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Abstract: Bamboo shoots, a promising renewable biomass, mainly consist of carbohydrates and
other nitrogen-related compounds, such as proteins, amino acids and nucleotides. In this work,
nitrogen self-doped activated carbons derived from bamboo shoots were prepared via a simultaneous
carbonization and activation process. The adsorption properties of the prepared samples were
evaluated by removing methylene blue from waste water. The factors that affect the adsorption
process were examined, including initial concentration, contact time and pH of methylene blue
solution. The resulting that BSNC-800-4 performed better in methylene blue removal from waste
water, due to its high specific surface area (2270.9 m2 g−1), proper pore size (2.19 nm) and relatively
high nitrogen content (1.06%). Its equilibrium data were well fitted to Langmuir isotherm model
with a maximum monolayer adsorption capacity of 458 mg g−1 and a removal efficiency of 91.7%
at methylene blue concentration of 500 mg L−1. The pseudo-second-order kinetic model could be
used to accurately estimate the carbon material’s (BSNC-800-4) adsorption process. The adsorption
mechanism between methylene blue solution and BSNC-800-4 was controlled by film diffusion.
This study provides an alternative way to develop nitrogen self-doped activated carbons to better
meet the needs of the adsorption applications.

Keywords: bamboo shoots; nitrogen self-doped; activated carbon; methylene blue; adsorption

1. Introduction

Water pollution and global climate change are major environmental concerns due to the production
and use of fossil fuels. It is well known that waste water often contains various types of synthetic
dyes [1], each dye is harmful to the health of humans or animals. For instance, methylene blue (MB),
as one of the important synthetic dyes, is widely used in chemistry, biology, medical science and
dyeing industries [2]. The large doses of MB (>7.0 mg kg−1) can cause high blood pressure, mental
disorder, nausea, abdominal pain [3]. Therefore, it is necessary to remove the hazardous dyes before
waste water is discharged or used. There are many ways to remove MB from waste water, such as
adsorption [4], coagulation and flocculation [5], oxidation [6], photocatalytic [7], membrane [8] and
ion exchange [9]. Among those, adsorption using activated carbon is considered as one of the most
effective and simple methods. Meanwhile, the efforts to remove pollutants from waste water require
the use of functional materials, while porous carbon materials exhibit a superior performance and
have been widely used in water purification, due to their moderate pore size, pore volume, surface
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area and functional groups. To reduce the cost of raw materials and the preparation of carbon material,
it is important to find a cheaper precursor and a more facile synthetic approach. Many studies have
reported on the development of activated carbons from biomass, such as bamboo [10,11], tea waste [12],
reed [13], seaweed [14] and banana peel [15]. The advantage of using biomass to prepare porous
carbon materials is that the raw materials are abundant, cheap, renewable, and exhibit promising
application as adsorbents in filtrating and purifying waste water [16].

Recently, nitrogen-doped carbon materials derived from biomass have been attracted more
attention in the application of adsorption due to their superior properties. The existence of nitrogen
can increase the number of basic sites, improve the capacitance performance on the surface of
the carbons and increase the wettability between the carbon surface and aqueous solution [17–19].
Tan et al. [20] prepared carbon nitrides by refluxing under nitrogen and used them as adsorbents in
the adsorption of MB molecules and heavy metal ions Pb2+ (720 mg g−1), Cd2+ (480 mg g−1) and As
(V) (220 mg g−1). They found that the obtained carbon nitrides had a high performance for water
treatment. Zhou et al. [21] reported that hierarchical nitrogen-doped porous carbons derived from
biomass had a promising adsorption capacity for MB (1551 mg g−1). All the mentioned above studies
estimated that nitrogen-doped carbon materials have a large potential in the field of adsorption.

