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A review on the recent advances of the three-dimensional (3D) characterization of carbon-based materials was conducted by
focused ion beam-scanning electronmicroscope (FIB-SEM) tomography. Current studies and further potential applications of the
FIB-SEM 3D tomography technique for carbon-based materials were discussed.+e goal of this paper is to highlight the advances
of FIB-SEM 3D reconstruction to reveal the high and accurate resolution of internal structures of carbon-based materials and
provide suggestions for the adoption and improvement of the FIB-SEM tomography system for a broad carbon-based research to
achieve the best examination performances and enhance the development of innovative carbon-based materials.

1. Introduction

In the past couple of decades, various carbon-based
materials and their applications have been rapidly de-
veloped and they have played an important role in modern
material sciences. Especially, the utilizations of in-
expensive and sustainable carbon materials have been
extensively studied for renewable energy storage (e.g.,
supercapacitors [1–5] and batteries [6–8]), adsorbent
(e.g., soil amendment [9–11], water purification [12–14],
and gas separation [15–18]), composites with enhanced
certain properties (e.g., thermal and mechanical en-
hancement) [19–22], and catalysts of fuel cells [23] and
other chemical reactions [24, 25]. +erefore, along with
the electrochemical, chemical, and mechanical properties,
it is vital to investigate and further optimize or control the
morphologies and internal structural features of the
versatile carbon-based materials through design, syn-
thesis, and improvement steps.

To support the advanced product design and processing,
three-dimensional (3D) and geometry-sensitive features of
the carbon-based materials are desired. However, the most
commonly used scanning electron microscope (SEM)

technique is only able to reveal the features on surface of the
materials. Transmission electron microscopy (TEM) may be
an option and great for characterization at nanoscale, but it
is difficult to process the appropriate samples and could be
expensive to perform. X-ray tomography allows three-di-
mensional quantitative measurements with the advantages
of nondestruction and relatively high spatial resolution, but
due to the restriction on the penetration ability of X-ray, it is
not a good option for high-density and large-volume
samples [26].

+e focused ion beam-scanning electron microscope
(FIB-SEM) system is a new approach to investigate the
three-dimensional internal structures of various materials
because of its good performance and easy process. +ere are
almost no limitations on the specimen materials using this
technique [27]. A completed FIB-SEM 3D tomography
analysis includes three main sections: FIB-SEM processing,
imaging analysis, and quantitative 3D reconstruction. FIB is
used for serial sectioning/milling the sample, and SEM can
image the exposed cross-sectional region (Figure 1). +e FIB
and SEM beams have coincident angles of 52/54° (in the
current commercial type). Milling rates (ion-beam accel-
eration voltage and current) in FIB can be varied depending
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on the difference in hardness and geometrical rigid in-
tegrity of the sample materials. After the FIB-SEM process,
the software (e.g., Avizo) continues to analyze generated
data and conduct 3D reconstruction to obtain quantitative
3D tomography results (Figure 2). Additionally, FIB in-
struments can be equipped with electron dispersive spec-
troscopy (EDS) and electron back-scatter diffraction
(EBSD) collection systems, allowing for chemical, crys-
tallographic, and topological data to be obtained on each
slice [28, 29].

+e FIB-SEM 3D tomography technology is expected to
help advance the research in carbon-based materials. +is
paper provides an overview of the current status of the FIB-
SEM system in carbon-based material science research,
discusses the further potential applications of FIB-SEM in
carbon and carbon-based materials, including methodol-
ogy, crucial parameters, and problems and corresponding
solutions, and concludes with an assessment of the
promising role of the FIB-SEM 3D tomography technique
in development of advanced innovative carbon-based
materials.

