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A new transgenic reporter line 
reveals Wnt-dependent Snai2 re-
expression and cranial neural crest 
differentiation in Xenopus
Jiejing Li1,5, Mark Perfetto1,2, Christopher Materna2, Rebecca Li3, Hong Thi Tran4, 
Kris Vleminckx   4, Melinda K. Duncan2 & Shuo Wei2

During vertebrate embryogenesis, the cranial neural crest (CNC) forms at the neural plate border and 
subsequently migrates and differentiates into many types of cells. The transcription factor Snai2, which 
is induced by canonical Wnt signaling to be expressed in the early CNC, is pivotal for CNC induction 
and migration in Xenopus. However, snai2 expression is silenced during CNC migration, and its roles at 
later developmental stages remain unclear. We generated a transgenic X. tropicalis line that expresses 
enhanced green fluorescent protein (eGFP) driven by the snai2 promoter/enhancer, and observed 
eGFP expression not only in the pre-migratory and migrating CNC, but also the differentiating CNC. 
This transgenic line can be used directly to detect deficiencies in CNC development at various stages, 
including subtle perturbation of CNC differentiation. In situ hybridization and immunohistochemistry 
confirm that Snai2 is re-expressed in the differentiating CNC. Using a separate transgenic Wnt reporter 
line, we show that canonical Wnt signaling is also active in the differentiating CNC. Blocking Wnt 
signaling shortly after CNC migration causes reduced snai2 expression and impaired differentiation of 
CNC-derived head cartilage structures. These results suggest that Wnt signaling is required for snai2 re-
expression and CNC differentiation.

The cranial neural crest (CNC) cells are a transient group of multipotent stem cells that exists during early ver-
tebrate embryogenesis. CNC development can be divided into three major stages: the induction, migration and 
post-migratory differentiation of the CNC. During gastrulation, the CNC is induced at the posterior neural plate 
border (NPB) between the neuroectoderm and the epidermis. The CNC cells continue to proliferate and undergo 
epithelial-mesenchymal transition (EMT), and subsequently emigrate from the closing neural tube in several 
streams that target distinct areas. Once the migrating CNC cells arrive at their destinations, they begin to dif-
ferentiate into multiple types of cells that contribute to various tissues. Derivatives of CNC include nearly all the 
craniofacial structures, such as skeleton, connective tissues, muscles and the peripheral nervous system1–3.

The abilities to differentiate into multiple cell types and contribute to many tissues make CNC an intriguing 
subject of research in developmental biology. Recent studies suggest that several new types of cells derive from 
the CNC4,5, but the identification of all CNC derivatives remains a daunting task and requires new lineage-tracing 
tools. Moreover, CNC development is a dynamic and complex process that is tightly controlled spatially and 
temporally. Perturbation of CNC cells during any developmental stages may result in defects known as neuroc-
ristopathies, which are among the most common birth defects in humans6. Some of these defects are subtle, and 
are therefore difficult to detect with the techniques currently available. Hence the development of model systems 
that can be used for tracing CNC development will have a tremendous impact on the studies of CNC biology and 
the etiology of neurocristophathies. To this end, a number of transgenic mouse lines have been generated to facil-
itate tracing of the CNC lineage7. However, due to technical difficulties and possibly higher levels of functional 
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redundancy in mice, non-mammalian vertebrates are often the preferred models for studying CNC develop-
ment8. Among the non-mammalian models, zebrafish and Xenopus are particularly suitable for live imaging of 
tissue morphogenesis, owing to their external embryonic development, transparent epithelium and large brood 
size. Transgenic zebrafish lines expressing eGFP or Cre recombinase driven by the sox10 promoter have been 
widely used as lineage tracing tools to label neural crest derivatives9,10. More recently, a transgenic snai1b:GFP 
line was developed to visualize the EMT of CNC cells and screen for EMT inhibitors11. Historically, the detection 
of CNC in Xenopus was almost solely dependent on in situ hybridization for CNC markers such as snai2, sox9 
and twist, whereas Alcian blue staining was commonly used for visualization of the head cartilage structures 
that derive from the CNC. These procedures are time-consuming and labor-intensive, and require fixation that 
prevents further manipulations of the embryos. While this manuscript was being prepared, two separate groups 
published the generation of pax3:GFP and sox10:GFP, the first two X. laevis transgenic lines that can be used for 
live imaging of CNC induction and migration, respectively12,13. However, currently no similar tool is available for 
X. tropicalis, a diploid species that is highly suitable for genetic studies, or for imaging CNC differentiation in any 
frog species.

Snai2 (a.k.a. Slug) is a zinc-finger transcription factor that is expressed in early CNC precursors and is required 
for the induction/specification of CNC in Xenopus14,15. A major signaling pathway that activates snai2 expression 
during CNC induction is the canonical Wnt (hereinafter referred to as “Wnt”) pathway, as forced activation of 
Wnt signaling causes ectopic expression of snai2 and other CNC markers, and blocking Wnt signaling inhibits 
snai2 expression and CNC induction16. Importantly, the snai2 enhancer contains an evolutionarily conserved 
LEF/TCF-binding site and can respond to Wnt signaling, suggesting that snai2 is a direct Wnt target gene17. 
After CNC induction, snai2 continues to be expressed in the pre-migratory and early migrating CNC, and plays 
a critical role in EMT and migration of the CNC15,18. However, recent quantitative RT-PCR and RNA-seq data 
show that snai2 expression drastically decreases in Xenopus embryos after the CNC cells begin to migrate19–21. 
Therefore, studies published to date have been focused on the roles of Snai2 in CNC induction and migration, and 
little is known about the expression or function of this important transcription factor at later stages of embryonic 
development.

