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Mesothelin promotes epithelial-to-
mesenchymal transition and tumorigenicity
of human lung cancer and mesothelioma
cells
Xiaoqing He1, Liying Wang2, Heimo Riedel3,5, Kai Wang4, Yong Yang4, Cerasela Zoica Dinu4 and Yon Rojanasakul1,5*

Abstract

Background: Lung cancer and pleural mesothelioma are two of the most deadly forms of cancer. The prognosis of
lung cancer and mesothelioma is extremely poor due to limited treatment modalities and lack of understanding of
the disease mechanisms. We have identified mesothelin as a potentially unique therapeutic target that as a specific
advantage appears nonessential in most cell types. Mesothelin (MSLN), a plasma membrane differentiation antigen,
is expressed at a high level in many human solid tumors, including 70% of lung cancer and nearly all
mesotheliomas. However, the role of MSLN in the disease process and underlying mechanisms is largely unknown.

Methods: ShRNA knockdown and overexpression of MSLN were performed in human cancer cell lines and
corresponding normal cells, respectively. Tumorigenic and metastatic effects of MSLN were examined by tumor
sphere formation, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. EMT and CSCs
were detected by qPCR array, immunoblotting and flow cytometry.

Results: MSLN plays a key role in controlling epithelial-to-mesenchymal transition (EMT) and stem properties of
human lung cancer and mesothelioma cells that control their tumorigenicity and metastatic potential. Firstly, MSLN
was found to be highly upregulated in non-small cell lung cancer (NSCLC) patient tissues and in lung carcinoma
and mesothelioma cell lines. Secondly, genetic knockdown of MSLN significantly reduced anchorage-independent
cell growth, tumor sphere formation, cell adhesion, migration and invasion in vitro, as well as tumor formation and
metastasis in vivo. Thirdly, ectopic overexpression of MSLN induced the malignant phenotype of non-cancerous
cells, supporting its role as an oncogene. Finally, mechanistic studies revealed that knockdown of MSLN reversed
EMT and attenuated stem cell properties, in addition to inhibiting tumor growth and metastasis.

Conclusions: These results indicate an essential role of MSLN in controlling EMT and stem cell properties of human
lung cancer and mesothelioma cells. Since EMT is an important process in tumor progression and metastasis, and
MSLN is nonessential in most normal tissue, our findings on MSLN may provide new insights into the disease
mechanisms and may aid in the development of novel targeted therapy for lung cancer and mesothelioma.
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Background
Lung cancer is the leading cause of cancer death in the
United States for both men and women. Estimated new
cases and deaths for 2016 are projected to 224,390 and
158,080, respectively, and account for nearly 27% of all
deaths from cancer [1]. Malignant mesothelioma is one
of the most aggressive forms of cancer with an average
survival period of less than one year after diagnosis [2].
Although smoking rates (a risk factor for lung cancer)
have decreased over the years and asbestos (a major
cause of mesothelioma) usage in construction has been
prohibited, the incidence of lung cancer and mesotheli-
oma is still high, possibly due to their long latency
period of development after initial exposure and the
complexity and diversity of new carcinogens [3, 4].
Despite significant advances in treatment management,
the prognosis of lung cancer and mesothelioma remains
very poor due to limited treatment options and lack of
understanding of the disease mechanisms. Thus, identi-
fying the key underlying molecular mechanisms of
oncogenesis is essential for early detection and treat-
ment of the diseases.
Mesothelin (MSLN) is a membrane-bound protein

