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Abstract Serotonin plays different roles across networks within the same sensory modality.

Previously, we used whole-cell electrophysiology in Drosophila to show that serotonergic neurons

innervating the first olfactory relay are inhibited by odorants (Zhang and Gaudry, 2016). Here we

show that network-spanning serotonergic neurons segregate information about stimulus features,

odor intensity and identity, by using opposing coding schemes in different olfactory neuropil. A

pair of serotonergic neurons (the CSDns) innervate the antennal lobe and lateral horn, which are

first and second order neuropils. CSDn processes in the antennal lobe are inhibited by odors in an

identity independent manner. In the lateral horn, CSDn processes are excited in an odor identity

dependent manner. Using functional imaging, modeling, and EM reconstruction, we demonstrate

that antennal lobe derived inhibition arises from local GABAergic inputs and acts as a means of

gain control on branch-specific inputs that the CSDns receive within the lateral horn.

DOI: https://doi.org/10.7554/eLife.46839.001

Introduction
Virtually all neuronal circuits are subject to neuromodulation from both neurons intrinsic to a network

and extrinsic centrifugal sources (Katz, 1995; Lizbinski and Dacks, 2017). In vertebrates, extrinsic

modulation is often supplied by nuclei located deep within the brainstem that release a variety of

transmitters such as norepinephrine (NE) (Schwarz and Luo, 2015), serotonin (5-HT) (Charnay and

Léger, 2010; Hornung, 2003), dopamine (DA) (Ikemoto, 2007; Lammel et al., 2008), or acetylcho-

line (Ach) (Wenk, 1997). For example, the olfactory bulb (OB) in mammals receives a tremendous

amount of centrifugal innervation (Padmanabhan et al., 2018) that can be critical for proper olfac-

tory behavior (Nunez-Parra et al., 2013). However, by spanning and innervating most cortical and

subcortical regions, modulatory systems target multiple points along the sensory-motor axis of func-

tional circuits. A prominent view of such modulatory systems is that they provide a mechanism for

top-down regulation of sensory processing (Jacob and Nienborg, 2018; Thiele and Bellgrove,

2018) and help coordinate activity across brain regions (Melzer et al., 2012). Modulatory systems

are traditionally regarded as integrate-and-fire models where the neurons integrate synaptic inputs

in their dendrites within their local nuclei and use action potentials to broadcast this signal to release

sites across sensory networks. Such models imply that modulator release will be inherently corre-

lated across distal targets. However, as virtually all axons are subject to pre-synaptic regulation
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(Miller, 1998), it is likely that most centrifugal modulatory neurons are subject to local influences by

the circuits that they infiltrate. This suggests that the local release of transmitters from such systems

may instead be decorrelated across brain regions. Decorrelating transmitter release across brain

regions is advantageous, as it would provide greater flexibility in how neuromodulation may be

employed. How transmitter release is locally regulated in modulatory neurons and how signals prop-

agate through their processes has been exceedingly difficult to study in vertebrate systems due to

many contributing factors. First, the vertebrate cerebrum is large and imaging the extensive pro-

cesses of such neurons across brain areas requires specialized tools (Lecoq et al., 2014;

Sofroniew et al., 2016; Stirman et al., 2016; Terada et al., 2018). Second, individual modulatory

neurons within the same brainstem nucleus are highly heterogeneous in their projection patterns

(Gagnon and Parent, 2014; van der Kooy and Kuypers, 1979) making it difficult to assign activity

across brain regions to individual cells. Additionally, the spatial pattern of extrinsic input activation

can also be stimulus specific. For example, different odors can activate unique presynaptic terminals

from piriform neurons that feed back into the OB (Otazu et al., 2015). But whether such odor

responses in centrifugal inputs arise from the recruitment of different individual cortical neurons or

from local axo-axonic interactions within the OB remains unknown. The spatial pattern of cholinergic

input to the OB is also odor-specific and arises through similarly undescribed mechanisms

(Rothermel et al., 2014).

The Drosophila brain is an ideal preparation to study how signals propagate through wide-field

modulatory neurons because such cells are often stereotyped and can be genetically targeted across

individual flies. For example, only one serotonergic neuron per hemisphere, termed the contralater-

ally-projecting serotonin-immunoreactive deuterocerebral neuron (CSDn), innervates both the first

and second order olfactory neuropils in the fly brain (Coates et al., 2017; Dacks et al., 2006;

Roy et al., 2007; Sun et al., 1993) (Figure 1A). CSDns can be targeted genetically (Roy et al.,

2007) and affect various olfactory behaviors involving appetitive (Xu et al., 2016) and pheromonal

odorants, including cis-vaccenyl acetate (cVA) (Singh et al., 2013). The modulation of cVA-evoked

behavioral responses is especially interesting because the CSDns are thought to participate in top-

down modulation and to have their effects mainly in the first olfactory relay, the antennal lobe (AL)

(Hill et al., 2002; Singh et al., 2013; Sun et al., 1993). However, CSDn processes avoid the cVA-

sensitive DA1 glomerulus (Coates et al., 2017; Zhang and Gaudry, 2016) and DA1 projection neu-

ron (PN) odor responses are not modulated with strong CSDn stimulation (Zhang and Gaudry,

2016). Finally, whole-cell recordings show strong inhibition of the CSDn during stimulation with cVA

(Zhang and Gaudry, 2016). This suggests that the modulatory effects of the CSDns on cVA-guided

behavior may not occur in the AL, but rather in one of the other olfactory neuropil that the CSDns

innervate. Because the CSDns express pre- and postsynaptic markers throughout their arborizations

(Zhang and Gaudry, 2016), it is possible that transmitter release is locally regulated via inputs from

their target networks (Gaudry, 2018) and that olfactory-mediated modulation occurs predominantly

downstream of the AL. In this study we employed 2-photon calcium imaging, electron microscopy,

and compartmental modeling to show that the CSDns integrate synaptic inputs locally within their

target regions giving rise to distinct odor evoked activity patterns within different olfactory neuropil.