2. FIB-SEM 3D Tomography in Current
Carbon-Based Material Studies

In recent years, the FIB-SEM tomography system has been
tentatively applied to characterize the microstructures of
some carbon-based materials used for the applications of
batteries, supercapacitors, and fuel cells. Table 1 lists the
majority of carbon-based material studies that used the FIB-
SEM tomography system. Generally, in the previous carbon-
based material studies, the utilizations of FIB-SEM systems
can be classified into two major categories including the 2D
observation of the FIB-SEM cross-section images and the
visual and quantitative analyses using the 3D reconstruction
of the stacking of FIB-SEM cross-section images.

2.1. 2D Observation of FIB-SEM Cross-Sectional Images.
FIB-SEM tomography is a very useful approach to in-
vestigate the subsurface imaging of various materials.
Compared to the conventional SEM that only focuses on the
surface morphology, FIB-SEM is able to provide more in-
formation of the internal structures through analyzing the
2D cross-sectional images. FIB-SEM is ideally suited for the
characterization of micron and submicron scale to a min-
imum resolution values of about 10–15 nm [26]. +e limi-
tations of this technique make it difficult to image the
structure that is smaller than 5–10 nm [43]. Figure 3 shows
the resolution ranges for several modern tomography
methods to meet the needs of different research purposes.

+e FIB-SEM has been used to investigate the subsurface
images in current studies of carbon-based materials. For
instance, Rodriguez et al. [41] used the FIB-SEM to observe
the open three-dimensional structure of the modified hi-
erarchical nanoporous carbon (Figure 4(a)). In the study of
Yürüm et al. [40], FIB-SEM showed a clear layer of iron
oxide particles covering oxidized activated carbon and they
found that the uniform layers can rapidly be grown through
the microwave hydrothermal synthesis. Zhang et al. [48]
showed the core-shell and yolk-sell nanostructures of carbon
spheres using FIB-SEM. Ogihara et al. [36] found that the
cross-sectional FIB-SEM images of the electrodes indicated
that 2,6-Naph(COOLi)2 particles were covered with con-
ductive nanocarbon and revealed uniform pore structures in
the internal. When Liu et al. [31] hybridized graphene in Ni
foam using chemical vapor deposition, the FIB-SEM images
showed the graphene grown on Ni foam, and the Wrinkle-
like graphene with irregular fractures was found to fully
cover the Ni foam skeleton. Singh et al. [32] observed the
clearly visible interconnected porous layer of nanoporous
gold in the pristine nanoporous gold layer with a thickness of
ca. 130 nm. +e thickness of nanoporous gold-nitrogen-
doped carbon nano-onion layer was ca. 750 nm. Shen et al.
[33] used FIB-SEM tomography analyses to confirm the fine
structure of graphite fluoride-lithium fluoride-lithium (GF-
LiF-Li) composite and observed that the GF-LiF-Li com-
posite was composed of three layers, including the top GF-
LiF layer, followed by a transitional zone consisting of GF,
LiF, and Li metals and a bottom layer consisting solely of Li
metal.

2.2. 3DReconstruction of FIB-SEMSequential Cross-Sectional
Images. Due to limited information extracted from two-
dimensional features, the 2D observation cannot be com-
pared to three dimensional and geometry-sensitive features.
To reveal the real physical characterization of an element/
material and support advanced study, design, and process
development, a higher dimensional technology with holistic
and accurate information is needed. +e FIB-SEM 3D to-
mography enables the direct observation of the three-di-
mensional microstructure at nanoscale resolution through
the 3D reconstruction of the sequential sets of 2D images.
Furthermore, owing to recent advances in imaging and
computer technology, numerical simulation based on FIB-
SEM 3D tomography technique is one of the most accurate

Figure 1: +e schematic diagram of the FIB-SEM system [26].
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Figure 2: +e procedures of FIB-SEM 3D reconstruction. (a) Stack of images produced with FIB-SEM, (b) imaging 3D reconstruction, and
(c) quantitative 3D reconstruction and modeling [30].

Table 1: Short indicative selection of FIB-SEM for carbon-based materials from the literature.

