
Faculty Scholarship

2016

A New Algorithm for “the LCS problem” with Application in A New Algorithm for “the LCS problem” with Application in

Compressing Genome Resequencing Data Compressing Genome Resequencing Data

Richard Beal

Tazin Afrin

Aliya Farheen

Donald Adjeroh

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/322557365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/faculty_publications
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F1952&utm_medium=PDF&utm_campaign=PDFCoverPages

The Author(s). BMC Genomics 2016, 17(Suppl 4):544
DOI 10.1186/s12864-016-2793-0

RESEARCH Open Access

A new algorithm for “the LCS problem”
with application in compressing genome
resequencing data
Richard Beal*, Tazin Afrin, Aliya Farheen and Donald Adjeroh

From IEEE International Conference on Bioinformatics and Biomedicine 2015
Washington, DC, USA. 9-12 November 2015

Abstract

Background: The longest common subsequence (LCS) problem is a classical problem in computer science, and
forms the basis of the current best-performing reference-based compression schemes for genome resequencing data.

Methods: First, we present a new algorithm for the LCS problem. Using the generalized suffix tree, we identify the
common substrings shared between the two input sequences. Using the maximal common substrings, we construct
a directed acyclic graph (DAG), based on which we determine the LCS as the longest path in the DAG. Then, we
introduce an LCS-motivated reference-based compression scheme using the components of the LCS, rather than the
LCS itself.

Results: Our basic scheme compressed the Homo sapiens genome (with an original size of 3,080,436,051 bytes) to
15,460,478 bytes. An improvement on the basic method further reduced this to 8,556,708 bytes, or an overall
compression ratio of 360. This can be compared to the previous state-of-the-art compression ratios of 157 (Wang and
Zhang, 2011) and 171 (Pinho, Pratas, and Garcia, 2011).

Conclusion: We propose a new algorithm to address the longest common subsequence problem. Motivated by our
LCS algorithm, we introduce a new reference-based compression scheme for genome resequencing data.
Comparative results against state-of-the-art reference-based compression algorithms demonstrate the performance
of the proposed method.

Keywords: Longest common subsequence, LCS, Longest previous factor, LPF, Compression, Biology,
Genome resequencing

Background
Measuring similarity between sequences, be it DNA,
RNA, or protein sequences, is at the core of various prob-
lems in molecular biology. An important approach to this
problem is computing the longest common subsequence
(LCS) between two strings S1 and S2, i.e. the longest
ordered list of symbols common between S1 and S2. For
example, when S1 = abba and S2 = abab, we have the

*Correspondence: r.beal@computer.org
A preliminary version of this paper was presented at IEEE BIBM’15, see [1].
Lane Department of Computer Science and Electrical Engineering, West
Virginia University, Morgantown, WV, USA

following LCSs: abb and aba. The LCS has been used
to study various areas (see [2, 3]), such as text analysis,
pattern recognition, file comparison, efficient tree match-
ing [4], etc. Biological applications of the LCS and similar-
ity measurement are varied, from sequence alignment [5]
in comparative genomics [6], to phylogenetic construction
and analysis, to rapid search in huge biological sequences
[7], to compression and efficient storage of the rapidly
expanding genomic data sets [8, 9], to re-sequencing a set
of strings given a target string [10], an important step in
efficient genome assembly.

The basic approach to compute the LCS, between the n-
length S1 and m-length S2, is via dynamic programming.

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2793-0-x&domain=pdf
mailto: r.beal@computer.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 370 of 456

Using LCS to denote the dynamic programming (DP)
table, the basic formulation is as follows, given 0 ≤ i ≤ n
and 0 ≤ j ≤ m:

LCS(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

0, if i = 0 ∨ j = 0
1 + LCS(i − 1, j − 1), if S1[i] = S2[j]
max

{
LCS(i, j − 1), LCS(i − 1, j)

}
,

if S1[i] �= S2[j]

The above computes the length of the LCS in the last
position of the table (LCS(n, m)). As with the edit dis-
tance computation, the actual string forming the LCS can
be obtained by using a trace back on the DP table. This
requires O(nm) time and O(nm) space. The LCS matrix
has some interesting properties: the entries in any row or
in any column are monotonically increasing, and between
any two consecutive entries in any row or column, the dif-
ference is either 0 or 1. An example LCS matrix and trace
are shown in Fig. 1.

Alternatively, we can formulate the problem as a two-
dimensional grid, where the goal is to find the minimal
cost (or maximal cost, depending on the formulation)
path, from the start position on the grid (typically, (0,0)),
to the end position (n, m). Myers et al. [11] and Ukkonen
[12] used this idea to propose a minimum cost path deter-
mination problem on the grid, where the path takes a
diagonal line from (i − 1, j − 1) to (i, j) if S1[i] = S2[j] with
cost 0, and takes a horizontal or vertical line with a cost
of 1, corresponding respectively to insert or delete opera-
tions. Hunt and Szymanski [13] earlier used an essentially
similar approach to solve the LCS problem in (r + n) log n
time, with n � m, where r is the number of pairwise sym-
bol matches (S1[i] = S2[j]). When two non-similar files
are compared, we will have r � nm, or r in O(n), lead-
ing to a practical O(n log n) time algorithm. However, for
very similar files, we have r ≈ nm, or an O(nm log n) algo-
rithm. This worst-case occurs, for instance, when S1 = an

and S2 = am.
Hirschberg [14] proposed space-efficient approaches to

compute the LCS using DP in O(nm) time and O(n + m)

Fig. 1 LCS dynamic programming table for S1 = AACCTTAA and
S2 = AGGTCGTA. A sample LCS trace (ACTA) is highlighted

space, rather than O(nm). More recently, Yang et al. [15]
used the observation on monotonically increasing values
in the LCS table to identify the “corner points”, where the
values on the diagonals change from one row to the next.
The corners define a more sparse 2D grid, based on which
they determine the LCS.

A generalization of the LCS problem is to find the LCS
for a set of two or more sequences. This is the multiple
longest common subsequence problem, which is known
to be NP-hard for an arbitrary number of sequences
[16]. Another interesting view of the LCS problem is in
terms of the longest increasing subsequence (LIS) prob-
lem, suggested earlier in [17–19], and described in detail
in [2]. The LIS approach also solves the LCS problem
in O(r log n) time (where m ≤ n). In most practical
scenarios, r < nm.

The LCS has been used in some recent algorithms to
compress genome resequencing data [20, 21]. Compres-
sion of biological sequences is an important and difficult
problem, which has been studied for decades by various
authors [22–24]. See [9, 25, 26] for recent surveys. Most
of the earlier studies focused on lossless compression
because it was believed that biological sequences should
not admit any data loss, since that would impact later use
of the compressed data. The earlier methods also gener-
ally exploited self-contained redundancies, without using
a reference sequence. The advent of high-throughput next
generation sequencing, with massive datasets that are eas-
ily generated for one experiment, have challenged both
compression paradigms.