with unclear functions. The Mesothelin gene encodes a
69-kDa precursor protein that is cleaved into a 31-kDa
secreted fragment called megakaryocyte potentiating
factor (MPF), and a 40-kDa membrane-bound protein
termed mesothelin (MSLN), which is a glycoprotein an-
chored to the plasma membrane by a glycophosphatidyl
inositol (GPI) domain [5, 6]. MSLN is physically undetect-
able in most normal tissues except mesothelial cells of the
peritoneal and pleural cavities and pericardium. However,
MSLN is expressed at a high level in almost all meso-
thelioma and many solid tumors such as in lung cancer
(60–70%), pancreatic cancer (80–85%), cholangiocarci-
noma (60–65%), ovarian cancer (60–65%), gastric can-
cer (50–55%), colon cancer (40–45%), breast cancer
(25–30%), and endometrial cancer (20–25%) [7]. Because
of its prevalence in cancers, MSLN has recently been
targeted for immunotherapy [7], while the soluble MSLN
fragment has been investigated as a biomarker for cancer
diagnosis [8]. Despite extensive studies of MSLN as a
potential diagnostic and therapeutic target, neither the
physiologic role of MSLN nor its pathological mechanism
in cancer is well defined. In lung cancer, accumulating
evidence indicates that high expression of MSLN is corre-
lated with poor patient’s overall prognosis and relapse-free
survival [9]. Preclinical studies showed that MSLN is in-
volved in cell proliferation, anoikis resistant and survival
[10–12], and its downregulation promotes drug-induced
apoptosis and chemosensitivity [13, 14].
Epithelial to mesenchymal transition (EMT) results in

physiological and phenotypic changes where epithelial
cells acquire a mesenchymal phenotype. They break

down cell-cell and cell-extracellular matrix connections
that facilitate their translocation through the extracellu-
lar matrix to reach areas of new organ formation. Cancer
cells adopt EMT process in the conversion of early stage
tumors into dedifferentiated and more malignant states
[15]. EMT plays a crucial role not only in tumor metas-
tasis but also in tumor recurrence [16–18]. The role of
MSLN in tumor formation and metastasis of lung cancer
and mesothelioma or any role in EMT and cancer stem
cell (CSC) regulation is largely unknown.
In this study, we investigated the role of MSLN in lung

cancer and mesothelioma by evaluating the effects of
MSLN knockdown and overexpression on tumor growth
and metastasis in a mouse model. We also assessed the
consequences of genetically altered MSLN levels on EMT,
the malignant phenotype, and stem properties of human
lung carcinoma and mesothelioma cells. Our results dem-
onstrate the essential role of MSLN in promoting EMT
and stemness, as well as tumor formation and metastasis.

Methods
Patient tumor samples
Human lung tumor tissues were obtained from the Lung
Cancer Biospecimen Resource Network (Charlottesville,
VA, USA). Four adenocarcinoma and six squamous cell
carcinoma specimens with correlated adjacent healthy
tissues were prepared and tested as pairs.

Cell lines and culture conditions
Non-tumorigenic human bronchial epithelial BEAS-2B
cells were cultured in bronchial epithelial basal medium
along with additives from Lonza Corporation (Walkersville,
MD, USA). Human lung carcinoma alveolar epithelial
A549 cells were cultured in Dulbecco’s modified Eagle
medium (DMEM) supplemented with 5% fetal bovine
serum (FBS), 100 units/ml penicillin and 100 μg/ml
streptomycin (Gibco, Gaithersburg, MA, USA). Non-
small cell lung cancer H460 cells were cultured in
RPMI 1640 medium supplemented with 5% FBS and
100 units/ml penicillin/streptomycin. Human pleural
mesothelial MeT5A cells were maintained in M199
medium (Life Technologies, Grand Island, NY, USA)
with 5% FBS, 2 mM L-glutamine, 100 units/ml penicillin/
streptomycin, 1 μg/ml EGF, and 50 μg/ml hydrocortisone.
Human pleural mesothelioma H2052 cells were cultured
in RPMI 1640 medium supplemented with 10% FBS, and
100 units/ml penicillin/streptomycin. All cells used in this
study were obtained from ATCC (Manassas, VA, USA)
and were cultured in a humidified atmosphere of 5% CO2

at 37 °C.

Generation of stable MSLN knockdown cell lines
Stable MSLN knockdown lines of H460 and H2052 cells,
and their respective vector control lines, were generated
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via shRNA lentiviral vectors with four shMSLN or
scrambled shRNA (OriGene Technologies, Rockville,
MD, USA), according to the manufacturer’s instructions.
Transfected cells were selected with 1–5 μg/ml of puro-
mycin. Single clones of shMSLN and shRNA controls
were verified by Western blotting.

Overexpression of MSLN
MSLN expression plasmid, pAdEasy-MSLN-iCre-HA-
Flag (plasmid#31305), was obtained from Addgene
(Cambridge, MA, USA). The plasmid was amplified with
a DNA midi kit (Qiagen, Hilden, Germany). 2 μg of
MSLN plasmid DNA were transiently transfected into
Met5A cells with FuGene HD transfection reagent
(Promega, Madison, WI, USA). Functional assays were
performed 24 h after the transfection.

