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SUMMARY

Retinitis pigmentosa (RP) initiateswith diminished rod
photoreceptor function, causing peripheral and night-
time vision loss. However, subsequent loss of cone
function and high-resolution daylight and color vision
is most debilitating. Visual pigment-rich photore-
ceptor outer segments (OS) undergo phagocytosis
by the retinal pigment epithelium (RPE), and the RPE
also acts as a blood-outer retinal barrier transporting
nutrients, including glucose, to photoreceptors. We
provide evidence that contact between externalized
phosphatidylserine (PS) on OS tips and apical RPE
receptors activates Akt, linking phagocytosis with
glucose transport to photoreceptors for new OS syn-
thesis. As abundantmutant rod OS tips shorten in RP,
Akt activation is lost, and onset of glucose meta-
bolism in the RPE and diminished glucose transport
combine to cause photoreceptor starvation and
accompanying retinal metabolome changes. Subreti-
nal injection of OS tipmimetics displaying PS restores
Akt activation, glucose transport, and cone function in
end-stage RP after rods are lost.

INTRODUCTION

Retinitis pigmentosa (RP) most frequently initiates with loss of

rod photoreceptor-dependent peripheral vision and dark adap-

tation (Fahim et al., 1993). At least 200 different mutations in

more than 60 genes are linked to RP. Many of these mutations

arise in genes expressed specifically in rods and their pathways

vary dramatically ranging from visual pigments and visual cycle

to metabolism and RNA splicing. Some mutations arise in the

retinal pigment epithelium (RPE), where phagocytosis of photo-

receptor protein- and fatty acid-rich outer segments (OS) that

house visual pigment occurs, and that act as a blood-outer

retinal barrier supplying nutrients from the choroidal circulation

to adjacent photoreceptors for new OS synthesis. Despite this

diversity of mutations in different cell types, RP in patients is

highlighted by gradual, progressive loss of rod function, and

ultimately rod death. Further complicating RP, cones then start

to lose their function (Aı̈t-Ali et al., 2015; Chinchore et al., 2017;

Petit et al., 2018; Wang et al., 2016), which is critical for high-res-

olution daylight and color vision utilized for reading, driving, facial

recognition, and other daily tasks. This secondary loss of cone

function is a focus of ongoing investigations.

New OS synthesis to replace shed tips is a major metabolic

commitment in photoreceptors. There is mounting evidence

that loss of cone function in RP is linked to glycolytic failure (Lév-

eillard et al., 2019; Park et al., 2018). As with other neurons, pho-

toreceptors depend upon glucose, and blocking glycolysis in

cones in vivo by inhibition of glyceraldehyde 3-phosphate dehy-

drogenase led to rapid loss of OS synthesis and function (Wang

et al., 2011a). Glucose in the choroidal circulation is transported

through the RPE to photoreceptors via Glut1 transporters on

the surface of the cells (Swarup et al., 2019), and in cones, it ac-

tivates the glucose-dependent Mondo family of transcription

factors to induce genes directing glucose metabolism (Havula

and Hietakangas, 2018; Wang et al., 2016). Consistent with

diminished glucose transport to cones, glucose-dependent

genes are downregulated in the cells as RP progresses (Wang

et al., 2016). Increasing glucose availability to—and uptake

into—cones by direct subretinal injection of glucose or early

viral expression of rod-derived cone viability factor (Rdcvf;

which promotes glucose uptake into cones), delayed their loss

of function during RP progression (Aı̈t-Ali et al., 2015; Byrne

et al., 2015; Punzo et al., 2009; Venkatesh et al., 2015; Wang

et al., 2016). Consistently, studies aimed at enhancing glycolysis
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in photoreceptors by mutation/inhibition of the glycolytic

repressor, Sirt6, likewise delayed loss of photoreceptor function

in RP (Zhang et al., 2016), and activation of mTorc1 in cones,

which drives glucose transport and metabolism, via insulin or

Pten mutation also prolonged cone function in RP (Punzo

et al., 2009; Venkatesh et al., 2015). Together, these results

suggest glucose starvation is blocking new OS synthesis and

function in cone photoreceptors as RP progresses, but how

this starvation might be linked to the glucose-demanding OS

phagocytosis/renewal cycle in vivo is still unclear.

Phosphatidylserine (PS) is externalized on dying cells, where it

marks the cells for phagocytosis by macrophages (Birge et al.,

2016). Similarly, PS is externalized on extending OS tips, where

it forms complexes with integrins and Tam family receptors on

the RPE apical surface (Ruggiero et al., 2012). Resulting cross-

signaling between these receptors leads to activating phosphor-

ylation of Akt (pAkt), which drives cytoskeletal reorganization

required for RPE OS phagocytosis (Chiang et al., 2017). pAkt

also classically induces glucose transport, raising the possibility

that glucose transport through the RPE to photoreceptors might

be linked to OS tip phagocytosis. Via pAkt, insulin not only

releases the glucose transporter, Glut4, sequestered in the cyto-

plasm, it also inhibits Glut family endocytosis, and together,

these pAkt activities increase cell surface expression of Glut

family members (Beg et al., 2017; Mackenzie and Elliott, 2014).

At the molecular level, Glut4, as well as Glut1, binds to the

a-arrestin, Txnip, which is phosphorylated by pAkt causing its

degradation (Waldhart et al., 2017; Wu et al., 2013). a-arrestins,

which are related to b-arrestins and visual arrestins, act as scaf-

folds recruiting receptors into clathrin-coated pits for endocy-

tosis via their interaction with clathrin-bound adaptor proteins

(Moaven et al., 2013; Nelson et al., 2008). Txnip bridges Glut1/

Glut4 to a clathrin-adaptor protein 2 (AP2) complex, which is en-

riched on the apical surface of polarized epithelial cells where it

enforces cell polarity by selective protein endocytosis (Lin et al.,

2015; Waldhart et al., 2017; Wu et al., 2013). Txnip is glucose-

inducible, and it provides negative feedback to trigger Glut family

endocytosis that classically regulates insulin-dependent and

-independent glucose transport; Txnip mutation or degradation

in response to pAkt leads to deregulated glucose transport

and hypoglycemia (Chutkow et al., 2008). As the level of Txnip

rises with diminishing pAkt, it feeds back to further inhibit Akt

activation (Huy et al., 2018).

At the onset of rod OS (ROS) shortening in RP, we show pAkt

diminishes, Txnip is induced, apical Glut1 is lost, and RPE

glucose transport to photoreceptors is compromised. Using

models of RP in mouse and pig, in the latter species cones are

concentrated in a visual streak, we show subretinal injection of

OS tip mimetics displaying PS activates this pAkt/Txnip/Glut1

pathway, thereby linking glucose transport to OS tip phagocy-

tosis. Reactivation of RPE glucose transport can restore cone

OS (COS) synthesis and function in end-stage RP after rods

are lost. We found that glucose metabolism is inhibited in the

RPE in vivo, preserving the flow of glucose through the RPE to

photoreceptors. However, glucose metabolism, reflected by

glycolysis as well as diversion of the glycolytic pathway into

glycogen synthesis and the pentose phosphate pathway (PPP),

was initiated in the RPE in RP. We propose that onset of glucose

metabolism in the RPE combines with restricted transport to

diminished glucose available to photoreceptors in RP.