For adsorption, surface area, pore volume, nitrogen content and other factors have significant effect
on the connection between the adsorbent and the adsorbate. Thus, it is necessary to design and prepare
large surface area, controllable pore structures, high nitrogen content, low cost and environmentally
friendly nitrogen-doped porous carbon materials derived from biomass. As one of the renewable
biomass resources, bamboo shoots have abundant carbohydrate, amino acids and nucleotides except
for cellulose, hemicelluloses and lignin [22], which can be used as nitrogen and carbon resources for the
preparation of nitrogen-doped carbon materials. In addition, it is less expensive for bamboo shoot as
carbon precursor than other materials [23–26]. To the best of our knowledge, there is a lack of sufficient
information on porous nitrogen self-doped activated carbon materials from bamboo shoots to remove
MB of waste water.

Thus, this study aimed to synthesize the hierarchically porous nitrogen self-doped activated carbon
materials from bamboo shoots (BSNCs) via simultaneous carbonization and activation. We investigated
the adsorption properties of porous nitrogen-doped activated carbons from bamboo shoots for the
removal of MB, specifically the factors affecting the adsorption of MB, including contact time,
initial dye concentration and solution pH. Langmuir, Freundlich and Temkin of isotherm models,
the pseudo-first-order and pseudo-second-order of kinetic models were also used to understand the
adsorption mechanism of MB using the BSNCs.

2. Results and Discussion

2.1. Characterization of BSNCs

Figure 1 shows the morphology of BSNC-800-4 (a present SEM image as the BSNCs), with BS-800
as a reference. There were a number of pores for BSNC-800-4 (Figure 1b), and part of them were
collapsed, due to the interaction of the substances, such as K2CO3, H2O, CO2, in which KHCO3

was decomposed at elevated temperature. As a comparison, BS-800 (Figure 1a), which was directly
carbonized at 800 ◦C in nitrogen atmosphere, showed irregular surface with few pores.

To further study the porous structure of BSNCs, N2 sorption isotherms were carried out at 77 K.
As shown in Figure 2, the isotherm of BSNCs was type I according to IUPAC classification, suggesting
the existence of different pore sizes varied from micro- to macro-pore. The steep increase at low relative
pressure (P/P0 < 0.1) indicated the presence of micropores. At relative pressure of 0.1–0.9 revealed the
existence of mesopores, and the tails at a relative pressure of 1.0 indicated the existence of macropores.
This proved that BSNCs had hierarchical pore structures. Table 1 shows the porosity properties
and chemical composition of BSNCs. Compared to the specific surface area of BS-800 (12.2 m2 g−1),
BSNCs had large specific surface area and BSNC-800-4 had the largest one (2270.9 m2 g−1) among
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them. And the total pore volume of BSNC-800-4 was 1.25 m3 g−1. The average pore size of BSNC-800-4
was 2.19 nm, which was also higher than that of BSNC-600-4 and BSNC-700-4. High specific surface
area and pore size could be useful for adsorption of MB.Molecules 2019, 24, x FOR PEER REVIEW 3 of 14 
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Figure 1. SEM images of (a) BS-800 and (b) BSNC-800-4.
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Figure 2. (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution of BSNC-600-4,
BSNC-700-4 and BSNC-800-4.

Table 1. Porosity properties and chemical composition of BSNCs.

Samples SBET
(m2 g−1)

VT
(m3 g−1)

Vµ

(m3 g−1)
Dp

(nm)
N

(wt%)
H

(wt%)
C

(wt%)
O

(wt%)

BS-800 12.2 - - - 4.64 1.05 63.87 28.72
BSNC-700-1 1208.2 - - 1.97 2.71 0.91 67.27 28.83
BSNC-700-2 1215.1 0.59 0.52 1.94 2.63 0.87 84.12 12.19
BSNC-600-4 962.8 0.48 0.34 1.97 4.65 1.96 69.18 23.97
BSNC-700-4 1475.5 0.73 0.63 1.97 2.79 0.90 80.37 15.78
BSNC-800-4 2270.9 1.25 0.94 2.19 1.06 0.80 43.43 54.36