Results
To examine how CSDns contribute to olfactory processing across brain regions, we employed

GCaMP6s (Chen et al., 2013) and 2-photon volumetric microscopy to characterize olfactory

responses across their arbors. We initially imaged CSDn neurites in the AL (Figure 1B, Figure 1—

video 1) and found that nearly all compounds in a diverse panel of odorants resulted in inhibition

(Figure 1C and D and Figure 1—figure supplement 1). The only exception was ammonia, which

produced a weak level of excitation as previously reported in whole-cell somatic recordings

(Zhang and Gaudry, 2016). These results are consistent with previous studies demonstrating that

odors generally inhibit the CSDns during electrophysiological somatic recordings (Figure 1E)

(Zhang and Gaudry, 2016), which is due to prominent input from GABAergic local interneurons

(LN) (Coates et al., 2017; Zhang and Gaudry, 2016).
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Inhibition in the AL scales with increasing odor intensity and the spatial pattern of activation of

GABAergic LNs is odor invariant (Hong and Wilson, 2015). Inhibition of the CSDn also scales with

odor intensity (Zhang and Gaudry, 2016), but it is unknown if unique odors can recruit distinct spa-

tial patterns of CSDn activity within its dendrites in the AL. We used principal component analysis

(PCA) to examine the spatial profile of CSDn inhibition in response to our odor panel. This analysis

revealed that only the first PC generated a structured image showing inhibition in the AL while PC2

captured the excitation resulting from stimulation with ammonia (Figure 1F). Thus, aside from

ammonia, CSDn processes in the AL receive odor-invariant inhibition, and this inhibition scales with

odor intensity (Zhang and Gaudry, 2016).

We next examined CSDn processes in the lateral horn (LH; Figure 2A), a brain region that

receives direct input from the AL and mediates innate olfactory behaviors (de Belle and Heisenberg,

1994). Surprisingly, we found that every odorant in our panel produced excitation in the CSDn LH

arbors (Figure 2B, Figure 2—video 1). Furthermore, PCA revealed that CSDn odor responses in the

LH varied spatially (Figure 2C, Figure 2—figure supplement 1) and displayed a greater coefficient

of variation compared to responses in the AL (Figure 2D). These results show that the processes of

the CSDn have opposing responses to odor stimulation across different olfactory regions

(Figure 2E). The CSDn has both pre- and postsynaptic sites in the LH (Zhang and Gaudry, 2016), so

GCaMP signaling could represent either the activation of CSDn postsynaptic receptors or calcium

influx at presynaptic release sites. Some GCaMP signaling in the LH must represent local activation

of postsynaptic receptors in the CSDn since its AL processes are simultaneously inhibited. To assess

Figure 1. Olfactory stimulation inhibits CSDn processes in the AL. (A) A single CSDn expressing GFP shows processes in both the AL and the LH.

White = GFP expression, blue = neuropil labeling via N-cadherin immunocytochemistry. Scale bar = 50 um. (B) Background fluorescence from

GCaMP6s expression in CSDn neurites in the AL. L = lateral, p=posterior. The same notation is used in subsequent figures (C) Odor-evoked changes in

calcium (DF/F) levels in the AL processes of the CSDn. Cooler colors (blue) represent decreases in calcium levels and warmer (red) colors show increases

in calcium. Color bar values are set to the maximum and minimum pixel value across all odors. Images are generated from volumetric stacks by first

averaging the z-stack for each volume during the trial to generate 2D frames, and then averaging across three frames during the peak of the odor

response. Each odor was presented 3–4 times and final image is the mean frame of these trials. Odors are diluted 10�2 in paraffin oil (PA), which serves

as a solvent control. Images are scaled and oriented as in B. (D) Odor responses ranked according to the strength of the observed inhibition (n = 10).

From left to right, p=0.06, p=0.81, p=0.51, p=0.0097, p=0.0022, p=0.0052, p=0.0051, p=0.0012, p=0.0017, p=1.82�10�4, p=2.95�10�6, p=2.50�10�5.

Student’s t-test. *=p < 0.01, **=p < 0.001. (E) Odor-evoked inhibition observed in the CSDn soma via whole-cell patch-clamp recording. (F) Principal

component analysis performed on the spatial pattern at the peak of the odor responses. White outline represents an ROI used to mask pixels outside

of the AL for PCA. The first three PCs are shown. A structured response is only observed in PC1. Images are scaled and oriented as in B. The variance

and SEM explained by PCs 1–3 are 60.3 ± 2.2%, 6.3 ± 0.4%, and 6.1 ± 0.3%, respectively.

DOI: https://doi.org/10.7554/eLife.46839.002

The following video and figure supplement are available for figure 1:

Figure supplement 1. CSDn calcium responses in the AL rescaled to emphasize excitation.

DOI: https://doi.org/10.7554/eLife.46839.003

Figure 1—video 1. Olfactory stimulation inhibits serotonergic CSDn neurites in the antennal lobe.

DOI: https://doi.org/10.7554/eLife.46839.004
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whether this activity also correlates with synaptic release from the CSDn, we employed sytGCaMP6s,

a variant of the calcium sensor that is tethered to synaptotagmin and trafficked to presynaptic

release sites (Cohn et al., 2015). Olfactory stimulation showed increased sytGCaMP6s signaling (Fig-

ure 2—figure supplement 2), suggesting odorants likely evoke transmitter release in the LH pro-

cesses of the CSDn.

To determine if spatial patterns of CSDn odor-evoked activity in the LH were odor-specific, we

quantified the similarity between CSDn odor responses by first computing the spatial correlation

between them (Figure 3A). We then calculated the Euclidean linkage distance between all odor cor-

relations to illustrate which odors are most similarly encoded in the neurites of the CSDn in the LH

(Figure 3B). How might odor specific responses arise in the CSDn processes in the LH? PNs are a

potential source of excitatory input to the CSDns in the LH as they are cholinergic, and their axons

segregate anatomically (Jefferis et al., 2007; Tanaka et al., 2004) and functionally (Min et al.,

2013; Seki et al., 2017; Strutz et al., 2014) in this region. We compared the odor representations

of PN and CSDn processes within this structure to determine if PNs may provide excitatory drive to

the CSDn branches in the LH. The linkage distance between the spatial pattern of odor responses

was highly correlated between PN and CSDn responses in the LH (Figure 3C and Figure 3—figure

Figure 2. Olfactory stimulation excites CSDn processes in the LH. (A) Background fluorescence from GCaMP6s expression in CSDn neurites in the LH.

