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Abstract: When used as optical parametric oscillators, CdSiP2 crystals generate tunable 
output in the mid-infrared. Their performance, however, is often limited by unwanted optical 
absorption bands that overlap the pump wavelengths. A broad defect-related optical 
absorption band peaking near 800 nm, with a shoulder near 1 µm, can be photoinduced at 
room temperature in many CdSiP2 crystals. This absorption band is efficiently produced with 
633 nm laser light and decays with a lifetime of ∼0.5 s after removal of the excitation light. 
The 800 nm band is accompanied by a less intense absorption band peaking near 1.90 µm. 
Data from eight CdSiP2 crystals grown at different times show that the singly ionized silicon 

vacancy ( SiV− ) is responsible for the photoinduced absorption bands. Electron paramagnetic 
resonance (EPR) is used to identify and directly monitor these silicon vacancies. 
© 2017 Optical Society of America 

OCIS codes: (160.4330) Nonlinear optical materials; (190.4400) Nonlinear optics, materials; (230.4320) Nonlinear 
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1. Introduction 

Cadmium silicon diphosphide (CdSiP2, or simply CSP) is a rapidly emerging versatile 
nonlinear optical material [1-4]. CSP has the advantage of being a nonoxide crystal with a 
wide transparency range, thus allowing the output of solid-state lasers to be transferred deep 
into the mid-infrared. Compared to the widely used ZnGeP2 crystals, CSP has a higher 
nonlinear coefficient (d36 = 84.5 pm/V), can be pumped at shorter wavelengths (between 1 
and 1.5 µm), and can produce non-critically phasematched output near 6.5 µm [2]. Recently, 
ultrafast optical parametric sources, using CSP crystals and pumped near 1 µm, have 
generated high-repetition-rate picosecond and femtosecond pulses at high average powers 
across the 6-7 µm spectral range [3,5-8]. Improvements in the growth of high quality CSP 
crystals are continuing [2,9-11], and computational studies are exploring electronic, optical, 
and mechanical properties [12,13]. 

Recently, Golden et al. [14] used electron paramagnetic resonance (EPR) to show that 
CSP crystals may contain significant concentrations of native defects. Paramagnetic charge 
states of three vacancies (silicon, cadmium, and phosphorus) and an antisite (silicon-on-
cadmium) were identified. The silicon and cadmium vacancies are acceptors and the 
phosphorus vacancy and the silicon-on-cadmium antisite are donors. CSP crystals are usually 
compensated (with nearly equal concentrations of donors and acceptors) and thus have few 
free carriers at room temperature. Optical absorption bands associated with these donors and 
acceptors are expected to affect the performance of an optical parametric oscillator (OPO). 
When one or more absorption bands overlap the pump wavelength, the maximum output 
power of the OPO will be reduced and thermal lensing will occur. 

In the present paper, we describe the optical absorption bands that are photoinduced in 
CSP crystals at room temperature by 633 nm laser light. A broad band peaking near 800 nm 
with a shoulder near 1 µm is dominant and is accompanied by a less intense band peaking 
near 1.90 µm. A study of eight CSP crystals grown at different times shows that the 
intensities of these photoinduced absorption bands correlate with the intensities of the EPR 

spectrum assigned to singly ionized silicon vacancies ( SiV− ) [14,15]. In the as-grown crystals, 

the majority of the silicon-vacancy acceptors are in their doubly ionized state ( 2
SiV − ) and the 

silicon-on-cadmium antisite donors are also in a doubly ionized state ( 2
CdSi + ). The laser light 

then moves an electron from an acceptor to a donor and forms paramagnetic SiV−  and CdSi+  
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defects. After removing the 633 nm light, the photoinduced absorption bands decay with a 

lifetime of 0.5 s as electrons are thermally released from CdSi+  antisites and return to SiV−  

acceptors (i.e., the initial concentrations of 2
SiV −  acceptors and 2

CdSi +  donors are restored). In 

some of our CSP samples, small absorption bands and SiV−  EPR signals were initially present 
and then grew during the 633 nm exposure. 

2. Experimental details 

CdSiP2 crystals are tetragonal (space group I42d ) and belong to the II-IV-V2 family of 
chalcopyrite materials. Reference [14] provides a detailed description of the structure of the 
CdSiP2 crystals. Undoped single-crystal boules of CdSiP2 were grown at BAE Systems 
(Nashua, NH) using the horizontal gradient freeze method [9]. Small rectangular samples 
with approximate dimensions of 3 × 3 × 5 mm3 were cut from each boule. Growth-run 
numbers (24, 30, 32, 40, 41, 44, 45, and 46) are used to label the eight samples in our study. 
EPR spectra were taken with a Bruker spectrometer operating near 9.40 GHz. Optical 
absorption spectra were obtained with a Cary 5000 spectrophotometer from Varian. Changes 
in the charge states of acceptors and donors were photoinduced at room temperature with 12 
mW of 633 nm light from a cw He-Ne laser. At room temperature, the optical band edge of 
CSP is near 530 nm. 