The elemental analysis showed that carbon, hydrogen, nitrogen and oxygen co-existed in the
obtained samples (Table 1). BS-800 had a nitrogen content of 4.64%, indicating that it obtained a high
nitrogen content without adding nitrogen source during synthesizing process. BSNC-800-4 still had
a nitrogen content of 1.06% even though the calcination temperature caused the degradation of the
nitrogen functional groups [27,28]. According to XPS spectra of N1s (Figure 3), there were four different
types of nitrogen on BS-800 and BSNC-800-4, including pyridinic N (398.5 eV), pyrrolic N (400.3 eV),
quaternary N (401.3 eV) and N-oxide (404.8 eV). Pyrrolic N and quaternary N were two main types of
N. After calcination, the amounts of pyrrolic N and N-oxide increased, while the amount of pyridinic
N and quaternary N decreased. This phenomenon was due to the rearrangement in C-N bond during
synthesizing process of BSNCs. Wang et al. [29] found that the N function groups on the surface of
the carbon materials played a vital role in the adsorption process except for surface area and pore
structures. Tan et al. [21] reported that the presentence of pyrrolic N and pyridinic N had an effect on
the adsorption of heavy metal ions Pb2+, Cd2+ and As (V). Based on the above analysis, the properties
of the samples we obtained, including porosity, chemical composition, functional groups would have
effects on the adsorption capacity and removal efficiency of MB.
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2.2. Adsorption Properties of BSNCs

2.2.1. Effect of Preparation Process of BSNCs on Its Adsorption Properties

To investigate effect of the preparation process of BSNCs on its adsorption properties, 50 mg
of BSNCs was added to the MB concentration of 500 mg L−1 at temperature of 298 K with contact
time of 360 min. The results are shown in Figure 4. BS-800 had the lowest adsorption capacity
and removal efficiency with the value of 113.2 mg g−1 and 22.6%. BSNC-800-4 had the highest
adsorption capacity and removal efficiency with the value of 458 mg g−1 and 91.7%. While the
mass ratio was 4, the adsorption capacity of BSNC-600-4, BSNC-700-4 and BSNC-800-4 gradually
increased from 202 to 458 mg L−1. Similarly, when the calcined temperature was 700 ◦C, the adsorption
capacity of BSNC-700-1, BSNC-700-2 and BSNC-700-4 also gradually increased from 290 to 350 mg L−1.
This indicated that the synthesizing process including calcination temperature and mass ratio of bamboo
shoot particles and KHCO3 improved the adsorption capacity and removal efficiency of BSNCs.
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Figure 4. The adsorption capacity and removal efficiency of BSNCs; left y-axis represents the adsorption
capacity, right y-axis represents the removal efficiency.
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2.2.2. Effect of pH

The adsorption capacity and removal efficiency of MB for BSNC-800-4 were examined with a
pH of 4 to 10. A dosage of 30 mg, initial MB concentration of 500 mg L−1, temperature of 298 K,
200 rpm and contact time of 360 min. The initial pH of MB solution was adjusted by 0.1 mol L−1

NaOH or HCl separately. Figure 5 showed the adsorption capacity and removal efficiency increased
when the pH value increased from 4 to 7. Then it had a slight decrease with the increase of pH
value. This confirmed that the pH value of dye solution affected the adsorption capacity and removal
efficiency of BSNC-800-4, and is similar to the results of previous studies [30,31]. It was also indicated
that the removal efficiency was lower under acid conditions. This might be due to the presence of
excess of H+ ions which competed adsorption sites with MB or due to the force between BSNC-800-4
and MB solution. When pH value was higher than 7, the surface of BSNC-800-4 may become negatively
charged, which favors the adsorption of MB cations due to the formation of an electric double layer
changes its polarity. The pH value should be adjusted to 7 while using BSNC-800-4 to remove MB
from waste water. It also exhibited that the adsorption capacity of BSNC-800-4 is not clearly affected
by the initial concentrations of MB.
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Figure 5. Effect of pH on the adsorption capacity and removal efficiency of BSNC-800-4; left y-axis
represents the adsorption capacity, right y-axis represents the removal efficiency.