(B) Odor-evoked changes in calcium observed in CSDn processes in the LH. Odor scale bar = 20 mm (C) Principal component analysis performed on the

spatial pattern at the peak of the odor responses for a sample preparation. White outline represents an ROI used for masking during PCA.The first

three PCs are shown. A structured response is observed in each PC. Images are scaled as in B. The variance and SEM explained by PCs 1–3 are 45.2 ±

2.6%, 12.4 ± 0.9%, and 8.6 ± 0.6%. (D) The coefficient of variation for odor responses in the AL and LH. n = 10, AL and n = 8, LH. p=0.0021, Student’s

t-test. The CV was calculated for each pixel in the odor response images and averaged across pixels for each preparation. (E) A comparison of the time

series of DF/F responses in the AL and LH to a single odorant, p-cresol. The response is the averaged across 10 animals in the AL and eight in the LH.

Error bars represent SEM.

DOI: https://doi.org/10.7554/eLife.46839.005

The following video and figure supplements are available for figure 2:

Figure supplement 1. Activation patterns in the LH are similar across preparations.

DOI: https://doi.org/10.7554/eLife.46839.006

Figure supplement 2. Olfactory stimulation activates presynaptic release sites in CSDn terminals in the LH.

DOI: https://doi.org/10.7554/eLife.46839.007

Figure 2—video 1. Olfactory stimulation excites serotonergic CSDn neurites in the lateral horn.

DOI: https://doi.org/10.7554/eLife.46839.008
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supplement 1). These data suggest that PNs may provide direct synaptic input onto the CSDn

locally in the LH. Using synaptobrevin GFP Reconstitution Across Synaptic Partners (syb:GRASP)

(Feinberg et al., 2008; Macpherson et al., 2015) we observed a positive signal for PNs synapsing

onto the CSDns (Figure 3D–F) in the LH. We further verified this synaptic connection by looking at

the connectivity of a CSDn reconstructed within a whole fly brain EM dataset (Zheng et al., 2018).

Figure 3. Projection neurons shape CSDn responses in the LH via direct synaptic input. (A) A cross correlation of

the spatial profile of odor responses in CSDn LH processes. (B) Clustering analysis using the Euclidean distance

between correlations for odor pairs from (A). (C) Regression analysis on correlation distances between odor

responses in processes of the CSDn and PN axons in the LH (R2 = 0.77, p=4.07*10�22, n = 10 preparations for

CSDn and n = 5 for PN responses). Distances were normalized to the max distance observed for CSDns and PNs.

The 66 open circles represent the distances for each odor pair (12 odors and 66 pairwise comparisons). PN odor

responses where measured using GCaMP6s and the GH146-Gal4 promoter. (D–F) GRASP images showing direct

synaptic input from PNs onto CSDn terminals. Green = 5 HT antibody to label CSDn processes, yellow = syb GFP

subunits 1–10 expressed in PN axons, magenta = syb GRASP labeling of synapses. Scale bars = 20 mm. (G) EM

image of a direct VA1d PN synapse onto a CSDn neurite in the AL Scale bar = 500 nm. (H) EM reconstruction of

the CSDn (black) arbors in the LH (grey boundary). Location of individual PN synapses onto the CSDn are marked

in green. Scale bar = 25 um. (I) A total count of PN synapses onto the CSDn in the LH separated by glomerular

identity. Glomeruli are listed above and below bars for clarity. DM2 is represented twice as two synapses arose

from one DM2 PN and another synapse was identified from another DM2 PN. Counts taken from one female

brain.

DOI: https://doi.org/10.7554/eLife.46839.009

The following figure supplement is available for figure 3:

Figure supplement 1. The axons of projection neurons in the LH have odor specific patterns of activation.

DOI: https://doi.org/10.7554/eLife.46839.010
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PNs from at least 17 glomeruli (presynaptic PN tracings provided as a personal communication from

Greg Jefferis, Phillipp Schlegel, Alex Bates, Marta Costa, Fiona Love and Ruari Roberts) show direct

input to the CSDn throughout the LH (Figure 3G–I). Together these results suggest that the CSDns

receive input from different cell classes in the AL and LH to shape its olfactory responses locally. In

the AL, GABAergic LNs constitute a major input to the CSDns and drive inhibitory responses inde-

pendent of odor identify. PNs make relatively few synaptic connections with the CSDns in the AL

(Coates et al., 2017). In the LH, olfactory responses in the CSDn neurites are excitatory, odor spe-

cific, and are likely in part shaped by direct PN input.

The function of a neuron is often dictated by the manner in which synaptic inputs are integrated

across its dendritic arbor. We therefore asked whether the AL and LH neurites of the CSDn function

as electrotonically independent compartments within the same cell, or if signals propagate between

regions during odor sampling. To examine how voltage spreads throughout the CSDn, we built a

passive compartmental model based on an anatomical reconstruction of the CSDn generated from

the whole fly brain EM dataset (Carnevale and Hines, 2006; Zheng et al., 2018) (Figure 4A and

Figure 4—figure supplement 1). While such models ignore the contributions of active conductances

or variations in passive properties across dendrites, they can nevertheless provide insight into signal

propagation and help formulate hypotheses. The model was generated by adjusting the membrane

capacitance (Cm), the membrane conductance (gleak), and the axial resistance (Ra) so that simulated

current injections into the model soma matched physiological responses taken in vivo (Figure 4B). A

wide range of models with varying properties provided reasonable fits to the in vivo CSDn record-

ings. In these models, injecting simulated hyperpolarizing IPSPs into the AL resulted in varying

amounts of spread throughout the neurites of the CSDn. In some models, the hyperpolarization was

constrained only to the local injection site (Figure 4C), while in other models the hyperpolarization

spread throughout the AL (Figure 4D). However, whole-cell recordings in vivo show that the inhibi-

tion arising from the AL indeed spreads to the soma (Zhang and Gaudry, 2016). Several of the

models that we generated displayed this property. Importantly, all models that displayed somatic

inhibition when current was injected into the CSDn processes in the AL also showed inhibition in the

LH (Figure 4E). These results suggest that the geometry and passive properties of the CSDn allow

the propagation of inhibition from the AL to the LH during olfactory stimulation.

The propagation of voltages through the dendrites of neurons is not always symmetrical and can

be biased by impedance mismatches as well as differences in the diameters of intersecting branches

(Stuart et al., 2016). We therefore asked if voltage changes generated in the LH would propagate

as efficiently to the AL compared to the opposite direction. We injected current into the either the

LH or the AL of the model to elicit voltage changes of similar magnitudes and calculated the propor-

tion of the signal that propagated to the other region. This approach revealed that the geometry of

the CSDn arbors favor the propagation of voltage signals from the AL preferentially to the LH

(Figure 4F).

