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Male fertility status is associated with DNA
methylation signatures in sperm and
transcriptomic profiles of bovine
preimplantation embryos
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and Hasan Khatib1*

Abstract

Background: Infertility in dairy cattle is a concern where reduced fertilization rates and high embryonic loss are
contributing factors. Studies of the paternal contribution to reproductive performance are limited. However, recent
discoveries have shown that, in addition to DNA, sperm delivers transcription factors and epigenetic components
that are required for fertilization and proper embryonic development. Hence, characterization of the paternal
contribution at the time of fertilization is warranted. We hypothesized that sire fertility is associated with differences
in DNA methylation patterns in sperm and that the embryonic transcriptomic profiles are influenced by the fertility
status of the bull. Embryos were generated in vitro by fertilization with either a high or low fertility Holstein bull.
Blastocysts derived from each high and low fertility bulls were evaluated for morphology, development, and
transcriptomic analysis using RNA-Sequencing. Additionally, DNA methylation signatures of sperm from high and
low fertility sires were characterized by performing whole-genome DNA methylation binding domain sequencing.

Results: Embryo morphology and developmental capacity did not differ between embryos generated from either a
high or low fertility bull. However, RNA-Sequencing revealed 98 genes to be differentially expressed at a false
discovery rate < 1%. A total of 65 genes were upregulated in high fertility bull derived embryos, and 33 genes were
upregulated in low fertility derived embryos. Expression of the genes CYCS, EEA1, SLC16A7, MEPCE, and TFB2M was
validated in three new pairs of biological replicates of embryos. The role of the differentially expressed gene TFB2M
in embryonic development was further assessed through expression knockdown at the zygotic stage, which
resulted in decreased development to the blastocyst stage. Assessment of the epigenetic signature of spermatozoa
between high and low fertility bulls revealed 76 differentially methylated regions.

Conclusions: Despite similar morphology and development to the blastocyst stage, preimplantation embryos
derived from high and low fertility bulls displayed significant transcriptomic differences. The relationship between
the paternal contribution and the embryonic transcriptome is unclear, although differences in methylated regions
were identified which could influence the reprogramming of the early embryo. Further characterization of paternal
factors delivered to the oocyte could lead to the identification of biomarkers for better selection of sires to improve
reproductive efficiency.
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Background
Mammalian infertility is of concern to both human
couples seeking to establish a family and also in the
dairy industry to meet production demand. In couples
seeking assisted reproductive technology, male infertility
accounts for 40% of all couples’ infertility diagnosis [1],
and it is estimated that genetic abnormalities are present
in about 15% of infertile males [2]. Likewise in dairy
cattle, infertility is a multifactorial problem where re-
duced fertilization rates, low conception rates and a
higher degree of embryonic mortality have become chal-
lenges to improving dairy cattle reproductive efficiency
[3–6]. Though infertility is a complex trait, the study of
the genetic component of sperm is advantageous as it
could be easily screened for biomarkers of fertility and
moreover, the paternal influence on subsequent embry-
onic development is relatively unexplored.
The genetic contribution of sperm in relation to fertility

has been of recent interest across mammalian species. It
is now well understood that, at the time of fertilization,
the spermatozoa delivers more than just paternal DNA,
but rather an entire package including RNAs, transcrip-
tion factors, and cell signaling molecules [7]. Indeed, a
study by Ostermeier et al. [8] was the first to show
through zona-free hamster egg/human sperm penetration
tests that not only were RNAs delivered by sperm, but also
were proposed to have roles in the early zygote. Card et al.
[9] profiled the transcriptome of bull spermatozoa and
identified 6166 transcripts in which about 66% were full-
length transcripts. Transcripts detected within spermato-
zoa in the study included PLCZ1 and CRISP2, both of
which have roles in fertilization. The authors concluded
that full-length transcripts within transcriptionally inactive
sperm could plausibly be translated after spermatogenesis
to have roles in the early development of the embryo.
Several studies have sought to characterize the differ-