RESULTS

Failure inRPEGlucoseTransport toPhotoreceptors inRP
To begin examining the effect of an RP mutation on glucose

transport from the RPE to the photoreceptors, we utilized mice

with a dominant-acting P23H Rho mutation knocked into one

allele (Sakami et al., 2011). These RP mice lack Rd1/Rd8 muta-

tions and were further backcrossed in the laboratory for five gen-

erations into the C57BL6 background. At postnatal day 25 (P25),

the number of outer nuclear layer (ONL) rows containing photo-

receptor nuclei was similar in wild type (WT) and RPmouse litter-

mates, and likewise, rod and COS functional structures (denoted

by immunostaining for Rho and cone opsin) were still similar (Fig-

ures 1A, 1B, and S1A; results not shown). However, by P35,

abundant mutant ROS tips had begun to shorten in RP mice,

but the number of ONL rows (�95% of cells in the ONL in mice

are rods) had not decreased (Figures 1A, 1B, and S1A).

Fluorescently labeled 2-deoxyglucose was injected into the

tail vein of RP and WT mouse littermates, and uptake into RPE

and retina was examined in tissue sections extending �1 mm

from the optic nerve 1 h later, as we described (Wang et al.,

2016). At P25, before onset of mutant ROS shortening, both

RP and WT littermates showed similar ‘‘glucose’’ uptake into

photoreceptor inner segments (IS), and little glucose was re-

tained in the RPE (Figures 1C and 1D). Notably, most glucose

was evident in the outer retina under these conditions. With

onset of ROS shortening at P35 in RP, glucose accumulated in

the RPE and it diminished in photoreceptors (Figures 1E–1F0;
also see Figure 3 below).

Next, we used liquid chromatography/mass spectrometry

(LC/MS) to quantify steady-state levels of glucose in the RPE

and retina in WT versus RP mice. Consistent with the fluores-

cence experiments above, we found glucose was increased in

the RPE and diminished in the retina of RP mice (Figure 1G).

These results provide two lines of evidence glucose becomes

sequestered in the RPE, diminishing its transport to photorecep-

tors as RP progresses. Onset of glucose retention in the RPE

coincides with initial shortening of abundant mutant ROS tips,

which normally contact the RPE to initiate phagocytosis. Notably,

because the number of mutant rods has not diminished at P35

(Figure 1A), both rods and cones are starved for glucose at this

age in RP mice.

Glut1 Is Diminished on the RPE in RP
Glut1 is critical for glucose transport from the choroid circulation

into the RPE and subsequent transport out of the RPE to photo-

receptors (Swarup et al., 2019). As shown previously, we found

Glut1 was expressed on both the basal and apical surfaces of

the RPE inWTmice, and it was evident on photoreceptor IS (Fig-

ures 1H, 1H0, and S1B). A similar pattern of Glut1 was seen at

P25 in RP mice, but by P35 Glut1 had diminished on the apical

RPE surface in RPmice (Figures 1I–1I00), providing an explanation

for failure to transport glucose apically out of the RPE to photo-

receptors at this age. Western blotting for Glut1 at P40 showed

that its level in the RPE is similar in WT and RP littermates
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(Figure 2A), demonstrating that loss of apical expression in RP is

not linked to an overall decrease in the level of Glut1 in the RPE.

In this regard, Glut1 in endocytic vesicles is recycled to the cell

surface without a requirement for new Glut1 synthesis (Waldhart

et al., 2017). As noted above, a Glut1-Txnip complex tethered to

clathrin-coated pits via interaction with apically localized AP-2

drives endocytosis of Glut1.

Loss of pAkt in the RPE in RP
pAkt accumulates in the RPE during phagocytosis, where it

drives phosphorylation of proteins important for cytoskeletal

changes critical for phagocytosis, and accordingly, inhibition of

pAkt blocks RPE phagocytosis of OS (Chiang et al., 2017).

Consistent with diminished phagocytosis as mutant ROS begin

to shorten in RP mice, we found that pAkt decreased in the

RPE (Figures 2A–2C).

Txnip Increases with Loss of pAkt in the RPE in RP
As noted above, Tnxip classically drives endocytosis of Glut

family members in a feedback pathway to restrict glucose trans-

port. In response to insulin and other Akt activating pathways,

pAkt phosphorylates Txnip causing its degradation, thereby

increasing the level of Glut family members on the cell surface

(Waldhart et al., 2017). Consistent with loss of pAkt, Txnip

increased in the RPE in RP (Figures 2D and 2E). Txnip is the

most glucose-inducible gene identified, and with diminished

glucose transport to photoreceptor inner segments (IS) in RP,

Txnip expression diminished in the IS (Figures 2D and 2E).

Mertk Is Required for Apical Glut1 Expression and
Glucose Transport from the RPE to Photoreceptors in
Rats
Signaling between integrins and the Tam family member Mertk

on the RPE in response to PS on OS tips is critical for phagocy-

tosis, and cleaved, soluble Mertk released from the RPE acts as

a feedback decoy to limit the duration of phagocytosis (Law

et al., 2015; Ruggiero et al., 2012). Mutation of Mertk in RCS

rats leads to an RP phenotype, despite this mutation arising in

a gene expressed in the RPE as opposed to rods. As in P23H

Rho RP mice, fluorescent 2-deoxyglucose was sequestered in

the RPE and not transported to photoreceptors in RCS rats (Fig-

ures 2F, 2G, and S2). Likewise, Glut1 was present on the basal

Figure 1. Diminished Glucose Transport from RPE to Photoreceptors Is Linked to ROS Length and the Pattern of RPE Glut1 Expression

(A) ONL rows were counted in a 300 mm linear section starting at the optic nerve, as described (Wang et al., 2016). See also Figure S4B.

(B) Diminished average Rho+ ROS length occurs at P35 in RPmice. ROS length in a 300 mm linear section starting at the optic nerve wasmeasured as described in

Figure S1A.

(C–F0 ) RP mice (D, F, and F0) and WT littermates (C, E, and E0) were injected in the tail vein with fluorescently labeled 2-deoxyglucose at P25 before onset of ROS

shortening in the RP mice, or at P35, at the onset of ROS shortening (B). Frozen sections of the retina were used to follow glucose uptake.

(G) LC/MS steady-state quantification of glucose in the RPE and retina at P40. n = 4.

(H and H0) Immunostaining showing Glut1 expressed on the apical and basal surfaces of the RPE in WT mice at P35.

(I-I00) Glut1 expression is diminished on the RPE apical surface in RP littermates at P35. (I00) DAPI staining demonstrating no nuclear Glut1 immunostaining. n = 8.

(J) Quantification of Glut1 expression on the basal (B) and apical (A) RPE surface as in (H)–(I0). n = 4.