Cell proliferation
MSLN knockdown and shRNA control cells were seeded
at a density of 1.5 × 104 cells per well in 100 μl media in
a 96-well plate (Fisher, Waltham, MA, USA). After 24,
48, and 72 h, 20 μl of CellTiter 96 Aqueous One
Solution (Promega, Madison, WI, USA) were added to
each well and the cells were incubated at 37 °C for an
additional 3 h. Viable cells cleaved the reagent’s tetrazo-
lium salt to a soluble formazan dye, resulting in a color
change proportional to the number of live cells. Absorb-
ance was measured at 490 nm with a reference wavelength
at 630 nm using a BioTek plate reader (BioTek, Winooski,
VT, USA).

Cell surface area measurements
Cells were stained with CellTracker™ Green CMFDA dye
or CellTracker™ Red CMTPX dye (Thermo Fisher
Scientific, Pittsburgh, PA, USA) and seeded into glass
chambers at the density of 1 × 105/ml. After culturing
for 24 h, the cells were fixed with 4% paraformaldehyde
and imaged by a Nikon Ti Eclipse fluorescence micro-
scope. The surface area of cells was measured using
Image J software (http://imagej.nih.gov/ij/). A minimum
of 200 cells were analyzed for each group.

Soft agar colony formation assay
Control shRNA and shMSLN knockdown cells (2,500
cells) were suspended in 0.5 ml culture medium and
mixed with an equal amount of 0.7% agar to a final agar
concentration of 0.35%. The mixed cell-agar suspensions
were immediately plated onto 6-well plates coated with
0.5% agar in culture medium. Colonies were examined
under a light microscope after 2 weeks of culture.

Tumor sphere formation assay
Tumor sphere formation assay was performed under
non-adherent and serum-free conditions. Briefly, 5,000

cells were suspended in 0.8% methylcellulose-based
serum-free medium (Stem Cell Technologies, Vancouver,
Canada) supplemented with 20 ng/ml epidermal growth
factor (BD Biosciences, San Jose, CA, USA), 10 ng/ml
basic fibroblast growth factor and 5 μg/ml insulin (Sigma-
Aldrich, St Louis, MO, USA) in ultra-low adherent 6-well
plates (Corning Incorporated, Kennebunk, ME, USA).
Cells were cultured for two weeks after which tumor
spheres were examined under a light microscope. In order
to assess self-renewal property of the cells, spheres were
collected by gentle centrifugation, dissociated into single
cell suspensions, filtered and cultured under the same
conditions to form secondary spheres.

Cell migration and invasion assays
Cell migration was determined by using a 24-well
Transwell® unit (Thermo Fisher Scientific, Pittsburgh,
PA, USA) with a polyvinylidene difluoride filter (8-μm
pore size). Cell invasion was assayed by using a BD
Matrigel® invasion chamber (BD Biosciences, Franklin
Lakes. NJ, USA). Briefly, 1.5 × 104 cells per well (migra-
tion) or 3 × 104 cells per well (invasion) were seeded into
the upper chamber of the Transwell® unit in serum-free
medium. The lower chamber was filled with a normal
growth medium containing 5% FBS. Chambers were incu-
bated at 37 °C in a 5% CO2 atm for 48 h. Non-migrating
or non-invading cells in the inside of the Transwell®
inserts were removed with a cotton swab. Cells that
migrated or invaded to the underside of the membrane
inserts were fixed and stained with Diff-Quik (Dade
Behring, Newark, DE, USA). Inserts were visualized and
scored under a light microscope (Leica DM, Deerfield, IL,
USA). The number of migrating and invading cells from
ten random fields were scored.

Pathway specific PCR array
Total RNA from control and MSLN knockdown cells
were isolated using a Qiagen RNA mini kit (Qiagen,
Valencia, CA, USA) and reverse-transcribed into single
stranded cDNA. Differential expression of EMT genes
was analyzed using a RT2 profiler PCR array: EMT Path-
way (Qiagen, Valencia, CA, USA) following the manufac-
turer’s instructions. Data analysis was performed online
at www.SABiosciences.com/pcrarraydataanalysis.php.