2.2.3. Effect of Initial Concentration of MB and Contact Time

To investigate the effect of initial MB concentrations and contact time on adsorption property and
removal efficiency of BSNC-800-4, seven different initial MB concentrations (300–600 mg L−1) were
chosen and sampled at different intervals (10–360 min). As shown in Figure 6. The adsorption capacity
increased of MB concentrations and reached to the dynamic equilibrium, mainly attributable to its
high surface area, large pore volume, as well as the functional groups, such as the types of N and the
content of O on its surface. It is clear that the adsorption curves of MB using BSNC-800-4 presented
two steps, including a fast adsorption and the adsorption equilibrium period. The adsorption capacity
of BSNC-800-4 quickly increased up to an equilibrium state in 60 min. There was little difference of the
adsorption capacity between the MB concentration of 550 mg L−1 and 600 mg L−1. This indicated that
while the dosage of BSNC-800-4 was constant, there was not sufficient sorption sites on its surface to
attach the MB molecules at higher initial dye concentration. With an increase of MB concentrations
from 300 to 600 mg L−1, the adsorption capacity and the removal efficiency up to equilibrium varied
from 295.2 mg g−1 (98.4%) to 382.3 mg g−1 (63.7%) (Figure 7), due to the concentration of MB could
provide the necessary driving force to overcome the mass transfer resistance between aqueous and
BSNC-800-4. BSNC-800-4 had the superior adsorption capacity and removal efficiency at 550 mg L−1

of the MB concentration. A similar phenomenon was also found for adsorption of methylene dye on
tea waste [12] and banana peel [15].
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Figure 6. Adsorption capacity vs. contact time at different MB concentrations on BSNC-800-4.
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Figure 7. Adsorption capacity and removal efficiency vs. initial MB concentrations on BSNC-800-4;
left y-axis represents the adsorption capacity, right y-axis represents the removal efficiency.

2.3. Adsorption Isotherms

Langmuir, Freundlich and Temkin isotherms were used to described the adsorption equilibrium
of MB as the conventional adsorption isotherm models did [32]. Langmuir isotherm model [33] is
monolayer adsorption onto a surface with the binding sites, is given as:

Ce

qe
=

1
KLqm

+
Ce

qm
(1)

Freundlich isotherm model [34] is a multilayer adsorption on a heterogeneous surface and the
heat of adsorption is not uniform between the molecules. The Equation (2) of Freundlich isotherm
model is expressed as follows:

lnqe = lnKF +
1
n

lnCe, (2)

where Ce is the equilibrium concentrations of MB (mg L−1), qm is the maximum adsorption capacity (mg
g−1), KL is the Langmuir constant related to the rate of adsorption (L mg−1), which can be calculated
from the plot Ce/qe vs. Ce. KF is the Freundlich constant and 1/n is the heterogeneity factor, which can
be obtained from the plot lnqe vs. lnCe.

Temkin isotherm model [35] is denoted by Equations (3) and (4):

qe = BlnKT + BlnCe (3)
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B =
RT
b

(4)

where qe is the adsorption capacity at equilibrium (mg g−1), Ce is the equilibrium concentrations of MB
(mg L−1). R is the general gas constant (8.314 J mol−1 K−1), T is absolute temperature (K), KT is the
equilibrium binding constant, which can be calculated from the plot qe vs. lnCe (L mg−1).