ences in sperm RNA between males of differing fertility
[10–15]. In humans, a microarray study detected 5382
transcripts in which 157 transcripts were up- or down-
regulated in sperm of oligozoospermic infertile men
compared to fertile men [12]. The differentially expressed
transcripts were of genes with roles in spermatogenesis,
DNA repair, oxidative stress, and histone modifications.
Similarly, the transcriptome of sperm has been character-
ized for bulls of differing fertility. For example, studies
assessed the mRNA expression of proteins associated with
sperm function in bulls of differing sires conception rate
(SCR) and found several genes correlated with either high
or low fertility bulls [10, 11]. Moreover, a more compre-
hensive microarray analysis study identified 415 tran-
scripts to be differentially expressed between high and low
fertility bulls, where the population of transcripts in low
fertility sperm was deficient in transcriptional and transla-
tional factors [15]. Collectively, these studies suggest that

the transcriptome is drastically different between sires of
high and low fertility, and the presence of certain
transcripts is associated with infertility. Although several
transcripts are associated with fertility status, the effect of
the delivery of these transcripts at fertilization to the
oocyte and their roles in early embryonic development is
not well understood.
Sire fertility has been evaluated in terms of physical

quality parameters, including motility and morphology
as well as the RNA profile associated with a given fertility
index. While the sperm transcriptome has been character-
ized across sire fertility indices, previous studies have not
determined whether the embryonic transcriptome is influ-
enced by the “RNA package” delivered by sires of differing
fertility status at the time of fertilization. We hypothesized
that bulls of differing fertility will have different DNA
methylation signatures and will affect not only the devel-
opment of the early preimplantation embryo, but also the
transcriptome of the embryo. Here, we first aimed to
assess whether embryo morphology and development, in
terms of fertilization and blastocyst rate, differed between
embryos derived from high and low fertility sires. The sec-
ond aim was to characterize the embryonic transcriptome
of embryos derived from high and low fertility sires to
determine whether the sire’s fertility has a genetic effect
on the embryo and to potentially identify differentially
expressed genes. The third aim was to characterize DNA
methylation signatures of bulls differing in their fertility
status. Utilizing an in vitro fertilization (IVF) system, em-
bryos were generated from either a high or low fertility
sire allowing for the analysis of the paternal influence on
the embryonic transcriptome. Understanding how the
preimplantation embryonic transcriptome may be im-
pacted by paternal factors could facilitate the identification
of paternal RNAs, microRNAs and transcription factors
that drive embryonic development. These factors attrib-
uted to the paternal genome may be implicated in “differ-
ential fetal programming”, and could serve as biomarkers
of bull fertility.

Methods
Bull selection
Sires were chosen based on extreme SCR which is de-
fined as a percent increase or decrease in conception
rate for a given sire relative to the herd’s average. The
SCR is an evaluation performed on bulls with greater
than 300 mating records within the last 4 years across a
minimum of 10 herds (https://aipl.arsusda.gov/reference/
arr-scr1.htm). Semen from 12 bulls was donated by
Genex Cooperative, Inc., where six bulls were deemed as
high fertility bulls and six were deemed as low fertility
bulls. The bulls selected represent the extreme sires for
the SCR measure within the company’s marketed Holstein
sire pool. The measure of SCR and corresponding percent
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accuracies were as follows: high fertility sires were 5
(97%), 4.1 (93%), 3.9 (95%), 3.8 (95%), 3.7 (97%), 3.4 (99%)
whereas the low fertility sires were -2.3 (81%), -2.7 (72%),
-3.8 (94%), -3.9 (86%), -5.3 (78%), -7.5 (90%).

