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An elastic-net logistic regression
approach to generate classifiers and gene
signatures for types of immune cells and T
helper cell subsets
Arezo Torang1, Paraag Gupta1 and David J. Klinke II1,2*

Abstract

Background: Host immune response is coordinated by a variety of different specialized cell types that vary in time
and location. While host immune response can be studied using conventional low-dimensional approaches,
advances in transcriptomics analysis may provide a less biased view. Yet, leveraging transcriptomics data to identify
immune cell subtypes presents challenges for extracting informative gene signatures hidden within a high
dimensional transcriptomics space characterized by low sample numbers with noisy and missing values. To address
these challenges, we explore using machine learning methods to select gene subsets and estimate gene coefficients
simultaneously.

Results: Elastic-net logistic regression, a type of machine learning, was used to construct separate classifiers for ten
different types of immune cell and for five T helper cell subsets. The resulting classifiers were then used to develop
gene signatures that best discriminate among immune cell types and T helper cell subsets using RNA-seq datasets.
We validated the approach using single-cell RNA-seq (scRNA-seq) datasets, which gave consistent results. In addition,
we classified cell types that were previously unannotated. Finally, we benchmarked the proposed gene signatures
against other existing gene signatures.

Conclusions: Developed classifiers can be used as priors in predicting the extent and functional orientation of the
host immune response in diseases, such as cancer, where transcriptomic profiling of bulk tissue samples and single
cells are routinely employed. Information that can provide insight into the mechanistic basis of disease and
therapeutic response. The source code and documentation are available through GitHub: https://github.com/
KlinkeLab/ImmClass2019.

Keywords: Gene signature, Machine learning, Elastic-net, In silico cytometry

Background
Host immune response is a coordinated complex sys-
tem, consisting of different specialized innate and adap-
tive immune cells that vary dynamically and in different
anatomical locations. As shown in Fig. 1, innate immune
cells comprise myeloid cells, which include eosinophils,
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neutrophils, basophils, monocytes, and mast cells. Adap-
tive immune cells are mainly B lymphocytes and T lym-
phocytes that specifically recognize different antigens [1].
Linking innate with adaptive immunity are Natural Killer
cells and antigen presenting cells, like macrophages and
dendritic cells. Traditionally, unique cell markers have
been used to characterize different immune cell subsets
from heterogeneous cell mixtures using flow cytometry
[2–4]. However, flow cytometry measures on the order of
10 parameters simultaneously and relies on prior knowl-
edge for selecting relevant molecular markers, which
could provide a biased view of the immune state within
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a sample [5]. Recent advances in technology, like mass
cytometry or multispectral imaging, have expanded the
number of molecular markers, but the number of markers
used for discriminating among cell types within a sample
remains on the order of 101.5.
In the recent years, quantifying tumor immune con-

texture using bulk transcriptomics or single-cell RNA
sequencing data (scRNA-seq) has piqued the interest of
the scientific community [6–10]. Advances in transcrip-
tomics technology, like RNA sequencing, provide a much
higher dimensional view of which genes are expressed
in different immune cells (i.e., on the order of 103) [11].
Conceptually, inferring cell types from data using an
expanded number of biologically relevant genes becomes
more tolerant to non-specific noise and non-biological
differences among samples and platforms. In practice, cell
types can be identified using gene signatures, which are
defined as sets of genes linked to common downstream
functions or inductive networks that are co-regulated
[12, 13], using approaches such as Gene Set Enrichment
Analysis (GSEA) [12]. However, as microarray data can
inflate detecting low abundance and noisy transcripts
and scRNA-seq data can have a lower depth of sequenc-
ing, opportunities for refining methods to quantify the
immune contexture using gene signatures still remain.
Leveraging transcriptomics data to identify immune cell

types presents analytic challenges for extracting informa-
tive gene signatures hidden within a high dimensional
transcriptomics space that is characterized by low sam-
ple numbers with noisy and missing values. Typically, the
number of cell samples is in the range of hundreds or less,
while the number of profiled genes is in the tens of thou-
sands [14]. Yet, only a few number of genes are relevant
for discriminating among immune cell subsets. Datasets
with a large number of noisy and irrelevant genes decrease
the accuracy and computing efficiency of machine learn-
ing algorithms, especially when the number of samples are
very limited. Hence, feature selection algorithms may be
used to reduce the number of redundant genes [15]. Using
feature selection methods enable developing gene signa-
tures in different biomedical fields of study [16]. There are
many proposed feature selection methods that can select
gene sets that enable classifying samples with high accu-
racy. In recent years, regularization methods have became
more popular, which efficiently select features [17] and
also control for overfitting [18]. As a machine learning
tool, logistic regression is considered to be a powerful
discriminative method [18]. However, logistic regression
alone is not applicable for high-dimensional cell classifi-
cation problems [19]. On the other hand, hybrid methods,
like regularized logistic regression, have been successfully
applied to high-dimensional problems [20]. Regularized
logistic regression selects a small set of genes with the
strongest effects on the cost function [17]. A regularized