Error bars in (A), (B), (G), and (J) are SD. Bars are 100 mm in (C)–(F0) and 50 mm in (H) and (I).
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surface of the RPE in RCS rats, but it was diminished on the

apical surface of the cells at P30 (Figures 2H and 2I). These

findings provide evidence that Mertk is required for apical

expression of Glut1 on the RPE in rats, and thus for

transport of glucose from the RPE to photoreceptors. As a con-

trol, Mertk wasmaintained on the apical surface of the RPE in RP

mice at P40 (Figure S3A), suggesting failure in Mertk signaling in

RP is not due to loss of the protein. Instead, we hypothesized

loss of Mertk signaling in RP is due to failure of the receptor

to form an activation complex with PS as mutant ROS begin

to shorten (Lemke, 2017). Notably, the closely related Tam

family member Tyro3, which also forms a signaling complex

with PS (Meyer et al., 2015), is expressed along with Mertk in

C57BL6 mice, causing Mertk mutation alone to have less of an

impact on RPE in this strain (Vollrath et al., 2015). Notably, PS

complex formation with Mertk signals pAkt formation (Lemke,

2017).

PS-Displaying OS Tip Mimetics Restore RPE Apical
Glut1 and Glucose Transport in RP
In an effort to demonstrate PS on OS tips is responsible for regu-

lating RPE apical Glut1 and glucose transport, we subretinally

injected PS-containing liposomes, as OS tip mimetics, into RP

mice at P60, after apical Glut1 and glucose transport from the

RPE to photoreceptors was inhibited. Approximately 3,000 DiI-

labeled unilamellar PS liposomes (�1 mm in diameter) (Figure 3A)

containing equal molar amounts of PS and phosphatidylcholine

(PC) in 2 mL were injected. PS liposome presence in the subreti-

nal space decreased in a gradient from the injection site (Figures

3A and S3B). Glut1 expression was re-established on the apical

surface of the RPE in the region surrounding the injection site at

day three (Figure 3B), and pAkt was restored (Figure S4A).

Accordingly, glucose transport from the RPE to photoreceptors

was restored in an �300 mm region on either side of the injection

site, coinciding with this gradient of PS liposomes (Figures 3C–

3E). Glucose remained sequestered in the RPE in RP mice

receiving control injections with PC-only liposomes (Figure 3F).

Notably, PS liposome injection failed to restore glucose trans-

port in RCS rats.

Transient Restoration of Photoreceptor OS and
Function following PS Liposome Injection
We hypothesized loss of COS synthesis is due to progressive

deprivation of glucose that initiates at P35 in P23H Rho RP

mice, and PS liposome-mediated restoration of glucose trans-

port to photoreceptors would restore OS synthesis and function.

By P60, COS had diminished and cone opsin was reduced but

still evident in cone inner segments. At this age, opsin+ COS

were restored surrounding the PS liposome injection site at

day 3 (Figures 4G, 4G0, and 4I).

Above, we demonstrated that rods are also deprived of

glucose as their OS begin to shorten early in RP mice (Figures

1A–1F0). These findings raised the question as to whether this

glucose starvation is contributing to or accelerating loss of

mutant ROS and function in RP. We then investigated whether

Rho+ ROS and function might be restored in RP mice after PS

liposome injection. ROS had diminished at P60, but ONL rows

had only decreased by �40% at this age, indicating many rod

cell bodies were still present (Figure S7). As with COS, we found

that Rho+ ROS were restored in a similar region surrounding PS

liposome injection sites (Figures 3H and 3I). These results pro-

vide evidence that glucose starvation is contributing to loss of

ROS in RP mice, even though the initiating RP mutation is in

the OS pigment gene Rho.

Visual acuity, measured by optokinetic response (OKR) under

photopic conditions, was diminished by P40 in RP mice (Fig-

ure 4A). We then asked if the increase in COS we observed

following PS liposome injection was sufficient to improve visual

acuity. Indeed, visual acuity was improved 3 days after PS lipo-

some injection, but, as a control, liposomes containing only PC

failed to restore visual acuity (Figure 4A). These results provide

evidence of a functional role for PS in the liposomes.

As a second measure of photoreceptor function, electroretino-

grams (ERGs) were performed in RP mice following injection with

PS liposomes. These experiments were in older mice at P117,

where ONL rows had diminished to �50% (Figure S4B). The

ERG under both photopic and scotopic conditions was improved

following PS liposome injection (Figures 4B–4C0), providing evi-

dence both rod and cone function can be significantly restored

Figure 2. A Tam/pAkt/Txnip/Glut1 Pathway

in RPE Glucose Transport

(A) Western blot of RPE from WT and RP mice at

P40. pAkt = pAktS473.

(B and C) pAkt in RPE fromWTmice (B) is diminished

in the cells in RP (C). Immunostaining for Akt phos-

phorylated on S473 (pAktS473) is shown at P40.

(D and E) Txnip is absent in the RPE of WT mice (D),

but it induced in the cells in RP (E). Txnip in photo-

receptor inner segments (IS) of WT mice (D) is

downregulated in IS in RP mice at P40 (E).

(F) Fluorescently labeled 2-deoxyglucose (‘‘glucose’’)

transport to photoreceptor IS in WT rats at P30.

(G) Diminished transport of glucose to photorecep-

tors in RCS rat littermates at P30.

(H and I) Diminished Glut1 expression on the RPE

apical surface in RCS rats compare toWT littermates

at P30. (H) and (I) show immunostaining for Glut1.

Arrows show the basal and apical surfaces of the

RPE. Bars are 50 mm.
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by OS tip mimetics that reactivate glucose transport to photore-

ceptors in RP.

PS Liposomes Can Restore COS Synthesis and Function
in End-Stage RP in Pigs
Next, wemoved experiments to a large animalmodel of RP, P23H

RHO pigs (Ross et al., 2012; Wang et al., 2016), where cones are

concentrated in a visual streak. In these pigs, ROS are diminished

by P30, and all rod cell bodies are lost by P120 (Figures 5A–5C0

and S5) (Wang et al., 2016). COS length begins to diminish at

P30, and all COS are lost by P120. In contrast to rods, cone nuclei

persist at P120, and cone IS are still evident at this age, but their

structure is partially disrupted (Figures 5C and 5C0). Their endo-
plasmic reticulum (ER) and golgi have migrated from their normal

position in the IS adjacent to the mitochondria-rich ellipsoid to a

perinuclear position on the inner side of the outer limiting mem-

brane (OLM). The cilium connecting IS and OS is lost, with only

remnants persisting on some cones. Previously, we found that

cones displaying this morphology at P120 did not die and per-

sisted for more than 6 years in these pigs (Wang et al., 2016).

Thus, P120 reflects end-stage disease where all rods are lost,

and the ONL consists of several rows of cones lacking OS (Fig-

ure 5C0). Previously, we found that transplant of WT rods into

RP pigs all the way out to 18 months of age was able to restore

COS and function, demonstrating that these dormant cones can

be reactivated in a rod-dependent fashion (Wang et al., 2016).

Based on our findings above with mice, we hypothesized PS on

transplanted ROS tips in these experiments was contacting the

RPE to re-establish glucose transport to endogenous cones.

Consistent with this possibility, glucose-responsive genes were

re-induced, and subretinal injection of glucose at this age likewise

restored dormant COS synthesis and function (Wang et al., 2016).