Immunoblotting
Cells were washed with PBS and lysed on ice with modi-
fied RIPA buffer containing protease and phosphatase
inhibitor mixtures (Roche Molecular Biochemicals, In-
dianapolis, IN, USA) for 30 min. The lysates were briefly
sonicated and centrifuged at 14,000 × g for 20 min. Cell
lysates (40 μg protein) were fractionated by 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred onto polyvinylidene difluoride
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membranes (Bio-Rad Laboratories, Hercules, CA,
USA). The transfer membranes were blocked for 1 h in
5% nonfat dry milk in TBST (25 mM Tris–HCl, pH 7.4,
125 mM NaCl, 0.05% Tween 20) followed by treatment
with primary antibodies at 4 °C overnight with gentle
shaking. Membranes were washed three times with TBST
for 10 min each, followed by incubation with horseradish
peroxidase-conjugated secondary antibodies for 1 h at
room temperature. Protein bands were visualized using
enhanced chemiluminescence detection reagents from
Millipore (Millipore Corporation, Billerica, MA, USA).
Actin was used as a loading control and the data were
quantified using Image J densitometry software.

Immunohistochemistry staining
Lung and liver tissue sections in paraffin were deparaffi-
nized and rehydrated. Antigens were retrieved with
10 mM sodium citrate solution in a microwave for
20 min. The slides were then blocked with 3% BSA/0.1%
Tween in 1 × PBS blocking buffer for 1 h, and were incu-
bated with anti-human MSLN antibody (Abcam, Cam-
bridge, MA, USA) (1:500) or anti-human mitochondria
antibody (EMD Millipore, Temecula, CA, USA) (1:100)
overnight at 4 °C. After washing with PBS three times,
the slides were incubated with biotinylated secondary anti-
bodies for another hour, followed by ABC reagent (Vector
Laboratories, Burlingame, CA, USA) and detected with a
DAB kit (Vector Laboratories, Burlingame, CA, USA).
After color development, the slides were counterstained
with hematoxylin, dehydrated, and mounted with Per-
mount mounting solution. Images were taken using a light
microscope with Olympus cellSens Dimension software.

Flow cytometric ALDH activity assay
The AldefluorTM kit (StemCell Technologies, Durham,
NC, USA) was used to analyze and isolate the cell popula-
tion with high ALDH enzymatic activity. Cells were
suspended in Aldefluor assay buffer containing ALDH
substrate (BODIPY-aminoacetaldehyde, 1 mmol/l per
1x106 cells) and incubated for 40 min at 37 °C. As a con-
trol, an aliquot of the sample was treated with 50 mmol/l
of the specific ALDH inhibitor diethylaminobenzaldehyde
(DEAB).

Tumor xenograft mouse model
Animal care and experimental procedures described in
this study were performed in accordance with the Guide-
lines for Animal Experiments at West Virginia University
with the approval of the Institutional Animal Care and
Use Committee (IACUC #15-0702). Immunodeficient
NOD/SCID gamma mice, strain NOD.Cg-Prkdcscid
Il2rgtm1Wjl/SzJ (NSG; Jackson Laboratory, Bar Harbor,
ME, USA), were maintained under pathogen-free condi-
tions within the institutional animal facility. Food and

water were given ad libitum. Mice (6/group) were
subcutaneously injected with 1 × 106 cells of H460 or
H2052 with shMSLN stable knockdown or shRNA control
cells suspended in 100 μl of ExtraCel® hydrogel (Advanced
BioMatrix, San Diego, CA, USA). Mice were inspected
daily for any signs of distress such as weight loss, hunch-
ing, failure to groom, and red discharge from the eyes. At
the end of the experiments, mice were euthanized and
tumors were dissected and weighted. Metastatic nodules
were counted from the surface of the intestine, liver, and
lungs. Tumor specimens were cut into 5-μm sections and
stained with hematoxylin and eosin (H&E) to confirm
cancer morphology and metastasis in the organs. All
tissue sectioning and staining procedures were performed
at the West Virginia University Pathology Laboratory for
Translational Medicine.

Statistical analysis
Results are expressed as means ± s.d. from three or more
independent experiments to ensure adequate power
(>80%). Differences between groups were assessed by one-
way analysis of variance (ANOVA) followed by Student’s t
test. For all analyses, two-sided P values of ≤ 0.05 were
considered statistically significant.