Material Application Methodology Purpose Year Reference

Hybrid graphene on Ni foam Electrode of
supercapacitors

Dual Beam Strata 235 (FEI) and
Auriga Compact (Zeiss)

microscope

To analyze the morphologies
and structural features of the

composites
2019 [31]

Nanoporous gold-nitrogen-
doped carbon nano-onions

Electrode of micro-
supercapacitor

FIB-FEG-SEM of Carl Zeiss
Auriga Compact-4558

To determine the thickness of
the different layers present in

the electrode
2019 [32]

Graphite fluoride-lithium Lithium battery FIB-SEM, Scios, FEI To confirm the fine structure of
GF-LiF-Li composite 2019 [33]

Carbon nanofiber Supercapacitor Auriga Cross Beam, Zeiss
Software: Avizo 9.0.0

To examine fiber subsurface
microstructure 2018 [34]

Coal Fuel FEI Helios Nanolab 650 FIB-
SEM system

To quantitative evaluate the 3D
characterization of pore-
fracture networks of coals

2017 [35]

Conductive carbon black/
carbon fiber coating

2,6-Naph(COOLi)2
electrodes

FIB: 50 nA current and 7 kV
acceleration voltage

SEM: operating at 2 kW.

To investigate the nanocarbon
coating and the uniformness of

pore structures
2016 [36]

Nanoporous carbon-binder Li-ion batteries

Zeiss Auriga 60 dual beam:
20 pA current, 30 kV

acceleration voltage, and 9 nm
cutting distance

SEM: 5 kV, pixel size of 3 nm

To reconstruct the carbon-
binder domain of a LiCoO2

battery cathode
2015 [37]

Carbon nanotubes (CNTs) in
polymer composites Nanotechnology FEI Helios Nanolab 600 FIB-

SEM system
To investigate the subsurface

imaging of CNTs 2015 [38]

Porous carbon-based electrode Electrode

FIB: 80 pA current and 30 kV
acceleration voltage
SEM: 3 kV voltage
+e voxel size was
10×10×10 nm3

Software: IMOD, ImageJ, and
AVIZO software

To analyze the morphologies
and build topographic

reconstruction of the porous
carbon electrode

2014 [39]

Deposition of porous iron
oxide on activated carbon (AC) Adsorbent

FIB: 10–1 nA current and 30 kV
acceleration voltage
SEM: 2–5 kV voltage

To understand the nature of
iron oxide particles within the

pores of AC
2014 [40]

Hierarchical nanoporous
carbon synthesized using a
hard template method

Electrode
Dual-beam workstation FEI
Helios Nanolab 600; a field

emission gun SEM

To observe the open 3D porous
structure of the carbon 2013 [41]

Nanoporous carbon-supported
noble metal catalyst layers Fuel cells

FIB: 50 pA current and 30 kV
acceleration voltage
SEM: 2 kV voltage

To characterize porosity,
connectivity, and pore-size and

grain-size distribution
2013 [42]

Disordered mesoporous
carbon with tailored pore size

Fuel cells
supercapacitors

FIB: 27 pA current and 30 kV
acceleration voltage

SEM: 86 pA current and 5 kV
voltage

+e voxel size was
3.57× 3.62×10 nm3

Software: Amira® 5.2 software
and MAVI

To visualize and study
nonordered pore morphology
and quantitatively characterize

their physical properties

2013 [30]
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and effective tools to investigate the nature of material in-
ternal structures, such as porous structures [27, 49, 50],
phase distribution, crystallographic interfaces, and defect
arrangements [26]. However, the quantification errors in the
microstructural parameters are inevitable because of the
limited sample size and resolutions in the FIB-SEM ob-
servation, uncertainty in the image processing (e.g., align-
ment and segmentation), and the accuracy of the
quantification method/model itself applied to the image data
[51]. Rapidly advanced FIB, high-resolution SEM, and other
observation techniques will assist to mitigate these errors.