Figure 3. PS-Displaying OS Tip Mimetics Restore Apical Glut1, Glucose Transport, and Rod and Cone Photoreceptor OS in RP Mice

(A) Dye-labeled PS liposomes, shown in the inset, were injected into the subretinal space (between the RPE and ONL) of RP mice at P60. The arrow indicates the

injection site. Liposome presence decreased in a gradient from the injection site at day 3.

(B) Restoration of RPE apical Glut1 expression in the region of PS liposome injection at day 3 in mice injected at P60 as in (A). Note that liposomes were not

dye-labeled in this panel. The arrow shows a position 100 mm from the injection site to the left.

(C–E) Restoration of glucose transport from the RPE to photoreceptors (C–E) correlates with the PS liposome gradient and distance from the injection site at day 3

(C–E) in mice injected at P60. Arrows show indicated distance from the infection site, located to the left in the images.

(F) Injection with control liposomes does not restore glucose transport in RP mice injected at P60. Day 3 is shown.

(G andG0) Opsin+ COS are restored in a gradient surrounding the PS liposome injection site at day 3 inmice injected at P60. Note, liposomeswere not dye-labeled

in these panels. See Figure S3B for a retina flatmount showing DiI-labeled PS liposomes and cone opsin immunostaining. Side-by-side images are shown as a

composite.

(H and H0) Rho+ ROS are restored in a gradient surrounding the PS liposome injection site (arrow) at day 3 in mice injected at P60. Note, liposomes were not

dye-labeled in these panels. Side-by-side images are shown as a composite.

(I) Quantification of ROS and COS, with distance from the site of PS or control (C) liposome injection at day 3 after injection at P60. n = 7. Bars are 100 mm. Error

bars are SD. See Figures S1A and S5.
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We injected 50 mL of Dil-labeled PS liposomes, at a concentra-

tion of 1,500 liposomes per mL, subretinally into the cone-rich

visual streak of RP pigs at P120, and control injections were per-

formed in the contralateral eye. Photopic multifocal (mf)ERGwas

used to assess electrophysiology at sites of injection, as we have

described (Wang et al., 2016). Fields were divided into 241 hexa-

gons; color maps depicting the n1-p1 wavelet height in each

hexagon, along with the wavelets themselves, are shown in Fig-

ure 6A. Wavelets in the region of the bleb resulting from PS lipo-

some injection in the visual streak, outlined by dashed lines, were

averaged (Figure 6B). As we reported previously (Wang et al.,

2016), baseline mfERG prior to injection was diminished at

P120 in RP pigs compared to WT littermates, and PS liposomes

restored mfERG in the RP animals to near WT levels (Figures 6A

and 6B). Notably, this recovery of mfERG was similar to that

observed three days following direct subretinal injection of

glucose (Wang et al., 2016). Consistent with restoration of

mfERG, cone IS and COS on the RPE were restored surrounding

injection sites (Figures 6C–6J, S6, S7, and S12).

Taken together, our results suggest that externalized PS on

abundant ROS tips complexing with receptors on the RPE is

responsible for initiating glucose transport from the RPE to pho-

toreceptors for new OS synthesis. These complementary results

in the pig extend this pathway to a large animal model where

cones are concentrated in a visual streak, and they show that

re-engagement of the PS component of OS with the RPE is suf-

ficient to restore glucose transport and function to cones in end-

stage RP after rods are lost.

Onset of Glucose Metabolism in the RPE in RP
Next, we isolated RPE from WT and RP mice for steady-state

LC/MS analysis. Mice at P60 were used for these assays. RPE

was rapidly separated from Bruch’s membrane and choroid

(within 5 min of eye removal) using a combination of dispase

and mechanical dissection/scraping with a modified Pasteur

pipette with a curved end. We obtained 5,000–6,000 cells per

eye with this technique. RPE from a single eye was sufficient

for at least four repeat analyses. Intermediates in glucose meta-

bolismwere either low or undetectable in the RPE fromWTmice,

but these intermediates accumulated in the RPE in RP (Fig-

ure 7A). Beyond glycolysis, the glycolytic pathway at the point

of glucose-6-phosphate (G6P) can be diverted into the

NADPH-generating pentose phosphate pathway (PPP). Consis-

tent with activation of PPP in RPE from RP mice, PPP intermedi-

ates ribulose-5-phosphate and erythose-4-phosphate, along

with NADPH, were increased (Figure 7A). Further, G6P can be

metabolized to glycogen for glucose storage. Consistent with

onset of the glycogen synthesis pathway in RPE from RP mice,

glucose-1-phosphate, UDP-glucose, and UDP were elevated

in the cells (Figure 7A). These results provide evidence that

glucose metabolism including glycolysis, PPP, and glycogen

synthesis is activated in the RPE during RP. We propose that

reduced glucose metabolism in the RPE allows its flow-through

to photoreceptors, but onset of RPE glucose metabolism com-

bines with diminished transport to reduce glucose available to

photoreceptors in RP (Figure 7F).

Despite a lack of evident glycolysis in the RPE, lactate was

present in the cells (Figure 7A). Lactate can be generated from

glucose in the retina (Figure 7D), thus it is likely lactate from

the retina is being transported to the RPE. It has been reported

that RPE in culture can metabolize lactate (Kanow et al., 2017),

thus we hypothesized that RPE might be metabolizing lactate

in place of glucose. We injected 13C lactate and analyzed its

metabolism 45 min later. Although 13C lactate was taken up

from the choroidal circulation by the RPE, little metabolism to

pyruvate was evident under these conditions (Figure 7B), sug-

gesting limited metabolism of lactate accumulating in the RPE

in vivo. By contrast, 13C from lactate was incorporated into

pyruvate and citrate in the retina (Figure 7B), demonstrating

that the retina can metabolize lactate.

In an attempt to follow uptake into and secretion of metabo-

lites such as lactate by the RPE, we catheterized the pig

ophthalmic artery entering the arterial circulation via the femoral

artery and inserted a femoral microcatheter into the ophthalmic

artery at the branch point of the main ciliary artery, which sup-

plies the choroid (Figure S8). Serum samples were taken at this

site upstream of the RPE from the ciliary artery and downstream

of the RPE from the vortex vein (that drains the choroid) in WT

Figure 4. PS Liposome Subretinal Injection Restores Visual Acuity and Scotopic and Photopic ERG in RP Mice

(A) OKR is improved 3 days after subretinal injection of PS liposomes at P40 in RP mice. Control liposomes with PC only have no effect. n = 7.

(B) Photopic (cone) ERG b-waves are increased following PS liposome injection at P117. n = 4 (30 flashes were averaged for each eye) in (B) and (C).

(B0) Representative ERG b-waves from (B).

(C) Scotopic (rod) ERG b-waves are also increased following PS liposome injection at P117 in (B).

(C0) Representative ERG b-waves from (C). Error bars are SD.
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and RP littermates at P90. Steady-state levels of metabolites in

serum were then analyzed via LC/MS, as described (Grenell

et al., 2019; Zhang et al., 2016). Peak intensity ratios for 89

different peaks were assessed, and principal component anal-

ysis suggests that, as expected, many differences are driven

by changes in vortex vein samples downstream of the RPE in

WT versus RP pigs (Figures S9, S10, and S11), consistent with

differences in secretion and uptake by the RPE in RP. Notably,

we found that lactate was increased in vortex vein samples

compared to ciliary artery samples (Figures 7C and S11),

providing evidence that lactate accumulating in the RPE is being

secreted into the choroid circulation.