Lossy compression of high-throughput sequences
admitting limited errors have been proposed in [27, 28]
for significant compression. With the compilation of
several reference genomes for different species, more
recent methods have considered lossless compression
of re-sequencing data by exploiting the significant
redundancies between the genomes of related species.
This observation is the basis of various recently pro-
posed methods for reference-based lossless compression
[20, 21], whereby some available standard reference
genome is used as the dictionary. Compression ratios in
the order of 80 to 18,000 without loss have been reported
[20, 21]. The LCS is the hallmark of these reference-
based approaches. In this work, we first introduce a new
algorithm for the LCS problem, using suffix trees and
shortest-path graph algorithms. Motivated by our LCS
algorithm, we introduce an improved reference-based
compression scheme for resequencing data using the
longest previous factor (LPF) data structure [29–31].

Methods
Preliminaries
A string T is a sequence of symbols from some alphabet
�. We append a terminal symbol $ /∈ � to strings for

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 371 of 456

completeness. A string or data structure D has length-
|D|, and its ith element is indexed by D[i], where 1 ≤
i ≤ |D|. A prefix of a string T is T[1 . . . i] and a suffix is
T[i . . . |T |], where 1 ≤ i ≤ |T |. The suffix tree (ST) on the
n-length T is a compact trie (with O(n) nodes constructed
in O(n) time [3]) that represents all of the suffixes of T.
Suffixes with common prefixes share nodes in the tree
until the suffixes differentiate and ultimately, each suffix
T[i . . . n] will have its own leaf node to denote i. A gen-
eralized suffix tree (GST) is an ST for a set of strings. A
substring of T is T[i . . . j], where 1 ≤ i ≤ j ≤ n. The
longest common subsequence is defined below in terms of
length-1 common substrings.

Definition 1. Longest common subsequence (LCS):
For the n-length S1 and m-length S2, the LCS between S1
and S2 is the length of the longest sequence of pairs M =
{m1, . . . , mM}, where mi = (u, v) such that S1[mh.u] =
S2[mh.v] for 1 ≤ h ≤ M and mi.u < mi+1.u ∧ mi.v <

mi+1.v for 1 ≤ i < M.

LCS algorithm
Below, we compute the LCS between S1 and S2 in the
following way. (i) We use the GST to compute the com-
mon substrings (CSSs) shared between S1 and S2. (ii) We
use the CSSs to construct a directed acyclic graph (DAG)
of maximal CSSs. (iii) We compute LCS by finding the
longest path in the DAG. Steps (i) and (iii) are standard
tasks. For step (ii), we develop new algorithms and data
structures.

Computing the CSSs
We now briefly describe finding the common substrings
(CSSs) between S1 and S2. In our LCS algorithm, for
simplicity of discussion, we will only use CSSs of length-1.

Let A = ∅. Compute the GST on S1$1 ◦ S2$2, for ter-
minals {$1, $2}. Consider a preorder traversal of the GST.
When at depth-1 for a node N, let S = ∅. During the
preorder traversal from N, we collect in S all of the suffix
index leaves descending from N, which represent the suf-
fixes that share the same first symbol. Let S1 = S2 = ∅.
For s ∈ S , if s ≤ |S1|, then store s in S1. Otherwise,
store s in S2. We represent all of our length-1 matches in
the following structure: MATCH {id, p1, p2}. The id is a
unique number for the MATCH, and p1 and p2 are respec-
tively the positions in S1 and S2 where the CSS exists. Let
id = 2. Now, for each s1 ∈ S1, we create a new MATCH
m = (id++, s1, s2) for each s2 ∈ S2. Store each m in A.

The running time is clearly the maximum of the GST
construction and the number of length-1 CSSs.

Lemma 2. Say n=|S1| and m=|S2|, then computing the η

CSSs of length-1 between S1 and S2 requires O(max{n +
m, η}) time.

DAG construction
Given all of the MATCHes found in A, our task now is
to construct the DAG for A. For all paths of the DAG to
start and end at a common node, we make MATCHes S
and E to respectively precede and succeed the MATCHes
in A. (Let S have id = 1 and E have id = |A + 2|
and then store S and E in A.) The goal of the DAG is to
represent all maximal CSSs between S1 and S2 as paths
from S to E. We will later find the LCS, the longest such
path.

In the DAG, the nodes will be the MATCH ids and the
edges between MATCHes, say m1 and m2, represent that
S1[m1.p1] = S2[m1.p2] is chosen in the maximal com-
mon subsequence followed by S1[m2.p1] = S2[m2.p2].
The DAG is acyclic because, by Definition 1, the LCS
is a list of ordered MATCHes. Since we cannot choose
mi ∈ M and then mh ∈ M with h < i, then no cycle can
exist.

Our DAG construction, displayed in Algorithm 1, oper-
ates in the following way. We initialize the DAG dag by
first declaring dag.gr of size |A|, since gr will represent all
of the nodes. All outgoing edges for say the node N ∈ A
are represented by dag.gr[N .id] [1 . . . dag.sz[N .id]]. By
setting dag.sz = {0, . . . , 0}, we clear the edges in our
dag. Now, setting these edges is the main task of our
algorithm.

We can easily construct the edges by assuming that
there exists a data structure PREV pv that can tell us the
set of parents for each node a ∈ A. That is, we can call
getPrnts(pv, L) to get the set of nodes P that directly
precede MATCH L ∈ A in the final dag. By “directly pre-
cede”, we mean that in the final dag, there is connection
from each p ∈ P to a, i.e. each p is in series with a, mean-
ing that both p AND a are chosen in a maximal CSS.
Further, no p, p2 ∈ P can be in series with one another,
and rather, they are in parallel with one another, mean-
ing that either p OR p2 is chosen in a maximal common
subsequence.

With P, we can build an edge from a2 ∈ P to a by
first allocating a new space in dag.gr[a2.id] by increment-
ing dag.sz[a2.id] and then making a directed edge from
parent to child, i.e. dag.gr[a2.id] [dag.sz[a2.id]] = a.id.
After computing the incoming edges for each node a ∈ A,
the dag construction is complete.

PREV data structure
The simplicity of the DAG construction is due to the
PREV pv, detailed here. The pv is composed of four
attributes.