logistic regression can be also be applied with different
regularization terms. The most popular regularized terms
are LASSO, Ridge [21], and elastic-net [22], which impose
the l1 norm, l2 norm, and linear combination of l1 norm
and l2 norm regularization, respectively, to the cost func-
tion. It has been shown that, specifically in very high
dimensional problems, elastic-net outperforms LASSO
and Ridge [17, 22].
In this study, we focused on two-step regularized logis-

tic regression techniques to develop immune cell signa-
tures and immune cell and T helper cell classifiers using
RNA-seq data for the cells highlighted in bold in Fig. 1.
The first step of the process included a pre-filtering phase
to select the optimal number of genes and implemented
an elastic-net model as a regularization method for gene
selection in generating the classifiers. The pre-filtering
step reduced computational cost and increased final accu-
racy by selecting the most discriminative and relevant set
of genes. Finally, we illustrate the value of the approach in
annotating gene expression profiles obtained from single-
cell RNA sequencing. The second step generated gene sig-
natures for individual cell types using selected genes from
first step and implemented a binary regularized logistic
regression for each cell type against all other samples.

Results
We developed classifiers for subsets of immune cells
and T helper cells separately with two main goals. First,
we aimed to annotate RNA-seq data obtained from
an enriched cell population with information as to the
immune cell identity. Second, we developed gene sig-
natures for different immune cells that could be used
to quantify the prevalence from RNA-seq data obtained
from a heterogeneous cell population. Prior to develop-
ing the classifiers, the data was pre-processed to remove
genes that have low level of expression for most of sam-
ples (details can be found in Methods section) and nor-
malized to increase the homogeneity in samples from
different studies and to decrease dependency of expres-
sion estimates to transcript length andGC-content. Genes
retained that had missing values for some of the sam-
ples were assigned a value of -1. Next, regularized logistic
regression (elastic-net) was performed and the optimal
number of genes and their coefficients were determined.

Generating and validating an immune cell classifier
In developing the immune cell classifier, we determined
the optimal number of genes in the classifier by vary-
ing the lambda value used in the regularized logistic
regression of the training samples and assessing per-
formance. To quantify the performance using different
lambdas, a dataset was generated by combining True-
Negative samples, which were created using a bootstrap-
ping approach that randomly resampled associated genes
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Fig. 1 Lineage tree representation of cells of the immune system. Immune cells are derived from hematopoietic stem cells (HSCs). HSCs differentiate
into lymphoid and myeloid progenitors that further branch out to the more specific cell types associated with adaptive and innate immunity. This
Figure indicates the main immune cell subsets and arrows are to show lineage relationships. Gene signatures were developed in this study for
immune cells highlighted in bold

and their corresponding value from the testing datasets
to create a synthetic dataset of similar size and complex-
ity, with the original testing data, which were untouched
during training and provided True-Positive samples. The
accuracy of predicting the True-Positive samples were
used to generate Receiver Operating Characteristic (ROC)
curves (Fig. 2a). Performance using each lambda was
quantified as the Area Under the ROC Curve (AUC).
The optimal lambda for immune cell classifier was the

smallest value (i.e., highest number of genes) that max-
imized the AUC. Functionally, this lambda value repre-
sents the trade-off between retaining the highest number
of informative genes (i.e., classifier signal) for develop-
ing the gene signature in the second step, while not
adding non-informative genes (i.e., classifier noise). Con-
sequently, we selected a lambda value of 1e-4 (452 genes)
for the immune cell classifier, where the selected genes
and their coefficients are shown in Additional file 1:
Table S1.
To explore correlations between the weights of selected

genes with their expression level, we generated heatmaps
shown in Fig. 2, panels b and c. A high level of gene
expression is reflected as a larger positive coefficient in a
classifier model, while low or absent expression results in
a negative coefficient. This is interpreted as, for example,

if gene A is not in cell type 1, the presence of this gene in a
sample decreases the probability for that sample to be cell
type 1. For instance, E-cadherin (CDH1) was not detected
in almost all monocyte samples and thus has a negative
coefficient. Conversely, other genes are only expressed in
certain cell types, which results in a high positive coef-
ficient. For instance, CYP27B1, INHBA, IDO1, NUPR1,
and UBD are only expressed byM1macrophages and thus
have high positive coefficients.
The differential expression among cell types suggests

that the set of genes included in the classifier model may
also be a good starting point for developing gene signa-
tures, which is highlighted in Fig. 2d. Here, we focused
on the expression of the 452 genes included in the classi-
fier model and the correlations between samples clustered
based on cell types. The off-diagonal entries in the corre-
lation matrix are colored by euclidean distance with the
color indicating similarity or dissimilarity using pink and
blue, respectively. Color bars along the axes also highlight
the cell types for the corresponding RNA-seq samples. As
expected, RNA-seq samples from the same cell type were
highly similar. More interestingly, correlation between dif-
ferent cell types can also be seen, like high similarity
between CD4+ and CD8+ T cell samples, CD8+ T cell and
NK cell samples, andmonocyte and dendritic cell samples.
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a