Results
MSLN expression in human lung tumor samples and cell
lines
To study the role of MSLN in lung cancer and meso-
thelioma, we first evaluated the expression level of
MSLN in human cancer patients and cell lines. Ten
pairs of human lung cancer samples with adjacent nor-
mal tissue controls were examined by Western blot
analysis. MSLN protein levels were not detectable in
any of the normal tissues, but clearly in 5 out of 10
lung tumor tissues, i.e. sample pair #1, 3, 5, 9, and 10 in
Fig. 1a and b (#1 large cell carcinoma, stage III, #2 large
cell carcinoma, stage III, #3 large cell carcinoma, stage
III, #4 large cell carcinoma, stage II, #5 large cell car-
cinoma, stage IV, #6 large cell carcinoma, stage III, #7
squamous cell carcinoma, stage III, #8 squamous cell
carcinoma, stage III, #9 squamous cell carcinoma, stage
III, #10 adenocarcinoma, stage II). The increase in
MSLN expression in the tested tissue samples ranged
from 2–10 fold over matched controls. We also tested
the expression of MSLN in established human lung
cancer cell lines (H460 and A549) and mesothelioma
cell line (H2052). When compared to normal (non-can-
cer) human lung epithelial cell line (BEAS-2B) and
mesothelial cell line (MeT 5A), expression of MSLN
was highly elevated in the cancer cell lines (Fig. 1c and d),
suggesting a carcinogenic role of MSLN in lung cancer
and mesothelioma.
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MSLN knockdown inhibits the cancer phenotype of
human lung epithelial and mesothelial cells
To determine the functional role of MSLN in lung
cancer and mesothelioma, two MSLN knockdown lung
carcinoma H460 and mesothelioma H2052 cell lines
were generated by stably transfecting the cells with short-
hairpin (sh) RNA against MSLN (shMSLN). A scrambled
shRNA was used to generate vector-transfected control
(shC) cell lines. Several individual, stable clones of the
transfected cells were selected and analyzed for MSLN
expression by Western blotting. Representative knock-
down clones are presented in Fig. 2a. These clones were

analyzed for cell growth, colony formation, and tumor
sphere formation. Figure 2b shows that the MSLN
knockdown (shMSLN) clones exhibited a slower rate of
proliferation than their vector (shC) controls in both
H460 and H2052 cell lines. Soft agar colony formation
assay indicated that the shMSLN cells formed substan-
tially smaller and fewer colonies than the control shC
cells (Fig. 2c and d). Likewise, shMSLN cells formed
smaller and fewer of tumor spheres than control cells
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(Fig. 2e and f ). These results strongly support the pro-
carcinogenic role of MSLN in the tested cell system.
Since tumor sphere formation commonly serves as one
of the indicators of cancer stem-like cell (CSC) forma-
tion, the results of this study also suggest the role of
MSLN in CSC regulation, which is supported by our
subsequent studies.
Morphologically, the shMSLN cells exhibited epithe-

lial morphology and appeared more flat and more ad-
herent to the culture plate than the shC cells, which
displayed a spindle-like shape and were less flat in
appearance similar to their parental lines, (Fig. 3a).
Quantitative analysis of cell surface area by Cell-
Tracker™ Green CMFDA dye or CellTracker™ Red
CMTPX dye labeling and digital imaging indicated that
the shMSLN cells displayed about 20% more surface
area than the shC cells when attached (Fig. 3b). In
order to rule out the possibility that MSLN knockdown
increases cell size thus affecting cell surface area upon
adherence to culture surface, a comparison of cell size
was performed using flow cytometry. As shown in
Fig. 3c, there was no statistical difference in the FSC-A
median between shC and shMSLN groups. To test if
the shMSLN cells might adhere more tightly to the
substrate than control cells, we analyzed their adhesion
property using CellTracker™ fluorescent probes. Green
CMFDA-labeled shC cells and red CMTPX-labeled
shMSLN cells were mixed at equal numbers and seeded
onto a 24-well culture plate. After a 3-h incubation
period, unattached cells were rinsed out and attached
cells were visualized and quantified by fluorescence mi-
croscopy. As depicted in Fig. 3d and e, the green shC
and red shMSLN cells were comparable in number at
the beginning of the experiments. However, after rins-
ing the red shMSLN cells outnumbered the green shC
cells by approximately 2–3 fold, indicating that they
were more tightly bound to the substrate than the con-
trol cells. This result implies that MSLN knockdown
cells are more epithelial-like and likely to localize in the
primary tumor as compared to control cells which are
more mobile and likely to metastasize to other tissues.
Experiments to assess the motility of MSLN knock-
down cells using Transwell® assays showed that the
shMSLN cells were indeed less migratory and less inva-
sive through extracellular matrix than the control shC
cells (Fig. 3f-i).
To support the above findings, we performed gene over-