HashMap<int,int> p1. Suppose that all a.p1 values
(for a ∈ A) are placed on an integer number line. It is
very unlikely that all a.p1 values will be consecutive and
so, there will be unused numbers (gaps) between adjacent
values. Since we later declare matrices on the MATCH

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 372 of 456

p1 (and p2) values, these gaps will be wasteful. With a
scan of the a.p1 values (say using a Set), we can rename
them consecutively without gaps; these renamed values
are found by accessing HashMap<int,int> p1 with the
original a.p1 value.

HashMap<int,int> p2. This is the same as the afore-
mentioned p1, but with respect to the a.p2 values.

MATCH tbl1[][]. A fundamental data structure to sup-
port the getPrnts function is the tbl1, defined below.

Definition 3. Max Table w.r.t. p1 (tbl1): Given the
set of all MATCH values A and PREV pv on A (with
pv.p1 and pv.p2), the tbl1[|pv.p1|] [|pv.p2|] is defined such
that each tbl1[i] [j] is the a ∈ A with the maximum
pv.p1.get(a.p1) ≤ i, where pv.p2.get(a.p2) ≤ j. In the
case that multiple such a exist, tbl1[i] [j] is the a with
the rightmost pv.p2.get(a.p2) ≤ j. If no such a exists,
tbl1[i] [j] = null.

In other words, the tbl1[i] [j] stores the “closest”
MATCH a with respect to the p1 values (i.e. we maximize
a.p1 before a.p2). To construct tbl1, we first declare
the table, tbl1[|pv.p1|] [|pv.p2|] and initialize all ele-
ments tbl1[i] [j] = null, signifying that no MATCHes
are found. Next, we insert each a ∈ A into the list by
setting tbl1[pv.p1.get(a.p1)] [pv.p2.get(a.p2)] = a. Now,
each tbl1[i] [j] = null needs to be set as the rightmost
MATCH m with the maximum m.p1 in the subtable
tbl1[1. . .i] [1. . .j]. This is easily computed by first moving
vertically in tbl1 and setting tbl1[i] [j] = tbl1[i − 1] [j] if
tbl1[i] [j] = null to propagate the maximum values ver-
tically. Finally, we need to move horizontally in tbl1 and
store in tbl1[i] [j] the rightmost tbl1[i] [v] (1 ≤ v ≤ j) with
the maximum tbl1[i] [v] .p1. This is done by a left-to-right
scan of each row, comparing the adjacent elements, and
setting tbl1[i] [v] = tbl1[i] [v − 1] if tbl1[i] [v − 1] .p1 >

tbl1[i] [v] .p1.
MATCH tbl2[][]. The tbl2 is the same as tbl1 except

that we define “closest” to mean that the a.p2 value is
maximized before the a.p1.

Definition 4. Max Table w.r.t. p2 (tbl2): Given the
set of all MATCH values A and PREV pv on A (with
pv.p1 and pv.p2), the tbl2[|pv.p1|] [|pv.p2|] is defined such
that each tbl2[i] [j] is the a ∈ A with the maximum
pv.p2.get(a.p2) ≤ j, where pv.p1.get(a.p1) ≤ i. In the
case that multiple such a exist, tbl2[i] [j] is the a with
the rightmost pv.p1.get(a.p1) ≤ i. If no such a exists,
tbl2[i] [j] = null.

The construction of tbl2 is the same as tbl1, except that
in the final horizontal scan, we compare tbl2[i] [v] .p2 and
tbl2[i] [v − 1] .p2.

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 373 of 456

In terms of construction time, if we assume that adding
and accessing HashMap entries are constant time opera-
tions, and the Set is implemented with a HashMap, then
the PREV pv on A from the n-length S1 and m-length S2 is
constructed in O(|pv.p1| × |pv.p2|) time. While pv.p1 and
pv.p2 eliminate the gaps between the respective p1 and p2
values of A, we have |pv.p1| ∈ O(n) and |pv.p2| ∈ O(m) in
the very worst-case.

Theorem 5. Given the n-length S1 and m-length S2, and
the set of all MATCHes A, PREV pv on A is constructed
in O(nm) time.

getPrnts function
Given the PREV pv data structure on all MATCHes A,
we call getPrnts(pv, L) in line 11 of constructDAG
to retrieve the set of parent MATCHes P of the MATCH
L ∈ A. Recall that these parents P of the MATCH L are
all MATCHes that directly precede L in the DAG, i.e. each
p ∈ P is in series with L and no p, p2 ∈ P are in series with
one another. Using pv, we can compute, for any MATCH
c ∈ A, two direct parents that are closest to c with respect
to the p1 and p2 values.

Definition 6. Direct Parents: Given the PREV pv on the
MATCHes in A between the n-length S1 and the m-length
S2, and a MATCH c ∈ A, let i = pv.p1.get(c.p1) and j =
pv.p2.get(c.p2). The direct parent of c w.r.t. p1 is:

d1 =
{

null, if i ≤ 1 ∨ j ≤ 1 ∨ i > |pv.p1| ∨ j > |pv.p2|
pv.tbl1[i − 1] [j − 1] , otherwise

The direct parent of c w.r.t. p2 is:

d2 =
{

null, if i ≤ 1 ∨ j ≤ 1 ∨ i > |pv.p1| ∨ j > |pv.p2|
pv.tbl2[i − 1] [j − 1] , otherwise

The first getDPrnt in Algorithm 2 implements Def-
inition 6 to return the direct parents for any MATCH
say L ∈ A. In cases where we want to find the direct
parent for a MATCH at a certain location in the pv.tbl1
or pv.tbl2, say pv.tbl1[i] [j] or pv.tbl2[i] [j], we overload
getDPrnt.

The direct parents computation (getDPrnt) is the
cornerstone of the getPrnts function. The following
lemma, implemented in Algorithm 3, proves that the
direct parents of c can be used to determine all parents
of c.

Lemma 7. Given A, the MATCHes between S1 and S2,
and a MATCH c ∈ A, the two direct parents of c can be
used to compute the set P with all parents of c.

Proof. Let d1 and d2 be the direct parents of c (Defini-
tion 6). By Definition 3, d1 is a direct parent because it
directly precedes c with the maximum p1 and the right-
most p2 value. Similarly by Definition 4, d2 is a direct
parent of c because it directly precedes c with the maxi-
mum p2 and the rightmost p1 value. To find the remaining
parents of c, we now find other MATCHes that precede
c, which are also parallel with d1 and d2. There are three
cases.

Case (a). When d1 = null, then also d2 = null
since there cannot be another MATCH preceding c. Thus,
P = ∅.