c d

b

Fig. 2 Development of immune cell classifier and similarity heatmap. a ROC curve for the immune cell classifier was calculated using the indicated
lambda values (shown in different colors and line styles) and 10-fold cross validation. The lambda value that maximized the AUC value was used for
subsequent calculations. Elastic-net logistic regression was used to discriminate among ten immune cell types, where the value of the non-zero
coefficients (panel b), expression levels (panel c), and similarity map (panel d) for the 452 genes included in the classifier are indicated by color bars
for each panel. In panel b, blue to red color scheme indicates coefficients ranging from negative to positive values. Ordering of the genes is the
same in panels b and c. In panel c, light blue indicates missing values and the intensity of red color (white/red color scale on the top-left) shows the
log base 2 expression level. A color bar on top of this panel was used to separate samples of each cell type. Panel d illustrates the similarity between
samples calculated using distance matrix based on same 452 genes. Color bars on the left and bottom sides are to separate samples of each cell
type and the top color bar (light blue/pink color scale) shows the intensity of similarity or dissimilarity of samples
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Collectively, these heatmaps illustrate that the selected
genes are a highly condensed but are still a representative
set of genes that include the main characteristics of the
immune cell types. It is also notable to compare the clus-
tering result of cell types based on their coefficients in the
classifier shown in Fig. 2b with similarity matrix in Fig. 2d.
Since in the classifier coefficients are forcing the model to
separate biologically close cell types (like CD4+ T cell and
CD8+ T cell), the clustering results suggest that the coef-
ficient vectors are equally dissimilar (Fig. 2b). However, in
the case of their expression values, their similarity remains
(Fig. 2d).

Evaluating the immune cell classifier using scRNA-seq
datasets
To evaluate the proposed classifier in immune cell
classification, two publicly accessible datasets gener-
ated by scRNA-seq technology were used [23, 24]. The
first dataset included malignant, immune, stromal and
endothelial cells from 15 melanoma tissue samples [23].
We focused on the immune cell samples, which included
2761 annotated samples of T cells, B cells, Mphi and
NK cells, and 294 unresolved samples. The immune cells
in this study were recovered by flow cytometry by gat-
ing on CD45 positive cells. Annotations were on the
basis of expressed marker genes while unresolved samples
were from the CD45-gate and classified as non-malignant
based on inferred copy number variation (CNV) patterns
(i.e., CNV score <0.04).
Following pre-processing to filter and normalize the

samples similar to the training step, the trained elastic-
net logistic regression model was used to classify cells
into one of the different immune subsets based on the
reported scRNA-seq data with the results summarized in
Fig. 3a. The inner pie chart shows the prior cell anno-
tations reported by [23] and the outer chart shows the
corresponding cell annotation predictions by our pro-
posed classifier. Considering T cells as either CD4+ T cell
or CD8+ T cell, the overall similarity between annotations
provided by [23] and our classifier prediction is 96.2%. The
distribution in cells types contained within the unresolved
samples seemed to be slightly different than the anno-
tated samples as we predicted the unresolved samples to
be mainly CD8+ T cells and B cells.
The only cell type with low similarity between our clas-

sifier predictions and prior annotations was NK cells,
where we classified almost half of samples annotated
previously as NK cells as CD8+ T cell. Discriminating
between these two cell types is challenging as they share
many of the genes related to cytotoxic effector function
and can also be subclassified into subsets, like CD56bright
and CD56dim NK subsets [25]. To explore this discrep-
ancy, we compared all annotated samples based on their
CD8 score and NK score provided by the classifier, as

shown in Fig. 3b. Although the number of NK cell samples
are relatively low, it seems that the NK samples consist
of two groups of samples: one with a higher likelihood of
being a NK cell and a second with almost equal likelihood
for being either CD8+ T cell or NK cell.We applied princi-
pal component analysis (PCA) to identify genes associated
with this difference and used Enrichr for gene set enrich-
ment [26, 27]. Using gene sets associated with the Human
Gene Atlas, the queried gene set was enriched for genes
associated with CD56 NK cells, CD4+ T cell and CD8+
T cell. Collectively, the results suggests that the group of
cells with similar score for NK and CD8 in the classifier
model are Natural Killer T cells.
We also analyzed a second dataset that included 317

epithelial breast cancer cells, 175 immune cells and 23
non-carcinoma stromal cells, from 11 patients diagnosed
with breast cancer [24]. We only considered samples
annotated previously as immune cells, which were anno-
tated as T cells, B cells, and myeloid samples by clus-
tering the gene expression signatures using non-negative
factorization. The scRNA-seq samples were similarly pre-
processed and analyzed using the proposed classifier, with
the results shown in Fig. 4. The inner pie chart shows
the prior cell annotations reported by [24] and the outer
chart shows the corresponding predicted cell annotation
by our proposed classifier. Considering T cells as either
CD4+ T cell or CD8+ T cell, 94.4% of reported T cells
are predicted as the same cell type and other 5.6% is pre-
dicted to be DC or NK cells. However, for reported B
cells and myeloid cells, we predicted relatively high por-
tion of samples to be T cells ( 15.7% of B cells and 40% of
myeloid cells). The rest of the myeloid samples were pre-
dicted to be macrophages or dendritic cells. Collectively,
our proposed classifier agreed with many of the prior cell
annotations and annotated many of the samples that were
previously unresolved.

