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Deep Learning using Convolutional 
LSTM estimates Biological Age 
from Physical Activity
Syed Ashiqur Rahman & Donald A. Adjeroh

Human age estimation is an important and difficult challenge. Different biomarkers and numerous 
approaches have been studied for biological age estimation, each with its advantages and limitations. 
In this work, we investigate whether physical activity can be exploited for biological age estimation 
for adult humans. We introduce an approach based on deep convolutional long short term memory 
(ConvLSTM) to predict biological age, using human physical activity as recorded by a wearable device. 
We also demonstrate five deep biological age estimation models including the proposed approach 
and compare their performance on the NHANES physical activity dataset. Results on mortality hazard 
analysis using both the Cox proportional hazard model and Kaplan-Meier curves each show that the 
proposed method for estimating biological age outperforms other state-of-the-art approaches. This 
work has significant implications in combining wearable sensors and deep learning techniques for 
improved health monitoring, for instance, in a mobile health environment. Mobile health (mHealth) 
applications provide patients, caregivers, and administrators continuous information about a patient, 
even outside the hospital.

A recent popular study1 showed that more than 27.5% of adults had insufficient physical activity worldwide. The 
study included 358 population-based surveys in 168 countries with a total of 1.9 million participants2. Numerous 
health risks such as hypertension, diabetes, mental health, and weight-gain are related directly to physical activ-
ity1. With aging, intensity of physical activity tends to decrease for older people3,4, and this is more evident for 
females5. Various organizations2,6 have recommended levels of physical activity for different age groups. However, 
the exact relationship between physical activity and aging is still unclear7. For instance, there is still the question 
of whether physical activity can predict age8.

The process of aging is complex and affects all biological systems. Age has a deep connection with health and 
mortality9–11. In general, a younger person is expected to have a better health condition, to be physically more 
active, and to have lower mortality hazard in comparison with a relatively older person. But two different people 
of the same chronological age may have very different health profiles and mortality hazards. This brings up an 
important classification of age, namely, chronological age versus biological age. Chronological age is based on 
the date of birth. However, biological age is a conceptual idea that a person’s true age can be different from his/
her chronological age. Although biological age is a loosely used concept and lacks precise definition, it is often 
viewed as the true age of an individual12. Thus, biological age provides a better measure of the life expectancy of 
an individual than his or her chronological age. The common idea is to calculate biological age based on some 
age-dependent variables13–16, where chronological age may or may not be a required variable depending on the 
application. In this work, our focus is on biological age. In particular, we investigate the question of whether 
human physical locomotor activity as recorded using a wearable device can be used for reliable estimation of 
biological age in adults.

Klemera and Doubal method12 is the most popular approach to biological age prediction. The biological age 
(BA) estimates are derived based on minimizing the distance between biomarker points and defined regres-
sion lines, and the estimates are performed in a multi-dimensional space of all the biomarkers. They also used 
chronological age as an input parameter to predict BA. Liu et al.17 introduced the notion of “Phenotypic Age” 
based on a linear combination of age and clinical biomedical measures. These measures were selected using 
Cox proportional elastic net. Authors suggested that the proportional risk model can be used both for testing 
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biological age performance, and for building a biological age model. Other approaches proposed include mul-
tiple linear regression (MLR)18,19. Principal component analysis have also been used to select features and then 
MLR was applied using the principal components20. Levine9 compared the performance of five BA estimation 
algorithms, and identified the Klemera and Doubal (KD) method as the most reliable predictor for mortality. The 
performance using BA was significantly better in comparison with using chronological age. Cho et al.15 studied 
various BA estimation methods to examine the relation with work ability index (WAI). WAI is a measure that 
reflects present health condition rather than how it changes over age. The KD method on PCA features produced 
relatively reliable results. Mitnitski et al.11 compared performance of frailty index (FI) with biomarker-based 
measures of BA. They employed the KD algorithm in predicting mortality. Belsky et al.10 described biological age 
as a reflection of ongoing longitudinal change within a person. They calculated study member’s BA at age 38 using 
the Klemera-Doubal method and parameters estimated from NHANES-III dataset. The study also tested the 
hypothesis that young adults with older biological age at age 38 were aging faster than young adults at the same 
chronological age, but with younger biological age. To quantify the pace of aging, longitudinal repeated measures 
are needed that track change over time. They analyzed within-individual longitudinal change in 18 biomarkers 
from the Dunedin Study across chronological ages 26 y, 32 y, 38 y to quantify each study member’s personal rate of 
physiological deterioration. In a more recent work, Belsky et al.21 compared different methods of BA estimation, 
including genomic, epigenetic, and blood biomarker measures.

Putin et al.22 studied the use of biomarkers in a deep learning framework for chronological age predic-
tion. They utilized an ensemble of multiple deep neural networks (DNNs) trained on blood biomarkers. They 
employed a variation of the implementation of permutation feature importance (PFI)23 technique to evaluate the 
relative importance of each blood biochemistry marker to ensemble accuracy. The best performance by a DNN 
was MAE of 6.07 years in predicting chronological age and the ensemble learning produced MAE of 5.55 years. 
They identfied the 5 most important biomarkers for predicting human chronological age: albumin, glucose, alka-
line phosphatase, urea and erythrocytes. Fischer et al.24 earlier identified four biomarkers: alpha-1-acid glycopro-
tein, albumin, very-low-density lipoprotein particle size, and citrate for predicting all-cause mortality by applying 
biomarker profiling via nuclear magnetic resonance spectroscopy. They also showed that these four biomarkers 
can predict healthy people that may be at a short-term risk of dying within 5 years from heart disease, cancer, and 
other illness. Findings from these studies suggest that particular biomarkers can be related to aging and mortality 
(for example albumin). Cole et al.25 studied the use of structural neuro-imaging MRI under a Gaussian process 
regression framework. The predicted age was identified as’brain-predicted age’ or brain age for short. They com-
bined DNA-methylation with brain age and showed that the combination improved mortality risk prediction. 
On the contrary, they also combined brain age with grey matter and cerebrospinal fluid volumes, but that did 
not improve mortality risk prediction. Bobrov et al.26 proposed a DNN based model to estimate biological age 
using eye corners (called PhotoAgeClock). Their method resulted in an MAE of 2.3 years and 95% correlation 
with chronological age, however they did not consider biological age. Mamoshina et al.27 used a multilayer DNN 
model and showed population specific aging patterns for Canadian, Korean, and Eastern European subjects. 
Pyrkov et al.7 applied convolutional neural network (CNN) on a week long physical activity data (NHANES 
2003–2006) measured per minute. They applied a four-layer one-dimensional CNN followed by two dense lay-
ers and a single unit layer to build the network. In a recent survey paper, Zhavoronkov et al.28 discussed recent 
advances and perspectives in using artificial intelligence for studying aging and longevity. Specifically, they dis-
cussed about work related to deep learning, transfer learning, and reinforcement learning. They also discussed 
different data modalities often used in biological age estimation such as biomedical images (e.g., MRI), genetic 
markers, and epigenetic attributes.

In this work, we consider the use of physical activity data for reliable estimation of human biological age. In 
particular, we consider the temporal nature of human locomotor activity as a key element in its use for analyzing 
biological age. Thus, rather than using CNN to estimate biological age as was done by Pyrkov et al.7, we apply a 
deep learning framework using Convolutional Long Short-Term Memory (ConvLSTM). Using the Cox propor-
tional hazard model and Kaplan-Meier curves, we show comparative performance of our proposed biological age 
estimation methods with the existing deep learning approaches.