Because of its specific expression and pivotal function during both CNC induction and migration, snai2 is 
one of the most commonly used CNC markers in frogs and other vertebrates such as chicks. The cis-regulatory 
elements of X. tropicalis snai2 gene have been well characterized, and a ~3.9 kb region of the promoter/enhancer 
sequence has been shown to contain the LEF/TCF-binding site and be able to drive CNC-specific GFP expres-
sion when transiently expressed17. Using the I-SceI meganuclease-mediated transgenic method22, we gen-
erated a transgenic line that expresses eGFP driven by this ~3.9 kb snai2 promoter/enhancer. Expression of 
eGFP in the snai2:eGFP transgenic embryos not only faithfully reflects the expression of endogenous snai2 in 
the pre-migratory and early migrating CNC, but also unveils a previously unknown expression of snai2 in the 
post-migratory CNC. In the snai2:eGFP transgenic tadpoles, eGFP labels multiple differentiating CNC deriv-
atives, and subtle perturbation of CNC differentiation, such as those caused by partial knockdown of the dis-
integrin metalloproteinase ADAM13, can be readily detected using the snai2:eGFP transgenic embryos. We 
further show that Wnt signaling, which is regulated by ADAM13, is similarly activated in the differentiating 
CNC. Finally, blocking Wnt signaling shortly after the completion of CNC migration leads to reduction in snai2 
expression and under-differentiation of CNC-derived head cartilage structures, suggesting that Wnt is required 
for post-migratory CNC differentiation, probably by regulating snai2 expression.

Results
Generation of the snai2:eGFP transgenic X. tropicalis line.  We cloned a ~3.9 kb X. tropicalis genomic 
DNA upstream of the snai2 transcription start site, including the promoter and the 5′-enhancer, as described by 
Vallin et al.17. This snai2 promoter/enhancer sequence was inserted into a transgenic vector (Fig. S1A), and stable 
transgenic founders were generated as described by Ogino et al.22. At stage ~22, some of these founder embryos 
showed distinct fluorescence in the migrating CNC with minimal ectopic expression (Fig. S1B). This is consistent 
with snai2 expression in the migrating CNC, and suggests that the reporter construct had been integrated into the 
genome in these embryos22,23. When a potential transgenic founder was crossed with wild-type frogs, it produced 
heterozygous progeny (F1) that showed distinct fluorescence patterns (see below), indicating that the transgene 
insertion was inherited through germline transmission. We further inbred the F1 transgenic frogs to produce 
F2 progeny. About 71% (161/226) of all F2 embryos were eGFP-positive, and ~25% (41/161) of eGFP-positive 
embryos displayed stronger fluorescence than the others. The embryos with higher eGFP expression were singled 
out and raised to sexual maturity, and further crossing with wild-type frogs yielded 100% eGFP-positive embryos, 
suggesting that these frogs with higher eGFP expression were homozygotes. These results point to a single inte-
gration of the transgene, which was confirmed by whole-genome sequencing (see below). All heterozygous and 
homozygous snai2:eGFP transgenic frogs were healthy and fertile, and displayed normal craniofacial morphology 
(data not shown). In situ hybridization for snai2 and sox9 in the pre-migratory CNC (Fig. S2A,B,D), as well as 
snai2 and twist in the migrating CNC (Fig. S2C,E,F), also showed normal patterns, indicating that the transgene 
insertion did not affect CNC development. To better understand the potential impact of the transgene insertion 
at the molecular level, we carried out whole-genome shotgun sequencing on heterozygous snai2:eGFP transgenic 
embryos, and mapped the transgene insertion to a single non-coding region on Chromosome 1 (Wang and Wei, 
manuscript in preparation).

eGFP is expressed in the CNC lineage including differentiating CNC in snai2:eGFP transgenic 
embryos.  The snai2:eGFP transgenic embryos displayed highly specific fluorescence patterns. Green fluo-
rescence was observed in the pre-migratory CNC cells as early as stage ~15 (Fig. 1A), and in the migrating CNC 
streams at stage 19–22 (Fig. 1B,C). Although recent reports show that snai2 expression is downregulated during 
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CNC migration in Xenopus embryos19–21, fluorescence signals were clearly detectable in the post-migratory CNC 
as well as the developing lens and brain at tailbud stages in the snai2:eGFP transgenic embryos (Fig. 1D,D’). These 
patterns continued into swimming tadpole stages, when eGFP labeled multiple structures that are known to have 
CNC contributions (Fig. 1E–H’). In particular, the morphological changes were highlighted by green fluorescence 
in the snai2:eGFP embryos as cells in the pharyngeal arches developed from condensing mesenchyme (Fig. 1D) 
to partially differentiated cartilage, including Meckel’s, ceratohyal, and branchial cartilage (Fig. 1E’,F’,G’), and 