Developing a classifier for T helper cell subsets
To further apply this methodology to transcriptomic data,
a separate classifier for distinguishing among T helper
cells was developed using a similar approach to the
immune cell classifier. We explored different values of the
regression parameter lambda to find the optimal number
of genes for this new dataset and visualized the perfor-
mance of different lambdas by generating True-Negative
samples using a bootstrapping approach whereby syn-
thetic datasets were created by randomly resampling test-
ing datasets. Original testing data that were completely
untouched during training were used as True-Positive
samples. The resulting True-Negative and True-Positive
samples were used to generate ROC curves (Fig. 5a) and
the AUC was used to score each lambda value. Generally,
the lambda values for T helper cell classifier represents the
trade-off between retaining genes and keeping the AUC
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Fig. 3 Immune cell annotation prediction based on scRNA-seq data against prior annotations reported in melanoma dataset. a The inner pie chart
summarizes the cell annotations reported by Tirosh et al. [23] and includes 298 unannotated CD45-positive non-malignant cells (labeled as
Unresolved) isolated from melanoma tissue samples. Unannotated samples were acquired following gating for CD45+ single cells and classified as
non-malignant based on inferred copy number variation patterns. Using gene expression values reported for each scRNA-seq sample, a new cell
annotation was determined based on the closest match with the alternative cell signatures determined using elastic-net logistic regression, which
are summarized in outer pie chart. b The contour plot for the likelihood of a sample to be either an NK cell or CD8+ T cell based on gene expression
stratified by cells previously annotated by [23] to be T cells, macrophages, B cells, or NK cells

high. However, there appeared to be an inflection point at
a lambda value of 0.05 whereby adding additional genes,
by increasing lambda, reduced the AUC. Consequently,
we selected a lambda value equal to 0.05 (72 genes) for
the T helper classifier. The selected genes and their coeffi-
cients are listed in Additional file 1: Table S1. The gene list
was refined subsequently by developing a gene signature.
Similar to the immune cell classifier, the coefficients of

the selected genes for the T helper cell classifier corre-
lated with their expression levels, as seen by comparing
the heatmaps shown in Fig. 5, panels b and c. For instance,
FUT7 has been expressed in almost all T helper cell sam-
ples except for iTreg that result in a negative coefficient
for this cell type. In addition, there are sets of genes for
each cell type that have large coefficients only for certain
T helper cell subsets, like ALPK1, TBX21, IL12RB2, IFNG,
RNF157 for Th1 that have low expression in other cells.
As illustrated in Fig. 5d, the genes included in the classifier
don’t all uniquely associate with a single subset but collec-
tively enable discriminating among T helper cell subsets.
Interestingly, the T helper subsets stratified into two sub-
groups where naive T helper cells (Th0) and inducible T
regulatory (iTreg) cells were more similar than effector
type 1 (Th1), type 2 (Th2), and type 17 (Th17) T helper
cells. Similar to the immune cell classifier, we also noted
that the clustering of the classifier coefficients is different

from what similarity matrix shows in Fig. 5d because the
classifier coefficients aim to create a “classifying distance"
among closely related cell types.
Finally by comparing the results of immune cell clas-

sifier with that of the T helper classifier, the intensity of
differences among cell types can be seen in Figs. 2c and
5c. In the first figure you can find completely distinct set
of genes in each cell type. Meanwhile, the gene sets in the
second figure are not as distinct which could be due to
the low number of samples or high biological similarity
between T helper cell types.

Application of the classifiers
Clinical success of immune checkpoint inhibitors (ICI) for
treating cancer coupled with technological advances in
assaying the transcriptional signatures in individual cells,
like scRNA-seq, has invigorated interest in characterizing
the immune contexture within complex tissue microen-
vironments, like cancer. However as illustrated by the
cell annotations reported by [24], identifying immune cell
types from noisy scRNA-seq signatures using less biased
methods remains an unsolved problem. To address this
problem, we applied our newly developed classifiers to
characterize the immune contexture in melanoma and
explored differences in immune contexture that associate
with immune checkpoint response. Of note, some patients
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Fig. 4 Immune cell annotation prediction against prior annotations reported in breast cancer scRNA-seq dataset. The inner pie chart summarizes
the cell annotations reported by Chung et al. [24], which annotated scRNA-seq results by clustering by gene ontology terms using likelihood ratio
test. Using the gene expression profile reported for each scRNA-seq sample, a new cell annotation was determined based on the closest match with
the alternative cell signatures determined using elastic-net logistic regression, which is summarized in the outer pie chart