Although it is rare, 3D reconstruction using FIB-SEM
has been used in several studies of carbon-based materials.
For instance, Balach et al. [30] performed a direct and
quantitative 3D reconstruction of the internal structure of
disordered mesoporous carbon using serial sectioning FIB-
SEM with an ion beam current of 27 pA at 30 kV. +e
samples were reconstructed by the Amira® 5.2 software from25 slices (∼10 nm thickness per slice) obtained and further
quantitatively analyzed by the software system’s Modular
Algorithms for Volume Images (MAVI). +e total analyzed
volume (VT) of material was 0.0625 μm3. +eir results in-
dicated that FIB-SEM was only able to reveal the 3D shape,
distribution, and connectivity of mesopores, since the res-
olution of SEM was not sufficient for access to pores with a
diameter below 2 nm.+e structural parameters of the pores
including surface area, pore volume, Euler number, total

porosity, and pore size distribution were determined
through the 3D reconstruction analysis. Eswara-Moorthy
et al. [39] performed a 3D reconstruction of the porous
carbon-based electrode using FIB-SEM with an ion beam
current of 80 pA at 30 kV (Figure 4(b)). +ey found that the
Pt filling of the pores drastically improved the image contrast
between the carbon and the porous phases, and the en-
hanced image contrast enabled robust semiautomatic de-
marcation of the interfacial boundaries and subsequent
binarization of the images with very high fidelity. Also,
through analyzing the 3D reconstruction, the porosity
(72± 2%), axial and radial tortuosites (1.45± 0.04 and
1.43± 0.04), average pore size (90 nm), pore-size-distribu-
tion (20–300 nm), surface-to-volume ratio (46.5 μm−1), and
specific surface area (13.0 μm−1) were determined. +eir
results indicated that porous carbon-based electrode has a
very high surface area, which can be more conducive for
surface electrochemical reactions. +iele et al. [42] reported
that the FIB-SEM only differentiated the pores and total
solid phase from each other, but it was not possible to further
differentiate the solid phase into carbon, ionomer, and Pt
nanocomponents. FIB-SEM analysis revealed a preferential
size in the grain-size-distribution (GSD) of about 65 nm and
the pore-size-distribution (PSD) showed highly porous
material characteristics with 58% porosity and pores ranging
from 7 nm to 350 nm, and 99.9% of the pore area was
connected. Liu et al. [34] reconstructed the carbon nanofiber

Transmission electron tomography

Atom probe tomography

FIB-SEM tomography

X-ray computed tomography

1,000,0000.1 1,00010 1001
Approximate voxel dimensions (nm)

Figure 3: +e resolution of modern tomographic characterization methods is displayed as an approximate range. Dash lines represent
advanced potential range [26, 43–47].

5μ

370nm

(a)

200nm

(b)

400nm

(c)

Figure 4: FIB-SEM images. (a) Cross-sectional SEM image of a SiO2 nanoparticle [41], (b) SEM image of microstructure of porous carbon
electrode [39], and (c) reconstructed FIB-SEM image applied onto the SEM of a single nanofiber [34].
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using FIB-SEM, and the internal MnO particles showed
some degree of agglomeration within the fiber (Figure 4(c)).
Additionally, the FIB-SEM system was used to characterize
microstructural features for three dimensions of carbides in
Ni-based high carbon alloy [52] and nanoporous carbon-
binder of Li-ion batteries [37].

3. Potential Applications of FIB-SEM 3D
Tomography in Carbon-Based
Material Studies

To meet the different requirements of various applications
for characterization of carbon-based materials, the FIB-SEM
3D tomography will be likely be used to reveal the features or
phenomenon in a variety of application fields. It is very
valuable to know the potential use of FIB-SEM, what it can
do, and possible problems and practical solutions for each
specific application.