Even though glucose metabolism was diminished in the RPE

in WT animals, TCA cycle intermediates were nevertheless pre-

sent (Figure 7A). Our results above suggest that lactate is not

a major source of these TCA cycle intermediates. Another

possible source of the intermediates is fatty acid oxidation

(FAO) following OS tip phagocytosis. Indeed, RPE in culture

have been shown to oxidize palmitate, which comprises

�15% of OS fatty acids, into acetyl CoA for entry into the

TCA cycle (Du et al., 2016a). We then injected 13C palmitate

into WT and RP mice, but we did not observe differences in

13C incorporation into the TCA cycle in the RPE (results not

shown). These results likely mean that palmitate provided via

the circulation can be metabolized in a similar fashion by RPE

in WT and RP mice, and the difference in RP is that RPE no

longer have access to high levels of fatty acids as OS phagocy-

tosis diminishes. In this regard, the most notable difference in

secretion from the RPE in WT versus RP pigs is a >10-fold in-

crease in acetyl carnitine secretion in WT (Figure 7C). Acetyl

carnitine serves as a sink for excess acetyl CoA arising from

FAO, and it feeds back to block PDH activity and thereby pre-

vent acetyl CoA generation from pyruvate, derived from either

glycolysis or generation from lactate via LDH (Hue and Taegt-

meyer, 2009). Moreover, FAO blocks glycolysis at several addi-

tional steps (e.g., the Randell cycle) (Hue and Taegtmeyer,

2009). Acetyl carnitine generation is critical in buffering high

acetyl CoA levels derived from FAO (Longo et al., 2016). We

suggest that FAO is blocking glycolysis in the RPE, and acetyl

carnitine secretion reflects buffering of excess acetyl CoA

from FAO.

Diminished Retinal 13C Glucose Metabolism in RP
13C glucose (40%) in 2 mL was infused via a microcatheter in

the ciliary artery upstream of the RPE in WT and RP pig litter-

mates at P90 over the course of 30 min. The retina was analyzed

by GC/MS for 13C incorporation into metabolic pools. We

observed diminished 13C incorporation in aerobic glycolysis

and TCA cycle intermediates in RP pigs (Figures 7D and 7E), sug-

gesting glucose metabolism is contributing less to these meta-

bolic pools as rods are lost in the RP retina.

A Low-Energy Environment inWT RPE Is Reversed in RP
Consistent with a high-energy requirement for ongoing OS

phagocytosis, ATP was low in RPE from WT animals compared

to RP (Figure 7A). ATP can be converted reversibly to phospho-

creatine, which serves as a high-energy reservoir. In macro-

phages, a phosphocreatine reservoir drives ATP generation

locally at sites of cytoskeletal assembly during phagocytosis

(Kuiper et al., 2008). Like ATP, phosphocreatine levels were

low in RPE from WT mice compared to RP littermates. This in-

crease in energy in RPE from RP mice is consistent with dimin-

ished energy-demanding phagocytosis.

Elevated Alpha-Ketoglutarate (a-KG) in the RPE in RP
Althoughother TCAcycle intermediateswere similar, steady-state

levels of a-KG (also known as 2-oxoglutarate) were dramatically

elevated in the RPE from RP mice (Figure 7A). Previously, Du

et al. (2016b) demonstrated that glutamine is metabolized to yield

a high level of a-KG in cultured RPE cells, and a portion of this

a-KG is utilized for reductive carboxylation in reversal of the

TCA cycle to generate citrate. a-KG/2-oxoglutarate is an obliga-

tory co-substrate for 2-oxoglutarate-dependent dioxygenases

including TET family members that hydroxymethylate DNA (lead-

ing ultimately tomethylation), the KDM family of histone demethy-

lases, and prolyl hydroxylases that regulate hypoxia inducible

Figure 5. RP Progression in Pigs

(A–C0 ) EMs showing RPprogression in P23HRHOpigs (Wang et al., 2016). At P30, ROS are shortening (A). COSare present, and cone IS contains amitochondria-

rich ellipsoid (E) with adjacent ER and golgi (G). By P60 (B), rods have diminished, with only a few RIS persisting. COS have shortened, but normal IS morphology

persists. At P120 (C and C0 ), all rod nuclei are lost, and the ONL consists of cone nuclei (noted by their distinct elongated shape and chromatin pattern) (Wang

et al., 2016). COS are lost, and the ER and G have migrated to a perinuclear position internal to the OLM, leaving the E external to the OLM. Cones persist in this

dormant morphology for more than 6 years (Wang et al., 2016). RIS, rod inner segment. Bars are 5 mm. See also Figure S5.
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Hif1a, which itself is a major metabolic regulator (Berry and Jan-

knecht, 2013; Chin et al., 2014; Rasmussen and Helin, 2016). By

contrast, the TCA intermediate succinate, which is downstream

of a-KG in the normal turning of the cycle, competes with a-KG

to inhibit these epigenetic enzymes. Thus, the ratio of a-KG-to-

succinate controls epigenetic reprogramming, and the high

a-KG-to-succinate ratio in the RPE in RP demonstrates an excess

of a-KG, beyond what might be utilized for citrate production.

These findings raise the interesting possibility that the RPE might

undergo epigenetic reprogramming as RP progresses.

DISCUSSION

RP is a genetically diverse disease linked to mutations in

more than 60 genes. Although some mutations target the visual

pigment Rho, structural components of OS that house Rho in

rods and the visual cycle, many mutations are in other pathways

including metabolism and RNA splicing. Some mutations, such

as Mertk, target the RPE. How can mutations in such a wide

variety of pathways and in different cells commonly give rise to

a gradual loss of rod function in RP? In rods, we propose RPmu-

tations target synthesis of functional OS, either directly via

mutation of Rho or OS structural components, or indirectly

through pathways whose inhibition contributes to general meta-

bolic stress such that rods are unable to sustain the high level of

synthesis required to maintain OS, which becomes evident over

time in gradual OS shortening as RP progresses. Our findings

suggest eventual failure of shortening ROS to engage the RPE

leads to disruption of glucose transport, causing photoreceptor

starvation in RP (Figure 7F). Previously, we found that a block in

Figure 6. PS Liposome Subretinal Injection Restores Pig COS and Function in End-Stage RP

(A) Liposomes were injected subretinally in the visual streak of RP pigs at P120, and control injections were performed in the contralateral eye. mfERG is shown at

injection sites in experimental and control eyes. Dashed lines show the region for quantification in (B). A color representation of wavelet height is shown on the left

and wavelets themselves are shown from a complementary experiment on the right.

(B) Quantification of n1-p1 amplitude per hexagon in nVdeg2. Hexagons within the injection bleb (dashed line in A) were averaged.

(C) The position of a dye-labeled PS liposome bleb following subretinal injection into the visual streak above the optic nerve (ON).

(D) Retinal flat mount showing DiI-labeled PS liposomes. The yellow asterisk shows the injection site identified by serial vertical and horizontal sections through

the liposome bleb (dashed lines).