with melanoma respond to ICIs durably but many others
show resistance [28]. Specifically, we annotated immune
cells in the melanoma scRNA-seq datasets [23, 29] using
our classifiers separately for each patient sample and
ordered samples based on the treatment response, with
the results shown in Fig. 6a, b. We used the percentage of
cell type in each tumor sample as it was more informa-
tive and meaningful than using absolute cell numbers. It is
notable that untreated and NoInfo samples likely include
both ICI-resistant and ICI-sensitive tumors.
In comparing samples from resistant tumors to

untreated tumors, we found interestingly that there are
samples with high prevalence of NK in untreated tumors
(Mel53, Mel81, and Mel82) while no samples in resistant
tumors have a high prevalence of NK cells. Thementioned
untreated tumors also have no or very low number of Th2
cells in their populations. In addition, untreated tumors
have a more uniform distribution of immune cell types
in contrast to ICI-resistant ones, which could reflect a
therapeutic bias in immune cell prevalence in the tumor
microenvironment due to ICI treatment.
Next, we combined the annotation data from both clas-

sifiers and applied PCA and clustering analysis, as shown
in Fig. 6, panels c and d. Using scrambled data to deter-
mine principal components and their associated eigen-
values that are not generated by random chance (i.e., a
negative control), we kept the first and second princi-
pal components that capture 68% and 21% of the total
variance, respectively, and neglected other components
that fell below the negative control of 8.4%. As it shown
in Fig. 6c, resistant samples mainly located in lowest
value of second principal component (PC2). Upon closer

inspection of the cell loadings within the eigenvectors, the
low values of PC2 correspond to a low prevalence of Mφ

or high percentage of B cells. In addition, based on the first
principal component (PC1), resistant samples have either
the lowest values of PC1 (Mel74, Mel75, Mel58, Mel 78),
which correspond to higher than average prevalence of
CD8+ T cells, or the highest values of PC1 (Mel60, Mel72,
Mel94), which show a higher than average prevalence of
B cells.
In hierarchical clustering, the optimal number of clus-

ters was selected based on calculation of different cluster
indices using the NbClust R package [30] which mainly
identified two or three clusters as the optimal number.
In considering three groupings of the hierarchical clus-
tering results shown in Fig. 6d, seven out of eight ICI-
resistant samples clustered in first two clusters while the
third cluster mainly contained untreated samples. The
comparison of results from PCA and clustering analy-
ses shows that the first cluster contained samples with
extreme low value of PC1 which itself divided into two
groups; one with extreme low value of PC2 and the other
with higher amount of PC2. The second cluster located
in highest amount of PC1 and lowest amount of PC2. All
remained samples were clustered as third group, which
were predominantly untreated samples. The difference in
clustering suggests dissimilarities between ICI-resistant
and untreated samples and the possibility of having ICI-
sensitive tumors in untreated samples. D

Developing gene signatures
While classifiers are helpful for annotating scRNA-seq
data as the transcriptomic signature corresponds to a
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a
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Fig. 5 Development of T helper cell classifier and similarity heatmaps a ROC curve for the T helper cell classifier was calculated using the indicated
lambda values (shown in different colors and line styles) and 10-fold cross validation. The lambda value that maximized the AUC value was used for
subsequent calculations. Elastic-net logistic regression to discriminate among five T helper cell types, where the value of the non-zero coefficients
(panel b), expression levels (panel c), and similarity map (panel d) for the 72 genes included in the classifier are indicated by color bars for each
panel. In panel b, blue to red color scheme indicates coefficients ranging from negative to positive values. Ordering of the genes is the same in
panels b and c. In panel c, light blue indicates missing values and the intensity of red color (white/red color scale on the top-left) indicates the log
base 2 expression level. A color bar on top of this panel was used to separate samples of each cell type. Panel d illustrates the similarity between
samples calculated using an euclidean distance matrix based on the same 72 genes, where the color indicates the distance (pink: high similarity/low
distance; blue: low similarity/high distance). Color bar on the top/side of the heatmap indicates the cell type of origin

single cell, gene signatures are commonly used to deter-
mine the prevalence of immune cell subsets within
transcriptomic profiles of bulk tissue samples using
deconvolution methods, called in silico cytometry [31].
Leveraging the classifier results, we generated corre-
sponding gene signatures using binary elastic-net logis-
tic regression. Specifically, classifier genes with non-zero
coefficients were used as initial features of the models,
which were then regressed to the same training and test-
ing datasets as used for developing the classifiers. Lambda
values were selected for each immune and T helper cell

subset based on similar method of lambda selection for
classifiers and their values and corresponding AUC are
shown in Additional file 2: Table S2. Finally, all generated
signatures are summarized in Additional file 3: Table S3.
We visualized the expression levels of the remaining

set of genes, which at least occur in one gene sig-
nature, in Fig. 7. The expression of genes retained in
immune cell signatures (Fig. 7a) and T helper cell sig-
natures (Fig. 7b) were clustered by similarity in expres-
sion (rows) and by similarity in sample (columns). For
both immune and T helper cell subsets, samples of
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a b