expression experiments comparing the effects of MSLN
overexpression on anchorage-independent growth, migra-
tion, and invasion in non-cancerous MeT5A mesothelial
cells. The results showed that the control MeT5A cells
formed no or very few small colonies in soft agar,
whereas the MSLN overexpressing cells (MeT5A/
MSLN) formed multiple large colonies (Fig. 4,a-c). Cell

motility studies also showed that the MSLN overex-
pressing cells were more migratory and invasive than
the control cells (Fig. 4d-g). Together, these findings
support the tumorigenic/metastatic role of MSLN in
the tested cell systems.

MSLN promotes tumorigenesis and metastasis in vivo
To verify the in vitro observations, we conducted in
vivo experiments assessing the effects of MSLN
knockdown on tumor formation and metastasis using
a xenograft mouse model. MSLN knockdown
(shMSLN) and control (shC) mesothelioma cells were
injected into NSG mice subcutaneously, and tumor
formation and metastasis were determined. Figure 5a,
b, and c) shows that while the control shC mice devel-
oped faster and larger tumors, the shMSLN mice
formed substantially smaller tumors. The shMSLN
mice also formed fewer numbers of metastatic nodules
at distant sites, which were abundant in shC mice
(Fig. 5d). The metastatic nodules were observed in the
liver and lungs of all mice in the shC group, whereas
only one in six mice in the shMSLN group developed
such nodules. Histopathological analysis of liver and
lung tissue sections from the shC and shMSLN mice
confirmed this finding (Fig. 5e). Immunohistochemis-
try staining of the liver and lung tissue sections with
anti-human MSLN antibody confirmed that the tumor
nodules were of human origin (Fig. 5f ). Tumor area
analysis of the tissue sections revealed a substantial re-
duction in liver and lung tumors in the shMSLN
group compared to the shC group (Fig. 5g).

MLSN regulates the expression of multiple EMT genes
and controls cancer stem cell trait
It has been proposed that cancer cells undergo EMT
during tumor progression and metastasis, in which
they lose epithelial characteristics and acquire invasive
properties and stem features [19, 20]. Cancer stem
cells are thought to be generated from EMT as a key
driver of tumor growth, metastasis, and relapse. To in-
vestigate the mechanisms of MSLN-driven tumorigen-
esis and metastasis, an EMT pathway specific PCR
array was employed to identify potential driver genes.
Eighty four key genes known to be important in EMT
regulation were investigated in shMSLN and shC cells
(Fig. 6a). Knockdown of MSLN strongly affected the
expression of several EMT pathway specific genes, in-
cluding 8 epithelial differentiation-related genes which
were upregulated, and 6 growth factor related genes
which were downregulated, all at least 2 fold when
compared to shC. CDH1, which encodes epithelial
cadherin (E-cadherin), an epithelial specific protein
controlling cell-cell adhesion [21], was upregulated by
28.5 fold, whereas CAV2 which encodes caveolin-2, a
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potent tumor suppressor controlling lipid metabolism,
growth, and apoptosis [22], was upregulated by 9 fold
in shMSLN cells. Likewise, MITF, which encodes
microphthalmia-associated transcription factor, also

known as class E basic helix-loop-helix protein 32
(bHLHe32), was upregulated by 26 fold. MITF has
been reported to be an important factor in controlling
mesenchymal to epithelial transition [23]. Other genes
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that were upregulated include NUDT13 or nudix-type
hydrolase 13, and OCLN which controls epithelial
tight junctions [24]. On the other hand, a number of
oncogenes and growth factors were downregulated in
shMSLN cells. For example, TWIST, a key transcription