Methodology
Datasets.  Activity dataset & preparation.  We used physical activity data from the National Health and 
Human Nutrition Examination Surveys (NHANES) 2003–2004 and 2005–2006. NHANES uses a complex cluster 
design to sample members of the civilian USA population who are not institutionalized. Activity data is provided 
for a subset of NHANES participants. For these participants, NHANES provides physical (locomotor) activity for 
a 7-day continuous tracking of “activity counts” that is sampled every minute and recorded using a physical activ-
ity monitor (ActiGraph AM-7164 piezoelectric accelerometer (https://www.actigraphcorp.com/). For this work, 
we analyzed intensity of the physical activity, (also called device intensity value) recorded by the physical activity 
monitor. The devices were worn on the right hip by the individuals using an elastic belt. The combined dataset 
were of 14,631 study participants (7,176 in 2003–2004, and 7,455 in 2005–2006). Ethnicity included white, black, 
Mexican and others. Initially, we removed outlier samples with abnormally low (average activity count <50) or 
high (>5000) physical activity count. We excluded days with less than 200 minutes corresponding to activity 
states >0, similar to Pyrkov et al.7. Only participants with 4 or more days that passed this additional filter were 
retained, yielding a total of 7,104 individuals with 586 deaths (follow up in 2015). We have randomly chosen 6,000 
individuals for training and 1,104 individuals for testing. All the algorithms are applied based on this partitioning 
of the dataset.

Anthropometric & biomarkers dataset.  We also used NHANES 2003–2006 anthropometric and biomarker data-
sets. These were used to study the potential relationship between human physical activity and the biomarkers. 

https://doi.org/10.1038/s41598-019-46850-0
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Numerous prior studies10,13 established connections between biomarkers and biological aging. Also some 
recent anthropometry based body shape indices such as surface based body shape index (SBSI)29, and a new 
body shape index (ABSI)30 showed better prediction of all cause mortality because of their relation with aging. 
Anthropometric measurements included BMI, height, weight, and waist circumference. The biomarker data-
set included information on systolic and diastolic blood pressure, albumin, high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), and hemoglobin. After refining and merging the two datasets, we obtained 4,268 
individuals common to both datasets, aged 18 to 84 years with 329 deaths (follow up in 2015).

Data transformation & data representation.  Data transformation.  Given the nature of the time-series 
human locomotor data, with noise, and outliers, our first step is to apply some basic data transformation operations, 
such as smoothing and filtering. Given that the data is a sequential time series data of 7 days, we applied moving 
averages on the data while varying the window sizes. The values of the physical activity intensity ranges over a large 
magnitude and moreover the intensity values are always positive. Thus we applied log transformation on the data 
(since there are ‘0’ values in the original data, we added a negligible value (1) before applying log transformation). 
Another typical filtering operation on time series data is to apply moving averages that helps smoothing out the 
noise or outliers and also helps to find/extract long-term trends. We applied different types of moving averages (e.g., 
simple moving average (SMA), weighted moving average (WMA), and exponentially weighted moving average 
(EMA)). SMA is the unweighted mean of the previous n data points. Given that we have physical activity per minute 
pai, for an n-length window, the simple moving average would be = ∑ =

−
+pa pasma

i
n j

n
i j

( ) 1
0
1 . EMA is a first order infinite 
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results. Moving averages were applied after the log transformation of the data. We also applied the Box-Cox trans-
formation31. This a point transformation defined as yλ(x) = (xλ−1)/λ, if λ ≠ 0 or yλ(x) = log(x) if λ = 0.

Data representations.  Pyrkov et al.7 applied the one dimensional data (10080 minutes) to a deep learning model 
to predict the biological age of a person. The basic idea was to use a one dimensional CNN architecture/model 
to extract features. This however, does not account for the temporal information in the data or the temporal pat-
tern that a person might exhibit. For an improved representation of the potential temporal signals of biological 
age in the locomotor activity data, we consider the data as a temporal sequence of daily activity records. Each 
record is considered as a two dimensional matrix of size 24 × 60 capturing the locomotor activity for every hour 
and for each minute in the hour. The result is thus a three dimensional view of the locomotor activity data. This 
representation makes it easier to identify repeated temporal patterns in the data, which might provide cues to the 
functional or health status of the individual and thus to their biological age.

LSTM estimation of biological age.  Given that we have a time series data with physical activity of a per-
son in every minute for a week, it is natural to consider the use of a recurrent neural network to keep track of the 
time series data, in terms of memories of what the system has observed thus far. This is analogous to biological 
information/intelligence processing (i.e., a human processes information on incremental basis while keeping 
track of what he has processed so far). A recurrent neural network (RNN) has a ‘state’ that stores the information 
pertaining to what it has observed/processed thus far, and it processes sequential data through a number of itera-
tions. So, an RNN is basically a neural network containing an internal loop and the state of the RNN is changed/
reset between two sequences. The RNN, however, suffers from the problem of propagating vanishing gradients32. 
The Long Short-Term Memory (LSTM) is one of the most popular recurrent neural networks developed by 
Hochreiter and Schmidhuber32 that adds a way to carry information across sequences. This saves information 
for later, and prevents older signals from vanishing gradually. Figure 1(a) shows a basic LSTM cell. In the figure, 
it is the input gate, ft is the forget gate, ct−1 is the previous cell output, ot is the ouput gate, and ht is the final state. 
LSTM updates for timestep t given input xt, and the previous state ht−1, and previous cell output ct−1. The LSTM 
updates are given as follows32:

Figure 1.  (a) Basic LSTM cell. Π denotes multiplication, + denotes addition, σ is sigmoid function, and tanh 
calculates hyperbolic tangent, (b) Transformation and inner structure of ConvLSTM*.

https://doi.org/10.1038/s41598-019-46850-0
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where Wxi is the weight matrix for input gate i and input x, and bi is the bias for i. Whenever a new input comes, 
the first step is to decide what information is going to be discarded from the cell state. This is performed by the 
forget gate. The next step is to get what information will be in the cell state. The ct first uses a sigmoid layer to 
decide which value to update and then a tanh layer provides a vector of new candiate values. Finally, the output 
will be based on the cell state with a filter (where a sigmoid decides the part of the output of cell state, and then 
finally the cell state is put through another tanh layer (output between −1 and 1) and multiplied by the output of 
the sigmoid gate).

Our basic approach to analyzing the human activity data is based on the idea of LSTM. We build on the 
concept of finding local patterns by applying the convolution operation of an image. Two major characteristics 
of convolutional neural networks (CNN) are that they can learn patterns in a hierarchical manner, and that the 
patterns learned are translation invariant (i.e., a learned pattern will be recognized anywhere). Our proposed 
method for estimating biological age is to apply the combination of LSTM with CNN to the human physical loco-
motor activity data. Note that this approach is different from the regular LSTM or CNN problem. Rather we take 
advantage of the structure in the sequence of 2D representations of the daily activities to learn valuable patterns 
from the activity data (which is very difficult using 1D CNN, LSTM, or DNN). We consider the data as a temporal 
7(D) day information, where each day has 24 hours and an hour is 60 minutes. So to break it down, we represent 
it as a two dimensional information of 24 × 60 (HxM) minutes with a temporal information of 7 days. The three 
dimensional information is therefore, 7 × 24 × 60 (DxHxM) minutes of data. Figure 1(b) shows the representa-
tion described above. The image representation (HxM) of the 1D physical data for each day introduce different 
feature dimensions that cannot be learned easily using 1D CNN architecture. In particular, using the 24 × 60 
matrix representation of physical activity, records at minute 1 and minute 61 are neighbors (when considered as 
an image or matrix form), while in a one dimensional sequential view they are 60 timesteps apart. Two important 
factors here are that the spatial structure is changed, and that the sequence of two-dimensional information is 
very different from that of the original one-dimensional time series (especially, the information gathered from 
the 1D CNN and 2D CNN).