Figure 1.  The snai2:eGFP transgenic embryos show eGFP expression in the CNC lineage at various stages. 
Heterozygous snai2:eGFP embryos were imaged at the indicated stages. (A–C) Dorsal view of neurula-stage 
embryos showing eGFP expression in pre-migratory (A), early migrating (B) and extensively migrating (C) 
CNC, with anterior at the top. Green fluorescence and bright-field images are merged in (B) to show the 
relative positions of migrating CNC streams in the whole embryo. (D,D’) Side (D) and dorsal (D’) views (with 
anterior to the left) of the head of a stage ~35 tadpole, with eGFP expression in the developing brain (br), lens 
(ln), and CNC cells forming condensing mesenchyme in the pharyngeal arches (pa). (E-E”) Dorsal (E), ventral 
(E’) and side (E”) views (with anterior to the left) of a stage ~42 tadpole. eGFP expression is detectable in the 
developing olfactory epithelium (oe), trigeminal nerves (nV), and CNC cells in the pharyngeal arches that begin 
to differentiate into branchial cartilage (bc) and ceratohyal cartilage (cc). (F-F”) Dorsal (F), ventral (F’) and side 
(F”) views (with anterior to the left) of a stage ~46 tadpole. eGFP is seen in the more differentiated trigeminal 
nerves and head cartilage structures, including Meckel’s cartilage (mc). Inset in (F”) is a higher-magnification 
image showing eGFP expression in tail somites. (G,G’) Dorsal (G) and ventral (G’) views (with anterior at the 
top) of a stage ~48 tadpole, with eGFP visible in both the olfactory (nI) and oculomotor (nIII) nerves. White 
arrowhead in (G’) indicates strong autofluorescence in the liver, which was also seen in wild-type tadpoles. 
(H,H’) Dorsal (H) and ventral (H’) views (with anterior at the top) of a stage ~53 tadpole. eGFP labels the 
thymus (tm) and highly differentiated head cartilage structures. Red scale bar in H = 500 μm.
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eventually to highly complex cartilaginous structures (Fig. 1H’). Starting from stage ~42, fluorescence was also 
detected in several cranial nerves, including the trigeminal and oculomotor nerves, as well as the olfactory 
nerves that are known to have a CNC contribution in other vertebrate species (Fig. 1E’,F’,G,G’,H’)4. Recent lin-
eage tracing studies suggest that CNC may also contribute to some of the neurons in the olfactory epithelium 
in zebrafish and mice24,25. At stage ~42, fluorescence became detectable in the emerging olfactory epithelium of 
the snai2:eGFP tadpoles (Fig. 1E,E”), and the signal increased throughout early tadpole stages and persisted to 
later stages (Fig. 1F,G,H). We also observed strong fluorescence in the developing thymus, which is known to 
be populated by CNC cells26, at stage ~53 (Fig. 1H). Although snai2 was not shown previously to be expressed 
in the post-migratory CNC, the eGFP signals likely reflect the true expression of snai2 instead of simply being 
the remnant of early expression prior to silencing during CNC migration, as these eGFP signals remained in the 
differentiating CNC lineage for more than 2 weeks, whereas the half-life of eGFP is ~26 hr27. Additionally, fluo-
rescence was found in the lens and somites of the transgenic tadpoles (Fig. 1E”,F”,G’,H), consistent with published 
results showing that snai2 is expressed in these tissues in various vertebrate species, ranging from fish to mice28,29.

eGFP patterns in the snai2:eGFP transgenic embryos faithfully reflect the endogenous expres-
sion of Snai2 mRNA and protein.  Because the stability of eGFP prevents the observation of subtle dynam-
ics of snai2 expression in the migrating and post-migratory CNC, we carried out in situ hybridization to detect 
endogenous snai2 transcripts at various developmental stages. At stage ~12, snai2 mRNA was mainly expressed 
in the midline; there was also weak expression in the future CNC territory (Fig. S3A). About half an hour later 
(stage ~12.5), when the embryos approached the end of gastrulation, strong snai2 expression was detected in 
the newly formed CNC (Fig. S3B). At early neurula stages, snai2 continued to be expressed in the pre-migratory 
CNC, but the midline expression diminished (Fig. S3C). By stage ~19, CNC cells had emigrated from the closing 
neural tube, as shown by the in situ hybridization for snai2 (Fig. S3D–F). Therefore, the patterns of eGFP in the 
snai2:eGFP transgenic embryos faithfully reflect the expression of snai2 in both pre-migratory and early migrat-
ing CNC. The expression of snai2 persisted in the early migrating CNC cells, which formed distinct streams as 
they migrated out of the completely closed neural tube (Fig. 2A), but the intensity started to decrease thereafter 
and was minimal at stage ~31, several stages after CNC cells ceased migration (Fig. 2B–E). This is in line with pre-
vious reports that snai2 expression is downregulated in late migrating CNC cells19–21. However, snai2 expression 
started to increase again at stage ~32 and was clearly detectable in the condensing mesenchyme within the phar-
yngeal arches as well as the developing lens (Fig. 2F). At swimming tadpole stages, snai2 transcripts were found 
in the head and brain as well as the somites (Fig. 2G,H). These expression patterns are similar to those of eGFP in 
situ hybridization detected in snai2:eGFP tadpoles (Fig. S4A,B). Unfortunately, visualization of detailed cartilage 
structures was difficult, probably because the in situ probes and/or alkaline phosphatase substrate were trapped in 
the cavities that had formed in the head at these stages. We therefore dissected the head cartilage, and were able 
to detect snai2 staining in the fine cartilaginous structures (insets in Fig. 2G,H), which was highly similar to the 

Figure 2.  The transcripts of snai2 are downregulated during CNC migration but upregulated again as CNC 
differentiates. In situ hybridization was performed for snai2 with wild-type X. tropicalis embryos at the indicated 
stages. The expression of snai2 in the CNC decreases from stage ~22 to ~31 (A–E), but elevates again in the 
CNC cells that form condensing mesenchyme in the pharyngeal arches (pa; F) and persists in the differentiating 
head cartilage structures (G,H). All embryos are shown with anterior to the left. (A–G) side view; (H) dorsal 
view. Insets in (G,H) are ventral view of head cartilage dissected from tadpoles after in situ hybridization, with 
anterior at the top. ln, lens; so, somites.
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eGFP patterns in the snai2:eGFP transgenic tadpoles (Fig. 1E’,F’). Thus, snai2 is re-expressed in the differentiating 
CNC cells after migration.