3. Results 

3.1 Photoinduced optical absorption 

Figure 1(a) shows the optical absorption spectra from a CdSiP2 crystal (sample 46). These 
data were obtained at room temperature using unpolarized light propagating along the [100] 
direction, i.e., the a axis of the crystal. A spectrum was taken before exposure to light (lower 
black curve) and then again during exposure to 633 nm laser light (upper red curve). Figure 
1(b) shows the difference spectrum (i.e., “light on” minus “light off”). The photoinduced 
absorption spectrum in Fig. 1(b) has a primary peak near 800 nm, a shoulder near 1 µm, and a 
smaller peak near 1.90 µm. Similar results were obtained from the other seven samples in our 
study. Figure 1 shows these photoinduced absorption spectra from the set of eight samples. 
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Fig. 1. Optical absorption spectra taken at room temperature from a CdSiP2 crystal. (a) Spectra 
taken before (lower black curve) and during (upper red curve) exposure to 633 nm laser light. 
(b) Difference spectrum showing the photoinduced absorption. (Right side) Difference curves 
for eight CdSiP2 crystals showing the photoinduced absorption produced during illumination 
with 633 nm laser light. Each curve represents “light-on” minus “light-off”. In descending 
order, these are samples 30, 44, 32, 46, 45, 40, 24, and 41. 
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All of the curves in Fig. 1 have nearly the same shape. The intensity ratios of the primary 
band at 800 nm, the shoulder near 1 µm, and the smaller band at 1.90 µm do not vary among 
the eight samples. This suggests a common origin for these photoinduced absorption features. 
Interestingly, these three absorption bands in CSP correspond closely to three bands 
previously reported in ZnGeP2 crystals [16,17]. Polarization properties were not investigated 
in the present study. However, an earlier study of an as-grown CSP crystal by Zawilski et al. 
[9] showed that the band at 1.90 µm is only seen with e-polarized light, while the other more 
intense bands at 800 nm and 1 µm are seen with both e- and o-polarized light. 

3.2 Photoinduced silicon-vacancy EPR spectrum 

Figure 2 shows the EPR spectra obtained at room temperature from sample 30. Trace (a), 
taken before exposure to laser light, has a well-resolved set of lines in the magnetic field 
region from 300 to 370 mT that are due to Mn2+ ions occupying Cd2+ sites. These 
inadvertently present Mn2+ ions do not change charge state during an illumination (i.e., they 
are not photoactive) and any associated absorption bands are not easily observed because of 
weak oscillator strengths. Thus, they are not expected to significantly affect OPO 
performance. Trace (b) in Fig. 2 was taken during exposure to 633 nm laser light. In addition 
to the Mn2+ lines, additional larger features are now present. The difference spectrum (“light-
on” minus “light-off”) in trace (c) clearly shows these new photoinduced EPR signals without 
the interference of the Mn2+ lines. 
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Fig. 2. EPR spectra from a CdSiP2 crystal taken at room temperature with the magnetic field 
along the c axis. (a) Spectrum taken before exposure to 633 nm light. (b) Spectrum taken 
during exposure to 633 nm laser light. (c) Difference spectrum showing the photoinduced 

signals from the silicon-vacancy acceptor ( SiV− ) and the silicon-on-cadmium antisite donor 

( CdSi+ ). Stick diagrams identify the 31P hyperfine lines associated with each defect. 

As seen in trace (c) of Fig. 2, the 633 nm light produces a five-line EPR spectrum from 

singly ionized silicon vacancies ( SiV− ) and a more widely split three-line spectrum from singly 

ionized silicon-on-cadmium antisites ( CdSi+ ). Assignments of these spectra to specific defects 
were made in earlier EPR studies [14,15,18-20], where analysis of resolved hyperfine 
interactions with neighboring 31P nuclei provided the key information. In their doubly ionized 
states, these silicon-vacancy acceptors and silicon-on-cadmium antisite donors are not 
paramagnetic, and thus are not seen with EPR. Also, no optical absorption bands have been 
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associated with the doubly ionized defects. Then, during a 633 nm illumination at room 

temperature, electrons are temporarily moved from acceptors to donors and paramagnetic SiV−  

and CdSi+  defects appear along with optical absorption bands. In trace (c) of Fig. 2, the 

photoinduced concentrations of SiV−  acceptors and CdSi+  donors are approximately the same 
(when the different linewidths are taken into account). These photoinduced EPR spectra in 
trace (c) of Fig. 2 are present, with varying intensities, in all eight of the CSP samples in our 
study. 