Our approach to combining LSTM and CNN builds on the idea of ConvLSTM proposed by Shi et al.33. Under 
ConvLSTM, the convolution structures are applied both at the input-to-state transition and at the state-to-state 
transitions. The ConvLSTM differs from simple CNN + LSTM in that, for CNN + LSTM, the convolution struc-
ture (CNN) is applied as the first layer and sequentially LSTM layer is applied in the second layer. Our approach 
also differs from ConvLSTM in that, we do not attempt to predict the next 2D matrix of physical activity for an 
individual, rather our goal is to estimate the biological age. Thus we concatenate two more fully connected dense 
layers and finally a single unit of neuron without activation to build up a scalar regression that estimates the 
biological age. We call our approach ConvLSTM*. Figure 2 shows the architecture of the proposed ConvLSTM* 
model. We also apply 1D CNN7 and 1D DNN (see Supplementary Materials) on the 1D time series dataset to 
predict biological age. We compare the results from these three deep neural network models.

Statistical analysis.  We analyzed the data separately for male and female subjects, and for their combina-
tion. Table 1 shows the key biomarker attributes used in this study. Table 1 also includes some important anthro-
pometric measurements such as body mass index (BMI), surface-based body shape index (SBSI), waist-to-height 
ratio (WHtR), and average physical activity. SBSI was computed following Rahman and Adjeroh29. We have used 
the following metrics to evaluate accuracy: (1) Pearson correlation coefficient between x and y: 
ρ =

∑ − −

∑ − ∑ −

=

= =

x y( , )
x x y y

x x y y
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N i

N
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1
1 , where yi is the original value and ŷi is the estimated value. In this work 

MAE shows the average change/error between the chronological age and the estimated age. (3) R-squared 

Figure 2.  Architecture of the proposed ConvLSTM* deep learning method for biological age estimation using 
human locomotor activity data.
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To evaluate the estimated biological ages, we have applied two statistical models for validation and compar-
isons of BA algorithms, namely, Cox proportional hazard model (Cox PH) and Kaplan-Meier (KM) curves. We 
calculated the hazard ratio and corresponding p-value for Cox PH model using function “coxph” from R package 
“survival”. Log-rank test was performed to quantify the KM plots. To perform log-rank test, we used “survdiff ” 
function and calculated the chi-square distance and the corresponding p-value. In all cases, for p-value smaller 
than 0.05 the result is considered significant. In this work, for the Cox PH and KM curves, we have used follow-up 
time for the time parameter in the models. Table 2 shows the correlation coefficient between average physical 
activity and the biomarkers. These results are based on the individuals that have both biomarkers and physical 
activity data available. The sample mean of age was 46.30 years, mean body mass index (BMI) is 26.44 kg/m2, and 
mean surface based body shape index (SBSI) of 0.12 (see Table 1).

All statistical analyses were performed using the R Language, Ver. 3.3.5 (The R Foundation for Statistical 
Computing, Vienna, Austria). The following packages were used: survival, gtools, ggplot2, tidyverse, Tensorflow, 
keras, reticulate, e1071, randomForest, matrixStats, technical trading rules (TTR).

Results
Human locomotor activity is associated with chronological age.  To motivate our study of deep 
learning methods for biological age estimation using the locomotor physical activity data, we first investigated 
whether there is any discernible association between physical activity and chronological age (which is easier to 
assess than biological age). On average, physical activity has a correlation coefficient of −0.19 (p-value = 0.00) 
with chronological age (see Tables 2 and S4). To further investigate the relation between physical activity and 
chronological age, we have grouped subjects in the physical activity dataset based on their age ranging from 18 to 
84. For subjects at a given age, we compute their average physical activity. Figure 3(a) shows the results. We also 
calculate the standard deviation (SD) of physical activity for each person. Similarly, we calculate average of SD of 
physical activity at each given age group. Figure 3(b) shows the average SD for each age in our dataset. Average 
physical activity goes up from age 18 to 45. After that we observe a generally linear decline of average physical 
activity from age 46 to 85 years. However, standard deviations do not vary significantly from age 18 to 45 although 
they show a slightly downward trend. Then it goes down linearly till age 85. We observe a pattern of reduced 
physical activity on average with increasing age after 45. Standard deviation of physical activity on average also 
reduces after 45 years. There seems to be a region around age 45 years, after which both average physical activity 
and SD of physical activity reduce linearly with age.

ConvLSTM* estimated BA acceleration using physical activity data is associated with BA from 
biomarkers.  Biomarkers have been used frequently to estimate biological age in prior works10,13. We refined 

All (N = 4268) Female (N = 2094) Male (N = 2174)

Attributes Average ± SD Average ± SD Average ± SD

C-reactive protein (mg/dL) 0.37 ± 0.82 0.41 ± 0.7 0.33 ± 0.92

Glycated hemoglobin (%) 5.45 ± 0.89 5.37 ± 0.76 5.53 ± 0.99

Serum Albumin (ug/mL) 4.23 ± 0.40 4.10 ± 0.42 4.36 ± 0.33

Total Cholesterol (mg/dL) 197.96 ± 42.56 202.65 ± 43.76 193.44 ± 40.88

Serum Urea Nitrogen (mg/dL) 12.34 ± 5.49 11.2 ± 5.22 13.43 ± 5.52

Serum Alkaline Phosphatase (U/L) 70.69 ± 27.45 69.09 ± 28.48 72.24 ± 26.33

Systolic blood pressure (mm Hg) 123.68 ± 20.49 121.58 ± 22.84 125.71 ± 17.7

Diastolic blood pressure (mm Hg) 68.33 ± 13.76 66.74 ± 14.13 69.86 ± 13.22

Pulse (60 sec) 71.95 ± 12.55 74.89 ± 12.49 69.11 ± 11.95

High density lipoprotein (mg/dL) 55.95 ± 16.59 62.42 ± 16.99 49.72 ± 13.54

Hemoglobin (g/dL) 14.39 ± 1.5 13.51 ± 1.22 15.25 ± 1.23

Lymphocyte percent (%) 29.8 ± 9.00 29.54 ± 8.99 30.06 ± 9.00

White blood cell count (SI) 7.31 ± 2.87 7.47 ± 2.72 7.15 ± 3.00

Hematocrit (%) 42.58 ± 4.44 39.9 ± 3.56 45.15 ± 3.61

Red blood cell count (SI) 4.71 ± 0.52 4.43 ± 0.41 4.98 ± 0.47

Platelet count (% SI) 266.38 ± 68.3 280.54 ± 70.7 252.75 ± 62.97

Body mass index (BMI) (kg/m2) 26.44 ± 4.61 26.09 ± 4.89 26.77 ± 4.3

Surface based body shape index (SBSI) 0.12 ± 0.01 0.12 ± 0.01 0.12 ± 0.01

Waist-to-height ratio (WHtR) 0.56 ± 0.08 0.56 ± 0.08 0.55 ± 0.08

Age (years) 46.3 ± 20.18 44.91 ± 20.25 47.65 ± 20.02

Average physical activity 156.78 ± 119.08 136.88 ± 111.66 175.94 ± 122.84

Table 1.  Key attributes for study participants using the NHANES (2003–2006) dataset.

https://doi.org/10.1038/s41598-019-46850-0
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and merged the physical activity dataset with biomarker dataset, and obtained 4268 common individuals. This 
allowed us to compare results and observations using the proposed ConvLSTM* using activity data with those 
from traditional biomarkers.

