2. Note that by randomly varying the start-
ing location, the GNSS constellation satellite geometry was
randomized as well.

4. Results

4.1. GNSS Only. The GNSS-only attitude determination
script was run in two modes, the first using GPS data only
and the second adding GLONASS observables. The pitch,

Table 3: GNSS attitude performance—median RMS error.

Median errors Roll (deg.) Pitch (deg.) Heading (deg.)

GPS only 0.44 0.42 0.16

GPS +GLONASS 0.28 0.26 0.12
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Figure 4: ADOP calculated along one meridian, averaged over a
24-hour period for the GPS constellation, for the GLONASS
constellation, and for both constellations.
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Figure 5: Comparison between GPS-only mode and GPS +
GLONASS mode for all profiles, latitude shown.

Table 4: Unscented Kalman filter error statistics: median attitude
error.

Median errors Roll (deg.) Pitch (deg.) Heading (deg.)

GNSS + INS 0.59 0.38 0.64

INS +Mag + SS 0.0041 0.047 0.045

GNSS + INS +Mag + SS 0.048 0.053 0.047
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Figure 6: Comparison between GNSS-SVD solution and
multisensor attitude filter in different modes—3-axis attitude error.
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roll, and heading error statistics for both filter modes are pre-
sented in Table 3. These results include two simulations for
which the baseline filter solution failed to converge, presum-
ably due to carrier-phase break.

Using GLONASS as well as GPS satellites yielded a
median performance improvement of 40 percent lower atti-
tude error. In an Antarctic flight regime, fewer GNSS satel-
lites are observable, and these are seen at lower elevations
[43]. This can negatively impact the geometric dilution of
precision (GDOP), a metric that describes the geometric
diversity of satellite-receiver vectors [21] and also the attitude
dilution of precision (ADOP), as defined in (14). Figure 4
shows the ADOP calculated by latitude for a single meridian,
averaged over a full day. At high latitudes, the GLONASS
constellation has a lower (and therefore more desirable)
ADOP figure, and using both constellations yields a lower
ADOP at all latitudes. Figure 5 shows the overall compar-
ison between the GPS-only and GPS and GLONASS
attitude solutions. For most profiles across the latitude
range, the GPS+GLONASS solution outperformed the
GPS-only solution.

4.2. GNSS and Multisensor Attitude Filter. Table 4 pre-
sents overall error statistics for the 50 trials for the
GNSS+ INS, GNSS+ all sensors, and all sensors without
GNSS, respectively.

Figure 6 shows the cumulative distribution of the 3D
attitude error = ϕ2 + θ2 + ψ2 for the various filter con-
figurations over the 50 simulated flights, and Figure 7
shows the corresponding roll, pitch, and yaw errors for the
simulated flights.

In these tables, it is clear that using additional sensors in
addition to GNSS can markedly improve performance. For
example, Figure 8 shows the attitude estimation error for
one example trial, in which the GNSS-only attitude is
shown alongside the multisensor filters for comparison.
When accurate pitch and roll estimates are critical, the
inertial sensors offer more trials with significant accuracy
increases, as evident when looking at the GNSS-INS-only
solution. When the full suite of sensors is combined, 10%
of the sun/INS/Mag solutions that drift considerably are

improved. As expected, the yaw estimate is greatly improved
by the sun and magnetic measurements.

Of great interest is the algorithm’s ability to handle
carrier-phase breaks. For example, phase breaks could
occur due to radiofrequency interference, such as during
a data uplink/downlink transmission over the Iridium
satellite constellation which operates very close to the
GPS L1 frequency [44]. When a carrier-phase break
occurs, it can fortunately be detected easily by a data edi-
tor [45]. As such, whenever this occurs, the baseline esti-
mation filter resets the error covariance for the impacted
carrier-phase ambiguities to a large value. The multisensor
filter attitude determination performance was generally
lower across the range of phase break likelihoods as shown
in Figure 9. Notably, the multisensor UKF yielded a low
error-level attitude solution for the few trials with consid-
erably high GNSS-attitude errors.
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Figure 7: Comparison between GNSS-SVD solution and multisensor attitude filter in different modes—roll, pitch, and yaw error.

−2

0

1000 2000 3000 4000 5000 6000 7000

1000 2000 3000 4000 5000 6000 7000

1000 2000 3000 4000 5000 6000 7000

2

𝜑

−2

0

2
𝜃

Time (s)

−2

0

2

𝜓

Eu
le

r a
ng

le
 er

ro
r (

de
gr

ee
s)

GNSS − SVD
GNSS + INS
GNSS + INS + Mag + Sun

Figure 8: Roll, pitch, and heading errors for multisensor filter in
GNSS + INS mode, GNSS+ INS +Mag + SS mode, with GNSS-only
result for comparison. This figure has been reproduced from the
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Also of interest is the estimator’s performance with
high receiver measurement thermal noise and GNSS mul-
tipath reflection errors. These could arise on a scientific plat-
form depending on the GNSS antenna configuration relative
to the other scientific instruments and antennas/Figures 10
and 11 show that the multisensor filter yields lower magni-
tude errors than the GNSS-only filter across both error scale
ranges. Although an increasing level of multipath error did
not noticeably affect the result of the GNSS-only filter per-
formance, the multisensor filter performed better in nearly
all trials.

Sensitivity to the ionospheric and tropospheric error
contribution to the GNSS errors was not considered, as the
short baseline between antennas led to cancellation of those
error sources.

5. Conclusions

This study outlined the design of a GNSS-based attitude
determination algorithm and its incorporation in a nonlin-
ear attitude-determination filter which also utilized inertial
measurements. Additional measurements from sun sensors
and magnetometers were also proposed and added to the
algorithm architecture. The algorithm was run in multiple
modes with varying levels of measurement errors to assess
how each measurement type contributed to the attitude
determination performance. First, it was shown that the
GNSS-only attitude solutions are consistently improved
when GLONASS satellites are included in addition to
GPS, owing to more observables and lower dilution of
precision (especially in polar regions). Across all flight
profiles, GLONASS observables yielded a median of 30
percent lower error in the pitch and roll axes, with closer
performance in the yaw axis. The performance was some-
what mitigated when GNSS Euler angle measurements
were combined with inertial measurements only. This was
most evident in the yaw axis, further indicating tuning as a
potential culprit. Incorporating sun sensor and magnetome-
ter measurements yielded the best improvement to the
nonlinear filter’s performance, with median performance
better than tenth-degree accuracy for a majority of the trials.
The combined estimator showed nearly a uniform distribu-
tion and nearly consistent improvement when assessing
sensitivity against two important GNSS error sources, phase
breaks and multipath.
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