Case (b). When d1 = d2, the nearest parents to c are
the same MATCH. There are only two types of MATCHes
that are parallel with d1. First, we need to consider all
MATCHes, say m1, with the same endpoint m1.p1 =
d1.p1 and m1.p2 ∈ {1, 2, . . . , d1.p2 − 1}. Second, we need
to consider the MATCHes, say m2, with the same end-
point m2.p2 = d1.p2 and m2.p2 ∈ {1, 2, . . . , d1.p1 − 1}.
In the LCS computation, suppose that we chose, w.l.o.g.,
m1 (with m1.p2 = d1.p2 − 2) instead of d1. Then, we
cannot choose a MATCH m3 with m3.p1 < d1.p1 and
m3.p2 = d1.p2−1. So, having any m1 or m2 parallel to d1
will only lead to suboptimal CSSs. Thus, only P = {d1} is
a parent of c.

Case (c). Otherwise, d1 �= d2 and we have two differ-
ent direct parents of c. Set P = {d1, d2}. Let us collect
the endpoints of d1 and d2: i1 = d2.p1, i2 = d1.p1,
j1 = d1.p2, and j2 = d2.p2. What MATCH, say m3, is
parallel to d1 and d2? By Definition 6, there cannot be any
MATCH m3 directly preceding c with endpoints after i2
or j2. By (b), we do not need to consider other MATCHes

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 374 of 456

with endpoints on either d1 or d2. So, all the possible
MATCHes parallel to d1 and d2 are those with (m3.p1 ∈
w ∧ m3.p2 ∈ x), where w = {i1 + 1, i1 + 2, . . . , i2 − 1}
and x = {j1 + 1, j1 + 2, . . . , j2 − 1}. To find such m3,
we only need to find direct parents (by (b)), say dd1
and dd2, for a theoretical MATCH m with (m.p1 ∈ w ∧
m.p2 = j) ∨ (m.p1 = i ∧ m.p2 ∈ x). Then, when we have
i1 < dd1.p1 < i2 and j1 < dd1.p2 < j2, this is a possible
MATCH parallel with d1 and d2, which is also a possible
parent of c, so we add dd1 to P. We do the same process
for dd2.

Since we computed all the possible parents in P, addi-
tional processing on P is needed to ensure that no pair of
MATCHes in P are in series; if any are in series, delete the
MATCH furthest from c. With the pv and getDPrnt, this
task is simple. We simply check the direct parents (say dd1
and dd2) for each y ∈ P, and remove dd1 if dd1 ∈ P and
remove dd2 if dd2 ∈ P.

Computing the LCS
Since our dag has a single source S (and all paths end at E),
the longest path between S and E, i.e. the LCS, is computed
by giving all edges a weight of −1 and finding the shortest
path from S to E via a topological sort [32].

Complexity analysis
Our LCS algorithm: (i) finds the length-1 CSSs, (ii) com-
putes the DAG on the CSSs, and (iii) reports the longest
DAG path. Here, we analyze the overall time complexity.

Step (i)
First, we find (and store in A) the η length-1 CSSs in
O(max{n + m, η}) time by Lemma 2.

Step (ii)
We then construct the DAG dag on these a ∈ A with
constructDAG. In constructDAG, we initially com-
pute the newly proposed PREV pv data structure in
O(nm) time by Theorem 5. After constructing pv, the
computeDAG iterates through each a ∈ A and cre-
ates an incoming edge between the parents of a and
a. So, computeDAG executes in time O(max{nm, η ×
tgetPrnts}), where tgetPrnts is the time of getPrnts.
The getPrnts running time is in O((i2 − i1) + (j2 −
j1)), with respect to the local variables i1, i2, j1, and
j2. However, it may be the case that i1 = j1 = 1,
i2 = n, and j2 = m, and so O(n + m) time is
required by getPrnts. Below we formalize the worst-
case result and the case for average strings from a uniform
distribution.

Lemma 8. For the n-length S1 and the m-length S2, the
getPrnts function requires O(n + m) time.

Lemma 9. For average case strings S1 and S2 with sym-
bols uniformly drawn from alphabet �, the getPrnts
function requires O(|�|) time.

Proof. Since d1 and d2 are the direct parents of c (see
Definitions 3, 4 and 6), and since the uniformness of S1
and S2 means that for any symbol say S1[s] we can find
every σ ∈ � in S2[s − � . . . s + �] with � ∈ O(|�|), then
(i2 − i1) ∈ O(|�|) and (j2 − j1) ∈ O(|�|).

So, the overall constructDAG time follows.

Theorem 10. Given A, the length-1 MATCHes in the
n-length S1 and the m-length S2, the constructDAG
requires O(max{nm, η × max{n, m}}) time in the worst-
case and O(max{nm, η × |�|}) on average.

Step (iii)
We find the LCS with a topological sort in time linear to
the dag size [32], which cannot require more time than
that needed to build the dag (see Theorem 10).

Summary
Overall, (i) and (iii) do not add to the complexity of (ii).
Given the above, the overall running time is as follows.

Theorem 11. The LCS between the n-length S1 and
the m-length S2 can be computed in O(max{nm, η ×
max{n, m}}) time in the worst-case and O(max{nm, η ×
|�|}) on average.

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 375 of 456

Compressing resequencing data
When data is released, modified, and re-released over
a period of time, a large amount of commonality exists
between these releases. Rather than maintaining all
uncompressed versions of the data, it is possible to keep
one uncompressed version, say D, and compress all future
versions Di with respect to D. We refer to Di as the target
and D as the reference. This idea is used to compress rese-
quencing data in [20, 21], primarily using the LCS. The
LCS, however, has two core problems with respect to com-
pression. For very similar sequences, the LCS computation
time is almost quadratic, or worse, potentially leading to
long compression time. Secondly, the LCS may not always
lead to the best compression, especially when some CSS
components are very short.

Rather than focusing on the LCS, we consider the max-
imal CSSs that make up the common subsequences. To
intelligently choose which of the CSSs are likely to lead
to improved compression, we use the longest previous
factor (LPF), an important data structure in text com-
pression [33]. Consider compressing the target T with
respect to the reference R; let Z = R ◦ T . Suppose we
choose exactly |T | maximal-length CSSs, specifically, for
β = Z[i . . . |Z|] we have α = Z[h . . . |Z|] such that (1)
CSSs α[1 . . . k] = β[1 . . . k] and (2) this is the maximal k
for h < i, where |R| + 1 ≤ i ≤ |Z|. These ks are com-
puted in the LPF data structure on Z at LPF[i] = k and
the position of this CSS is at POS[i] = h [29]. (Note that
LPF and POS are constructed in linear time [29–31].) The
requirement that h < i suits dictionary compression and
compressing resequencing data because the CSS begin-
ning at i is compressed by referencing the same CSS at
h, occurring earlier in target T or anywhere in the refer-
ence R. Our idea is to use the LPF and POS to represent or
encode CSSs that make up the target T with tuples. We will
then compress these tuples with standard compression
schemes.