(E) The boxed region from (D) is shown.

(F and F0) Sections were cut through the central region of the injection site shown in (D) and (E) and immunostained for cone opsin. See Figure S6 for a higher

magnification of the injection site (yellow asterisk).

(G) The section in (F) and (F0) is shown immunostained for cone opsin, but dye-labeled liposomes are not shown in this panel so cone histology can be evaluated.

Two side-by-side images are shown as a composite.

(H and H0) Higher power views of the region proximal to the injection site (blue arrow) shows restoration of COS and IS. G, golgi; E, ellipsoid; C, cilium; CIS, cone

inner segments; OLM, outer limiting membrane.

(I and I0 ) Region distal to the injection site (red arrow) showing continued loss of COS and IS with the E, external to the OLM.

(J) Quantification of opsin+ COS with distance in mm from injection sites (see F–I). See Figure S5. ‘‘PS’’ indicates treated eyes and ‘‘C’’ indicates control injection

(A and B). n = 6. Bars are 100 mm. Error bars are SD.
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glycolysis in rods leads to loss of OS, function, and cell death

(Wang et al., 2011a). Consistent with the notion that glycolytic

failure is accelerating loss of mutant rod function in RP, muta-

tion/inhibition of the glycolytic repressor, Sirt6, in rods to

enhance rod glycolysis, delayed loss of mutant ROS and func-

tion in RP (Zhang et al., 2016). We suggest that RP mutations,

such asMertk in the RPE, contribute to photoreceptor starvation

by compromising glucose transport. Although a block in cone

glycolysis also causes loss of OS and function, these cells do

not die and persist in a dormant state, and their OS synthesis

and function is restored once the glycolytic block diminishes

(Wang et al., 2011a). We then propose that glucose starvation

accelerates loss of both ROS and COS synthesis and function

in RP, with rod viability being further impacted by the gene

mutation responsible for RP. In end-stage RP in the pig, we

show that restoration of glucose transport to persisting cones

can restore OS synthesis and function in the absence of rods.

We found that glucose metabolism is diminished in the RPE

in vivo and suggest this allows flow of unmetabolized glucose

through the RPE to photoreceptors. However, glucose meta-

bolism was initiated in the RPE in RP, which is reflected in onset

of glycolysis as well as diversion of the glycolytic pathway into

glycogen synthesis and the PPP. We propose that this onset of

glucose metabolism combines with its restricted transport to

diminish glucose available to photoreceptors in RP (Figure 7F).

Akt signaling appears to be a nexus linkingOSphagocytosis to

glucose transport to photoreceptors for new OS synthesis (Fig-

ure 7F). Akt can be phosphorylated on S473 or T308, and it is

pAktS473 that drives cytoskeletal changes required for RPE

phagocytosis of OS (Chiang et al., 2017). pAktS473 is also crit-

ical for inhibiting Glut family endocytosis and thus, promoting

glucose transport (Beg et al., 2017). Notably, we also observed

pAktS473 in the RPE. Txnip drives Glut1 endocytosis, and its tar-

geting by pAkt promotes glucose transport. A complex between

PS on OS tips with integrins and Tam receptors on the RPE api-

cal surface leads to pAkt. Likewise, integrin binding to extracel-

lular matrix ligands also triggers pAkt (Hu and Luo, 2013). A

recent study found that changes in extracellular matrix composi-

tion were transmitted via integrins into the cell to regulate Txnip

and, in turn, glucose transport in the cells (Sullivan et al., 2018).

Notably, integrins on the RPE basal surface anchor the cell via

interaction with extracellular matrix components of Bruch’s

membrane (Benedicto et al., 2017). As noted, a-KG is an essen-

tial co-factor for 2-oxoglutarate-dependent dioxygenases that

Figure 7. Onset of Glucose Metabolism in the RPE and Compromised Retinal Aerobic Glycolysis and TCA Cycle Highlight RP
(A) LC/MS of steady-state metabolites in RPE from WT and RP mice at P60. G6P, glucose-6-phosphate; DHAP, dihydroxyacetone phosphate; G3P, glucose-3-

phosphate; Rib 5 P, ribulose-5-phosphate; Ery 4 P, erythose-4-phosphate; G1P, glucose-1-phosphate; UDG G, UDP glucose; Aco, aconitate; cit, citrate; a-KG,

alpha-ketoglutarate; Suc, succinate; Mal, malate; Pcreat, phosphocreatine; PEP, phosphoenolpyruvate.

(B) 13C lactate (20% in 100 mL) was injected into WT mice at P60, and RPE and retina was analyzed 45 min later by GC/MS.

(C) Blood was collected from a microcatheter placed in the pig ciliary artery upstream of the RPE and downstream of the RPE in the vortex vein in an effort to

evaluate secretion and uptake of metabolites by the RPE (Figures S8, S9, S10, and S11). LC/MS analysis of serum was then performed. Relative peak intensity

ratios are compared for lactate and acetyl carnitine (carn) (see also Figure S11).

(D) 40%13C glucose in 2mLwas delivered in 30min via ciliary artery-placedmicrocatheter and 13C incorporation intometabolites in the retina ofWT andRP pigs

at P90 was examined by GC/MS.

(E) Diagram showing 13C (filled circles) glucose incorporation into glycolytic and TCA cycle intermediates.

(F) Model showing onset of glucose metabolism in the RPE and restricted transport from the RPE combine to cause glucose starvation of photoreceptors in RP,

leading to loss of OS synthesis and function in both cones and rods. Error bars are SD. n = 4.
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regulate epigenetic reprogramming of cells (Berry and Jan-

knecht, 2013; Chin et al., 2014; Rasmussen and Helin, 2016).

We show elevated a-KG in the RPE in RP. However, 2-oxogluta-

rate-dependent dioxygenases (e.g., prolyl hydroxylases) also

dictate collagen type expression and functional crosslinking,

thereby altering the cell’s extracellular matrix composition (Jiang

et al., 2016; Smith and Talbot, 2010). In a potential feedback

loop, cell adhesion via integrins also regulates a-KG to alter

extracellular matrix composition (Jiang et al., 2016). Because

changes in Bruch’s membrane composition highlight age-

relatedmacular degeneration (AMD), it is interesting to speculate

that reciprocal signaling between the RPE basal surface and an

altered Burch’s membrane might de-regulate glucose transport

in AMD.