In vitro production of embryos
IVF experiments were previously described by Khatib
et al. [16] and Driver et al. [17], and here are described
in brief. Ovaries were purchased from Applied Repro-
ductive Technology, LLC (Monona, WI) and transported
in saline solution held at 39° Celsius. These ovaries were
obtained from a slaughterhouse where the majority of
cows processed at the time of collection were of the
Holstein breed. The antral follicles were aspirated for
cumulus-oocyte complexes (COCs). To minimize a dam
effect, recovered COCs from all ovaries were pooled to-
gether for each experiment. The COCs were then washed
in Tyrode's albumin lactate pyruvate (TALP)-Hepes
medium and transferred in groups of 10 into a 50 μl drop
of M-199 medium supplemented with gonadotropins
(3 μg/ml each of FSH and LH) estradiol, 25 μg/ml of gen-
tamicin sulfate, 0.22 mM sodium pyruvate, and 10% fetal
bovine serum. The COCs were then incubated at 39 ° C,
95% humidity and 5% carbon dioxide for 24 h.
Following oocyte maturation, groups of 10 COCs were

washed once in TALP-Hepes. Each cohort was placed into
a 44 μl drop of fertilization medium consisting of IVF-TL
(Specialty Media, Phillipsburg, NJ) supplemented with
0.22 mM sodium pyruvate, 25 μg/mL gentamicin sulfate
and 6 mg/ml essentially fatty acid-free bovine serum albu-
min (FAF-BSA; Sigma-Aldrich, Catalog No. A-8806). It is
important to note that prior to fertilization, COCs from
each maturation culture plate were divided between two
fertilization culture plates in order to randomize the
oocyte population prior to fertilization. These fertilization
plates were then fertilized with frozen-thawed semen by
either a high fertility or low SCR bull, where a total of
150–350 oocytes per bull were fertilized per IVF replicate.
Semen was prepared using a Percoll discontinuous
gradient as described by Parrish et al. [18], and adjusted to
a final concentration of one million/ml. Oocytes were co-
cultured with sperm (day 0) in fertilization medium
supplemented with heparin and PHE. Once fertilized, the
presumptive zygotes were incubated for 20 h. Following
incubation, the zygotes were stripped of their cumulus
cells, washed once in TALP-Hepes medium and placed in
groups of 25 per 50 μl drop of SOF medium (Specialty
Media) supplemented with 0.22 mM sodium pyruvate,
25 μg/ml gentamicin sulfate, and 8 mg/ml FAF-BSA. Em-
bryos were assessed on day 8 of culture for blastocyst
stage and quality. A total of two biological IVF replicates
were carried out per high/low SCR bull pair, where a pool
of morphologically similar expanded blastocysts derived
from each high and low SCR bull was collected,

respectively, per IVF replicate. According to the embryo
evaluation criteria described by Bo and Mapletoft [19],
blastocysts of stage 7 and quality grades 1 and 2 were col-
lected for each bull. Embryos within pools generated from
three high/low bull pairings were utilized for RNA-Seq
analysis and three additional high/low bull pairings were
utilized for validation of RNA-Seq results by qRT-PCR.
Statistical analysis of development data was performed

in the program R (www.r-project.org/) using mixed
models taking into account the IVF replicate and bull
effect. The significance of the bull effect was tested using
a likelihood ratio test comparing the full model against a
model without the treatment effect, analyzing the re-
sponse variables fertilization and blastocyst rates.

Extraction of RNA from embryos and RNA amplification
Total RNA was extracted from each pool of blastocysts
(n = 46–63) using the RNaqueous Micro-Kit (Life
Technologies, Grand Island, NY) and then underwent
one round of linear amplification using the MessageAmp
II aRNA amplification kit (Life Technologies). Samples
were quantified and quality checked using a Qubit® 2.0
Fluorometer (Life Technologies) and Agilent 2100
Bioanalyzer (Agilent, Santa Clara, CA), respectively.

Library preparation and RNA-Sequencing
Equal amounts of RNA were used to prepare cDNA
libraries using the ScriptSeq™ v2 RNA-Seq Library
Preparation kit (Epicentre, Madison, WI) following the
recommended protocol for the kit. Libraries of cDNA
were then quantified and quality checked using a Qubit®
2.0 Fluorometer (Life Technologies) and Agilent 2100
Bioanalyzer (Agilent), respectively. Libraries were then
sequenced using an Illumina HiSeq 2000 at the University
of Wisconsin-Madison Biotechnology Center.