Adsorption isotherms can be used to describe the interaction between the adsorbate and the
carbonaceous adsorbent. In this study, there had a comparison of liner among Langmuir, Freundlich
and Temkin isotherm models (Figure 8, Table 2). It was found that R2 of Langmuir isotherm was
higher than that of other models, indicating that the calculated adsorption capacity from Langmuir
isotherm presented the experimental data better. The results also indicated that the adsorption of
MB molecules on BSNC-800-4 surfaces were mainly monolayer adsorption. And the maximum of
monolayer adsorption capacity of MB was 384.6 mg g−1 at 298 K. The adsorption capacity of MB for
BSNC-800-4 was better than that of other biomass, such as magnetic porous carbon fibers (143.0 mg
g−1) [36], swede rape straw (246.4 mg g−1) [37], Catalpa bignonioides (271.0 mg g−1) [38], Cortaderia
selloana flower spikes (66.2 mg g−1) [39]. The high MB adsorption capacity could be related to its
hierarchical porous structures and the presence of functional groups (e.g., nitrogen groups and basic
groups) on the surface of BSNC-800-4. Therefore, the functional groups and the porous properties on
the surface of the carbon materials should be considered when used as the adsorbents for adsorption.
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Figure 8. Linear regression of MB on BSNC-800-4 at 298 K with Langmuir isotherm model, Freundlich
isotherm model and Temkin isotherm model.

Table 2. Isotherm parameters for the adsorption of MB onto BSNC-800-4 at 298 K.

Isotherms Parameters

Langmuir Q0 (mg g−1) KL (L mg−1) R2

384.6 0.148 0.9962
Freundlich KF ((mg g−1) (L mg−1)1/n) n R2

261.2 1.50 0.9043
Temkin KT B R2

11.26 22.4 0.8808

In addition, the Langmuir isotherm parameters can be expressed by a dimensionless constant
called the separation factor (RL), which can indicate the relationship between the adsorbate and the
adsorbent, expressed by Equation (5)

RL =
1

1 + KLC0
(5)

RL indicates that the adsorption is unfavorable (RL > 1), favorable (0 < RL < 1), linear (RL = 1) or
irreversible (RL = 0) [40]. The obtained RL value between 1.11 × 10−2 and 2.20 × 10−2 varied from the
concentration of 300 mg L−1 to 600 mg L−1, suggesting a favorable process of the adsorption of MB
onto BSNC-800-4. Interestingly, RL decreased with increase of initial concentration of MB, indicating
that the adsorption process went more smoothly at high concentration.
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2.4. Adsorption Kinetics

Two kinetic models including the pseudo-first-order [41] and the pseudo-second-order [42] were
chosen to analyze adsorption mechanism.

A pseudo-first-order model is expressed as:

log(qe − qt) = log qe −
k1

2.303
t (6)

A pseudo-second-order model is expressed as:

t
qt

=
1

k2q2
e
+

1
qe

t (7)

where k1 represents the pseudo-first-order rate constant and is obtained from the plot of log (qe − qt) vs.
t (min−1), k2 is pseudo-second-order rate constant and is obtained from plot of t/qt vs. t (g mg−1 min−1).

Adsorption kinetic models can give insight on the rate control or adjustment during the adsorption
process, which has an influence on the mass transfer and the adsorption time. The two pseudo
kinetic models (Figure 9) were investigated and the related parameters were shown in Table 3. It was
found that correlation coefficients from the pseudo-second-order model were higher than that of the
pseudo-first-order model for all of the MB concentrations. This indicated that the calculated adsorption
capacity at equilibrium from pseudo-second-order model would performed better, which is consistent
with other studies [43,44]. It was also confirmed that the chemisorption is the main rate controlled
step during the adsorption process of BSNC-800-4 and the valence forces through electrons sharing
involved between the hydrophilic edges sites of BSNC-800-4 and the MB solution.
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Figure 9. Plots of (a) pseudo-first-order, and (b) pseudo-second-order for the adsorption of MB onto
BSNC-800-4 at different initial MB concentrations at 298 K.

Table 3. Kinetic model parameters for the adsorption of MB onto BSNC-800-4 at different initial MB
concentrations at 298 K.