Our compression scheme
We now propose a reference-based compression scheme
which scans the LPF and POS on Z in a left-to-right
fashion to compress T with respect to R. This scheme
is similar to the LZ factorization [29], but differs in how
we will encode the CSSs. Our contribution here is (1)
using two files to compress T, (2) only encoding CSSs with
length at least k, and (3) further compressing the resulting
files with standard compression schemes.

Initially, the two output files, triples and symbols, are
empty. Let i = |R| + 1.

(!) If LPF[i] < k, we simply encode the symbol; append
the (say 1-byte) char T[i−|R|] to symbols and increment i.
Otherwise LPF[i] ≥ k, so we will encode this CSS with the
triple (pT , pZ, l), where pT = i−|R| is the starting position
of the CSS in T, pZ = POS[i] is the starting position of
the CSS in Z[1 . . . i − 1], and l = LPF[i] is the length of
the CSS. We write three long (say 4-byte integer) words
pT, pZ, and l to triples. Since the triple encodes an l-length
CSS, we set i = i + l to consider compressing the suffix
following the currently encoded CSS. Lastly, if i ≤ |Z|,
continue to (!).

The resulting files triples and symbols are binary
sequences that can be further compressed with standard
compression schemes (so, decompression will start by
first reversing this process). The purpose of the k and the
two files (one with byte symbols and one with long triples)
is to introduce flexibility into the system and encode CSSs
with triples (12 bytes) only when beneficial and other-
wise, encode a symbol with a byte. For convenience, our
implementation encodes each symbol with a byte, but we
acknowledge that it is possible to work at the bit-level for
small alphabets.

The decompression is also a left-to-right scan. Let i = 1
and point to the beginning of triples and symbols.

(†) Consider the current long word w1 in triples.
According to the triple encoding, this will be the position

Fig. 2 Total bytes needed by our algorithm to compress the Arabidopsis thaliana genome, i.e. file size sum of symbols and triples

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 376 of 456

Fig. 3 Compressing the Arabidopsis thaliana genome Chromosome 4

of the CSS in T. If i = w1, then we pick up the next
two long words w2 and w3 in triples. We now know
T[i . . . i + w3 − 1] = Z[w2 . . . w2 + w3 − 1]. Since we
only have access to R and T[1 . . . i − 1], then we pick
up each symbol of Z[w2 . . . w2 + w3 − 1] by picking up
R[j] if j ≤ |R| and picking up T[j − |R|] otherwise, for
w2 ≤ j ≤ w2 + w3 − 1. We next will consider i = i + w3.
Else i �= w1, so we pick up the next char c in symbols
since T[i] = c; we next consider i++. If i ≤ |T |, go
to (†).

The compression and decompression algorithms are
detailed in Algorithms 4 and 5, respectively.

Results and discussion
We implemented the previously described compression
scheme, selected and fixed parameter k, and ran our pro-
gram to compress various DNA corpora. In this section,
we describe the selection of k and our final results.

Choosing parameter k
Recall that the parameter k is a type of threshold used by
our compression scheme to determine whether it is more
beneficial to encode a symbol verbatim (that is, 1 byte)
or encode a CSS as a triple (that is, 12 bytes). Specifi-
cally, our compression algorithm works on the LPF (which
represents the CSSs of the n-length T) in a left-to-right
fashion, selecting the leftmost CSS, say T[i . . . i + l − 1] of
length-(LPF[i] = l), and determining whether to encode
that CSS as a triple [and then consider the next CSS
(T[i + l . . . i + l + LPF[i + l] −1] of length-LPF[i + l])], or
encode the first symbol (T[i]) [and then consider the next
CSS (T[i + 1 . . . i + LPF[i + 1]] of length-LPF[i + 1])].

Obviously, it is better to encode a length-(l = 1) CSS
with a 1-byte symbol, rather than a 12-byte triple. It is
clearly the case that for any CSS length 1 ≤ l < 12, it is
better to encode the first symbol with 1-byte and take a
chance that the next CSS to the right will be significantly

Fig. 4 Size of the symbols file when compressing the Arabidopsis thaliana genome

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 377 of 456

Fig. 5 Size of the triples file when compressing the Arabidopsis thaliana genome

larger. Why can we afford to take this chance? One LPF
property, which also allows for an efficient construction
of the data structure (see [29]), is that LPF[i + 1] ≥
LPF[i] −1. That is, if we pass up on encoding the CSS at
i of length-(LPF[i] = l) as a triple, we can encode T[i]
as a symbol and (1) are guaranteed that there is at least
a length-(l − 1) CSS with a prefix of T[i + 1 . . . n] and
(2) the longest CSS common to a prefix of T[i + 1 . . . n]
is of length-LPF[i + 1], maybe even larger than LPF[i].
Clearly, we want to encode most CSSs as triples to take
advantage of the concise triple representation. Now, the
question becomes: how large should we set k, such that we
can afford to take a risk passing up length-(l < k) CSSs in
hopes of finding even larger CSSs better suited as triples?

For this paper, we decided to select k by studying the
impact of the parameter on our compressed results for the
Arabidopsis thaliana genome, using target TAIR9 and ref-
erence TAIR8. The compression results for various k are
shown in Fig. 2; since chromosome 4 does not compress
as well as the others, we show it separately in Fig. 3 for
improved visualization. For very small k < 12, we have a
result that basically encodes with triples only; when k = 1,
we are exclusively encoding CSSs as triples. We see that
when k is roughly between 12 and 35, we are encouraging
the algorithm to pass up encoding smaller CSSs as triples,
which leads to the best compression result. The results
stay competitive until say k ≥ 100, where the algorithm
becomes too optimistic and passes up the opportunity to
encode smaller CSSs as triples in hopes that larger CSSs
will exist. Further, we see from Fig. 4 that as k becomes
large, it indeed becomes very expensive to pass up encod-
ing these CSSs as triples. Also, we see from Fig. 5 that
beyond say k = 20, there is minimal compression savings.
Thus, we want to balance the expensive symbols files with
the space-savings from the triples files.

In Table 1, we show the best compression results and
k for the Arabidopsis thaliana genome. Unless otherwise
specified, our experiments below fix parameter k as 31,
since it is the optimal k common to 4-of-5 of the Ara-
bidopsis thaliana chromosomes and gives a competitive
result for the remaining chromosome. This result follows
intuition because k should be at least 11 and not too large,
so that we can consider CSSs that are worthy of encoding.

Compression results
Like [20, 21], we compress the Arabidopsis thaliana
genome chromosomes in TAIR9 (target) with respect to
TAIR8 (reference). In Table 2, we display the compres-
sion results. We see that all of our results are competitive
with the GRS and GReEn systems, except for chromosome
4, which has the smallest average CSS length of about
326K. Nonetheless, we are able to further compress our
results using compression schemes from 7-zip, with L and
P respectively representing lzma2 and ppmd, to achieve
even better compression.