RNA-Sequencing data analysis
Data analysis was performed by the University of
Wisconsin-Madison Biotechnology Center. Sequencing
reads were trimmed to remove sequencing adaptors and
low-quality bases and were then aligned to the bovine ref-
erence genome UMD 3.1 utilizing the default parameters
of the alignment software STAR v2.4.0j [20]. Quantifica-
tion of expression for each gene was calculated by RSEM
v1.2.16 utilizing the default parameters, where both tran-
scripts per million reads (TPM) and expected read count
were computed [21]. The expected read counts were used
for differential expression analysis using EBSeq v1.1.5 [22],
using the RSEM package and a false discovery rate (FDR)
of 0.05.

Gene expression validation by real-time quantitative PCR
To confirm the differential expression results obtained
by RNA-Seq, gene expression was assessed by qRT-PCR
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in three additional pairs of high/low SCR derived
embryo pools. Total RNA was extracted from each em-
bryo pool (n = 14–54 blastocysts) using an RNaqueous
Micro-Kit- (Life Technologies) and cDNA was generated
using an iScript cDNA synthesis kit (Bio-Rad Laborator-
ies, CA). Equal amounts of cDNA from each pool of
blastocysts were used to generate a pool of cDNA repre-
sentative of embryos derived from high fertility or low
fertility sires. Primers for qRT-PCR reactions were
designed to span exon-exon junctions to minimize amp-
lification of genomic DNA, where the sequences are
listed in Additional file 1: Table S1. The reference gene,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
was used as in our previous work [17, 23, 24] it was
found to be the most stable in blastocyst embryos fol-
lowing a stability test described by Vandensompele et al.
[25]. Primers and cDNA were combined with a SYBR
green mastermix (iQSYBR Green Supermix kit; Bio-Rad
Laboratories, CA) and reactions were carried out using a
BioRad iCycler. Expression data was analyzed using the
2-ΔΔCt method by Livak and Schmittgen [26] to calculate
the fold difference in expression between samples.

Supplementation of antisense gapmer of TFB2M to the
culture media of presumptive zygotes
As a proof-of-concept, the effect of a differentially
expressed gene on embryonic development was assessed
using an antisense oligonucleotide, gapmer, supplemented
to the culture medium of presumptive zygotes. Gapmer
supplementation to media is an effective means to reduce
gene expression as cells effectively take up the antisense
oligonucleotide and specifically target an mRNA for
degradation [27–29]. The gene TFB2M was chosen as a
target as it was more highly expressed in embryos derived
from high fertility sires and expression was validated. The
TFB2M gapmer sequence (5’-ACGGTAAATGGTCTA-3’)
was designed by and purchased from Exiqon, Inc.
(Woburn, MA, USA). Embryos were generated by IVF as
aforementioned. At the time point in which the presump-
tive zygotes were placed into culture media, either 1 μM
gapmer, 5 μM gapmer, or water (vehicle of gapmer;
deemed the control and added at an equal volume as the
gapmer) was supplemented to the medium. On day 8 of
development, fertilization rate and blastocyst rate were
assessed for each of the gapmer supplemented experimen-
tal groups as well as the control. Blastocysts were pooled
and collected for each experimental group. To assess gene
expression following supplementation, total RNA was
extracted, cDNA was generated, and qRT-PCR was car-
ried out utilizing the same methodology as described
above for gene expression validation. Statistical analysis
was performed using the program OriginLab (OriginLab
Corporation, Northhampton, MA) in which a paired t-test

was used to compare the ΔCt values between blastocyst
samples for each gene.

Extraction of DNA from sperm
DNA was extracted using a phenol:choloroform extraction
method [30]. Extracted DNA was quantified and quality
checked using a Nanodrop ND-1000 spectrophotometer
(Nanodrop Technologies, Montchanin, DE). Equal amounts
of DNA for each bull were used to generate three respective
pools for high and low fertility bulls (n = 2 bulls per pool,
with the exception of 1 high pool of n = 1 bull).