Limitations of Our Study
Our results highlight RPE metabolome changes and glucose

transport defects in several RP models (Rho mutant mice and

pigs and RCS rats). It will be important to extend these findings

to other RP mutations. Subretinal injection of PS-displaying OS

tip mimetics was able to restore COS and function in end-stage

RP, providing evidence that contact of OS tips with the RPE is

linking OS phagocytosis to RPE glucose transport. However,

subretinal liposome injection is not a viable long-term therapeu-

tic option for RP patients. Characterization of the glucose

metabolic and transport regulatory pathways initiated in RP

highlights drugs targeting these pathways that are being

evaluated in clinical trials for various cancers. Our findings

showing initiation of RPE glucose metabolism and diminished

glucose transport from the RPE to photoreceptors in RP pro-

vides an alternate explanation for onset of glucose starvation

in photoreceptors in this disease. However, this model can

synergize with previous potential therapies such as activation

of mTorc1 and expression of Rdcvf to drive diminishing levels

of glucose into cones as RP progresses and inhibition of Sirt6

to enhance glycolysis in photoreceptors as available glucose

decreases.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Douglas

Dean (douglas.dean@louisville.edu). This study did not generate unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental design
WT and RP mice and pigs were followed for glucose transport, glucose transport pathway, metabolic changes with LC/MS and

GC/MS, and histology and immunostaining for loss of photoreceptor functional structures and photoreceptor number. Electro-

physiology was followed by ERG and visual acuity by OKR. Glucose transport from the RPE to photoreceptors in mice was

followed by injection of fluorescent 2-deoxyglucose into the tail vein and analyzing frozen sections including the RPE and retina

after one hr, and by LC/MS of the tissues. PS liposomes, as OS mimetics, were injected into the subretinal space of RP mice and

into the visual streak of pigs, and glucose transport, photoreceptor OS, ERG andOKRwas analyzed. Ages of animals are shown on

figures or provided in legends.

Randomization
Littermates were divided into WT and RP groups for experiments. We did not detect differences in female versus male RP mice or

pigs in measurements described above, thus males and females were randomly included into the study groups.

Mice and pigs

All methods were approved by the University of Louisville Institutional Animal Care and Use Committee and adhered to the ARVO

Statement for Use of Animals in Ophthalmic and Vision Research. WT and P23H Rho mutant pig (Ross et al., 2012; Wang et al.,

2016) and mouse (https://www.jax.org/strain/017628) littermates were compared in the studies. Where indicated, PS liposomes

were labeled with lipophilic carbocyanine cell tracker dye Dil (ThermoFisher) as described (https://tools.thermofisher.com/

content/sfs/manuals/mp00282.pdf). Different investigators performed liposome injections, electrophysiology, OKR and histological

sectioning.

For liposome injections, pigs were sedated with Telzol (2.0-8.8 mg/kg) and intubated, and they were further sedated by intu-

bated anesthesia with 1.5% to 2% isoflurane mixed with oxygen. Intravenous access was achieved by placement of a 21-gauge

catheter in an ear vein. Pupils were dilated and accommodation relaxed with topical applications of 2.5% phenylephrine hydro-

chloride and 1% tropicamide. 50 mL of liposomes at a concentration of 1,500 liposomes per ml in PBS were injected into the

superior quadrant in the region of the visual streak, as described previously (Wang et al., 2016; Zhou et al., 2011). Control liposome

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rhodopsin millipore clone 4D2; RRID:AB_10807045

anti-JH492 Jemery Nathans N/A

anti-cone opsin Jeremy Nathans N/A

anti-Txnip Abcam ab114981; RRID:AB_10862332

Anti-Glut1 Invitrogen MA5-31960; RRID:AB_2809254

Akt phosphorylation S473 abcam ab81283; RRID:AB_2224551

Akt phosphorylation S308 abcam Ab38449; RRID:AB_722678

anti- beta actin abcam ab8227; RRID:AB_2305186

Chemicals, Peptides, and Recombinant Proteins

phosphytidyl serine avantilipids https://avantilipids.com/

phosphytidyl choline avantilipids https://avantilipids.com/

fluorescently labeled 2-deoxy-glucose thermofisher n13195

Experimental Models: Organisms/Strains

P23H Rho mice jackson laboratory https://www.jax.org/strain/017628

P23H RHO pigs Ross et al., 2012; Wang et al., 2016 N/A
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injections were performed in contralateral eyes. Pigs were euthanized and retinas were analyzed for histology and immunostaining

as described (Wang et al., 2016; Zhou et al., 2011).

METHOD DETAILS

Unilamellar PS liposome generation
Phospholipid unilamellar vesicle formation is described in detail at https://avantilipids.com/. Briefly, phospholipid, an equal mixture of

PS and PC, purchased from Avanti Polar Lipids, in chloroform was placed in a glass test tube. Chloroform was evaporated under a

gentle stream of nitrogen, and then the tube was placed in a speed vac under high vacuum for one hr. Then 2.6mL of HBSwas added

to the tube to yield a final concentration of 1 mM phospholipid, and it was allowed to sit for 1 hr at room temperature. The tube was

then vortexed until phospholipids formed a milky uniform suspension. The suspension was then placed in a bath sonicator at room

temperature until it changed frommilky to near clear (only very slightly hazy). This took approximately 30 minutes. The resulting small

unilamellar vesicles were stored at 4�C.

Histology and immunostaining
Frozen sections were cut at 15 mm. The slides were blocked with 4% goat serum and 0.5% Tween-20 in PBS for 1 h at room tem-

perature before applying the primary antibody. The slides were incubated overnight at 4�C or 1 h at room temperature with primary

antibodies in blocking solution. The primary antibodies used were: anti RHO (Millipore, 1:300), rabbit anti red-green opsin (OPN1LW/

OPN1MW) (Millipore 1:500), chicken anti-JH492 and JH 455 anti-cone opsin (OPN1LW/OPN1MW) (gifts from JeremyNathans, Johns

Hopkins 1:5000), Glut1 (Thermofisher 1:200). Immunostaining for Akt phosphorylated on S473 (pAkt) was described previously (Liu

et al., 2014). Immunostaining for Txnip was described previously (Wang et al., 2016). The secondary antibodies were CY3 or FITC

conjugated goat anti mouse antibody or goat anti rabbit antibody. Nuclei were counterstained with DAPI, and images were captured

as we described (Wang et al., 2014). As negative controls, no immunostaining was evident in the absence of primary antibodies

(Figure S12).

Optokinetic Reflex (OKR)
OKR was performed using the OptoMotry system (Cerebral Mechanics, Lethbridge, AB, Canada), as we have described previously

(Wang et al., 2011a). Briefly, mice standing unrestrained on a central platform tracked a rotating gratingwith reflexive headmovement

behavior. For measurement of visual acuity, animals were assessed for this tracking behavior for a few seconds; this was repeated

until unambiguous tracking was observed. Spatial frequency of the grating was increased until the animal no longer responded. The

highest spatial frequency the mouse could track was identified as the threshold.

ffERG in mice
Full field ERGwas recorded using a UTAS ERG systemwith a BigShot Ganzfeld stimulator (LKC, Technologies, Inc.) after 1 hr of dark-

adaptation as we have described previously (Wang et al., 2011b). Mice were anesthetized using a ketamine/xylazine mixture in

normal saline and the eyes dilated using a 0.625% phenylephrine solution. Contact lens electrodes (LKC Technologies, Inc.) were

placed on the cornea of each eye using artificial tears. Ground and reference electrodes were placed on the tail and on the midline

of the forehead, respectively. Dark-adapted responses were recorded to dim light flashes with an inter-stimulus interval of 1 s.