3.3 Correlation of optical absorption and EPR spectra 

The EPR spectrum of the silicon vacancy ( SiV− ) in trace (c) of Fig. 2 and the optical 
absorption bands in Fig. 1 were photoinduced at room temperature with 633 nm laser light. 
To explore the possibility of a correlation, data from all eight of our CSP samples were 
examined. In Fig. 3, the intensities of the photoinduced optical absorption bands in Fig. 1 are 

plotted versus the intensities of the photoinduced SiV−  EPR spectra. Small variations in sample 
volume and optical path length were taken into account and all measurements were made at 
room temperature. The data in Fig. 3 show a correlation between the intensity of the 
photoinduced optical absorption at 800 nm and the concentration of photoinduced singly 

ionized silicon vacancies. These results suggest that singly ionized silicon vacancies ( SiV− ) are 
responsible for the optical absorption bands near 800 nm, 1 µm, and 1.90 µm. 

The concentration of singly ionized silicon vacancies in sample 30 was determined to be 
1.4 × 1018 cm−3 by comparing the intensity of the five-line EPR spectrum to that of the Bruker 

standard pitch sample. Concentrations of photoinduced SiV−  centers for the other seven 
samples were determined by comparing the intensity of their EPR signals to that of sample 
30. Estimates of the uncertainties in the absorption coefficients and EPR concentrations in 
Fig. 3 are approximately 5%. 
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Fig. 3. Correlation of the intensity of the photoinduced optical absorption at 800 nm with the 

concentration of the photoinduced singly ionized silicon vacancies ( SiV− ) in the eight CdSiP2 

crystals included in this study. The EPR spectra and the optical absorption spectra were taken 
at room temperature. The solid line is a guide to the eye. 
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3.4 Lifetimes of photoinduced optical absorption and EPR signals 

Further evidence that the singly ionized silicon vacancies ( SiV− ) formed during 633 nm 
illumination are responsible for the photoinduced optical absorption bands in CSP is provided 

by lifetime measurements. As shown in Fig. 4, the absorption at 800 nm (red line) and the SiV−  
EPR signal (black line) decay with nearly identical rates at room temperature, after the 633 
nm laser light is removed. Data were separately taken in kinetics modes while monitoring the 

absorption at 800 nm and the peak of the EPR signal from the SiV−  acceptor. The 
characteristic lifetime for the decays of the optical and EPR spectra (i.e., the time for a signal 
to reach half of its initial intensity) is approximately 0.5 s. These decay curves represent the 
thermally activated release of electrons from singly ionized silicon-on-cadmium antisites. In 
Fig. 4, the decay curves are not a single exponential. This suggests that retrapping of the 
electrons is significant and the decay curves should be described by second-order kinetics. 
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Fig. 4. The decay of the 800 nm optical absorption (red line) and the EPR spectrum from the 

SiV−  silicon vacancies (black line) in a CdSiP2 crystal. The two spectral features were 

separately monitored after removing the 633 nm laser light. Absorption data are from sample 
30 and EPR data are from sample 46. 

4. Discussion and summary 

In our as-grown CSP crystals, the Fermi level is sufficiently high to allow a majority of the 

silicon-vacancy acceptors to be in their doubly ionized charge state ( 2
SiV − ). At the same time, 

all of the silicon-on-cadmium antisite donors are in their doubly ionized state ( 2
CdSi + ). The 633 

nm laser light then moves electrons from the valence band to antisite donors. Holes generated 
in the valence band quickly become localized at silicon-vacancy acceptors. The net result is to 

form significant concentrations of SiV−  acceptors and CdSi+  donors during illumination (these 
charge states thermally decay with the 0.5 s lifetime once the laser light is removed). 

The ground state of the singly ionized silicon vacancy is responsible for the three 
photoinduced absorption bands observed in Fig. 1(b). The 1.90 µm band is assigned to a 

valence-band-to-acceptor transition with the SiV−  center being the participating acceptor (i.e., 
an electron in the valence band is transferred to the acceptor). In analogy with earlier work in 
ZnGeP2 [16,17], possible models for the bands in the 800 nm to 1.0 µm region of CSP are (1) 

an intracenter transition (ground state to a localized excited state of the SiV−  acceptor) and (2) 
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an acceptor-to-donor transition (an electron moves from the SiV−  acceptor to a donor and 
requires the two defects to be near each other). The intracenter transition could be either the 
800 nm or 1.0 µm band, with the acceptor-to-donor transition being the other band. 

Although the focus of the present paper is on the photoinduced absorption bands, a broad 
and small, yet noticeable, absorption in the 0.6 to 2.5 µm region was present in five of our 
eight CSP samples before exposure to 633 nm light. The shapes of the pre-laser absorptions 
were not determined precisely, but they appear to be similar to the bands shown in Fig. 1(b). 

These five samples also had small SiV−  EPR signals prior to illumination. The presence of 
these absorption bands in as-grown samples (before exposure to laser light) can be explained 
by a slightly lower Fermi level due to either fewer donors or more acceptors. This would 
result in more silicon vacancies initially being in the singly ionized state rather than the 
doubly ionized state. 
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