If voltage signals preferentially propagate from the AL to the LH, one would predict that isolating

the CSDn processes in the LH from the rest of the CSDn would boost any odor evoked excitation

due to local input within the LH. We therefore used 2-photon laser ablation to sever the CSDn neu-

rites just proximal to their entrance into the LH. This manipulation isolates the LH processes of the

CSDn from the AL, while still allowing these neurites to respond to synaptic input within the LH

(Figure 4G and H). Olfactory responses to all odors tested increased in the processes of the CSDn

in the LH following the removal of AL inhibition (Figure 4I,J and K). As a control for the non-specific

damage of laser ablation, we severed the branches of the CSDn in the contralateral hemisphere and

found that this had no impact on odor responses in the intact branches of the CSDn in the ipsilateral

LH (Figure 4K). These results demonstrate that during normal odor sampling, inhibition from the AL

propagates to suppress olfactory responses in the LH.

Discussion
There has been a recent interest in characterizing the structures that provide input to serotonergic

neurons in vertebrates in an attempt to understand the types of processes that might impact 5-HT

release (Sparta and Stuber, 2014). Such studies relied on genetically restricted retrograde labeling

to identify regions that provide monosynaptic inputs to serotonergic raphe neurons (Ogawa et al.,

2014; Pollak Dorocic et al., 2014; Weissbourd et al., 2014). Our functional approach of calcium
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Figure 4. AL inhibition suppresses CSDn responses in the LH. (A) Morphological EM reconstruction of the CSDn

arborizations used for a biophysical model consisting of 6056 compartments. (B) Somatic membrane potential

changes in response to a white-noise current injection during an in vivo CSDn recording compared to responses

of a passive compartmental model, to the same stimulus, fitted by optimizing three anatomical parameters, Cm

(mF/cm2), gleak (S/cm
2), and Ra (Wcm), (C) An example of a model with well-fit somatic responses where a

hyperpolarizing current injection in the AL resulted in highly localized voltage changes in AL only. A time series of

voltage responses are shown for the soma, AL, and LH as gray traces near those structures. Cm = 4.8,

gleak = 3094.3, and Ra = 149.0183. Horizontal scale bar = 5 ms and vertical scale bar = 5 mV. (D) A similar model

where injection of the current in the AL causes a voltage change throughout a greater portion of the AL. Cm = 4.8,

gleak = 2911.3, and Ra = 28.83. Scale bars as in C. (E) A sample model where current injection into the AL causes

both somatic and LH voltage changes. Cm = 1.8,wgleak = 77.33, and Ra = 0.12. See Table 1 for full model

properties .Scale bars as in C. (F) The proportion of voltage signal observed in the LH, AL, and cell body (CB)

when voltage changes are induced in each region. The same model as in panel E was used to generate the data.

Left, voltage steps are induced into the AL and voltage deflections are reported in the LH and CB. Right, voltage

steps are induced in the LH and their effects are measured in the AL and CB. Horizontal scale bar = 10 ms and

vertical scale bar = 10 mV. (G) A 2P image of basal GCaMP6s signal showing the effects of laser ablation in the

CSDn LH neurite. (H) Basal GCaMP6s signals remain in the LH after laser ablation. (I) DF/F responses of CSDn

neurites in the LH to a set of odorants before and after laser ablation. (J) A times series of the changes in calcium

levels in response to odorants in (I). (K) Left, quantification of odor response amplitudes in CSDn LH neurites

before and after laser ablation. Right, control responses when the contralateral processes of the CSDn where

ablated. Left column, top to bottom, p=0.0187, p=0.0067, p=0.0154; Right column, top to bottom p=0.2298,

p=0.8958, p=0.1611. *=p < 0.05, **=p < 0.01, n.s. = not significant and p>0.05, paired Student’s t-tests.

DOI: https://doi.org/10.7554/eLife.46839.011

Figure 4 continued on next page
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imaging across brain regions is complementary but has the advantage of revealing where signals are

integrated and determining whether the net effect of that integration within is excitatory or inhibi-

tory. Here, we show that a serotonergic neuron with broad arbors integrates locally at multiple neu-

ropil along to the olfactory pathway in Drosophila. Interestingly, synaptic inputs at the first and

second order processing stages of olfaction impose opposite polarity responses in this neuron and

likely decorrelate synaptic release in distinct target regions. Inhibition dominates responses in the AL

and odor-specific excitation is prominent in the downstream LH. This suggests that across a single

widely projecting modulatory neuron, branches within distinct neuropils can operate in different

manners.

Local regulation of release in modulatory neurons
Classical methods of studying the activation of modulatory systems during sensory processing in ver-

tebrates rely heavily on recording extracellular spikes in the nuclei that house the neurons’ somas.

However, invertebrate studies involving motor systems have shown compartmentalization of neurons

spanning distant neuropils (Nikitin et al., 2013; Sasaki et al., 2007). Our results demonstrate that

the activity within a single serotonergic neuron can vary across neuropils involved in processing the

same sensory modality. As a given modulator may perform distinct functions in different brain

regions, local regulation of release allows these functions to be employed independently. For

instance, 5-HT in the OB indirectly inhibits OSN terminals and has been proposed to serve a gain

control function (Petzold et al., 2009), while in the piriform cortex 5-HT has no effect on stimulus

input, but rather only decreases spontaneous activity (Lottem et al., 2016). Additionally, 5-HT has

different effects on mitral cells in the main versus mitral cells in the accessory olfactory bulb

(Huang et al., 2017). Local regulation of 5-HT release would allow these processes to be engaged

in an independent and combinatorial manner, and thus allow for a greater net overall modulatory

capacity.

Local regulation and decoupling of modulator release across synaptic sites is not unique to inver-

tebrates and has been implicated in the normal function of the mammalian DA system. First, DA

release is only partially correlated with firing activity, and release can be locally evoked in the

absence of spiking in DA cells (Floresco et al., 1998). Additionally, local inactivation of the nucleus

accumbens (NA) decreases DA release in the NA without impacting DA neuron firing (Jones et al.,

2010). This has led to the theory that DA release can signal both motivation and reward prediction

errors (RPE) on similar timescales (Hamid et al., 2016). Dopamine release related to motivation is

thought to be shaped by local presynaptic mechanisms while dopamine related to RPE correlates

more strongly with the firing properties of DA neurons (Berke, 2018). Measuring serotonergic trans-

mission across release sites is more difficult compared to dopamine (Dankoski and Wightman,

2013), nevertheless, it is highly likely that 5-HT is also regulated by local presynaptic mechanisms

(Egashira et al., 2002; Schlicker et al., 1984; Tao and Auerbach, 1995; Threlfell et al., 2004).