Association between locomotor activity with biomarkers.  To further investigate the potential effectiveness of 
using the locomotor activity data for predicting biological age, we analyzed the correlation of known biomarkers 
of aging with the average physical activity. For biomarkers of aging, we considered 16 of the biomarkers available 
in NHANES, namely, C-reactive protein, glycated hemoglobin, albumin, total cholesterol, urea nitrogen, alka-
line phosphatase, systolic blood pressure, diastolic blood pressure, pulse, high density lipoprotein, hemoglobin, 
lymphocyte percent, white blood cell count, hematocrit, red blood cell count, platelet count. Subsets of these have 
been used in earlier work as key biomarkers of biological age9,10,13,17. Table 2 shows the correlation between the 
average physical activity and the biomarkers used (see also Table S4). The table shows the correlation using direct 
measurements for Pearson’s ρ and corresponding p-value of the correlation. Albumin has the highest correlation 
(ρ = 0.17, p-value = 0.00). Red blood cell count, and hemoglobin each has correlation of 0.15 (p-value = 0.00). 
Interestingly, high-density lipoprotein (HDL) has a very low correlation with physical activity (ρ = −0.024, 
p-value = 0.119). This result is similar to the study by Levine et al.9 where they showed that HDL has a little cor-
relation (ρ = 0.026) with chronological age. Figure 4 shows how the two most correlated biomarkers (Albumin 
(ρ = 0.17), and Hemoglobin (ρ = 0.15)) vary with chronological age on average. From Figs 3 and 4 we can observe 
that in general the average physical activity has a similar trend with the biomarkers (Albumin and Hemoglobin) 
with respect to age. In Fig. 4(a) average albumin goes down from ages 18 to 35 then goes up till about 45; from 
ages 45 to 84 albumin consistently goes down on average. Hemoglobin, however, goes up on average, from age 18 
to 50, and then consistenly goes down till age 84. This is similar to the observation of Belsky et al.10 on the pace 
of aging. They showed that the pace of aging can be rapid for individuals who are biologically older than their 

Average Physical Activity Chronological Age

Correlation p-value Correlation p-value

C-reactive protein −0.083 5.29E-08 0.048 1.67E-03

Glycated hemoglobin −0.086 1.92E-08 0.340 3.15E-116

Serum Albumin 0.167 3.65E-28 −0.090 4.46E-09

Total Cholesterol −0.034 2.74E-02 0.182 5.94E-33

Serum Urea Nitrogen −0.059 1.20E-04 0.457 3.09E-21

Serum Alkaline Phosphatase −0.068 9.28E-06 0.062 5.03E-05

Systolic blood pressure −0.110 4.75E-13 0.535 1.32E-31

Diastolic blood pressure 0.049 1.34E-03 0.099 1.12E-10

Pulse −0.084 3.80E-08 −0.211 2.88E-44

High density lipoprotein −0.024 1.19E-01 −0.014 3.64E-01

Hemoglobin 0.150 9.04E-23 −0.024 1.13E-01

Lymphocyte percent 0.059 1.07E-04 −0.066 1.68E-05

White blood cell count −0.067 1.06E-05 −0.053 5.33E-04

Hematocrit 0.147 3.94E-22 −0.011 4.86E-01

Red blood cell count 0.151 4.74E-23 −0.133 2.41E-18

Platelet count −0.038 1.25E-02 −0.116 3.31E-14

Chronological age −0.193 2.0E-16

Table 2.  Correlation between average physical activity, chronological age, and blood biomarkers.

Figure 3.  Variation of average physical activity with age. Values plotted for individuals grouped by year of age.
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peers, i.e. a 38 year old with a biological age of 40 will age faster than a 38 year old with biological age of 38 years. 
Figure 3 also shows a similar property for average physical activity where the decline in physical activity starts 
at around age 45. Figure S3 shows the correlation between physical activity and the blood biomarkers for each 
age. This shows the trend in correlation for each age, and thus avoids potential problem of averaging positive and 
negative correlations of different age ranges. For instance, diastolic blood pressure has positive correlation with 
activity for age ranges 18–40 and 60–84, but negative correlation in between (ages 41–59). On the other hand, 
urea nitrogen starts out with high positive correlation which decreases progressively with increasing age. By age 
70 and above it exhibits negative correlation with physical activity.

Similarity between estimated biological age from biomarkers and ConvLSTM* estimated biological age from loco-
motor activity.  Figure 5(a) shows the estimated biological age using the Klemera and Doubal (KD)12 method 
applied on the biomarker data and the corresponding estimated biological age using the proposed ConvLSTM* 
deep learning method applied on the locomotor activity data, for the 4268 individuals that have both physical 
activity and biomarker data available. Within the age range from 18 to 84 we took the individuals for each given 
age and calculated the mean of the estimated age. Both KD and ConvLSTM have similar results, with each pro-
ducing BA estimates that increase consistently (generally linearly) with chronological age. At around age 47, 
we observe a crossover of the estimated BAs. This is pertinent with both the linear decrease of average physical 
activity in Fig. 3 and linear decrease of albumin and hemoglobin in Fig. 4 after age 45. Thus, it might be possible 
to estimate biological age based on physical activity of an adult individual. Figure 5(b) shows the scatter plot for 
the results in Fig. 5(a). We observe that the KD estimated ages are more scattered and vary more widely while 
ConvLSTM* estimated ages are more confined within a smaller range. This is also justified by the mean absolute 
error values of the two methods. However, lower MAE may not always lead to better BA estimates. In fact, the 
large range of BA estimates generated by KD may have positive impacts in its use in survival/mortality modeling. 
Moreover, as we are minimizing the mean square error (MSE) as our loss function, our approach may suffer from 
the problem of “regressing to the mean19”. Figure 5(c) shows the respective age distributions using the estimated 
BA from KD method on biomarker data, the proposed deep learning ConvLSTM* method on the locomotor 
activity data, and the chronological age. We observe that ConvLSTM* and the chronological age are closely 
aligned while KD estimated values are very widely spread (estimated age occasionally fit to very high and very 
low values, at times up to 150 years).

Following Mitnitski et al.11 biological age acceleration is defined simply as Δ = CA−BA, where CA denotes 
chronological age and BA denotes biological age. However, here we introduce the normalized form which we call 
normalized biological age acceleration (NBAA), denoted η = =Δ −

CA
CA BA

CA
. This normalization is performed to 

reduce the effect of of large Δs. For example, a Δ value of 5 could have different biological or health implications 
for an 18 year old (≈28% difference) and for a 70 year old (≈7% difference). Our observation is that, overall, using 
η values provided more improvements in the results when compared to using Δ values.