3.1. Carbons. Tomographic methods using serial-sectioning
and imaging processes are suitable for observing the mor-
phology and internal microstructure of carbons, such as
graphene, carbon nanotube, carbon black, activated carbon,
and biochar, which are extensively used in various appli-
cations, for example, quantitative evaluation of the 3D
characterization of pore-fracture networks of coals [35],
mesoporous carbon [30], and carbon fiber [34]. Moreover,
various parameters that are relevant to the microstructures
can be numerically evaluated by using the FIB-SEM to-
mography and implementing 3D reconstruction of serial
stacking sectioned SEM images, including surface texture
(e.g., roughness), different particle sizes and distribution,
and connectivity (pore tortuosity) of the internal material.

In the FIB process, carbons can be classified by volume
size. If the initial size of carbon (e.g., a monolithic carbon) is
bigger than the best operation range for FIB-SEM, the
sample will be adjusted to a proper size for testing. While if
the initial size is too small to test by a single sample (e.g.,
micro/nanocarbon fibers, particles, and nanotubes), a po-
tential method is to cast one or more carbons into a support
matrix, such as, epoxy resin [27].+is methodology has been
demonstrated by studies of various hierarchical porous
materials, such as, zeolite beads [27], silicon [53], monolithic
UiO-66-NH2 material [54], and concrete [46].

+e curtain effect may occur in the milling process,
which appears as parallel scratches varying in the same
direction of ion beammilling and making the image appears
to be covered by a semitransparent curtain [27, 55, 56]. +e
potential reasons are as follows: (1) roughness of the slicing
surface varies the angles of the ion beam and causes the
differences of the milling rate, and depositing protection
layers may mitigate the surface roughness; (2) different
characteristics of the elements in the targeting materials can
cause curtain effect as well; (3) presence of internal pores in
the samples can change the intensity or pathway of ion beam
when it passes through the pores. +erefore, currently, the
most common and effective curtain-removal solution is
adjusting the milling parameters according to the unique

properties of each targeted material or polishing it before
milling. Filling the internal pores with additional resin can
help recognize the pore region [49, 50].

3.2. Carbon-Based Electrodes. Due to the high energy-to-
weight ratio, surface area, conductivity, and micro/nano-
porous structure of carbons, porous carbon-based electrodes
for the use of various supercapacitors and batteries have
gained more attentions recently. Furthermore, porous car-
bon-based composite electrodes can display both capacitive
and faradaic charge storages. Also, carbon electrodes can be
involved in much more complex designs to improve the
energy density of supercapacitors/batteries [4]. +erefore, it
is crucial to accurately examine the porous structures of
carbon-based electrodes.

+e 3D microstructure of porous electrodes can be in-
vestigated by FIB-SEM tomography. +e respective mor-
phological characteristics/parameters, volume fraction,
spatial distribution, size, connectivity, and tortuosity, can be
determined through analyzing the obtained 3D re-
construction using image processing software andmodeling.
For example, the common used software for image pro-
cessing includes IMOD, ImageJ [39], Fiji [57], Avizo
[34, 35], and Amira 5.5.0 [30, 57]. +e algorithm tools for
quantification analysis are lab-made MATLAB [58] and Java
[59]. +e existing reported studies that used the FIB-SEM
quantitative 3D reconstruction are porous carbon-based
electrode [54], carbon nanofiber based supercapacitor [49],
and mesoporous carbon electrode material [56].

3.3.Carbon-BasedCatalyst/Coating/HybridLayers. +e FIB-
SEM 3D tomography technique is a useful method for the
diagnosis of the catalyst [56, 60], coating [61], or hybrid [31]
layer structure as well. It can reconstruct the geometrical
properties of the catalyst layer in 3D space. +e digital
analysis can assist to determine the porosity and the per-
meability. Also, it is a simple and effective way to understand
the degradation mode of the catalyst layer.

+e heating/fusion damage may occur in the milling
process. It can thermally damage the catalyst layer(s). +e
liquid nitrogen cooling and thermoelectric cooling via
Peltier elements methods have been demonstrated and
proved that they can mitigate the heating damage [56]. +e
thermoelectric cooling is considered to exceed the liquid
nitrogen cooling since the thermoelectric cooling enables a
short-time sample fabrication at the FIB stage.