Affinity purification of methylated DNA regions
To capture differences in methylated regions, a methyl
binding domain capture assay combined with next gen-
eration sequencing method was employed. A MethylCap
kit (Diagenode, Denville, NJ) was used to purify methyl-
ated DNA based on high-affinity binding of methyl
domain binding proteins. In brief, DNA was dissolved in
GenDNA TE to a concentration of 0.1 μg/μl. DNA was
then cut into 300–500 base pair fragments using a
Bioruptor® sonicator (Diagenode) and was then run on
an agarose gel to confirm the presence and size of the
fragmented DNA. Fragmented DNA was captured per
kit recommendation using magnetic beads to wash un-
bound DNA followed by elution. Eluted DNA was puri-
fied using a MiniElute PCR Purification kit (Qiagen,
Germantown, MD). To assess the enrichment of methyl-
ated DNA, qRT-PCR was used where duplicates of each
sample were tested using the iCycler iQ PCR system
(Bio-Rad, Hercules, CA). The relative fold enrichment
levels were calculated following the 2-ΔΔCt method; which
compares enrichment values of a positive (TGFB3) to a
negative (MON2) primer pair, between experimental and
input DNA samples.

Library preparation and MBD-Sequencing
To prepare the sequencing libraries, fragmented DNA
was end repaired using a NEBNext® End Repair Module
(NEB, Ipswich, MA) followed by addition of a 3’A to the
repaired end of DNA using DNA Polymerase I, Large
(Klenow) Fragment (NEB). Paired Solexa adaptors were
ligated to the repaired ends of DNA by T4 ligase
(Promega, Madison, WI). The DNA was loaded onto an
agarose gel, and DNA fragments containing adaptors
were selected that were between 200 and 500 bp in size.
PCR of the selected DNA fragments was performed
using Phusion® Hot Start High-Fidelity DNA Polymerase
(NEB) to enrich the purified DNA. The library DNA was
quality checked and then quantified using a Qubit
Fluorometer (Life Technologies). Cluster generation and
sequencing were then performed using a Solexa 1G
Genome Analyzer (Illumina Inc., San Diego, CA) follow-
ing the manufacturer’s recommendations.
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MBD-Sequencing analysis
FASTQ sequence files were examined for quality as-
surance. After a satisfactory quality confirmation, files
were aligned to the bosTau6 (Bos_taurus_UMD_3.1)
reference genome obtained from the UCSC browser
(http://genome.ucsc.edu). For the alignment process,
Bowtie (Ultrafast, memory-efficient short read aligner)
was employed [31]. Original fragments consisted in 50 nu-
cleotides although the first 10 5’ and 5 3’ nucleotides of
each segment were trimmed for high sequence accuracy.
Data manipulation, filtering, and format transformation
have been achieved employing a combination of proce-
dures imbedded in SAMtools and BEDtools [32, 33].
Duplicated reads have been removed applying the bRemo-
veDuplicates option included in the DiffBind package.
This action would influence downstream analyses and is
critical for the method that we adopted.
The peak-calling step was performed independently in

each sample using Model Based Analysis of ChIP-Seq
(MACS) [34]. The software empirically models the shift
size of the tags and uses a dynamic Poisson distribution
to account for local bias, generating more reliable esti-
mates. The differentially methylated regions (DMRs)
have been detected with the DiffBind package imple-
mented in R [35, 36] which computes differentially
bound sites using affinity data. The input for DiffBind
consists of the set of peaks previously identified in
MACS and the bam files containing aligned reads for
each sample. The program generates a matrix with the
consensus peaks; which have been determined from a
“minimum overlap” of 3 (the number of replications in
the experiment). After setting a contrast between condi-
tions, DiffBind runs an edgeR analysis, which is an
empirical Bayes method [24]. For normalization, the
method trimmed mean of M-values (TMM) that sub-
tracts the controls reads and considers the effective
library size (reads in peaks), was applied. The threshold
for DMR calling was set to < 0.1 FDR. In order to anno-
tate the DMRs, the software ChIPpeakAnno has been
implemented [37]. ChIPpeakAnno specifies the location,
overlaps, relative position and distances for the inquired
feature. The annotation information corresponds to bos-
Tau6, the genome used for alignment.