Deep learning biological age using ConvLSTM* on physical activity data leads to improved 
modeling of all-cause mortality.  Biological age is a quantitative measure which is expected to provide 
some general indication of the health/functional status of an individual. Numerous approaches have used the idea 
of the association of physiological variables (biomarkers, activity) for estimating BA7,10,25,34. However, given a new 
data modality, such as the human locomotor activity data studied in this work, a different model may be needed. 
Thus, we built a learning model using deep convolutional long short term memory (ConvLSTM) that is trained 
to estimate the BA. We applied two-dimensional ConvLSTM on the data, taking advantage of both convolution 
and LSTM at the same time for extracting features rather than using the one-dimensional time series data. The 
proposed network architecture is shown in Fig. 2. To evaluate how well the estimated BA using the proposed 
deep learning ConvLSTM* approach on locomotor activity data captures the functional status of the subjects, 
we considered how the estimated BA relates to health risks. In particular, we studied the association of all-cause 

Figure 4.  Variation of two biomarkers (albumin, and hemoglobin) with age. Values plotted are the average 
measurements for individuals grouped by their age.
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mortality with the normalized biological age acceleration (η) using the estimated BA models. Unless otherwise 
indicated, reported results are based on the larger activity dataset with 7,104 individuals.

Cox PH model.  We used Cox proportional hazard modeling (Cox PH)35,36 and Kaplan-Meier (KM) curves37 to 
quantify the association of the proposed ConvLSTM* estimated BA with all-cause mortality. Under the Cox 
model, the relationship between hazard and the covariates is described by considering the logarithm of the hazard 
as a linear function of the variables. Here we calculate the hazard ratio (HR) for each BA estimation algorithm. 
First we estimate biological age (BA) using 1D CNN7, DNN, CNN + LSTM, and ConvLSTM* models, and then 
we calculate η = −CA BA

CA
 for each BA prediction algorithm. The DNN and CNN + LSTM models were developed 

and implemented in this work. The ConvLSTM* model is parameterized using the data transformation parame-
ter, λ. Table 3 shows the results for all the approaches.

We applied η as the co-variate in the Cox model. We observe that for 1D CNN, and DNN, the HR value is 
1.05, and 1.07 respectively. And the proposed ConvLSTM based method has similar results (ConvLSTM* (λ = 1), 
HR = 1.06; ConvLSTM* (λ = 0), HR = 1.07; ConvLSTM* (λ = 0.9), HR = 1.05). From the perspective of Cox PH 
model, we found that the proposed ConvLSTM* based BA prediction method has similar performance compared 
to the other methods. Best overall results were obtained using ConvLSTM* (λ = 0), with HR = 1.07 (p-value 
7.81E-17), and DNN with HR = 1.07 (p-value 1.75E-19) using the normalized biological age acceleration, η. 
For the common subset of data which contains both biomarker attributes and physical activity of individuals we 
applied CoxPH model on the estimated age by KD method using biomarkers, and deep learning methods using 
physical activity methods. Using KD estimated biological age we obtained HR = 1.30 (p-value 5.08E-1). For com-
parison, on this common data set, ConvLSTM* (λ = 0) produced HR = 1.09 (p-value 3.02E-14).

KM plots and LogRank.  To further study the performance of the estimated BAs, we analysed the Kaplan-Meier 
(KM) survival curves obtained using the quantile factored NBAA η = −( )CA BA

CA
. Figure 6 shows the KM plots for 

the BA estimation algorithms (Fig. S1 shows the same plots with confidence interval). A given variable is a good 
mortality predictor if the Kaplan-Meier curves are easily distinguishable (more distance between them), and the 
variable captures the survival rates from low to high levels, with less crossing between curves. In general, each 
method of predicting biological age perform relatively well in distinguishing the proportion of survivors. Among 
the deep learning BA estimation methods, the Pyrkov et al. approach7 using 1D CNN performed better than 
using the direct DNN model on the 1D data. However, once again, the proposed ConvLSTM* approach (using 
λ = 1) produced an improved result when compared with the Pyrkov et al.'s method7. To further quantify the 
performance, we used the log-rank test to compare the survival distributions obtained using the different BA 
algorithms. The log-rank test compares the Kaplan-Meier curves to check if they are statistically equivalent. The 

Figure 5.  Similarity between average biological estimated age using biomarkers using KD method and 
physical activity using ConvLSTM* over the age range 18–84. (a) Estimated biological age (smoothed using 
generalized additive model) against chronological age, (b) Estimated biological ages against chronological age, 
(c) distribution of original chronological age (CA) and estimated biological age using biomarkers (KD method) 
and physical activity (ConvLSTM* method). These results are for common individuals in both the biomarker 
and physical activity datasets.

HR p-value

1D CNN7 1.05 (1.04, 1.07) 1.63E-11

DNN 1.07 (1.06, 1.09) 1.75E-19

CNN + LSTM (λ = 0.9) 1.05 (1.05, 1.08) 1.65E-11

ConvLSTM* (λ = 1) 1.06 (1.04, 1.07) 1.38E-14

ConvLSTM* (λ = 0) 1.07 (1.05, 1.08) 7.81E-17

ConvLSTM* (λ = 0.9) 1.05 (1.04, 1.07) 1.74E-11

Table 3.  Results of the Cox proportional hazard (Cox PH) model applied on the normalized biological age 
acceleration η = (CA−BA)/CA for estimated biological ages.
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output of the test is a χ2-distance, and the p-value associated with the distance. Higher χ2-distances and low 
p-values indicate a better separation between the curves, and hence a better performance in mortality modeling. 
The difference among the biological age estimation methods is more evident using quantitative measures, e.g., the 
χ2-distance between their respective KM curves, as captured by the log-rank test (Table 4). ConvLSTM* (λ = 1) 
estimated biological age has the highest χ2-distance followed by CNN + LSTM and ConvLSTM* (λ = 0, 0.9). For 
the common subset of data which contains both biomarker attributes and physical activity of individuals we 

Figure 6.  The Kaplan Meier curves for estimated biological ages (BA) based on the physical activity applying 
η = −CA BA

CA
 for both training (a,c,e), and test (b,d,f) data. Q1, Q2, Q3, and Q4 denote 1st, 2nd, 3rd, and 4th 

quartiles, respectively. The number of individuals in each Q is 276 (test data). Left column corresponds to results 
for training, while right column corresponds to results for testing.
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applied log-rank test on the estimated age by KD method using biomarkers. We obtained a χ2-distance of 88.49 
(p-value 4.62E-8). For comparison, on this common data set, ConvLSTM* (λ = 0) produced χ2-distance = 49.15 
(p-value 1.21E-10).

Discussion
In this work we have investigated deep learning approaches on the NHANES (2003–2006) locomotor physical 
activity data. We estimate biological age (BA) based on the physical activity and chronological age (CA). To quan-
tify how well the estimated biological age captures the health risk, we apply the Cox proportional hazard model 
with all-cause mortality. The deep learning models such as DNN, CNN, and ConvLSTM were trained to exploit 
the dependence of the physiological/activity changes with age. In all cases, the deep learning approaches were 
trained to minimize the mean squared error (MSE) between estimated BA and CA, in every epoch.