C0
(mg g−1)

qe,exp
(mg g−1)

Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

k1
(min−1)

qe,cal
(mg g−1)

R2 k2
(g mg−1 min−1)

qe
(mg g−1)

R2

300 297.0 0.0537 37.7 0.98 0.0016 303.0 0.99
350 323.8 0.1935 60.1 0.76 0.0007 322.6 0.99
400 331.2 0.0101 57.2 0.59 0.0004 333.3 0.99
450 349.2 0.0168 48.5 0.87 0.0006 357.1 0.99
500 358.3 0.0481 51.6 0.71 0.0012 357.1 0.99
550 384.1 0.0288 15.8 0.84 0.0029 384.6 0.99
600 382.2 0.0378 27.8 0.84 0.0022 384.6 0.99



Molecules 2019, 24, 3012 9 of 13

2.5. Diffusion Model

The intra-particle diffusion model [45] was chosen to analyze the kinetic data and is expressed as
follows:

qt = k3t
1
2 + C, (8)

where k3 (mg g−1 min−0.5) is the intra-particle diffusion rate constant. C is the intercept. The kinetic
parameters were calculated according to the slope and intercept of each liner plot.

In addition, to understand diffusion types during the adsorption process, the kinetic data were
also analyzed by Boyd model [46]:

Bt = −0.4997− ln
(
1−

qt

qe

)
(9)

where Bt is the mathematical function of qt/qe.
The plots of qt vs. t0.5 for the MB concentrations indicate three stages (Figure 10a). The first

phase with contact time of 10–20 min was the instantaneous adsorption or external surface adsorption,
indicating the mass transfer of adsorbate molecules from the bulk solution (MB) to the surface of
BSNC-800-4, due to the functional groups and the hierarchical porous structures on the surface of
BSNC-800-4. The second stage with contact time of 20–120 min was the gradual adsorption process,
indicating that the intra-particle diffusion model was the rate controlling step. The last region was the
equilibrium stage, due to the number of adsorption sites and the low concentration of MB solution. It is
obvious that the extended curves of Figure 10a did not pass through the origin, and this indicated that
intra-particle diffusion was not the only rate-limiting mechanism in the adsorption process. According
to the theory of Boyd’s model, if the plot of Bt vs. t passes through the origin, the rate controlling step
of the adsorption process belongs to pore diffusion; otherwise, it belongs to film diffusion. Our results
(Figure 10b) showed the plots did not pass through the origin, indicating that the film diffusion was
the rate controlling step between the adsorption of MB onto BSNC-800-4.
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Figure 10. Plots of (a) intra-particle diffusion model and (b) Boyd model for the adsorption of MB on
BSNC-800-4 at 298 K.

3. Materials and Methods

3.1. Materials

The raw material (bamboo shoot, Phyllostachys pubescens) used in this study [47], was collected
from Lishui, Zhejiang Province, China. The scale-like outer skin of bamboo shoots were removed,
cut into slices and dried at 70 ◦C for 12.0 h in the oven. Then it was milled and screened to 250–425 um
particles. The particles of bamboo shoots were dried at 70 ◦C in the oven until the mass was stabilized.
KHCO3 was purchased from Sinopharm Chemicals Co., Ltd (Shanghai, China). MB was purchased
from Tianjin Kemiou Chemical Reagent Co., Ltd (Tianjin, China). The chemical formula of MB is
C16H18ClN3S (MW = 319.87 g mol−1).
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3.2. Preparation and Characterization of BSNCs

Two g particles of bamboo shoot were put into KHCO3 solution with the mass ratio of bamboo
shoot particles and KHCO3 of 1:1, 1:2 and 1:4. The mixtures were firstly ultrasound-treated and were
freeze-dried until the mass stabilized. They were calcined in a tubular furnace at 600 ◦C, 700 ◦C and
800 ◦C for 1.0 h under nitrogen atmosphere with the heating rate of 10 ◦C min−1. After cooling down to
ambient temperature, then rinsed using deionized water until the pH of the washing solution reached
to 7. Then the samples were dried in the oven at temperature of 70 ◦C until the mass was stabilized.
They were labeled as BSNC-T-R, where “T” and “R” represents the calcination temperature and the
mass ratio of KHCO3 to bamboo shoot particles. The sample without adding chemical activating agent
and calcined at 800 ◦C under N2 atmosphere was labeled as BS-800.