Whether there is local regulation of 5-HT release in the vertebrate olfactory system is more contro-

versial. EM reconstructions of raphe terminals in the OB have failed to reveal postsynaptic densities

in raphe axons (Gracia-Llanes et al., 2010; Suzuki et al., 2015). This may be because such input is

extra synaptic (Gaudry, 2018), as is the case with GABAB receptors in the raphe nucleus proper

(Varga et al., 2002).

Multi-dendritic processing
Local integration in the AL and LH allow the CSDn to independently process and shape sensory

information at multiple points in the early olfactory pathway of the fly. Specifically, we found that PN

axons directly excite CSDn terminals in the LH in an odor specific manner while CSDn branches in

Figure 4 continued

The following figure supplements are available for figure 4:

Figure supplement 1. Sampling strategy for measuring CSDn axon radius.

DOI: https://doi.org/10.7554/eLife.46839.012

Figure supplement 2. cVA excites CSDn processes in the lateral horn.

DOI: https://doi.org/10.7554/eLife.46839.013
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the AL are inhibited. Previous studies have shown that the CSDn soma is also inhibited by odors and

that stimulation of the CSDn has little impact on olfactory circuitry in the AL (Zhang and Gaudry,

2016), despite the CSDn being critical for normal olfactory behavior (Singh et al., 2013; Xu et al.,

2016). Our current study resolves this issue by suggesting instead that the CSDn modulates behav-

ior by affecting odor-processing in the LH (Figure 4 and Figure 4—figure supplement 2), which has

previously been unexplored. What then is the purpose of odor-evoked inhibition in the AL? Inhibi-

tion of CSDn processes in the AL does not appear to depend on odor identity as shown in this study,

but rather correlates with the total amount of ORN activity that an odor elicits (Zhang and Gaudry,

2016). This can vary with both odor identity or concentration. Our compartmental modeling shows

that AL and LH processes of the CSDn are electrotonically connected, but that voltage preferentially

passes from the AL to the LH. As CSDn inhibition scales with increasing odor strength due to robust

GABAergic LN input in the AL (Coates et al., 2017; Zhang and Gaudry, 2016), this inhibition shunts

LH responses proportionally. This configuration ultimately allows olfactory modulation to be odor

specific in the LH while being less dependent on odor concentration. Multi-dendritic computing is

critical for processing other sensory modalities as well (Ranganathan et al., 2018), but most notably

vision (Jones and Gabbiani, 2010; Koren et al., 2017). Synaptic integration between dendrites is

used to compute object motion across the visual field on a collision course with the observer. Inter-

estingly, the dendrites of starburst amacrine cells in the mammalian retina express mGluR to isolate

dendritic compartments thus preventing integration to non-preferred stimuli while enabling regu-

lated integration specifically to preferred directions of motion (Koren et al., 2017). Our laser abla-

tion experiments demonstrate that CSDn neurites influence one another during olfaction, but it is

intriguing that the magnitude of such coupling could be state dependent and regulated by active

conductances.

Top-down versus bottom-up neuromodulation
The CSDn was originally proposed to participate in top-down modulation by transmitting higher

order sensory information from the LH to the AL (Hill et al., 2002; Sun et al., 1993). However, direct

evidence for top-down modulation via the CSDn has never been demonstrated. Our results suggest

that during olfaction, the CSDn acts more in a bottom-up fashion where responses in the AL have a

greater impact on downstream processing in the LH. Transmitter release during olfactory sampling

putatively occurs only later in the sensory processing stream rather than at the earliest stages. Inter-

estingly, the CSDn has numerous release sites in the AL (Coates et al., 2017; Sun et al., 1993;

Zhang and Gaudry, 2016) and CSDn derived 5-HT directly inhibits several classes of neurons in the

AL (Zhang and Gaudry, 2016). But how are CSDn release sites activated in the AL? Olfaction clearly

inhibits both the processes of the CSDn in the AL as well at its spike initiation site (Zhang and Gau-

dry, 2016). However, it is likely that the CSDn also receives input from unidentified non-olfactory

sources that excite the neuron’s spike initiation site allowing it to modulate in a top-down manner.

Further reconstruction of the CSDns inputs in the EM data set will reveal candidates for further phys-

iological evaluation. Thus, non-olfactory stimulation of the CSDn may be consistent with top-down

modulation and would constitute one mechanism by which a broadly arborizing modulatory neuron

may be multifunctional depending on the source of its excitatory drive. Multifunctional neurons have

been well described in central pattern generating networks (Briggman and Kristan, 2008) but are

only recently becoming appreciated with regards to neuromodulation (Berke, 2018). Local synaptic

interactions within the AL could shape 5-HT release as well to alter olfactory coding in a glomerulus-

specific fashion (Kloppenburg and Mercer, 2008). Our findings in Drosophila suggest that integra-

tion into local circuits allows modulatory cells greater flexibility in how they participate in sensory

processing and may be a feature that is often overlooked when assessing the function of these criti-

cal components of the central nervous system.

Materials and methods

Odors and odor delivery
Odors were presented as previously described (Zhang and Gaudry, 2016). In brief, a carrier stream

of carbon-filtered house air was presented at 2.2 L/min to the fly continuously. A solenoid was used

to redirect 200 ml/min of this air stream into an odor vial before rejoining the carrier stream, thus
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diluting the odor a further 10-fold prior to reaching the animal. All odors were diluted 1:100 in paraf-

fin oil (J.T. Baker VWR #JTS894), except for acids, which were diluted in distilled water. All odors

were obtained from Sigma Aldrich (Saint Louis, MO) except for cVA, which was obtained from Pher-

obank (Wageningen, Netherlands). cVA was delivered as a pure odorant. In our olfactometer design,

the odor vial path was split to 16 channels each with a different odor or solvent control. Pinch valves

(Clark Solutions, Hudson MA part number PS1615W24V) were used to select stimuli between each

trial. Each odor was presented sequentially one trial at a time. Each odor was presented 3–4 times

within a preparation and the mean of these responses were then averaged across animals.