Parameter choices.  We tested the performance of smoothening/filtering the original 1D activity data using 
different moving averages (simple moving average (SMA), weighted moving average (WMA), and exponential 
moving average (EMA)). We observed that EMA provided the overall best result. To test the impact of window 
size (N), we performed experiments using different values. We have considered N = 1, 2, 4, 8, 10, 16, 20, 25, 30, 
35, 40. Table S1 shows the impact of the window size used for calculating the moving averages. We show the per-
formance using different window sizes (N) based on two machine learning algorithms, namely, support vector 
machine (SVM) and random forest (RF). Table S1 shows the variation of window size of exponential moving 
averages using the Box-Cox transformation. The performance criteria for choosing the window size was to get 
lower MAE, higher R-squared distance, and higher correlation. From these results, we selected N = 35 as the best 
overall window size (R2 = 0.48 for SVM). Table S2 shows the impact of λ for Box-Cox transformation. Best results 
were obtained with λ = 0.9 (R2 = 0.56 for SVM using N = 35). We have reported results for ConvLSTM* using 
three values of λ; λ = 1 (raw, with no transformation), λ = 0 (log transformation), and λ = 0.9.

For ConvLSTM* layer we have used 128 filters, a kernel size of 3 ×3 with a “ReLU” activation function. The 
first dense layer has 256 filters and second has 128 filters. Weight initialization was performed by Glorot and 
Bengio normal initialization38, 30% dropout was performed after each dense layer. We have tried different optim-
izers such as rmsprop39, Adam40, and Nadam41. Based on the empirical results, we have selected Adam optimizer 
for this work. Circular padding was used for CNN. Mean square error (MSE) was used for loss function. We used 
Keras (https://keras.io/) library with Tensorflow (https://www.tensorflow.org/) in the backend to build the deep 
learning models. All experiments were performed using a NVIDIA 1080Ti graphics processing unit (GPU) run-
ning on a Ubuntu 16.04 (operating system) machine with Intel core-i7 processor and 32GB RAM.

Impact of gender.  Results reported so far are from a single model that does not consider gender differences. 
That is, the same model is used for both female and male. However, gender is expected to have an influence on 
the performance of an age estimation scheme42–44. Table 5 shows the results for separate gender specific models. 
We observe that, for gender specific models, applying normalized biological age acceleration η = (CA−BA)/CA 
using estimated BA have higher hazard ratios than using chronological age. Moreover, for λ = 0 and λ = 1, using 
chronological age, the p-values are not significant. Using a separate model for male resulted in higher HR values 
(for each λ). However, using a separate model for female did not improve the hazard ratios when compared with 
using the single model for all.

Figure 7 shows the KM plots for gender specific models applying η = (CA−BA)/CA (ConvLSTM estimated 
BA) factored into quartiles. Using separate male model’s KM plots were of similar nature in comparison with the 
combined KM plots. See Fig. 6(e). However, for separate female model, the KM curve is slightly different although 

Chi-Sq p-value

1D CNN7 33.60 2.41E-07

DNN 22.10 6.22E-05

CNN + LSTM (λ = 0.9) 48.19 1.94E-10

ConvLSTM* (λ = 1) 48.28 1.86E-10

ConvLSTM* (λ = 0) 44.38 1.25E-09

ConvLSTM* (λ = 0.9) 24.15 2.33E-05

Table 4.  Results of the log-rank test applied on the normalized biological age acceleration η = (CA−BA)/CA 
using the estimated biological ages.

Female Male

HR p-value HR p-value

ConvLSTM* (λ = 1) 1.06 (1.04, 1.08) 5.16E-08 1.05 (1.03, 1.07) 1.45E-05

ConvLSTM* (λ = 0) 1.05 (1.03, 1.08) 2.84E-06 1.05 (1.03, 1.07) 2.36E-08

ConvLSTM* (λ = 0.9) 1.06 (1.04, 1.09) 1.87E-06 1.04 (1.02, 1.06) 1.13E-05

Table 5.  Results of the Cox Proportional Hazard model (CoxPH) applied on the normalized biological age 
acceleration η = (CA−BA)/CA using separate models for female and male subjects.
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all the quartiles are well separated. To further quantify these results, we perform log-rank test on the models. 
Table 6 shows the results for log-rank test for separate female and male models. Similar to the results of Cox PH 
models and KM curves, log-rank test also show better results for male model with higher χ2 values for all the λ 
variations.

Variations on biological age acceleration.  In this work, so far we have used η = (CA−BA)/CA. In pre-
vious work11 age acceleration was defined as Δ = CA−BA. We introduce the normalized form to reduce the effect 
of low values or high values of CA. However, because of the fitting minimization of mean square error (MSE) as 
the loss function, this definition of η may still suffer from the “regressing to the mean” problem19. To solve the 
problem we introduce variations of biological aging acceleration. We calculate the difference between individuals’ 
biological age and the corresponding age, and gender matched cohort average. Thus we define Δg = BAg−BA, and 
η =

−

g
BA BA

CA
g . Figure S2 shows the distribution of age acceleration for η, and ηg over age groups. We notice that ηg 

have better distribution for all age groups. For all the age groups except age group 1 (≤30) we observe a shift to 
the left from η to ηg. Table S4 shows the correlation of the average physical activity (PA Avg), chronological age, 
variations of aging acceleration (η, ηg) with respect to the biomarkers used in this work. ηg have higher correlation 
with most biomarkers. Thus it may be the case that ηg, the biological aging acceleration calculated based on the 
age and gender matched cohort average is more powerful in exposing the relationship between biomarkers and 
aging.

Connection with general health status.  Another way to investigate the performance of the proposed 
ConvLSTM* in capturing health risks is to consider their possible relationship with known indicators of health 
risk or how the estimated biological age differentiates between subjects with known diseases and those without. 
Below we consider these two perspectives in evaluating a BA estimation method.

Relationship with known health indices.  For general indices of health status, we can consider the body mass 
index (BMI), waist to height ratio (WHtR), or the more recently introduced surface based body shape index 
(SBSI)29 or ABSI30. In particular, we studied the variation of the proposed normalized biological age acceleration 
(NBAA, denoted η) computed using the estimated BA from ConvLSTM* with variations in the WHtR, and in 
SBSI categories. Earlier studies by Morkedal et al.45 have shown that the WHtR is a better measure of health 
status when compared with BMI. Rahman and Adjeroh29 made a similar observation on the superiority of SBSI 
over BMI. We have also observed the performance of ConvLSTM* with respect to the surface based body shape 
index (SBSI)29 quartiles. Table 7 shows the log-rank test on the SBSI quartiles. The results are shown using η, 
for each SBSI category. We observe that, in general the χ2 values increase from first quartile to fourth quartile. 

Figure 7.  The Kaplan Meier curves for applying η = −CA BA
CA

 on the physical activity (a) female, and (b) male. 
Q1, Q2, Q3, and Q4 denote 1st, 2nd, 3rd, and 4th quartiles, respectively.