c d

Fig. 6 Annotation of scRNA-seq results from melanoma dataset stratified by patient treatment status. Treatment status of patients diagnosed with
melanoma was stratified based on their response to ICIs ([23, 29]). a The distribution in immune cell annotations and b T helper cell annotations
based on scRNA-seq data were separated into samples obtained from ICI-resistant tumors, untreated tumors, and tumors reported in melanoma
data without information about treatment status. Distributions are shown based on the percentage of all immune cells measured for each patient.
Cell annotations were based on immune cell classifier and T helper cell classifier results. c PCA analysis was applied to the data obtained from both
classifiers and the results for the first and second principal components were plotted. Red, blue, and grey colors indicate resistant, untreated and
NoInfo (samples that have no information about their treatment status in the reference works) tumors, respectively. d Samples were hierarchically
clustered based on the percentages of the nine immune cells and five T helper cells and same coloring applied to show tumor types

same cell type were mainly clustered together. The
only exception is for macrophages (Mφ and M2)
which can be attributed to high biological similarity
and a low number of technical replicates for these
cell types.
In general, the gene sets generated from the logistic

regression model performed well with far fewer req-
uisite genes in the testing set, a desirable result for a
gene set intended to be used for immunophenotyping.
In Fig. 8, the results of the benchmarking are shown

separated by comparative gene set. Both the CIBERSORT
and Single-Cell derived gene sets contain an average of 64
and 135 genes, respectively, while the logistic regression
gene set contains an average of just 19. The new logistic
regression gene set performed comparably to the existing
contemporary gene sets and far exceeded the performance
of the manually curated gene set used previously [6]. The
benchmarking results indicate that the logistic regression
gene sets are an improvement in efficacy over compact
gene sets, such as those that are manually annotated or
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Fig. 7 Heatmaps of the expression levels for the final list of genes created by gene signatures. The expression of genes retained in immune cell
signatures (panel a) and T helper cell signatures (panel b) were clustered by similarity in expression levels (rows) and by similarity in samples
(columns). The color bar at the top indicates the samples cell type. Light blue shows missing values and the intensity of red color (white/red color
scale on the top-left color bar) indicates the log base 2 expression level in both panels

hand-picked. Meanwhile, the logistic regression gene sets
also demonstrate an optimization of broader gene sets
that contain too many genes for deep specificity when
used in further analysis. The inclusion of too many genes
in a set can dilute the real data across a constant level of
noise, while including too few lacks the power to draw
conclusions with high confidence. The logistic regres-
sion gene sets demonstrate a balance of these two issues
through its highly refined selection of genes that can be
fine-tuned using its lambda parameter.

Discussion
Recent developments in RNA sequencing enable a high
fidelity view of the transcriptomic landscape associ-
ated with host immune response. Despite considerable
progress in parsing this landscape using gene signatures,
gaps remain in developing unbiased signatures for indi-
vidual immune cell types from healthy donors using high
dimensional RNA-seq data. Here, we developed two clas-
sifiers - one for immune cell subsets and one for T helper
cell subsets - using elastic-net logistic regression with
cross validation. The features of these classifiers were used
as a starting point for generating gene signatures that
captured with fifteen binary elastic-net logistic regres-
sion models the most relevant gene sets to distinguish

among different immune cell types without including too
much noise.
Gene signatures in previous studies have been devel-

oped and used mainly as a base for deconvoluting the
tumor microenvironment to find the presence of immune
cells from bulk RNA measures. Therefore, as the first
step, determining cell-specific gene signatures critically
influences the results of deconvolution methods [32].
Newman et al. defined gene signatures for immune cells
using two-sided unequal variances t-test as base matrix
for CIBERSORT [8]. In another study, Li et al. in devel-
oping TIMER, generated gene signatures for six immune
cell types with selecting genes with expression levels that
have a negative correlation with tumor purity [9]. More
recently, Racle et al. developed a deconvolution tool based
on RNA-seq data (EPIC) by pre-selecting genes based on
ranking by fold change and then selected genes by manu-
ally curating and comparing the expression levels in blood
and tumor microenvironment [10]. Finally, quanTIseq
(the most recently developed tool for deconvolution) was
developed for RNA-seq data based on the gene signatures
generated by quantizing the expression levels into differ-
ent bins and selecting high quantized genes for each cell
type that have low or medium expression in other cell
types [7]. Although all methods obtained high accuracy
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Fig. 8 Benchmarking ROC performance curves. ROC curves to illustrate relative performance between logistic regression gene set and the manually
curated (Panel a), CIBERSORT (Panel b), and single cell gene sets (Panel c). The logistic regression gene set’s performance is shown in red. Shaded
regions are 95% confidence intervals about the average ROC curve simulated from 1000 iterations

based on their developed signatures, a more rigorous and
unbiased gene signature developed by RNA-seq data and
precise feature selection methods can further improve
the accuracy and validate the process for downstream
analyses.
In addition, to identify cell types based on their tran-