In Table 3, we show results for compressing the genome
Oryza sativa using the target TIGR6.0 and reference
TIGR5.0. After compressing our algorithm’s output with
lzma2 or ppmd, our results are better than both GRS

Table 1 Arabidopsis thaliana genome: Optimal k for compressing
chromosome U into the smallest C (in bytes)

U k |C|
1 31–35 1086

2 16–1578 504

3 24–39 746

4 18 4418

5 19–91 433

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 378 of 456

Table 2 Arabidopsis thaliana genome: Results (in bytes) for
compressing chromosome U into C

U |U| Our Scheme GRS GReEn

|C| |L(C)| |P(C)| [20] [21]

1 30 427 671 1 086 963 1 037 715 1 551

2 19 698 289 504 584 605 385 937

3 23 459 830 746 759 803 2 989 1 097

4 18 585 056 4 555 2 507 3 156 1 951 2 356

5 26 975 502 433 502 520 604 618

Sum 119 146 348 7 324 5 315 6 121 6 644 6 559

Bold signifies the best result

[20] and GReEn [21]. Note that for each of the chromo-
somes 6, 9, and 12, our algorithm’s output is 12 bytes,
better than that of GRS [20] (14 bytes) and GReEn [21]
(482 bytes, 366 bytes, and 429 bytes respectively). When
we compress our result with lzma2 or ppmd, the result is
bloated since more bytes are needed. So, we can further
improve the overall result by not compressing chromo-
somes 6, 9, and 12, and further, selecting the best such
compression scheme for each individual chromosome.
We acknowledge that additional bits would need to be
encoded to determine which compression scheme was
selected.

In Table 4, we show the compression results for the
Homo sapiens genome, using KOREF_20090224 as the
target and KOREF_20090131 as the reference. After com-
pressing our computed symbols and triples files with
lzma2, we see that most all of our results are better
than GRS and GReEn. Recall in previous experiments that

sometimes secondary compression with 7-zip does not
improve the initial compression achieved by our proposed
algorithm. For this genome, we exercise the flexibility of
our compression framework. In Table 4, (*) indicates that
the M chromosome was not further compressed with
lzma2 due to the aforementioned reason. To indicate that
M was not compressed, we will simply encode a length-
25 bitstring (say 4-byte) header to specify whether or not
the lzma2 was applied. There is no need to encode k
in the header since it is a fixed value. Thus, the overall
compressed files require 15,460,478 bytes, which is only
slightly better than GRS and GReEn.

To improve this result, we exploit the difference
between the Homo sapiens genome and those discussed
earlier. That is, the Homo sapiens genome uses the
extended alphabet {A, C, G, K, M, R, S, T, W, Y, a, c, g,
k, m, n, r, s, t, w, y}. The observation is that, the alpha-
bet size decreases roughly in half by converting to one
character-case. Such a significant reduction in alphabet
size will yield more significant redundancies identified
by our compression algorithm. Our new decomposition
method will decompose each chromosome into two parts:
(1) the payload (ρ), representing the chromosome in one
character-case, and (2) the character-case bitstring (α), in
which each bit records whether the corresponding posi-
tion in the target was an upper-case character. Next, we
use our previously proposed algorithm to compress ρ into
Cρ and α into Cα .

Table 5 shows compression via decomposition for the
Homo sapiens genome. Note that the |Cρ |, i.e. com-
pressed payload, column corresponds to the results
reported in our initial work [1]. We observe that in
various scenarios, the character-case of the alphabet

Table 3 Oryza sativa genome: Results (in bytes) for compressing chromosome U into C

U |U| Our Scheme GRS GReEn

|C| |L(C)| |P(C)| [20] [21]

1 43 268 879 15 207 4 735 4 551 1 502 040 4 972

2 35 930 381 4 645 1 649 1 517 1 409 1 906

3 36 406 689 54 234 15 693 15 556 47 764 17 890

4 35 278 225 21 474 6 636 6 432 36 145 6 750

5 29 894 789 17 030 5 431 5 359 6 177 5 539

6 31 246 789 12 146 141 14 482

7 29 696 629 5 899 2 064 1 972 4 067 2 448

8 28 439 308 23 126 8 794 10 115 118 246 9 507

9 23 011 239 12 146 141 14 366

10 23 134 759 175 228 49 713 50 277 788 542 60 449

11 28 512 666 41 407 13 006 13 351 2 397 470 14 797

12 27 497 214 12 146 141 14 429

Sum 372 317 567 358 286 108 159 109 553 4 901 902 125 535

Bold signifies the best result

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 379 of 456

Table 4 Homo sapiens genome: Results (in bytes) for compressing chromosome U into C

U |U| Our Scheme GRS GReEn

|C| |L(C)| [20] [21]

1 247 249 719 2 836 652 1 082 859 1 336 626 1 225 767

2 242 951 149 2 871 186 1 050 170 1 354 059 1 272 105

3 199 501 827 2 115 410 790 444 1 011 124 971 527

4 191 273 063 2 398 432 910 898 1 139 225 1 074 357

5 180 857 866 2 064 874 764 458 988 070 947 378

6 170 899 992 1 902 067 710 355 906 116 865 448

7 158 821 424 2 326 721 844 194 1 096 646 998 482

8 146 274 826 1 617 884 617 996 764 313 729 362

9 140 273 252 1 877 509 704 205 864 222 773 716

10 135 374 737 1 623 010 617 633 768 364 717 305

11 134 452 384 1 586 558 604 901 755 708 716 301

12 132 349 534 1 476 523 566 997 702 040 668 455

13 114 142 980 1 100 576 399 527 520 598 490 888

14 106 368 585 1 026 227 377 695 484 791 451 018

15 100 338 915 1 055 663 398 720 496 215 453 301

16 88 827 254 1 225 378 443 009 567 989 510 254

17 78 774 742 1 081 739 396 371 505 979 464 324

18 76 117 153 865 138 320 361 408 529 378 420

19 63 811 651 862 129 320 789 399 807 369 388

20 62 435 964 605 179 229 418 282 628 266 562

21 46 944 323 488 340 180 096 226 549 203 036

22 49 691 432 568 734 205 244 262 443 230 049

X 154 913 754 7 525 925 2 494 884 3 231 776 2 712 153

Y 57 772 954 1 343 260 429 099 592 791 481 307

M 16 571 151 151(*) 183 127

Sum 3 080 436 051 42 445 265 15 460 474 19 666 791 17 971 030

Bold signifies the best result

symbol is not significant. For example, the IUB/I-
UPAC amino acid and nucleic acid codes use only
upper-case letters (see http://www.bioinformatics.
org/sms/iupac.html). Also, some environments and
formats (such as FASTA) do not distinguish between
lower-case and upper-case. According to the NCBI
website for BLAST input formats (see http://blast.
ncbi.nlm.nih.gov/blastcgihelp.shtml): “Sequences [in
FASTA format] are expected to be represented in
the standard IUB/IUPAC amino acid and nucleic
acid codes, with these exceptions: lower-case letters
are accepted and are mapped into upper-case; . . . ”
Further, some programs/environments use character
cases for improved visualization, as is the case with
the USC Genome Browser, which uses lower-case to
show repeats from RepeatMasker and Tandem Repeats
Finder (ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/
chromosomes/README.txt).