We further performed double-immunohistochemistry to determine if the spatiotemporal patterns of eGFP in 
the snai2:eGFP embryos reflect those of the endogenous Snai2 protein. At stage ~17, eGFP and Snai2 displayed 
significant co-localization in the closing neural tube, where some CNC cells just started to emigrate (Fig. 3A-A”). 
At stage ~46, eGFP clearly co-localized with Snai2 in the differentiating head cartilage structures, trigeminal 

Figure 3.  Localization of eGFP protein in snai2:eGFP embryos. (A–C”) Co-localization of eGFP with 
endogenous Snai2 protein in snai2:eGFP embryos. Immunohistochemistry was carried out for eGFP (green) 
and Snai2 (red) simultaneously at the indicated stages in snai2:eGFP embryos and tadpoles. (A-A”) eGFP 
and Snai2 are co-localized in the CNC at the onset of migration. A control embryo processed with secondary 
antibodies only but not either primary antibody did not display any signal (insets in A and A’). Embryos are 
shown in dorsal view with anterior at the top. (B–C”) Dorsal (B-B”) and ventral (C-C”) views of the head of 
a stage ~46 tadpole showing co-localization of eGFP and Snai2 in the branchial cartilage (bc), brain (br), lens 
(ln), trigeminal nerve (nV), and olfactory epithelium (oe), with anterior at the top. (D–E”) Transverse sections 
of anterior head cartilage. Immunohistochemistry for eGFP (green) and DAPI labeling for nuclei (blue) were 
carried out for stage ~46 snai2:eGFP (D-D”) and wild-type (E-E”) tadpoles, and images were taken with a Zeiss 
Axiozoom.V16 epifluorescence microscope. Sections are shown with anterior at the bottom (tilted toward the 
right in D-D”). Expression of eGFP is detectable in Meckel’s (mk) and infrarostral (ir) cartilage in snai2:eGFP 
but not wild-type tadpoles. Scale bar = 100 μm.
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nerves, olfactory epithelium, lens and brain (Fig. 3B–C”). It should be noted, though, that there were regions 
where eGFP but not Snai2 was detected, which may reflect the difference in stability between these two proteins. 
Images of head sections further reveal eGFP expression in various cartilage structures, including Mechel’s and 
infrarostral cartilage, in snai2:eGFP but not wild-type tadpoles at stage ~46 (Fig. 3D–E”). Together with the in situ 
hybridization data, these results indicate that Snai2 mRNA and protein are expressed in the post-migratory CNC, 
and that the snai2:eGFP transgenic line is suitable for tracing the CNC lineage at various developmental stages.

CNC defects at various stages are readily detectable in live snai2:eGFP transgenic 
embryos.  We next tested if the snai2:eGFP line can be used for real-time detection of CNC defects. To do this 
we carried out antisense morpholino (MO)-mediated knockdown of the disintegrin metalloproteinase ADAM13, 
a protease that is known to be required for normal CNC induction and migration30–32. An ADAM13 MO (MO 
13-3), which has been well characterized in previous studies30,32,33, was injected into one blastomere of 8-cell 
stage snai2:eGFP embryos to target the dorsal-animal region; a red-fluorescence dye was co-injected as line-
age tracer. As expected, many embryos that were injected with ADAM13 MO (the “morphants”) show reduced 
eGFP expression on the injected side prior to CNC migration (Fig. 4A), suggesting that CNC induction was 
inhibited by ADAM13 knockdown. At stage ~22, CNC migration was also blocked in most embryos, as shown 
by the lack of eGFP labeled cells that emigrate from the neural tube in some ADAM13 morphants (Fig. 4B). To 
investigate if ADAM13 also affects post-migratory CNC development, we selected ADAM13 morphants with no 
apparent defects in CNC induction or migration, and cultured them to stage ~46. At this stage, various defects 
in CNC derivatives, such as reduction of the head cartilage structures and/or cranial nerves, were observed in 
some ADAM13 morphants (Fig. 4C–F). Interestingly, some of these morphants displayed hypoplasia or impaired 
differentiation of specific tissues that may have CNC contribution. For example, in a morphant with intact head 
cartilage structures and cranial nerves, we found that the olfactory epithelium was almost completely missing on 
the injected side (Fig. 4C,C’), suggesting that post-migratory CNC development, but not earlier CNC induction 
or migration, might be affected. Hence the snai2:eGFP transgenic embryos can be used for live imaging of both 
early and late defects in CNC development.

Wnt signaling is active in the post-migratory CNC.  During CNC induction, ADAM13 functions by 
regulating Wnt signaling and snai2 expression30,32. Snai2 is thought to be a direct Wnt target gene at this early 
stage of CNC development, because its 5′-enhancer contains a LEF/TCF-binding site that can respond to Wnt sig-
naling1,17. This LEF/TCF-binding site was part of the 3.9 kb promoter/enhancer sequence that we used to generate 