Odors Supplier

Paraffin oil J.T.Baker CAS: 8012-95-1

Ammonium hydroxide Sigma-Aldrich CAS: 1336-21-6

Ethyl acetate Sigma-Aldrich CAS: 141-78-6

Methyl salicylate Sigma-Aldrich CAS: 119-36-8

Benzaldehyde Sigma-Aldrich CAS: 100-52-7

3-hexanone Sigma-Aldrich CAS: 589-38-8

p-cresol Sigma-Aldrich CAS: 106-44-5

1-octen-3-ol Sigma-Aldrich CAS: 3391-86-4

Geranyl acetate Sigma-Aldrich CAS: 105-87-3

cVA Pherobank, Wijk bij Duurstede, Netherlands

geosmin Sigma-Aldrich CAS: 16423-19-1

acetic acid Sigma-Aldrich CAS: 64-19-7

Fly Genotypes
The following Drosophila genotypes were used in this study: w; UAS-GCaMP6s; R60F02-Gal4, UAS-

GCaMP6s, w; NP2242-Gal4/Cyo; R60F02-Gal4, UAS-GCaMP6s, w; GH146-Gal4/+; UAS-GCaMP6s/

+and w; UAS-CD4:spGFP11/Q-GH146; QUAS-syb:spCFP1-10/R60F02-Gal4. PN odor responses

were measured in flies expressing the GH146-Gal4 and UAS-GCaMP6s transgenes. To produce the

singleton CSDn in Figure 1A, we used UAS-myrGFP, QUAS-mtdTomato-3xHA/+; trans-Tango/+;

Gal4-MB465C/+which occasionally labeled individual CSDns. Flies were generated from the follow-

ing stocks.

Genotype Source RRID

20XUAS-IVS-GCaMP6s (attP40) BDSC BDSC_42746

GMR60F02-GAL4 (attP2) BDSC BDSC_48228

20XUAS-IVS-GCaMP6s (VK00005) BDSC BDSC_42749

GH146-Gal4 BDSC BDSC_30026

UAS-CD4:spGFP11 BDSC BDSC_64315

GH146-QF2 BDSC BDSC_66480

QUAS-syb:spCFP1-10 Marco Gallio, Northwestern University

UAS-myrGFP, QUAS-mtdTomato-3xHA; trans-Tango BDSC BDSC_77124

MB465C-Gal4 BDSC BDSC_68371

NP2242-Gal4 DGRC 104134

BDSC, Bloomington Drosophila Stock Center, Bloomington Indiana. DGRC, Kyoto Stock Center, Kyoto Japan.

Calcium imaging of odor-evoked activity
Female flies aged 3–5 weeks post-eclosion and reared at room temperature were used. In vivo imag-

ing experiments were performed at room temperature. The brain was constantly perfused with
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saline containing (in mM): 103 NaCl, 3 KCl, 5 N-tris(hydroxymethyl)methyl-2- aminoethane-sulfonic

acid, eight trehalose, 10 glucose, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, and 4 MgCl2 (adjusted to 270–

275 mOsm). The saline was bubbled with 95% O2/5% CO2 and reached a pH of 7.3. 920 nm wave-

length light was used to excite GCaMP6s under two-photon microscopy. The microscope and data

acquisition were controlled by ThorImage 3.0 (Thorlabs, Inc). Three-dimensional volumes of neuropil

were used to measure odor responses. Volumes consisted of 6–8 frames separated by 5–6 mm in the

z plane between frames. The volumes were scanned at 60 frames/second and thus a 6–7 complete

volumes were imaged each second. Single imaging trials consisted of 90 volumes at a resolution of

256 � 256 pixels. Odors were delivered for 1 s after the first 2 s of each trial. An 80 s interval

between each trial was applied to allow replenishing of the odor vial head space and to prevent

photobleaching of GCaMP. Odors were presented sequentially such that each odor was presented

every 16 min.

To quantify odor responses, we first generated the mean z-projection for every volume within a

trial. Calcium transients (DF/F) were then measured as changes in fluorescence, in which DF/F was

calculated by normalizing the fluorescence brightness changes over the baseline period (the first 2 s

of each trial before the odor delivery). To reduce noise, a Gaussian low-pass filter of 4 � 4 pixels in

size was then applied to raw DF/F signals prior to further analysis.Some trials contained motion arti-

facts that were removed using StackReg plugin for ImageJ. This motion correction was done on an

individual trial basis. The frame containing the peak response was identified by plotting the DF/F in

an ROI as a function of frame number. The peak calcium signal for each trial was computed as the

average of three consecutive frames centered on the frame of the peak response. We set the peak

window the same for all trials within a preparation. For each odor stimulus, data were pooled by

averaging the peak odor-evoked calcium signal across 3–4 repeats. All imaging data are available

at https://zenodo.org/record/3347197#.XTq2PpNKjUI.

Statistical analysis of calcium imaging
PCA was applied on the spatial pattern of the peak calcium signal (DF/F) in each trial (the mean

frame of 2–3 volumes during the peak odor response). PCA was computed using the ‘princomp’

function in Matlab (Mathworks, Natick, MA). First an odor response was generated for each trial as

described above as the mean response of 2–3 volumes during the peak response and averaged

across 3–4 odor presentations per fly. The resulting image for each odor was converted into a 1-

dimensional array consisting of 65,536 elements generated from the original 256 by 256 image). The

odor response arrays were inserted as columns for the PCA input matrix. This matrix thus consisted

of 12 columns, each representing an odor response. The output PCs were later reshaped back to

256 by 256 matrices for display purposes. The coefficient of variation was also calculated on the

same vectorized odor response matrix so that a CV was generated for each pixel across odor

responses and then averaged within that preparation. Thus, our reported CV incorporates variance

for both the spatial profile and amplitude components of the responses. Correlations between odor

responses within the LH were also performed using the same mean responses that served as inputs

to the PCA. To calculate the diversity of response patterns to different odors we applied Linkage

Hierarchical Clustering. The Euclidean distances between correlation pairs was calculated used as a

parameter for clustering. Distances were normalized to the maximum distance within each prepara-

tion and then averaged across flies. A regression analysis was applied to compare the similarity

between the odor response patterns of the CSDn and PNs in the LH. Our data set consisted of 12

odorants and thus 66 Euclidian distances were calculated for the regression. The p-value and the

square of correlation coefficient (R2) were calculated as the indicator of similarity for each odor

response pattern pairs evoked. Two-tailed paired t-tests were performed for all comparisons

between before laser ablation and after laser ablation within the same group. All statistical functions

were applied in Matlab.