Female Male

Chi-Sq p-value Chi-Sq p-value

ConvLSTM* (λ = 1) 29.33 1.91E-06 16.97 7.18E-04

ConvLSTM* (λ = 0) 25.69 1.11E-05 18.23 3.94E-04

ConvLSTM* (λ = 0.9) 17.83 4.78E-04 19.15 2.54E-04

Table 6.  Results of Log-rank tests applied on the normalized biological age acceleration η = (CA−BA)/CA 
using separate models for female and male subjects.
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However, the increase is not monotonic for all the variations of λ. For example, the χ2-distance decreased from Q2 
(7.75) to Q3 (2.89) and then increased for Q4 (15.83) for λ = 1, other variations (λ = 0, 0.9) follow a similar trend. 
We observe a similar trend for male-only models as well. Using female-only models, the χ2-distances increased 
monotonically for λ = 1, 0. The performance of ConvLSTM* with respect to the waist-to-height ratio (WHtR) 
quartiles is of similar nature to the results on SBSI quartiles (see Table 8). We observe that, χ2-distances increase 
from Q1 to Q4 for λ = 0, 0.9. However, the χ2-distances for the fourth quartile are not always greater than those for 
the third quartile, although they are greater than both first and second quartile. We also observed the relationship 
between the variants of biological aging acceleration with SBSI. Performance of ηg is generally similar with the 
performance of η in Table 7 for each λ (λ = 0, 0.9, 1) using all, female-only, and male-only models. For λ = 0, 
χ2-distance increased monotonically from Q1 (8.74) to Q4 (65.76), and for λ = 0.9, the χ2-distance increased from 
Q1 (6.70) to Q4 (26.58) for female-only model. In general, we observed significant differences in the χ2-distances 
between Q1 and Q4, and also between (Q1/Q2) and (Q3/Q4). This was the case for both SBSI and WHtR.

Relation with disease status.  We also considered whether the proposed measure of biological age acceleration 
would show any difference between healthy subjects and those with certain known diseases. Table 9 shows the 
results grouped for subjects having chronic diseases such as diabetes, cardio vascular disease (CVD), and kidney 
disease. On average Δg = BAg−BA is lower for the individuals having chronic diseases (diabetes = −5.18, kid-
ney = −3.66, and CVD = −2.92) whereas for all subjects Δg = −0.67. Those that do not suffer from any chronic 
disease have a Δg = 0.25 on average. We observe a similar pattern using η =

−

g
BA BA

CA
g  for the same partition. 

Positive and Negative refer to average of the subjects having positive and negative Δ respectively. Positive Δ and 
η corresponds to lower biological age than the chronological age (more healthy), while negative values corre-
spond to higher biological age than the original age. % of negative Δ is higher for subjects with disease (74.53%, 
65.38%, and 66.67%), compared with all subjects (56.25%). Subjects with no chronic disease have lowest propor-
tion of negative Δs (52.25%).

These results show that the proposed ConvLSTM* estimated BA locomotor activity data can indeed capture 
significant information about the health status of the subjects.

Comparison.  Pyrkov et al.7 proposed a deep learning architecture for analyzing the physical activity data 
that is based on a one dimensional convolutional neural network (CNN) architecture. We also implemented a 
deep neural network (DNN) to estimate biological age (Our own architecture and implementation; motivated 

ConvLSTM*
SBSIQ1 SBSIQ2 SBSIQ3 SBSIQ4

Chi-sq p-value Chi-sq p-value Chi-sq p-value Chi-sq p-value

ALL

ConvLSTM* (λ = 1) 3.03 3.87E-01 7.75 5.14E-02 2.89 4.09E-01 15.83 1.23E-03

ConvLSTM* (λ = 0) 18.66 3.21E-04 5.78 1.23E-01 29.01 2.23E-06 61.52 2.78E-13

ConvLSTM* (λ = 0.9) 13.25 4.12E-03 8.57 3.55E-02 13.37 3.90E-03 38.01 2.81E-08

Female

ConvLSTM* (λ = 1) 3.58 3.11E-01 4.86 1.82E-01 10.28 1.64E-02 12.88 4.90E-03

ConvLSTM* (λ = 0) 10.34 1.59E-02 11.35 9.95E-03 24.25 2.21E-05 65.76 3.45E-14

ConvLSTM* (λ = 0.9) 7.69 5.28E-02 6.25 1.00E-01 11.52 9.23E-03 26.58 7.23E-06

Male

ConvLSTM* (λ = 1) 2.55 4.67E-01 7.69 5.29E-02 4.38 2.23E-01 3.71 2.94E-01

ConvLSTM* (λ = 0) 5.07 1.67E-01 1.58 6.63E-01 3.02 3.89E-01 8.00 4.60E-02

ConvLSTM* (λ = 0.9) 13.86 3.10E-03 3.56 3.14E-01 12.4 6.14E-03 27.84 3.92E-06

Table 7.  Log rank results applying η = −( )CA BA
CA

 for different SBSI categories. Results are shown for model 
with all subjects, female-only, and male-only separately. Q1, Q2, etc. denote 1st quartile, 2nd quartile, etc.

ConvLSTM*
WHtRQ1 WHtRQ2 WHtRQ3 WHtRQ4

Chi-sq p-value Chi-sq p-value Chi-sq p-value Chi-sq p-value

ALL

ConvLSTM* (λ = 1) 9.74 2.09E-02 1.96 5.81E-01 23.14 3.78E-05 7.74 5.17E-02

ConvLSTM* (λ = 0) 32.8 3.56E-07 26.18 8.75E-06 33.98 2.00E-07 35.04 1.20E-07

ConvLSTM* (λ = 0.9) 15.01 1.81E-03 23.94 2.57E-05 24.93 1.60E-05 26.73 6.70E-06

Female

ConvLSTM* (λ = 1) 6.7 8.20E-02 4.86 1.82E-01 11.7 8.48E-03 3.39 3.36E-01

ConvLSTM* (λ = 0) 20.63 1.26E-04 31.25 7.52E-07 24.65 1.83E-05 25.58 1.17E-05

ConvLSTM* (λ = 0.9) 9.38 2.47E-02 15.34 1.55E-03 11.83 8.00E-03 12.65 5.47E-03

Male

ConvLSTM* (λ = 1) 11.35 9.96E-03 5.45 1.42E-01 19.09 2.62E-04 9.73 2.10E-02

ConvLSTM* (λ = 0) 13.02 4.60E-03 11.26 1.04E-02 7.29 6.31E-02 7.32 6.24E-02

ConvLSTM* (λ = 0.9) 19.67 1.99E-04 18.96 2.79E-04 20.01 1.69E-04 22.09 6.26E-05

Table 8.  Log rank results applying normalized biological age acceleration η = −( )CA BA
CA

 for different WHtR 
quartiles. Results are shown for model with all subjects, and for separate models for females and males. Q1, Q2, 
etc. denote 1st quartile, 2nd quartile, etc.

https://doi.org/10.1038/s41598-019-46850-0


13Scientific Reports |         (2019) 9:11425  | https://doi.org/10.1038/s41598-019-46850-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

from the architecture of Putin et al.22, and also a basic CNN fed into an LSTM model (CNN + LSTM)). These 
models (DNN and 1D CNN) are used as comparative results. The results on mortality modeling using the Cox 
model and KM curves have shown the performance of the proposed ConvLSTM* in comparison with DNN and 
Pyrkov et al.’s7 1D CNN and CNN + LSTM. See Tables 3 and 4 and Fig. 6. The results showed that the proposed 
ConvLSTM* method generally outperformed the 1D CNN, the CNN + LSTM model, or the DNN. Another way 
to compare the methods is by considering the estimated chronological age from the methods. Since the deep 
learning methods were trained to minimize the mean square error between the estimated and the original chron-
ological age, we can compare the methods based on their performance in CA estimation.