factor regulating EMT [24], was downregulated 13 fold,
as other factors including EGF, FN1 and snail1, which
control tumor growth and stemness, and were re-
duced by 3–7 fold. The pathway specific PCR results
were verified by Western blotting, which confirmed
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that MSLN knockdown upregulated the epithelial
markers (E-cadherin and caveolin-2) and downregu-
lated stem cell/EMT markers (twist, snail, slug, and
ABCG2) (Fig. 6b).
Aldehyde dehydrogenase (ALDH) has frequently been

used as a CSC marker, and its high activity has been asso-
ciated with self-renewal and drug resistant phenotypes of

cancer cells [25, 26]. Flow cytometric analysis of ALDH
activity by Aldefluor® assay revealed that knockdown of
MSLN significantly reduced the ALDH activity of lung
carcinoma (H460) and mesothelioma (H2052) cells (Fig. 6,
c and d). Furthermore, analysis of ALDH activity-high and
ALDH activity-low cells after flow cytometry sorting
showed that the ALDH high cells expressed a higher level
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of MSLN and were more resistant to anoikis (detachment-
induced cell death) as compared to the ALDH low cells
(Fig. 6e and f). These results suggest that the regulation of
EMT and CSC related genes may underlie the pro car-
cinogenic mechanism of MSLN.

Discussion
Although MSLN appears to be non-essential in normal
tissues since MSLN knockout mice exhibit no detectable
malfunction in tissue development, reproduction, and
blood cell count [27], clinical studies have shown that
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high MSLN expression correlates with tumor aggres-
siveness in many solid tumors [7]. Consistent with
previous studies, our presented results indicate an up-
regulation of MSLN in human lung tumor tissues and
in lung carcinoma and mesothelioma cell lines. Knock-
down of MSLN in these cell lines reversed their malig-
nant phenotype as indicated by soft agar colony
formation, tumor sphere formation, and cell migration
and invasion assays (Figs. 2 and 3) as well as tumor
formation in animals (Fig. 5). In non-cancerous cells,
overexpression of MSLN promoted a malignant pheno-
type as indicated by anchorage-independent growth and
cell migration and invasion assays (Fig. 4). Together, these
results strongly support the general pro-carcinogenic role
of MSLN, which is supported by clinical observations that
show a linkage between MSLN expression and tumorigen-
esis in lung, breast, and pancreatic cancers [9, 19, 28, 29].
Metastasis is the primary cause of death in patients

with advanced cancer. In addition to regulating tumor
formation, our data also suggest the role of MSLN in
controlling metastasis. Supporting this notion knock-
down of MSLN effectively inhibited liver and lung me-
tastasis (Fig. 5) and migration and invasion of tumor
cells (Fig. 3). Metastasis is a highly complex process,
closely associated with EMT, the phenotypic transform-
ation of well-differentiated epithelial carcinoma into a
mesenchymal-like state. This transformation provides
cancer cells with the ability to breakdown epithelial
cell-cell tight junctions, invade extracellular matrix
basement membranes, and enter the circulation to be-
come circulating tumor cells (CTCs). Previous studies
showed that CTCs possess both EMT and CSC character-
istics [30, 31]. Cells from primary tumors were found to
express a combination of mesenchymal and epithelial
markers, whereas CTCs express predominantly mesen-
chymal markers [32]. Our study showed for the first time
that MSLN regulates EMT, and possibly CTCs and CSCs,
which may be responsible for tumorigenesis and metasta-
sis. Lung cancer (H460) and mesothelioma (H2052) cells
exhibit some degree of mesenchymal and CTC pheno-
types in terms of morphology, basement membrane
attachment, and migratory and invasive activities. Knock-
down of MSLN dramatically changed the morphology of
the cells from a mesenchymal spindle-like shape to
epithelial-like shape, increased their adhesion and spread-
ing on cell culture substrata, and decreased their migra-
tion and invasion (Fig. 3). These phenotypic changes
decreased the likelihood of the cells to exit the tissue and
become CTCs, and to metastasize to other tissues.
PCR array and western blot analyses were used to

characterize EMT and CSC markers in control and
MSLN knockdown cells. The control cells expressed a
high level of mesenchymal and CSC markers, whereas
the shMSLN cells expressed predominantly epithelial