Responses to 30 trial flashes at�60 dB were averaged. The animals were then light-adapted for 5 min and ERG responses to 30 trial

flashes at 30 dB in 5 s intervals were averaged. The b-wave amplitude was measured from baseline to b-wave peak.

mfERG in pigs
DTL corneal electrodes were used to recordmfERG in light-adapted pigs as we have described (Wang et al., 2016). ThemfERG stim-

ulus is positioned relative to the optic nerve head, using a fundus image that is capturedwithin the FMSVERIS System software (Elec-

trodiagnostic, Inc). The same software controls stimulus presentation. Responses captured within the visual streak are positioned

relative to the fundus image to align them with the response spatial density profile. mfERG signals were divided into 241 hexagons.

Topographic amplitude maps are generated by assigning n1-p1 response amplitudes in each hexagon a color code. For quantifica-

tion, amplitudes in hexagons within the visual streak injection sites are averaged for each eye. Then, results from different treated and

control eyes are averaged.

Analysis of glucose transport in mice and rats
Heterozygous P23H Rho knockin mice andWT littermates were injected with 150 ml of 10 uM fluorescently labeled 2-deoxy-glucose

(ThermoFisher Scientific) in the tail vein. Immunofluorescence was analyzed at 15 min, 1 hr and 2 hr time points after injection, as

described (Wang et al., 2016). At these times, eyes were frozen and sections were analyzed microscopically for fluorescence using

optical filters designed for fluorescein. No fluorescent labeling was seen in mice following sham tail vein injections (Figure S12). Fluo-

rescence diminished in the retina and eyemuscles by two hr after injection compared to one hr, and fluorescence was yet not evident

at 15min following injection (Wang et al., 2016). So, the 1 hr time point was used for all experiments. WT and RCS rat littermates were

injected in a similar fashion with 150 ml of 10 uM fluorescently labeled 2-deoxy-glucose in the tail vein.
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Femoral artery catheterization
Ciliary artery catheterization is performed with pigs under general anesthesia, positioned on a radiolucent table in the fluoroscopy

suite, as described in detail previously (Morén et al., 2011). Briefly, femoral artery access in the inguinal area was obtained using

the modified Seldinger technique and a 5 French Stiff Micropuncture Access Set (Cook Medical; G48008 or G35551), which was

exchanged for a standard 5 Fr 10 cm length femoral sheath. A 5-Fr diagnostic angiography catheter (with a Vert, Berenstein,

Simmons-2, or Cobra) was advanced over a 0.35’’ guidewire in retrograde fashion along the abdominal and then thoracic aorta,

over the aortic arch, prior to engaging the origin of the brachiocephalic / common carotid artery. The catheter was then advanced

over the guide wire into the internal carotid artery and positioned just proximal to the petrous portion of the artery. The guide wire

was removed and digital subtraction angiography used to identify the ophthalmic artery on the ipsilateral side. A standard 0.014’’

microwire was placed within a standard 0.17’’ inner diameter microcatheter and the combined microcatheter/microwire system

advanced under live flurosocpy with the microwire leading and accessing the ophthalmic artery origin. The microwire was then

pinned in position and themicrocatheter was advanced over themicrowire to selectively catheterize the ophthalmic artery of interest.

The microwire was removed, digital subtraction angiography used to confirm that the microcatheter tip was within the ophthalmic

artery, in place for serum collection and infusion of 13C metabolites. At the conclusion of the procedure, all catheters, wires and

the femoral sheath were removed and hemostasis was achieved bymanual compression of the femoral puncture. Standard radiation

safety procedures with optimized shielding was followed to protect researchers and staff from direct and scatter radiation.

Steady state metabolomics using LC MS/MS
Mouse and pig retinas and RPE from WT and RP animals were extracted for metabolites (Grenell et al., 2019; Kanow et al., 2017;

Zhang et al., 2016). The extracts were analyzed by a Shimadzu LC Nexera X2 UHPLC coupled with a QTRAP 5500 LC MS/MS

(AB Sciex). An ACQUITY UPLC UPLC BEH Amide analytic column (2.1 X 50 mm, 1.7 mm, Waters) was used for chromatographic

separation. The mobile phase was (A) water with 10 mM ammonium acetate (pH 8.9) and (B) acetonitrile/water (95/5) with 10 mM

ammonium acetate (pH 8.2) (All solvents were LC–MS Optima grade from Fisher Scientific). The total run time was 11 mins with a

flow rate of 0.5 ml/min with an injection volume of 5 ml. The gradient elution is 95%–61% B in 6 min, 61%–44% B at 8 min,

61%–27% B at 8.2 min, and 27%–95% B at 9 min. The column was equilibrated with 95% B at the end of each run. The source

and collision gas was N2. The ion source conditions in positive and negative mode were: curtain gas (CUR) = 25 psi, collision gas

(CAD) = high, ion spray voltage (IS) = 3800/- 3800 V, temperature (TEM) = 500�C, ion source gas 1 (GS1) = 50 psi, and ion source

gas 2 (GS2) = 40 psi. Each metabolite was tuned with standards for optimal transitions, and 13C-nicotinic acid (Toronto Research

Chemicals) was used as the internal standard. The extractedMRMpeakswere integrated usingMultiQuant 3.0.2 software (ABSciex),

and corrected for 13C-nicotinic acid.

13C labeled metabolite analysis by GC/MS
Metabolites were derivatized by methoxymine hydrochloride followed by Ntertbutyldimethylsilyl-N-methyltrifluoroacetamide

(TBDMS) as described (Grenell et al., 2019; Kanow et al., 2017; Zhang et al., 2016). An Agilent 7890B/5977B GC/MS

system with an Agilent DB-5MS column (30 m 3 0.25 mm 3 0.25 mm film) was used for GC separation and analysis of metab-

olites (5). Ultra– high-purity helium was the carrier gas at a constant flow rate of 1 mL/min. One ml of sample was injected in

split-less mode by the auto sampler. The temperature gradient started at 95�C with a hold time of 2 min and then increased at

a rate of 10�C/min to 300�C, where it was held for 6 min. The temperatures were set as follows: inlet 250�C, transfer line

280�C, ion source 230�C, and quadrupole 150�C. Mass spectra were collected from 80–600 m/z under selective ion monitoring

mode. The data was analyzed by Agilent MassHunter Quantitative Analysis Software and natural abundance was corrected by

ISOCOR software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Blinding
Researchers evaluating outcomes of glucose transport, ERG, OKR and photoreceptor structure and number were blinded as to

whether animals had received PS liposome injection or control injection.

Sample size
Based on standard deviations derived from our previous extensive studies of ERG, OKR, ONL rows, and photoreceptor OS number in

WT and RP animals, we calculated three samples would be sufficient to detect a 30% change with a confidence of 0.95 in each of

these measurements. Note that all of the changes (e.g., WT versus RP and control versus treated) in ERG, OKR, ONL rows and OS

number exceed 30% and n was > 3.

Data inclusion/exclusion
In pigs we only analyzed eyes where Dil-labeled PS liposomes were confirmed after injection. Without labeled liposomes as a guide,

retinal sectioning could not be directed.
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Replicates
Each experiment was repeated at least three time. The number of animals and eyes evaluated is shown in the figure legends. For

ERGs, 30 replicates were averaged for each eye.

Significance
Significance was calculated by Student’s t test. Error bars in figures show standard deviations.

DATA AND CODE AVAILABILITY

This study did not generate/analyze any datasets/code.
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