Table 10 shows the mean absolute error (MAE), root mean square (RMSE), correlation (CORR), and 
R-squared value(R-sq) for all the deep learning methods discussed. Results are reported for both training and 
test datasets. We observe that ConvLSTM* (λ = 1) on the original dataset has the lowest MAE (12.6), RMSE 
(15.74), R-sq of 0.85, and best correlation (ρ = 0.62). ConvLSTM* with λ = 0 and λ = 0.9 had similar perfor-
mance (ρ = 0.55 for both, R-sq of 0.85 and 0.80, and MAE of 13.21 and 13.4 respectively). While 1D CNN7 has 
the best R-sq (0.93) followed by the DNN network (R-sq = 0.89), for MAE and correlation ConvLSTM* and 
CNN + LSTM model performed better. They also required fewer epochs (10 compared with 100 for DNN and 
500 for 1D-CNN). We have also considered 7 × 24 matrix representation followed by using LSTMs for sequences 
of 60 as a variation of ConvLSTM* architecture. We observe MAE = 16.45, ρ = 0.32 for the test datasets using this 
variation of architecture.

The above discussion demonstrates the specific benefits of ConvLSTM* over other deep learning methods 
when applied to locomotor activity data, namely, improved mortality modeling (using Cox PH, χ2-distance from 
the log-rank test, and using KM curves) and improved CA prediction (MAE, RMSE, correlation). The improved 
performance of the proposed ConvLSTM* can be attributed to (1) the use of a data representation that exploits 
the temporal patterns in the locomotor activity data, and (2) the use of a special deep learning model that com-
bines the power of both CNN and LSTM. As discussed briefly in the introduction, there are several approaches to 
age estimation, using different types of data. Here, given the significant differences in methodology and datatypes 
involved, it is difficult to provide a detailed comparison with other non-deep learning approaches, or those that 
used other types of data. In general, the deep learning approaches on locomotor activity data tended to result in 
higher MAE when compared with methods that used other datatypes, for instance brain MRI25, or DNA meth-
ylation profiles34,46. However, the correlation (and R2-values) are generally similar. Our results using the Cox PH 
also shows that the performance in modeling mortality is similar to other popular BA methods, such as using the 
KD method on blood biomarkers.

Does improved CA estimation really imply reduced performance in BA estimation?.  All the methods described 
above use supervised learning that learns in the form of minimizing the difference between estimated biological 
age and the chronological age itself. This difference has been called biological age acceleration11 in the literature. 
Pyrkov et al.7 suggested that an improvement in CA estimation can affect the significance of BA acceleration for a 
particular test that may involve health risks. This also relates to the issue of “paradox of biomarkers” as described 
by Klemera & Doubal12, and Hochschild47. However, our results show that the proposed ConvLSTM* approach 
results in a better estimation for chronological age (lower MAE, higher correlation) in comparison with the other 

Δg ηg

Diabetes Kidney CVD All-Subjects Others Diabetes Kidney CVD All-Subjects Others

Average −5.18 −3.66 −2.92 −0.67 0.25 −0.10 −0.06 −0.05 0.00 0.02

Positive 7.49 9.20 7.89 8.84 8.98 0.17 0.20 0.18 0.21 0.22

Negative −9.51 −10.47 −8.33 −8.07 −7.67 −0.19 −0.20 −0.17 −0.17 −0.16

% Pos 25.47 34.62 33.33 43.75 47.58 25.47 34.62 33.33 43.75 47.58

% Neg 74.53 65.38 66.67 56.25 52.42 74.53 65.38 66.67 56.25 52.42

Table 9.  Performance of estimated biological age of subjects having different chronic diseases.

1D CNN7 DNN ConvLSTM* CNN + LSTM

(λ = 0.9) (λ = 0.9) (λ = 1) (λ = 0) (λ = 0.9) (λ = 0.9)

Test

MAE 15.49 15.92 12.6 13.21 13.4 13.58

RMSE 18.81 18.38 15.74 16.81 16.74 16.45

CORR 0.45 0.45 0.62 0.55 0.55 0.54

R-sq 0.93 0.89 0.85 0.85 0.80 0.71

Train

MAE 12.88 17.08 6.51 10.17 5.63 12.56

RMSE 18.81 18.38 8.58 12.95 7.46 16.45

CORR 0.52 0.79 0.92 0.79 0.94 0.64

R-sq 0.88 0.74 0.75 0.70 0.82 0.59

epoch 500 100 10 10 10 10

Table 10.  Results of the Deep learning Age Prediction methods.

https://doi.org/10.1038/s41598-019-46850-0


1 4Scientific Reports |         (2019) 9:11425  | https://doi.org/10.1038/s41598-019-46850-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

deep learning methods. We have also shown that ConvLSTM* on the transformed data (using λ = 0, 0.9) have 
better BA acceleration and better performance in modeling all-cause mortality using both the Cox PH model 
and KM curves than 1D CNN, DNN, and CNN + LSTM. The normalized biological age acceleration (η) using 
the estimated BA from ConvLSTM* on the transformed activity values (λ = 0, 0.9, 1) resulted in a better overall 
performance in capturing health risks, for instance, in modeling all-cause mortality, when compared with the 
other deep learning methods, namely, 1D CNN7, CNN + LSTM, and DNN. These results seem to suggest that 
improved CA estimation may not always lead to a deterioration in BA estimation. The issue might be in how the 
estimated BA is used for further analysis, rather than the accuracy of the initial chronological age estimation. This 
clearly warrants further investigation, for instance, studying approaches that can combine the results from the 
fitting-based models that minimize the mean square error (MSE) with recent approaches (e.g. Pyrkov et al.7, Liu 
et al.17) that have used proportional risk models for developing methods to estimate biological age, rather than 
just testing the performance of estimated biological age.

Conclusion
In this work, we studied biological age estimation using human locomotor activity. We applied a deep learning 
based framework to estimate biological age using Convolutional Long Short-Term Memory. We established that 
convolutional LSTM can be used to exploit temporal patterns in human locomotor physical activity to estimate 
biological age. The paper used different measures to compare performance in age estimation, including the tra-
ditional methods, (namely, MAE, RMSE, and correlation). To evaluate performance in biological age (BA) esti-
mation, we introduced two new approaches, namely, relation with known health indices (WHtR, and SBSI), and 
relation with disease status (CVD, diabetes, and kidney diseases), in addition to traditional mortality modeling 
using Cox PH, χ2-distance from the log-rank test, and KM curves. Considering all the different methods for 
quantifying the performance of the estimated BA, the ConvLSTM* has the overall best result.

We identify some limitations of this study. One potential problem is the lack of control for certain demo-
graphics, for instance, socio-economic status, ancestry, etc. The available dataset was for one week. Although this 
is a time series data and for each individual we have 10080 (7 × 24 × 60) minutes of information, more data may 
reveal other important information not apparent from one week data. The device (ActiGraph AM-7164 piezoelec-
tric accelerometer) that is used to collect the data was worn on hip by each individual. Sometimes the device was 
removed from the body (e.g. during shower). We believe, a water resistant smart watch or a wristband type device 
would be easier to use from a user perspective and hence the activity records would be more accurate.
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