Also, we see that further compressing the payload
with lzma2 more than doubles the compression ratio.
Interestingly, the payload (ρ) compresses much better
than the character-case bitstring (α). Nonetheless, the
compression via decomposition (in Table 5) yields a com-
pression ratio of 360, a significant improvement over the
199 compression ratio when compressing the genome’s
characters in their native character-case (in Table 4). As
described earlier, we do not further compress chromo-
some M after initial coding for the symbols and triplets,
and thus encode only a 4-byte header to remember this
decision, given that the payload and character-case bit-
string k values are fixed. Thus, 8,556,708 bytes are needed,
which is an improvement over GRS and GReEn.

Theoretically, our compression scheme requires time
linear in the length of the uncompressed text, since we
perform one scan of the LPF, which is constructed in lin-
ear time via the suffix array SA [29]. For the Arabidopsis

http://www.bioinformatics.org/sms/iupac.html
http://www.bioinformatics.org/sms/iupac.html
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/README.txt
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/README.txt

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 380 of 456

Table 5 Homo sapiens genome: Results (in bytes) for compressing chromosome U via decomposition, i.e. compressing the payload (ρ)
into Cρ and compressing the character-case bitstring α into Cα

U |U| Our Scheme GRS GReEn

|Cρ | |L(Cρ)| |Cα | |L(Cα)| |L(Cρ)| + |L(Cα)| [20] [21]

1 247 249 719 381 577 161 319 755 092 447 919 609 238 1 336 626 1 225 767

2 242 951 149 356 526 153 805 756 823 452 338 606 143 1 354 059 1 272 105

3 199 501 827 284 096 119 348 553 835 343 213 462 561 1 011 124 971 527

4 191 273 063 330 381 137 301 619 981 383 882 521 183 1 139 225 1 074 357

5 180 857 866 259 922 109 768 550 876 331 063 440 831 988 070 947 378

6 170 899 992 265 222 110 544 508 662 310 029 420 573 906 116 865 448

7 158 821 424 292 797 121 289 611 475 355 616 476 905 1 096 646 998 482

8 146 274 826 222 972 93 378 434 420 261 455 354 833 764 313 729 362

9 140 273 252 309 512 132 957 493 024 276 468 409 425 864 222 773 716

10 135 374 737 245 264 103 115 436 272 257 895 361 010 768 364 717 305

11 134 452 384 222 735 92 471 423 687 254 637 347 108 755 708 716 301

12 132 349 534 214 123 88 447 393 764 239 811 328 258 702 040 668 455

13 114 142 980 148 938 62 730 301 116 183 038 245 768 520 598 490 888

14 106 368 585 141 128 57 354 286 839 170 916 228 270 484 791 451 018

15 100 338 915 138 219 58 777 302 957 173 600 232 377 496 215 453 301

16 88 827 254 151 606 62 779 346 282 191 190 253 969 567 989 510 254

17 78 774 742 136 168 57 030 301 837 171 680 228 710 505 979 464 324

18 76 117 153 113 469 47 122 241 437 140 909 188 031 408 529 378 420

19 63 811 651 130 468 53 531 230 673 134 701 188 232 399 807 369 388

20 62 435 964 94 273 38 689 169 584 99 796 138 485 282 628 266 562

21 46 944 323 71 121 28 744 141 387 79 835 108 579 226 549 203 036

22 49 691 432 81 329 33 663 164 026 89 961 123 624 262 443 230 049

X 154 913 754 523 282 196 868 1 533 249 875 026 1 071 894 3 231 776 2 712 153

Y 57 772 954 152 464 57 002 300 287 153 582 210 584 592 791 481 307

M 16 571 64 64(*) 49 49(*) 113 183 127

Sum 3 080 436 051 5 267 656 2 178 095 10 857 634 6 378 609 8 556 704 19 666 791 17 971 030

Bold signifies the best result

thaliana and Oryza sativa genomes, we ran our programs
on a laptop; for the Homo sapiens genome, we ran our pro-
grams in an AWS EC2 m4.4xlarge environment. Consider,
for example, the larger chromosomes of the Homo sapiens
genome. For a payload (ρ), the SA construction required
2,376 sec and the LPF construction required 399 sec. Note
that depending on the application, the SA and LPF may
already be available. Given the LPF, our compression algo-
rithm completed in less than one second. Decompression
is also fast, and lightweight, since no data structures are
required as parameters. Our future plan includes using
more efficient SA and LPF constructions.

Conclusions
We proposed a new algorithm to compute the LCS. Moti-
vated by our algorithm, we introduced a new reference-
based compression scheme for genome resequencing data

using the LPF. For the Arabidopsis thaliana genome (orig-
inally 119,146,348 bytes), our scheme compressed the
genome to 5315 bytes, an improvement over the best per-
forming state-of-the-art methods (6644 bytes [20] and
6559 bytes [21]). For the Oryza sativa genome (originally
372,317,567 bytes), our scheme compressed the genome
to 108,159 bytes, an improvement over the 4,901,902
bytes in [20] and the 125,535 bytes in [21]. We also
experimented with the Homo sapiens genome (originally
3,080,436,051 bytes), which was compressed to 19,666,791
bytes and 17,971,030 bytes in [20] and [21], respectively.
By applying our scheme via a decomposition approach, we
compress the genome to 8,556,708 bytes, and if alphabet
character-case is not significant, we compress the genome
to 2,178,095 bytes. Further improvement can be obtained
by choosing the k parameter for each specific chromo-
some, or each specific species.

The Author(s). BMC Genomics 2016, 17(Suppl 4):544 Page 381 of 456

Declarations
This article has been published as part of BMC Genomics Vol 17 Suppl 4 2016:
Selected articles from the IEEE International Conference on Bioinformatics and
Biomedicine 2015: genomics. The full contents of the supplement are
available online at http://bmcgenomics.biomedcentral.com/articles/
supplements/volume-17-supplement-4.