scriptome, clustering techniques have been used in many
studies [33, 34]. However, there are high variability lev-
els of gene expression even in samples from the same cell
type. Moreover, transcriptomics data has high dimensions
(tens of thousands) and this is too complicated for cluster-
ing techniques as only few number of genes are discrim-
inative. To overcome these problems some studies used
supervised machine learning methods like Support Vec-
tor Machine (SVM) [35, 36]. However, to the best of our
knowledge, this paper is the first to apply two-step regu-
larized logistic regression on RNA-seq transcriptomic of
immune cells. This method increases the chance to cap-
ture the most discriminative set of genes for each cell type
based on the power of an elastic-net [22]. In addition,
using a two-step elastic net logistic regression enabled
eliminating the most irrelevant genes while keeping the
highest number of possible significant genes in the first
step and more deeply selecting among them in the second
step to generate robust gene signatures for immune cells.
Moreover, contemporary methods have only considered

a limited number of immune cell types, and specifically T
helper subsets as individual cell types have been neglected
[23, 24, 29] in comprehensive studies. Therefore, the other
novel aspect of this study is the separation of models for
immune cells and T helper cells and development of gene
signatures for a large number of immune cell types (fifteen
different immune cell types) including different T helper
cell subsets. The ability to identify a greater number of

immune cell types enables studying immune system in
different diseases in more depth. As we used publicly
available RNA-seq datasets for immune cells and T helper
cells, we acknowledge that our developed classifiers and
gene signatures may be still constrained by the limited
number of samples specifically for T helper cells. As more
data describing the transcriptome of immune cells will
become accessible, one can update the classifiers and
gene signatures. Despite the limited number of samples
used in the approach, the developed classifiers can even
be applied to completely untouched and large datasets
[23, 24] that have been generated using scRNA-Seq tech-
nology which creates noisier data.

Conclusions
Here, we developed an immune cell classifier and classi-
fier for T helper cell subsets along with gene signatures
to distinguish among fifteen different immune cell types.
Elastic-net logistic regression was used to generate clas-
sifiers with 10-fold cross-validation after normalizing and
filtering two separate RNA-seq datasets that were gener-
ated using defined homogeneous cell populations. Sub-
sequently, we generated gene signatures using a second
step of binary regularized logistic regression applied to the
RNA-seq data using previously selected classifier genes.
As an external validation, the resulting classifiers accu-
rately identified the type of immune cells in scRNA-seq
datasets. Our classifiers and gene signatures can be con-
sidered for different downstream applications. First, the
classifiers may be used to detect the type of immune
cells in under explored bulk tissue samples profiled using
RNA-seq and to verify the identity of immune cells anno-
tated with low confidence. Second, the gene signatures
could be used to study tumormicro-environments and the
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inter-dependence of immune response with cancer cell
phenotypes, which is emerging to be an important clinical
question.

Methods
Data acquisition
RNA-seq datasets for 15 different immune cell types
including T helper cells, were obtained from ten differ-
ent studies [37–46], which were publicly accessible via
the Gene Expression Omnibus [47]. The list of samples
is provided as Additional file 4: Table S4. The cell types
were divided into two groups: immune cells that include
B cells, CD4+ and CD8+ T cells, monocytes (Mono), neu-
trophils (Neu), natural killer (NK) cells, dendritic cells
(DC), macrophage (Mφ), classically (M1) and alterna-
tively (M2) activated macrophages, and the T helper cells
that include Th1, Th2, Th17, Th0, and Regulatory T cells
(Treg). The goal was to train the gene selection model on
immune cell types, and CD4+ T cell subsets (T helper
cells), separately. If these two groups of cells are ana-
lyzed together, many of the genes that potentially could be
used to discriminate among T helper cell subsets might
be eliminated as they overlap with genes associated with
CD4+ T cells.
In short, a total of 233 samples were downloaded and

divided into two sets of 185 and 48 samples, for immune
cells and T helper cells, respectively. Moreover, immune
cell samples were further divided into 108 training and
77 testing samples. Training and testing numbers for T
helper samples were 31 and 17, respectively. Training and
testing data include samples from all studies. For a verifi-
cation dataset, scRNA-seq data derived from CD45+ cell
samples obtained from breast cancer [24] and melanoma
[23] were used with GEO accession numbers of GSE75688
and GSE72056, respectively.

Data normalization
The expression estimates provided by the individual stud-
ies were used, regardless of the underlying experimental
and data processing methods (Additional file 4: Table S4).
For developing individual gene signatures and cell classi-
fication models, we did not use raw data due to sample
heterogeneity such as different experimental methods and
data processing techniques used by different studies as
well as differences across biological sources. Rather, we
applied a multistep normalization process before train-
ing models. To eliminate obvious insignificant genes from
our data, for immune cell samples, genes with expres-
sion values higher than or equal to five counts, in at
least five samples were kept, otherwise, they were elim-
inated from the study. However, for T helper samples,
due to fewer number of samples, four samples with val-
ues higher than or equal to five counts were enough to
be considered in the study. After first step of filtering,

the main normalization step was used to decrease depen-
dency of expression estimates to transcript length and
GC-content [48, 49]. For all four sets of samples, including
training and testing samples for immune cells and for T
helper cells, expression estimates were normalized sepa-
rately by applyingwithinLaneNormalization and between-
LaneNormalization functions from EDASeq package [50]
in the R programming language (R 3.5.3), to remove GC-
content biases and between-lane differences in count dis-
tributions [50]. After normalization, the second step of
filtration, which was similar to the first step, was applied
to eliminate genes with insignificant expression.