3.4. Carbon-Based Polymer Composites. Carbon-based poly-
mer is the most common type of the polymer composites.
+e addition of carbon fillers likely enhances the certain
properties of the polymer to some degrees; for instance, the
biochar particle-filled PVA films obtained improved thermal
stability, electrical conductivity, and mechanical properties,
but the tensile strength of the films was reduced dramatically
as the increase of biochar content due to the particle ag-
gregation and porous features of the biochar [20, 62].
+erefore, it is important to investigate the structural
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features of the carbon filler and polymer matrix to obtain
good designs for fabricating the composites.

+e 3D reconstruction using FIB-SEM can be applied to
study the dispersion of the carbon filler inside a polymer
matrix and the morphology and internal structure of the
carbon filler and/or to determine the effect of interphase
properties on mechanical properties of nanocomposites
[63]. However, several problems can occur during the
milling process.

+ese problems can occur in all types of materials but are
more detrimental in polymer composites due to the char-
acteristics of the polymer matrix, such as low thermal
conductivity, thermal melt and decomposition tempera-
tures, and mechanical properties. First, the heating damage
is always a concern. Cracking caused by the heat produced
during processing cannot be dissipated through the low
thermal conductive polymer and generates stress to break
the polymer with lower mechanical properties. +e second
one is material redisposition caused by the melt of polymer.
+e third problem is the curtain effect. +e excessive heat
can damage the surroundings and leave holes on the sec-
tional surface. Nonetheless, it is possible to mitigate these
problems in several ways. As mentioned above, the proper
cooling approaches can be applied to prevent the over-
heating. Also, another option is to directly reduce the energy
of heating source, such as ion beam current deduction and
acceleration voltage deduction.

4. Summary and Outlook

+e FIB-SEM 3D tomography has been applied in the in-
vestigation of morphologies and internal structural features
of carbon-based materials, especially carbon-based elec-
trodes. However, the utilizations of FIB-SEM 3D tomog-
raphy in carbon-based materials are still limited, particularly
in quantitative 3D reconstruction-related studies. We no-
ticed that it is possible to extend the FIB-SEM 3D tomog-
raphy to more applications of carbon-based materials, and
highly potential areas are the studies in carbons, carbon-
based various electrodes, catalyst, coating, or hybrid layers,
and polymer composites. However, the digital analyses and
modeling mainly relied on the design and coding by re-
searchers, which are difficult to be used as broad as the
commercialized software due to the complexity and low
versatility of the existing methods. A simple, integrated, and
powerful analysis system for both visible and quantitative 3D
reconstruction and analysis will further promote the utili-
zation of FIB-SEM tomography. Moreover, to mitigate the
quantification errors in the microstructural parameters
caused by the limited sample size and resolutions in the FIB-
SEM observation, uncertainty in the image processing, and
the accuracy of the quantification method itself, the ad-
vanced FIB, high-resolution SEM, and powerful data-pro-
cessing techniques are desired in further studies.

Furthermore, currently, FIB-SEM 3D tomography was
only used to reveal the microstructure of the materials,
which blocks the development of FIB-SEM as well. For
plenty of carbon-based materials, the nanostructures are
more important, and TEM can perform better at nanoscale.

One solution is to combine the FIB-SEM and TEM to obtain
the 3D micro- and nanostructures, which has been suc-
cessfully performed in some studies. Another way is to
improve the resolution of SEM. A super asymmetric reso-
lution of 3D imaging technique has been reported for nano-
and mesoscale morphologies [64].

+e FIB-SEM tomography is becoming a routine tech-
nique to obtain 3D information on a variety of materials.
With the rapid development of FIB-SEM 3D tomography,
the enhanced 3D reconstruction technique is most likely to
play a significant role in future characterization of carbon-
based materials to further improve the products and opti-
mize their performance, reliability, productivity, and pro-
duction costs.
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