Figure 4.  Phenotypes of ADAM13 knockdown displayed by snai2:eGFP embryos. Eight-cell stage heterozygous 
snai2:eGFP embryos were injected with 1.5 ng MO 13-3 to target ADAM13 in one dorsal-animal blastomere, 
and cultured to the indicated stages; a red fluorescent dye was co-injected as a lineage tracer. The injected side is 
denoted with a white asterisk, and structures that are present on the uninjected side but absent on the injected 
side are denoted with white arrowheads. Insets show red fluorescence images of the same embryos. (A,B) 
Dorsal view (with anterior at the top) of stage ~18 (A) and ~22 (B) embryos displaying reduced CNC domain 
on the injected side, as determined by eGFP expression. In (B) CNC migration is normal on the uninjected side 
but inhibited on the injected side. (C–F) Injected embryos that did not show apparent defects in CNC induction 
or migration were selected and cultured to stage ~46. (C,C’) are dorsal and ventral views (with anterior at the 
top), respectively, of the same tadpole. The olfactory epithelium (oe) is not detectable (C) but branchial cartilage 
(bc) and trigeminal nerve (nV) appear normal (C’) on the injected side of this embryo. (D,E) Embryos with 
under-differentiated head cartilage structures on the injected side, as compared with the uninjected side. (F) An 
embryo with severely defective trigeminal nerve and head cartilage structures on the injected side. (D–F) are 
ventral views with anterior at the top.
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the snai2:eGFP transgenic line, raising the possibility that the re-expression of snai2 in the post-migratory CNC, 
as reflected by eGFP patterns in the snai2:eGFP embryos, is also induced by Wnt signaling. The effects of 
ADAM13 knockdown on post-migratory CNC development (Fig. 4C–F) further suggest that Wnt may have 
an important role in this later developmental process. To investigate the activity of Wnt signaling in the CNC 
at various developmental stages, especially during post-migratory CNC differentiation, we used a transgenic X. 
tropicalis Wnt reporter line that expresses destabilized eGFP driven by an artificial enhancer containing 7 LEF/
TCF-binding sites. This destabilized eGFP molecule has a short half-life (~2 hr) and can precisely reflect the 
dynamic on-and-off patterns of endogenous Wnt activity34,35. As shown previously, there was a strong Wnt signal 
at the posterior NPB during CNC specification (stage ~12.5; Fig. 5A), which is critical for inducing snai2 expres-
sion and the specification of CNC lineage32,35. This Wnt signal remained in the pre-migratory CNC (Fig. 5B), 
and was evident in the migrating CNC streams (Fig. 5C). Interestingly, increasing Wnt signal was detected in 
the condensing mesenchyme in the pharyngeal arches from stage ~32 to ~35, when the CNC cells start to differ-
entiate (Fig. 5D,E). At stage ~42, Wnt was active in the differentiating head cartilage structures, cranial nerves, 
olfactory epithelium, lens and brain (Fig. 5F,F’), consistent with previously reported activities and/or functions 
of Wnt signaling in these tissues in mice36–39. These patterns are also strikingly similar to those of eGFP in the 
snai2:eGFP embryos as well as endogenous Snai2 mRNA and protein (Figs 1, 2 and 3), suggesting a possible role 
for Wnt signaling in inducing snai2 expression, not only in the pre-migratory and migrating CNC but also in the 
differentiating CNC, in X. tropicalis embryos.

Wnt is required for head cartilage differentiation as well as snai2 and sox9 expression in the 
post-migratory CNC.  We show above that some ADAM13 morphants displayed defects in the CNC lin-
eage after CNC migration (Fig. 4C–F). Because ADAM13 is required for Wnt signal activation during CNC 
induction30,32, these results suggest that Wnt may also be important for CNC differentiation. To further test this 
hypothesis, we treated transgenic embryos with small-molecule Wnt inhibitors starting at stage ~28, shortly after 
CNC completed migration. The treatment lasted until stage ~35, before CNC cells in the pharyngeal arches start 
to differentiate into cartilaginous structures (see Fig. 1D). Two Wnt inhibitors, which were identified in two inde-
pendent screens, were used in these experiments. XAV939 stabilizes Axin, a major component of the β-catenin 
destruction complex, by inhibiting the tankyrases that stimulate Axin degradation40. The other compound, 
IWR1-endo, also elevates the protein levels of Axin, but the underlying mechanism remains unclear41. When 
snai2:eGFP embryos were treated with high dosage of XAV939 or IWR1-endo after CNC migration, the branchial 
cartilage was clearly under-differentiated at stage ~44, as compared with embryos that were treated with vehicle 
control (Fig. 6A–D). In contrast, eGFP expression in the brain appeared to be normal (Fig. 6A’–C’). Similarly, 
defects in head cartilage structures were observed in Wnt reporter embryos treated with either Wnt inhibitor 
(Fig. 6E–H). Notably, global expression of the destabilized eGFP was greatly downregulated in these Wnt reporter 
embryos (Fig. 6E–G’), confirming that endogenous Wnt signaling was inhibited. Both the snai2:eGFP and Wnt 
reporter tadpoles treated with Wnt inhibitors developed edema and died shortly after stage ~44. To rule out the 

Figure 5.  Wnt signaling activity in the CNC lineage. Heterozygous transgenic Wnt reporter embryos were 
imaged at the indicated stages. Expression of eGFP is detectable in the pre-migratory (A,B), migrating (C) and 
differentiating (D–F’) CNC. (A,B) dorsal view with anterior at the top; green fluorescence and bright-field 
images are merged to show the relative positions of CNC in the whole embryo. (C–E) side view with anterior 
to the left (C) or right (D,E). (F,F’) dorsal and ventral views (with anterior at the top), respectively, of the same 
tadpole. br, brain; ln, lens; bc, branchial cartilage; nV, trigeminal nerve; oe, olfactory epithelium; pa, pharyngeal 
arches.
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possibility that the effects on head cartilage differentiation were secondary to the edema, we carried out similar 
treatment of the snai2:eGFP embryos with lower dosage of Wnt inhibitors. These tadpoles did not have edema 
and were alive and swimming at stage ~47. However, the head cartilage structures were still underdeveloped 
as compared with those of the control embryos (Fig. 6I–L). No apparent reduction in total eGFP intensity was 
detected in the head cartilage of the snai2:eGFP tadpoles at either stage ~44 or ~47 (Fig. 6A–C, I–K), suggesting 
that cell proliferation and death were not affected. The unaffected eGFP levels seen in the snai2:eGFP tadpoles 
upon Wnt inhibitor treatment is likely due to the stability of the eGFP protein, as endogenous snai2 was found to 
be downregulated (see below). These results, together with the late CNC phenotypes displayed by the ADAM13 
morphants (Fig. 4C–F), indicate that Wnt signaling plays critical roles in post-migratory CNC differentiation.