markers (E-cadherin, caveolin, and occludin) and a low
level of mesenchymal and CSC markers (Twist, EGFR,
Snail, Slug, ABCG2, and ALDH activity (Fig. 6). Recent
studies have shown that EMT is a key driver of CSC
formation which controls tumor progression and the
treatment response [16, 32, 33]. The low adherent
(trypsin sensitive) subpopulation of breast and colon
cancer cells exhibited EMT and stem properties with
increased ALDH activity [34]. A cell tracking method
demonstrated a dynamic change from EMT, CTCs to
CSCs and distant metastasis in vivo in pancreatic
cancer [35]. In mesothelioma cells, we present that
knockdown of MSLN reversed the EMT to MET
phenotype and significantly reduced CSC markers and
ALDH activity, which may contribute to the observed
reduction in tumorigenicity and metastasis of the
knockdown cells.
MSLN appears to regulate EMT through multiple

pathways and downstream targets. For example, knock-
down of MSLN promoted the epithelial phenotype by
up-regulating E-cadherin, cytokeratins, claudins, occlu-
din, IL1RN, MITF, MSTIR, and NUDT, and by down-
regulating transcription factors such as Twist, Snail1, as
well as fibronectin, ILK, EGFR, and WNT11 (Fig. 6). E-
cadherin, encoded by CHD1, is a calcium-dependent
cell-cell adhesion glycoprotein. Loss of E-cadherin is
associated with mesenchymal transition and metastatic
activity of cancer cells [36]. Claudins and occludin are
key components of tight junction proteins, which regulate
epithelial/endothelial permeability [37] and directional mi-
gration [38]. Loss of occludin causes increased cell inva-
sion, reduced adhesion, and impaired tight junction
integrity in breast cancer tissues [39]. Cytokeratins are
keratin-containing filaments that preserve cell structure
and cell-cell adhesion. Twist is a key transcription factor
involved in embryogenesis and development and regu-
lates EMT and cell migration [40]. Snail belongs to a
family of zinc-finger transcription factors that is essen-
tial for embryonic development and well-known to in-
duce EMT [41]. The effect of MSLN on EMT may be
cell-line dependent since a previous study by Wang
et al. [11] showed that knockdown of MSLN in H2373
mesothelioma cell line did not affect E-cadherin expres-
sion but decreased β-catenin expression and increased
Slug expression. Our morphological and functional
assays confirmed that knockdown of MSLN in H2052
and H460 cells reversed their EMT phenotypes (Figs. 2
and 3), consistent with our EMT markers expression
data (Fig. 6).
Induction of EMT is a highly complex process and

involves several coordinated networks and signaling
pathways. It is triggered by growth factors, such as
transforming growth factor (TGF)-β, fibroblast growth
factor (FGF), and epidermal growth factor (EGF).
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Binding of these growth factors to their respective
surface receptors activates intracellular effector mole-
cules and subsequently transcriptional activators such
as snail and slug, which regulate functional molecules
of EMT [42]. E-cadherin is a key target of Snail, Twist,
and ZEB family members, and is often downregulated
in aggressive carcinomas as a result of EMT induction
[43]. Downregulation of E-cadherin weakens cell-cell
adhesion, triggers cell migration from the primary
tumor to systemic circulation, and promotes CSC for-
mation and metastasis in distant organs [17, 44]. The
impact of MSLN on several EMT and CSC regulatory
genes that we have observed suggests that MSLN may
act as a master regulator of EMT that controls both
local invasion and distant metastasis.

Conclusions
We provide new evidence for the role of MSLN in EMT
regulation, tumorigenesis and metastasis. Knockdown of
MSLN led to mesenchymal to epithelial transition and less
aggressive behavior of lung carcinoma and mesothelioma
cells. Such knockdown also resulted in a reduction of
EMT and CSC markers and a parallel decrease in tumor

growth and metastasis in animals. Our findings on MSLN,
as schematically summarized in Fig. 7, could aid in the
understanding of lung cancer progression and metastasis.
Because of its importance in EMT and CSC regulation,
MSLN could be a potential therapeutic target for ad-
vanced and recurrent lung cancer and mesothelioma. The
finding that MSLN is nonessential in most tissues in
mouse knockout studies supports its potential as unique
therapeutic target.
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