Missing values
In contrast to previous studies that only considered inter-
section genes [51] and to avoid deleting discriminative
genes, we kept genes with high expression as much as pos-
sible. However, for most of genes, values for some samples
were not reported. Hence, to deal with these missing val-
ues, we used an imputation method [52] and instead of
mean imputation we set a dummy constant since mean
imputation in this case is not meaningful and can increase
error. Specifically, we generated a training set for each
group of cell types, by duplicating the original training set
100 times and randomly eliminating ten percent of expres-
sion values. We next set -1 for all these missing values
(both original missing values and those we eliminated) as
a dummy constant because all values are positive and it
is easier for the system to identify these values as noise.
This approachmakes the system learn to neglect a specific
value (-1) and treat it like noise, instead of learning it as a
feature of the samples.

Classifier training and testing
Considering the few number of training samples in com-
parison with the high dimensions (15453 genes in immune
cell samples and 9146 genes in the T helper samples)
and to avoid both over fitting the model and adding
noise to the prediction model, we used regularization
with logistic regression to decrease the total number of
genes and select the most discriminative set of genes. To
perform gene selection, we trained a lasso-ridge logis-
tic regression (elastic-net) model, which automatically
sets the coefficients of a large number of genes to zero
and prunes the number of genes as features of the clas-
sifier. We cross-validated the model by implementing
cv.glmnet function with nfold=10 from glmnet package
[21] in R programming language, using training sets for
both groups of cell types. We normalized the gene expres-
sion values using a log2 transform over training sets to
decrease the range of values that can affect the perfor-
mance of the model (log2(counts+1)). In order to find
the optimal number of genes, we tried seven different
lambdas and tested the results over the testing samples
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(cv.glmnet(family="multinomial", alpha=0.93, thresh=1e-
07, lambda=c(0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001),
type.multinomial="grouped", nfolds=10)). To select the
optimal value for lambda, True-Negative samples were
generated using a bootstrapping approach that randomly
samples testing datasets to create a synthetic dataset
with similar size and complexity but without underly-
ing biological correlation, then we generated ROC curves
and considered original testing datasets as True-Positive
samples.

Developing gene signatures
Genes selected by the classifier models were used as ini-
tial sets to build gene signatures. In this case, we trained
a new binary elastic-net model for each cell type by con-
sidering a certain cell type as one class and all other cell
types as another class. The training and testing samples
used to build gene signatures were the training and test-
ing samples used in developing the classifiers with the
difference being that they only contained the selected
genes. Similar steps including dealing with missing values,
applying log2 and visualization by ROC to select opti-
mal number of genes were applied for each cell type. This
two-step gene selection approach has the advantage that
it eliminates a large number of undiscriminating genes at
the first and finally select few number of genes for each
cell type.

Benchmarking
Fisher exact testing was used for each gene set to charac-
terize true and systematically scrambled data as a measure
of performance of the gene set as a means of distinguish-
ing between cell subtypes. In order to establish negative
control values for determining specificity, a bootstrap-
ping approach was used [53], where data was scrambled
by randomly resampling with replacement expression val-
ues by gene as well as by patient to create a synthetic
dataset with a similar size and complexity of the origi-
nal dataset. The threshold for expression binarization for
Fisher exact testing was selected based on gene expression
histograms of the data to separate the measured expres-
sion from background noise levels, with 2.48 being used
as the threshold (after log2 normalization). One-thousand
iterations (Nboot) were processed and compiled in order
to produce ROC curves with 95% confidence intervals
shaded about the averaged ROC curve for each gene set’s
performance. A bootstrapping approach for generating a
negative control sample is appropriate when a sufficiently
large bootstrap sample (i.e., Nboot ≥ 1000) and the orig-
inal dataset is sufficiently diverse (i.e., Ndata ≥ 30) [54].
The tested gene sets were the logistic regression gene set,
the CIBERSORT gene set [8], the single cell gene set [29],
and the manually curated gene set that had been used
previously [6].

Additional files

Additional file 1: Table S1. Coefficients of immune cell classifier and T
helper cell classifier. Coefficients of immune cell classifier were located in
the first sheet and coefficients of T helper cells were located in the second
sheet. (XLSX 102 kb)

Additional file 2: Table S2. Lambda selection by AUC values. Lambdas
with corresponding calculated AUC. The final column shows the selected
lambdas. (XLSX 79 kb)

Additional file 3: Table S3. Genes in developed gene signature for
immune and T helper cells. Yellow boxes show genes with negative impact
in possibility of being related cell type. (XLSX 14 kb)

Additional file 4: Table S4. Data information used in training models.
The second sheet shows the names that were used in creating the
datasets. (XLSX 78 kb)
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