Validation of differentially methylated regions by bisulfite
conversion and sequencing
DNA was extracted as described above from an
additional semen straw for each high and low SCR bull.
DNA was pooled for high and low fertility bulls, respect-
ively, and each pool was bisulfite converted utilizing an
EZ DNA Methylation-Lightning™ kit (Zymo Research,
Irvine, CA). As per kit recommendation, a total of
500 ng of DNA per pool were used as input for bisulfite
conversion. The bisulfite converted DNA was amplified

by PCR for 35 cycles using primers listed in Additional
file 2: Table S2. The amplified product was used as a
template for a second PCR amplification reaction of
35 cycles. The PCR product was gel purified using an
illustra™ GFX™ PCR DNA and Gel Band Purification kit
(GE Healthcare Biosciences, Pittsburgh, PA). The puri-
fied products were ligated into the pGEM-T Vector
(Promega), and transformed into JM109 competent cells
(Promega). White bacterial colonies, indicating trans-
formation of the vector, were collected and screened for
the DMR of interest by PCR. The PCR products were
then Sanger sequenced to analyze the bisulfite-converted
sequences. The number of clones analyzed were 31 and
39 from high and low fertility sires, respectively, for
CHR19, and similarly 28 high fertility and 30 low fertility
derived clones were analyzed for CHR12. The methyla-
tion status was determined from each clone and methy-
lation level was summed for all clones for high and low
sires to determine the percent of methylated bases at
each CpG site. Statistical analysis was performed using
Fisher’s Exact Test with the software program R.

Results
Development and morphology are similar between
embryos generated from high and low fertility sires
To assess whether morphology and development are
different between embryos generated from high and low
fertility sires, IVF was carried out in two biological repli-
cates for each high and low bull pair for a total of six
pairs. Herein, a bull pair will refer to one IVF replicate
in which oocytes were randomly split and fertilized with
either a high or low SCR sire. In terms of preimplanta-
tion embryonic development, embryos that were fertil-
ized with either a high or low SCR sire did not differ in
fertilization rate or blastocyst rate (Table 1). The cleav-
age rate, calculated as the percentage of oocytes that
fertilized and cleaved, was comparable (P > 0.05) be-
tween all SCR sires as 70.28% of the oocytes fertilized
with a high SCR bull cleaved and 72.74% of the oocytes
cleaved following fertilization with a low SCR bull.
Similarly, the blastocyst rate or the percentage of cleaved
embryos that developed to the blastocyst stage was not
significantly different between high and low SCR bulls as
the rates were 29.41% and 27.01%, respectively. Notably,

Table 1 Development of embryos derived from high and low
SCR sires

Total oocytes Mean cleavage rate Mean blastocyst rate

High 2962 70.28% (50.7–84.3) 29.41% (12.7–42.1)

Low 2795 72.74% (61.9–83.6) 27.01% (13.1–36.6)

Embryonic development is represented by the mean rate and the range across
2 IVF replicates per bull, with n = 6 high and n = 6 low SCR bulls. No significant
differences were observed for any development measure between high vs.
low fertility sires
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the blastocysts derived from high and low SCR bulls
were of similar morphology. Blastocysts of stage 7,
grades 1 and 2 as morphologically described by Bo and
Mapletoft [19] were collected for further transcriptomic
evaluation.