Finally, we examined directly if Wnt is responsible for inducing snai2 expression in the differentiating CNC. 
As shown in Fig. 7A, incubation of wild-type embryos in low-dosage XAV939 or IWR1-endo starting at stage 
~28 resulted in decreased snai2 expression at stage ~35 in pharyngeal arches, suggesting that Wnt is required for 
snai2 expression in the post-migratory CNC that are about to differentiate into head cartilage structures. Previous 
studies have shown that knockdown of Snai2 causes loss of sox9 transcripts during Xenopus CNC induction14,42. 
Because Sox9 is a skeletogenic CNC marker and a master regulator of chondrogenesis from the CNC lineage at 
later stages43,44, we assessed the effects of Wnt inhibition after CNC migration on the expression of sox9. Similar to 
snai2, inhibition of Wnt signaling after CNC migration also reduced the expression of sox9 at stage ~35 (Fig. 7B), 
providing a possible mechanism for the inhibition of head cartilage differentiation as shown in Fig. 6. To validate 
these results, we used a hormone-inducible fusion protein, which consists of the high mobility group box of 

Figure 6.  Wnt signaling is required for the differentiation of CNC into head cartilage structures. Snai2:eGFP 
or Wnt reporter embryos were treated with XAV939 (B,B’, F,F’, 20 μM; J,J’, 5 μM), IWR1-endo (C,C’, G,G’, 
40 μM; K,K’, 10 μM) or DMSO (vehicle control) from stage ~28 to ~35. Embryos were washed and cultured 
again to the indicated stages, and images were taken with a Zeiss Axiozoom.V16 epifluorescence microscope. A 
representative embryo from each treatment group is shown on the left, with upper and lower panels displaying 
ventral and dorsal views (with anterior at the top), respectively, of the same embryos, and statistics is shown in 
the graphs on the right. ***P < 0.001.
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Figure 7.  Inhibition of Wnt signaling in the post-migratory CNC reduces snai2 and sox9 expression. A,B. 
Wild-type embryos were treated with XAV939 (5 μM), IWR1-endo (10 μM) or DMSO from stage ~28 to 
~35, and processed for in situ hybridization for snai2 (A) or sox9 (B). (C,D) One blastomere of 2-cell stage 
embryos was injected with 50 pg of mRNA encoding EnR-LefΔN-GR755A. Embryos were treated with DEX or 
DMSO (as control) from stage ~28 to ~35, and processed for in situ hybridization for snai2 (C) or sox9 (D). A 
representative tadpole from each treatment group is shown in side view in the upper panels (in C,D both the 
uninjected and injected sides of the same embryos are displayed side by side for comparison), and statistics 
is shown in the graphs. White arrowheads point to reduced staining in the condensing mesenchyme in the 
pharyngeal arches. **P < 0.01; ***P < 0.001.
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mouse LEF1, the repression domain of Drosophila Engrailed, and the hormone-binding domain of the human 
glucocorticoid receptor (EnR-LefΔN-GR755A)45. Upon induction with dexamethasome (DEX), this fusion pro-
tein inhibits Wnt target gene expression in Xenopus embryos45. We injected the EnR-LefΔN-GR755A mRNA into 
one blastomere of 2-cell stage embryos, and treated the embryos with DEX or vehicle control from stage ~28 to 
~35. Similar to the treatment with Wnt inhibitors (Fig. 7A,B), induction of EnR-LefΔN-GR755A expression by 
DEX after CNC migration led to reduced expression of snai2 and sox9 in pharyngeal arches on the injected side 
(Fig. 7C,D). Taken together, these data indicate that Wnt signaling is indispensable for sox9 expression and head 
cartilage differentiation, possibly through inducing snai2 expression.

Discussion
The CNC can differentiate into many types of cells during early embryonic development1–3. Transgenic reporter 
animals provide powerful lineage-tracing tools for identifying CNC derivatives and understanding the mecha-
nisms that control CNC differentiation, which are critical for the studies of CNC biology as well as the prevention 
and treatment of neurocristopathies. Although X. laevis and X. tropicalis have long been used to study CNC 
induction and migration8, little is known about CNC differentiation in these species. Instead, most of our knowl-
edge on CNC differentiation was obtained from previous transgenic studies using other models such as mice and 
zebrafish7–9,36. Most recently, the first two X. laevis transgenic CNC reporter lines were generated. However, these 
lines are suitable for imaging CNC induction and migration, respectively, but not differentiation12,13. Here we 
report the first X. tropicalis transgenic CNC reporter line, which can be used not only for tracing CNC induction 
and early migration, but also for high-resolution live imaging of CNC differentiation. The ability of eGFP to label 
CNC derivatives is due to the expression of snai2 in the differentiating CNC, which has not been described before.

Snai2 is a transcription factor that is expressed in several mesodermal and ectodermal tissues, such as the 
CNC, lens, and somites, in all vertebrates that have been examined28,29. However, the timing of snai2 expression in 
the CNC varies in different species. Transcripts of snai2 are detectable in the pre-migratory CNC in frogs, reptiles 
and chicks, but not in fish or mice28,29,46. Snai2 in the pre-migratory CNC is required for the emigration of CNC 
cells from the neural tube in frogs and chicks, likely due to its ability to induce EMT18,46. At later stages, snai2 tran-
scripts were found in the migrating CNC in essentially all vertebrate species that have been examined, including 
Xenopus, chicks and mice15,29,46. It has also been shown that snai2 expression diminishes toward the end of CNC 
migration in both Xenopus and chick embryos19–21,46. This is in line with the hypothesis that CNC cells undergo 
mesenchymal-to-epithelial transition, which is the reciprocal of EMT, to stop migration, allowing them to colo-
nize various tissues in the embryo1. Currently, there is no published information on the expression of snai2 after 
CNC migration in any species. However, studies with mice suggest that Snai2 may function in CNC development 
at later stages. While whole-embryo double knockout of snai2 and its close paralog snail1 has no effect on CNC 
induction or early migration47, neural crest-specific loss of snail1 on the snai2-null background leads to multiple 
craniofacial defects that are reminiscent of conditional neural crest mutants of several other important genes48. 
In contrast, neither conditional knockout of snail1 in the neural crest nor global knockout of snai2 alone causes 
these defects48. These results imply a redundant role of Snail1 and Snai2 in late CNC development, possibly in 
CNC differentiation. Therefore, it is important to determine if the Snail family transcription factors are expressed 
and functional in the post-migratory CNC. Here we report that snai2 is re-expressed in the differentiating CNC 
in X. tropicalis embryos. This is supported by the fluorescence patterns displayed by the snai2:eGFP transgenic 
tadpoles, as well as the in situ hybridization and immunohistochemistry data. Our results are consistent with a 
possible role of snai2 during CNC differentiation, as implicated by the mouse study48. It remains to be examined 
if snai2 is similarly expressed in the differentiating CNC in mice and other vertebrates, and if this gene indeed 
functions in CNC differentiation.