The C, H and N content of the BSNCs were determined by an elemental analyzer (Vario EL
IIICHNS; Elementar, Langenselbold, Germany). The morphology of the carbons was examined using
the field emission scanning electron microscope (SEM) (FEI Quanta 200 HV; Waltham, MA, USA).
The surface chemical components of the BSNCs were tested on an X-ray Photoelectron Spectroscopy
(XPS) (Thermo Scientific Escalab 250Xi; Thermo Fisher Scientific, Waltham, MA, USA) using a
Vacuum Generators XPS system operating with Al (Kα) radiation. N2 adsorption-desorption was
determined on a sorption analyzer (Quantachrome Autosorb 2020; Quantachrome, Boynton, FL, USA).
The samples were degassed at temperature of 180 ◦C for 6.0 h and analyzed at temperature of 77 K.
The specific surface area, pore volume and pore size distribution of the samples were calculated
by the Brunauer–Emmett–Teller (BET) method, t-plot method and non-local density functional
theory (NLDFT).

3.3. Adsorption Equilibrium

The adsorption capacities of BSNCs for MB were investigated in batch mode. The stock solution
of MB was 1000 mg L−1, which was prepared by dissolving 1 g of MB in 1 L deionized water. Different
initial concentrations of MB were obtained through diluting the stock solution. The volume of MB
solution was 50 mL and the given amount of the BSNCs was added to the MB solutions for each
experiment. The conical flasks were fixed on a shaker with the speed of 200 rpm at 298 K. The remaining
concentration of MB was determined at different time intervals of 10 min, 20 min, 30 min, 60 min,
120 min, 240 min and 360 min by UV-vis spectrometer (PerkinElmer, Waltham, MA, USA) at 665 nm.
Three replicates of each experiment were performed.

The adsorbed amount of MB per unit mass of the adsorbent (qe, mg g−1) and the removal efficiency
(R) of MB at equilibrium were calculated based on Equations (10) and (11).

qe =
(C0 −Ce)V

m
(10)

Removal(%) =
C0 −Ce

C0
× 100 (11)

where C0 and Ce are the initial and equilibrium concentrations of MB (mg L−1), respectively. m is the
mass of the adsorbent used (g), V is the volume of MB solution (L).

3.4. Adsorption Kinetic

The adsorption kinetics were derived from the data at different time intervals and the concentrations
of MB were calculated. The amount adsorption at time t, qt (mg g−1) was calculated by Equation (12):

qt =
(C0 −Ct)V

m
(12)

where C0 and Ct are the concentration of MB at initial and time t (mg L−1), respectively. m is the mass
of the adsorbent used (g), V is the volume of MB solution (L).
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4. Conclusions

This study has clearly revealed that bamboo shoot—a widespread and easily available raw
material—was found to be a superb precursor to prepare porous nitrogen self-doped activated carbons.
A carbon for adsorption of MB from bamboo shoot (BSNC-800-4) can be optimally achieved at
the temperature of 800 ◦C and the mass ratio of bamboo shoot particles to KHCO3 of 1:4. This
carbon material (BSNC-800-4) performs excellent in adsorption capacity and removal efficiency of
MB. The adsorption process onto MB corresponds to monolayer adsorption and is controlled by film
diffusion. The pseudo-second-order model could accurately estimate the adsorption capacity of the
carbon material at an equilibrium state.
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