CSDn EM reconstruction
The CSDn was identified and partially reconstructed in the female adult fly brain (FAFB) dataset as

described in Zheng et al. (2018) using CATMAID (Saalfeld et al., 2009; Schneider-Mizell et al.,

2016), available at https://catmaid-fafb.virtualflybrain.org. The CSDn reconstruction from the cell

body along the primary and secondary arbors leading into the LH as well as tertiary and quaternary
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branches into the lateral horn were reviewed by a second observer back to the primary branch as

previously described (Zheng et al., 2018). For the multi-compartmental model, measurements of

the CSDn branch radius (to inform axial resistance parameters) were taken at seven locations along

the primary arbor between the contralateral AL and protocerebrum, five locations along the second

order branch leading into the lateral horn and six locations along primary and secondary branches

within the lateral horn. For each location, 20–50 measures of axon radius were taken from consecu-

tive tissue sections. Data on the projection neurons that are pre-synaptic to CSDn in the FAFB data-

set were provided as a personal communication from Greg Jefferis, Phillip Schlegel, Alex Bates,

Marta Costa, Fiona Love and Ruari Roberts.

Model construction
A multi-compartmental conductance-based computer model of the CSDn neuron was constructed

by taking its electron micrograph reconstruction and importing it into the Neuron simulator

(Carnevale and Hines, 2006). An initial reconstruction contained more than 60,000 nodes, but a

simplified version of it was generated with 6056 compartments in the Neuron simulator that retained

its basic anatomical and electrotonic structure. The passive cable parameters (axial resistance Ra,

leak conductance gpas, leak reversal Epas, and specific capacitance Cm) were fitted using Neuron’s

RunFitter algorithm. For fitting, we used recorded responses to stimuli of current-clamp and volt-

age-clamp steps and current-clamp white noise generated by Matlab (Mathworks, Natick, MA).

Whole-cell recordings of the CSDn were performed as previously described (Zhang and Gaudry,

2016). The series resistance for CSDn recordings was approximately 10 MW, and input resistance

was 500–600 MW. The pipette resistance was between 8 and 10 MW. The reversal potential of the

CSDn was �45 mV. While fitting, parameters were restricted by physiological ranges (Ra between

0.0001–5000 Wcm, Cm between 0.1–2 mF/cm2, gleak between 10�6-0.1 S/cm2, and Epas had unlim-

ited range in mV, Supplementary file 1). For a given model, each compartment had the same values

for Ra, gpas, Epas, and Cm. Only the difference in process thickness changed the passive properties

of the compartments. The resulting passive model of the CSDn neuron was simulated using Neu-

ron’s default integration method with a time step of 0.025 ms. The properties of the model used to

generate the data in Figure 4E and F are shown in Table 1.

To investigate how the passive signal travels from the AL to the other parts of the CSDn, we ran-

domly picked ten spots within the AL and injected a square wave of current into the model to elicit

a maximum voltage response ranging from about 2 to 20 mV. This was repeated six times in each

condition. We monitored the voltage changes in the windows shown in Figure 4. The windows we

set were for the cell body, the center of AL (three randomly selected monitor sites) and the LH (three

randomly selected monitoring sites). The average voltage changes of each window were shown in

the Figure 4. To investigate how signals preferentially propagated along the CSDn, the same

method was applied to LH, so that current was injected in the LH and voltage change windows of

interests across the CSDn were kept the same. The process was then repeated with current injection

into the AL. The CSDn dendritic architecture does not represent a unique solution to asymmetrical

voltage propagation. We were able to reproduce a similar phenomenon using a simpler three com-

partment model consisting of only a soma, an AL branch and a LH branch. The only requirement is

to have differences in the resistances of two adjoining dendrites as predicted by cable theory

(Rall and Agmon-Snir, 1998).

Table 1. Morphological statistics of CSDn neuron sections used in Figure 4E and F.

L [mm] Diam [mm] Area [mm2] Ri [MV] Cm [pF] gpas [nS]

Whole cell 11031.21 0.05 1611.09 370.28 16.11 4.26

Cell body 308.15 0.27 258.89 0.31 2.59 0.68

LH 3758.09 0.04 474.12 169.05 4.74 1.25

AL 6245.41 0.04 787.66 281.13 7.88 2.08

L, total length of section branches; Diam., length-weighted equivalent diameter of section; Area, surface area, Ri,

resistance of from beginning to middle of section; Cm, total maximal capacitance of section (does not consider decay

of voltage); gpas, total area-scaled leak conductance of the equivalent section.

DOI: https://doi.org/10.7554/eLife.46839.015
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Laser transection
The transection window was guided by the Gcamp6s basal fluorescence at 920 nm, at about 20 mm

before the CSDn neurites enter the lateral horn. An 80 mW laser pulse, which consisted of 10 repeti-

tions of continuous frame scanning with 8 msec of pixel dwell time, at 800 nm was then applied onto

this window. A total estimated energy of 0.05 J was thus applied. Successful transection usually

resulted in a small cavitation bubble (shown in Figure 4).

KCl induction of GRASP and immunohistochemistry
In brief, brains used for the induction of syb:GRASP were dissected and rinsed three times with a

KCl solution (Macpherson et al., 2015). The brains were then fixed in 4% paraformaldehyde for 20

min. We used the following primary and secondary antibodies at the indicated dilutions: 1:1000 rab-

bit anti-5HT Sigma (S5545), 1:50 chicken anti-GFP Invitrogen (A10262), 1:100 mouse anti-GFP

(referred as anti-GRASP, Sigma #G6539, ref:3), 1:500 rat anti-N-Cadherin (Developmental Studies

Hybridoma Bank, DN-Ex #8), 1:250 Alexa Fluor 633 goat anti-rabbit (Invitrogen, A21071), 1:250