The Wnt signaling pathway is a major inducer of Snai2 in various vertebrate species, likely through direct 
activation of snai2 transcription17,49. In addition, Wnt-induced GSK3β inhibition can lead to stabilization of the 
Snai2 protein50, which is capable of binding to its own enhancer and further stimulating snai2 expression51,52. 
In Xenopus embryos, Wnt signaling induces the formation of the NPB. After NPB formation, a second wave of 
Wnt signal activates the expression of Snai2, which is required for CNC specification within the NPB53. Both the 
Wnt signal and Snai2 mRNA/protein are clearly detectable throughout the pre-migratory CNC (Figs 3A’, 5A,B, 
S3B–D). The accumulating Snai2 in the pre-migratory CNC likely prepares the CNC cells for EMT/migration, 
as knockdown of Snai2 inhibits CNC migration18. It has also been shown that in pre-migratory Xenopus CNC 
explants, β-catenin is mainly detected in the nucleus; in contrast, in migrating CNC explants, β-catenin is redis-
tributed to the plasma membrane, indicating a reduction of Wnt signaling in CNC cells that have emigrated from 
the neural tube54. Because Wnt induces snai2 expression, these observations provide a possible mechanism for 
the downregulation of snai2 transcripts during CNC migration. Our data further suggest that the re-expression 
of snai2 during CNC differentiation is also driven by Wnt signaling. A comparison between the fluorescence pat-
terns of snai2:eGFP and Wnt reporter transgenic tadpoles shows striking similarity during CNC differentiation, 
and blocking Wnt signaling after CNC migration inhibits snai2 expression and head cartilage differentiation 
(Figs 1D–E”, 5E–F’, 6, 7). Thus, the Wnt-Snai2 axis may function reiteratively during CNC specification, emigra-
tion and differentiation.

Wnt signaling is known to be important for neural crest differentiation, but the exact roles of Wnt in this 
developmental process are controversial and may vary from species to species. An earlier report shows that 
Wnt promotes CNC differentiation into pigment cells at the expense of neurons and glia in zebrafish55. In 
contrast, β-catenin instructs mouse neural crest cells to adopt a sensory neuronal fate at the cost of essentially 
all other neural crest derivatives, presumably through mediating Wnt signaling56,57. Thus, the effects of Wnt 
signaling on cell fate determination during neural crest differentiation seem to be species-dependent. With 
regard to craniofacial morphogenesis, Wnt is crucial to the selection between chondrocytic and osteoblas-
tic fates in the mammalian CNC. Specifically, Wnt promotes bone formation and simultaneously suppresses 
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chondrogenesis in mice36. However, Wnt has also been shown to be required for chondrogenic differentiation 
in cultured mouse cells in a Sox9-dependent manner58. In zebrafish, blocking Wnt signaling after CNC migra-
tion inhibits ventral cartilage differentiation59. Although head cartilage is often used as a phenotypic readout 
for disrupted CNC induction or migration in Xenopus, little is known about how CNC cells differentiate into 
cartilaginous structures in frogs. This is probably because genes and pathways that are important for CNC 
differentiation, such as Wnt and sox9, often play critical roles in earlier induction and/or migration as well, 
and tools for temporally controlled gene inactivation in Xenopus are lacking. In the current study, we show 
that inhibition of Wnt signaling in X. tropicalis embryos after CNC migration leads to reduced sox9 expression 
and under-differentiated head cartilage structures (Figs 6,7). To our knowledge, this is the first evidence of 
Wnt function in Xenopus CNC differentiation. Future studies are needed to understand how Wnt affects sox9 
expression and head cartilage differentiation in Xenopus.

The snai2:eGFP transgenic line is a useful tool for live imaging of CNC development in Xenopus. Normal 
and dysregulated CNC induction, migration and differentiation can be visualized directly in the transgenic 
embryos (Figs 1, 4), making them highly suitable for high-throughput screens to identify genetic and environ-
mental factors that interfere with CNC development at any stage. The labeling of multiple CNC derivatives, 
such as cells in the head cartilage, cranial nerves, and thymus, by eGFP in the snai2:eGFP transgenic tadpoles 
(Fig. 1E–H’), further raises the possibility of using this transgenic line to identify new types of cells that derive 
from the CNC. For example, we detected strong eGFP expression in the brain, especially in the hindbrain 
(Figs 1E,F, 3B), which is consistent with the expression of Snai2 mRNA and protein (Figs 2H, 3B’) as well as 
eGFP expression in the Wnt reporter tadpoles (Fig. 5F). Notably, a similar GFP expression in the brain was 
detected in the sox10:GFP transgenic tadpoles13, suggesting that these cells may derive from the CNC. In addi-
tion, there is published evidence supporting a CNC origin for the gonadotropin releasing hormone-positive 
and microvillous neurons in the early zebrafish olfactory epithelium, but a most recent study suggests that all 
the sensory neurons in the zebrafish olfactory epithelium derive from the preplacodal ectoderm instead24,60,61. 
Interestingly, we observed clear eGFP expression in the olfactory epithelium of snai2:eGFP tadpoles starting at 
stage ~42, when the microvillous neurons just emerge62 (Fig. 1E). Whether there is a CNC contribution to the 
Xenopus olfactory epithelium warrants further investigation, and additional transgenic tools may be needed for 
this type of studies. To better trace the dynamic development of CNC cells, we are in the process of generating 
a new snai2:mEos3.2 line, in which the CNC lineage is labeled with the mEOS3.2 photoswitching fluorescent 
protein. This second-generation snai2 reporter line will allow the labeling of pre-migratory or migrating CNC 
cells and tracing their fates at later stages. Together, these transgenic reporter lines should have a profound 
impact on the studies of CNC development.