Funding
This work was supported in part by grants from the US National Science
Foundation, #IIS-1552860, #IIS-1236983.

Authors’ contributions
All authors contributed to the core elements of this work. DA initiated the
project. RB, TA, and DA developed the LCS algorithm. DA and RB developed
the compression algorithm. RB implemented the LPF and compression
methods. AF and RB performed the experiments. DA coordinated the overall
project. RB and DA prepared the final manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 18 August 2016

References
1. Beal R, Afrin T, Farheen A, Adjeroh D. A new algorithm for ‘the LCS

problem’ with application in compressing genome resequencing data.
In: Bioinformatics and Biomedicine (BIBM), 2015 International, IEEE,
Conference on; 2015. p. 69–74.

2. Gusfield D. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. New York, NY: Cambridge University
Press; 1997.

3. Adjeroh D, Bell T, Mukherjee A. The Burrows-Wheeler Transform: Data
Compression, Suffix Arrays, and Pattern Matching, 1st ed. New York, NY:
Springer; 2008.

4. Lin Z, Wang H, McClean S. A multidimensional sequence approach to
measuring tree similarity. IEEE Trans Knowl Data Eng. 2012;24(2):197–208.

5. Smith TF, Waterman MS. Identification of common molecular
subsequences. J Mol Biol. 1981;147:195–7.

6. Aach J, Bulyk M, Church G, Comander J, Derti A, Shendure J.
Computational comparison of two draft sequences of the human
genome. Nature. 2001;26(1):5–14.

7. Wandelt S, Leser U. FRESCO: Referential compression of highly similar
sequences. IEEE/ACM Trans Comput Biol Bioinform. 2013;10(5):1275–88.

8. Wandelt S, Starlinger J, Bux M, Leser U. RCSI: Scalable similarity search in
thousand(s) of genomes. Proc VLDB Endow. 2013;6(13):1534–45.

9. Giancarlo R, Scaturro D, Utro F. Textual data compression in
computational biology: Algorithmic techniques. Comput Sci Rev.
2012;6(1):1–25.

10. Kuo C-E, Wang Y-L, Liu J-J, Ko M-T. Resequencing a set of strings based
on a target string. Algorithmica. 2015;72(2):430–49.

11. Myers EW. An O(ND) difference algorithm and its variations. Algorithmica.
1986;1(2):251–66.

12. Ukkonen E. Algorithms for approximate string matching. Inform Control.
1985;64:100–18.

13. Hunt JW, Szymanski TG. A fast algorithm for computing longest
subsequences. Commun ACM. 1977;20(5):350–3.

14. Hirschberg DS. A linear space algorithm for computing maximal common
subsequences. Commun ACM. 1975;18(6):341–3.

15. Yang J, Xu Y, Shang Y, Chen G. A space-bounded anytime algorithm for
the multiple longest common subsequence problem. IEEE Trans Knowl
Data Eng. 2014;26(11):2599–609.

16. Maier D. The complexity of some problems on subsequences and
supersequences. J ACM. 1978;25(2):322–36.

17. Apostolico A, Giancarlo R. The Boyer-Moore-Galil string searching
strategies revisited. SIAM J Comput. 1986;15(1):98–105.

18. Jacobson G, Vo K-P. Heaviest increasing common subsequence problems.
In: Proceedings of the Third Annual Symposium on Combinatorial Pattern
Matching, ser. CPM ’92. London: Springer-Verlag; 1992. p. 52–66.

19. Pevzner PA, Waterman MS. A fast filtration algorithm for the substring
matching problem. LNCS 684 Comb Pattern Matching. 1993;684:197–214.

20. Wang C, Zhang D. A novel compression tool for efficient storage of
genome resequencing data. Nucleic Acids Res. 2011;39(7):e45.

21. Pinho AJ, Pratas D, Garcia SP. GReEn: A tool for efficient compression of
genome resequencing data. Nucleic Acids Res. 2012;40(4):e27.

22. Nevill-Manning CG, Witten IH. Protein is incompressible. In: Proceedings
of the Conference on Data Compression, ser. DCC ’99. Washington: IEEE
Computer; 1999. p. 257.

23. Adjeroh D, Nan F. On compressibility of protein sequences. In: DCC.IEEE
Computer Society. IEEE; 2006. p. 422–34.

24. Coxm AJ, Bauer MJ, Jakobi T, Rosone G. Large-scale compression of
genomic sequence databases with the Burrows-Wheeler Transform.
Bioinformatics. 2012;28(11):1415–9.

25. Giancarlo R, Scaturro D, Utro F. Textual data compression in
computational biology: A synopsis. Bioinformatics. 2009;25(13):1575–86.

26. Wandelt S, Bux M, Leser U. Trends in genome compression. Curr
Bioinform. 2014;9(3):315–26.

27. Fritz M, Leinonen R, Cochrane G, Birney E. Efficient storage of high
throughput DNA sequencing data using reference-based compression.
Genome Res. 2011;21:734–40.

28. Hach F, Numanagic I, Alkan C, Sahinalp SC. SCALCE: boosting sequence
compression algorithms using locally consistent encoding.
Bioinformatics. 2012;28(23):3051–7.

29. Crochemore M, Ilie L. Computing longest previous factor in linear time
and applications. Inf Process Lett. 2008;106(2):75–80.

30. Beal R, Adjeroh D. Parameterized longest previous factor. Theor Comput
Sci. 2012;437:21–34.

31. Beal R, Adjeroh D. Variations of the parameterized longest previous
factor. J Discret Algorithm. 2012;16:129–50.

32. Cormen TH, Stein C, Rivest RL, Leiserson CE. Introduction to Algorithms,
2nd ed. Cambridge, Massachusetts: The MIT Press; 2001.

33. Crochemore M, Ilie L, Smyth WF. A simple algorithm for computing the
Lempel Ziv factorization. In: Proceedings of the Data Compression
Conference, ser. DCC ’08. Washington: IEEE Computer Society; 2008.
p. 482–8.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://bmcgenomics.biomedcentral.com/articles/supplements/volume-17-supplement-4
http://bmcgenomics.biomedcentral.com/articles/supplements/volume-17-supplement-4

	A New Algorithm for “the LCS problem” with Application in Compressing Genome Resequencing Data
	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	Preliminaries
	LCS algorithm
	Computing the CSSs
	DAG construction
	PREV data structure
	getPrnts function

	Computing the LCS
	Complexity analysis
	Step (i)
	Step (ii)
	Step (iii)
	Summary

	Compressing resequencing data
	Our compression scheme

	Results and discussion
	Choosing parameter k
	Compression results

	Conclusions
	Declarations
	Funding
	Authors' contributions
	Competing interests
	References