Alexa Fluor 488 goat anti-chicken (Life Technologies, A11039), 1:250 Alexa Fluor 568 goat anti-

mouse lgG (Life Technologies, A11004) and 1:1000 Alexa Fluor 647 donkey anti-rat IgG (AbCam,

ab150155). Brains were mounted and imaged in Vectashield mounting medium (Vector Labs). All

steps were performed at room temperature. Confocal z-stacks for the syb:GRASP experiments were

collected with a Zeiss LSM710 microscope using a 63 � oil immersion lens and the z-stack of GFP

expression in Figure 1A was collected with an Olympus FV1000s using a 40x oil-immersion lens.
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Threlfell S, Cragg SJ, Kalló I, Turi GF, Coen CW, Greenfield SA. 2004. Histamine H3 receptors inhibit serotonin
release in substantia nigra pars reticulata. Journal of Neuroscience 24:8704–8710. DOI: https://doi.org/10.
1523/JNEUROSCI.2690-04.2004, PMID: 15470136

van der Kooy D, Kuypers HG. 1979. Fluorescent retrograde double labeling: axonal branching in the ascending
raphe and nigral projections. Science 204:873–875. DOI: https://doi.org/10.1126/science.441742,
PMID: 441742

Varga V, Sik A, Freund TF, Kocsis B. 2002. GABA(B) receptors in the median raphe nucleus: distribution and role
in the serotonergic control of hippocampal activity. Neuroscience 109:119–132. DOI: https://doi.org/10.1016/
S0306-4522(01)00448-1, PMID: 11784704

Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L. 2014. Presynaptic partners of dorsal raphe
serotonergic and GABAergic neurons. Neuron 83:645–662. DOI: https://doi.org/10.1016/j.neuron.2014.06.024,
PMID: 25102560

Wenk GL. 1997. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress.
Neurobiology of Learning and Memory 67:85–95. DOI: https://doi.org/10.1006/nlme.1996.3757, PMID:
9075237

Xu L, He J, Kaiser A, Gräber N, Schläger L, Ritze Y, Scholz H. 2016. A single pair of serotonergic neurons
counteracts serotonergic inhibition of ethanol attraction in Drosophila. PLOS ONE 11:e0167518. DOI: https://
doi.org/10.1371/journal.pone.0167518, PMID: 27936023

Zhang X, Gaudry Q. 2016. Functional integration of a serotonergic neuron in the Drosophila antennal lobe. eLife
5:e16836. DOI: https://doi.org/10.7554/eLife.16836, PMID: 27572257

Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie D, Torrens O, Price J, Fisher CB, Sharifi N,
Calle-Schuler SA, Kmecova L, Ali IJ, Karsh B, Trautman ET, Bogovic JA, Hanslovsky P, Jefferis G, Kazhdan M,
Khairy K, et al. 2018. A complete electron microscopy volume of the brain of adult Drosophila Melanogaster.
Cell 174:730–743. DOI: https://doi.org/10.1016/j.cell.2018.06.019, PMID: 30033368

Zhang et al. eLife 2019;8:e46839. DOI: https://doi.org/10.7554/eLife.46839 17 of 17

Research advance Neuroscience

https://doi.org/10.1016/j.cub.2015.09.039
http://www.ncbi.nlm.nih.gov/pubmed/26528750
https://doi.org/10.1186/s12915-017-0389-z
https://doi.org/10.1186/s12915-017-0389-z
http://www.ncbi.nlm.nih.gov/pubmed/28666437
https://doi.org/10.1371/journal.pgen.1003452
http://www.ncbi.nlm.nih.gov/pubmed/23637622
https://doi.org/10.7554/eLife.14472
http://www.ncbi.nlm.nih.gov/pubmed/27300105
https://doi.org/10.1016/j.neuron.2014.07.030
https://doi.org/10.1016/j.neuron.2014.07.030
http://www.ncbi.nlm.nih.gov/pubmed/25102556
https://doi.org/10.1038/nbt.3594
https://doi.org/10.1038/nbt.3594
http://www.ncbi.nlm.nih.gov/pubmed/27347754
https://doi.org/10.7554/eLife.04147
https://doi.org/10.7554/eLife.04147
http://www.ncbi.nlm.nih.gov/pubmed/25512254
https://doi.org/10.1093/acprof:oso/9780198745273.001.0001
https://doi.org/10.1093/acprof:oso/9780198745273.001.0001
https://doi.org/10.1002/cne.903380103
https://doi.org/10.1002/cne.903380103
http://www.ncbi.nlm.nih.gov/pubmed/8300899
https://doi.org/10.1002/cne.23680
https://doi.org/10.1002/cne.23680
http://www.ncbi.nlm.nih.gov/pubmed/25234191
https://doi.org/10.1016/j.cub.2004.03.006
http://www.ncbi.nlm.nih.gov/pubmed/15043809
https://doi.org/10.1016/0306-4522(95)00154-B
https://doi.org/10.1016/0306-4522(95)00154-B
http://www.ncbi.nlm.nih.gov/pubmed/7477965
https://doi.org/10.1038/s41467-018-06058-8
https://doi.org/10.1038/s41467-018-06058-8
http://www.ncbi.nlm.nih.gov/pubmed/30177699
https://doi.org/10.1016/j.neuron.2018.01.008
https://doi.org/10.1016/j.neuron.2018.01.008
http://www.ncbi.nlm.nih.gov/pubmed/29470969
https://doi.org/10.1523/JNEUROSCI.2690-04.2004
https://doi.org/10.1523/JNEUROSCI.2690-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15470136
https://doi.org/10.1126/science.441742
http://www.ncbi.nlm.nih.gov/pubmed/441742
https://doi.org/10.1016/S0306-4522(01)00448-1
https://doi.org/10.1016/S0306-4522(01)00448-1
http://www.ncbi.nlm.nih.gov/pubmed/11784704
https://doi.org/10.1016/j.neuron.2014.06.024
http://www.ncbi.nlm.nih.gov/pubmed/25102560
https://doi.org/10.1006/nlme.1996.3757
http://www.ncbi.nlm.nih.gov/pubmed/9075237
https://doi.org/10.1371/journal.pone.0167518
https://doi.org/10.1371/journal.pone.0167518
http://www.ncbi.nlm.nih.gov/pubmed/27936023
https://doi.org/10.7554/eLife.16836
http://www.ncbi.nlm.nih.gov/pubmed/27572257
https://doi.org/10.1016/j.cell.2018.06.019
http://www.ncbi.nlm.nih.gov/pubmed/30033368
https://doi.org/10.7554/eLife.46839

	Local Synaptic Inputs Support Opposing, Network-Specific Odor Representations in a Widely Projecting Modulatory Neuron
	Authors

	15641408129349 1..17