Methods
Plasmids and antibodies.  Genomic DNA was prepared from X. tropicalis embryos as described63. A 3.9 kb 
fragment of the snai2 promoter/enhancer, as reported by Vallin et al.17, was cloned from the genomic DNA using 
nested PCR. To generate the transgenic construct, the snai2 promoter/enhancer sequence was subcloned into 
the IS-eGFP transgenic vector (a gift from Dr. Robert Grainger)22,23. Primers used in cloning and subcloning 
are listed in Table S1. Constructs for preparing the in situ hybridization probes for snai2 and sox9 were obtained 
previously30, and the construct for expressing EnR-LefΔN-GR755A was generated in a previous study45. The mouse 
anti-Snai2 (DSHB 62.1E6, 1:50) and rabbit anti-GFP (Life Technologies A11122, 1:200), as well as Alexa Fluor 594 
AffiniPure donkey anti-mouse and Alexa Fluor 488 AffiniPure donkey anti-rabbit antibodies (Jackson Immuno 
Research Laboratories 715-585-150 and 711-545-152, 1:500 for both), were used for immunohistochemistry.

Animals and transgenesis.  Wild-type X. tropicalis adults (male and female) were purchased from NASCO, 
and the Wnt reporter line was generated in a previous study34. ISceI-mediated transgenesis was carried out as 
described by Ogino et al. to generate the snai2:eGFP transgenic founders22. Briefly, the IS-snai2:eGFP plasmid was 
digested with the I-SceI enzyme, and the reaction mixture was injected into fertilized X. tropicalis eggs. Embryos 
with eGFP expression in the migrating CNC (see Fig. S1B for an example) were selected and raised to adulthood. 
These transgenic founders were crossed with wild-type X. tropicalis frogs to generate heterozygotes, which were 
further inbred to obtain homozygotes.

Embryo manipulation.  Embryo were obtained by natural mating and cultured in 0.1x MBS to desired 
stages as described previously30. For in situ hybridization and immunohistochemistry, embryos were fixed at 
desired stages and processed as described63. MO 13-3, the antisense MO for ADAM13, was synthesized by Gene 
Tools, and the sequence was reported previously30. For MO injections, 8-cell stage snai2:eGFP embryos were 
injected in a single dorsal-animal blastomere with 1.5 ng MO 13-3 using a PLI-100A microinjector (Harvard 
Apparatus), and Alexa Fluor 555 dextran (Invitrogen) was co-injected as a lineage tracer. For Wnt inhibitor treat-
ment, embryos were cultured in XAV939 or IWR1-endo (both were from Selleckchem) from stage ~28 to ~35. 
Snai2-eGFP or Wnt reporter transgenic tadpoles were washed three times and subsequently cultured in 0.1x MBS 
until stage ~44 or ~47 (Fig. 6); wild-type tadpoles were immediately fixed and processed for in situ hybridization 
for snai2 or sox9 (Fig. 7A,B). For inhibition of Wnt target gene expression, 2-cell stage wild-type embryos were 
injected in one blastomere with 50 pg mRNA encoding EnR-LefΔN-GR755A, and cultured to stage ~28, when 
10 mM DEX (Sigma-Aldrich D4902) or DMSO was added. Embryos were further cultured to stage ~35, fixed, 
and processed for in situ hybridization for snai2 or sox9.

Imaging.  Fluorescent and bright-field images were taken with a Zeiss Axiozoom.V16 epifluorescence micro-
scope. Image acquisition and processing for whole-mount embryos were carried out using an AxioCam MRc 
Rev3 camera and the ZEN 2.0 software package. To prepare head cartilage sections, stage ~46 tadpoles (wild-type 

https://doi.org/10.1038/s41598-019-47665-9


1 2Scientific Reports |         (2019) 9:11191  | https://doi.org/10.1038/s41598-019-47665-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

and snai2:eGFP) were fixed as described63, embedded in Optimum Cutting Temperature media, and immediately 
frozen on dry ice. Embedded tadpoles were stored at −80 °C until being sectioned. Tadpoles were sectioned as 
previously described with a Leica CM3050 S cryostat at −35 °C64. Air-dried sections were visualized using a Zeiss 
Axiozoom.V16 epifluorescence microscope.

Phenotype scoring and statistics.  Injected embryos were scored by comparing the injected side with 
the uninjected side of the same embryos, and Wnt inhibitor-treated embryos were scored by comparing with the 
DMSO-treated controls. The percentage of normal and reduced phenotypes were calculated, and Chi-squared 
tests were performed to compare the phenotypes in different treatment groups.

Ethics statement.  Methods involving live animals were carried out in accordance with the guidelines 
and regulations approved and enforced by the Institutional Animal Care and Use Committee at West Virginia 
University and the University of Delaware.

Data Availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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