Characterization of the embryonic transcriptome by
RNA-Seq
Given that morphology and development rates were
similar between embryos produced from high and low
fertility bulls, it was intriguing to test whether or not the
transcriptomic profiles of these embryos were different.
The embryonic transcriptome was profiled at the blasto-
cyst stage through RNA-Seq. A summary of the read
alignments is illustrated in Table 2. The percent of
uniquely mapped reads from embryos derived from high
fertility sires ranged from 47.96 to 63.88% and was com-
parable to the mapped reads from embryos derived from
low fertility sires which ranged from 50.86 to 57.95%. A
small portion of reads in embryos derived from both
high and low fertility sires mapped to multiple loci or
were too short to align (Table 2). The greatest propor-
tion of uniquely mapped reads aligned to exons for
embryos derived from high (45.64%) and low (50.10%)
fertility sires (Additional file 3: Table S3). Across all
samples, the transcripts mapped to a total of 16,710
genes. Differential expression analysis was performed to
determine if the embryonic transcriptome differed be-
tween those fertilized with sires of varying field fertility.
A total of 98 genes (FDR < 1%) were found to be differ-
entially expressed between embryos derived from high
and low fertility sires, where 65 genes were more highly
expressed in high SCR derived embryos and 33 genes
were more highly expressed in low SCR derived em-
bryos. At an FDR < 5%, the number of differentially
expressed genes increased to 227, where 135 were more
highly expressed in embryos derived from high fertility
sires and 92 were more highly expressed in embryos de-
rived from low fertility sires (Additional file 4: Table S4).
Table 3 includes a subset of the most significantly differ-
entially expressed genes with an FDR < 1% that are
upregulated in embryos derived from either high or low

fertility sires. These results suggest that transcriptomic
differences in embryos arise between those derived from
high or low field fertility sires.

Gene expression validation by quantitative real-time PCR
To confirm the RNA-Seq results, gene expression was
tested in three additional pairings of embryos derived
from high and low fertility sires. Expression of the genes
CYCS, TFB2M, MEPCE, EEA1, and SLC16A7 was
assessed by qRT-PCR (Fig. 1). For CYCS, TFB2M, and
MEPCE, all of which were more highly expressed in em-
bryos derived from high fertility sires in the RNA-Seq
analysis, the fold changes in expression in the biological
replicates were 3.09 ± 0.01 SE, 5.32 ± 1.27 SE, and 1.37 ±
0.02 SE, respectively. The genes EEA1 and SLC16A7,
which were more highly expressed in embryos of low
fertility sires in the RNA-Seq data, were also confirmed
by qRT-PCR as the fold changes in expression were
higher in low SCR derived embryos, 1.49 ± 0.17 SE and
2.34 ± 0.40 SE, respectively.

Antisense TFB2M oligonucleotide reduces embryonic
development
To further assess the roles of differentially expressed
genes in embryonic development, the TFB2M gene was
selected as a proof-of-principle for functional analysis
because it was a highly expressed gene in embryos
derived from high fertility sires and expression was
validated by qRT-PCR analysis. The gene was silenced at
the zygotic stage using antisense oligonucleotide gapmer
technology. The gapmer oligonucleotide is comprised
of modified locked nucleic acids (LNA) which flank
DNA monomers specific to a target mRNA of interest
[27, 28]. Gene silencing is mediated when the gapmer
DNA monomers bind to the target mRNA and upon
the formation of the DNA:RNA heteroduplex, RNase
H will cleave the RNA target strand [27, 28]. Cell culture
experiments have demonstrated effective uptake of gap-
mers from culture media in the absence of transfection
agents and efficient repression of gene expression
within cells [29, 38]. Following supplementation of
1 μM TFB2M-specific gapmer to the culture media of

Table 2 RNA-Sequencing read alignments for embryos derived from high and low fertility sires

Bull pairs Number of
input reads

% of uniquely
mapped reads

% of reads mapped
to multiple loci

% of reads
unmapped: too short

% of reads
unmapped: other

Pair 1 High 36,014,608 63.65 13.98 18.51 3.85

Low 20,458,553 57.95 14.16 17.42 10.46

Pair 2 High 16,598,719 47.96 15.75 28.05 8.23

Low 11,904,976 50.86 12.51 29.61 7

Pair 3 High 54,099,488 63.88 10.80 24.32 0.99

Low 12,870,461 54.15 15.31 21.68 8.84

Sequencing data was generated from three pairs of IVF experiments utilizing a high and low SCR sire for each experiment
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Table 3 Differentially expressed genes between embryos of high and low fertility sires. A subset of 20 enriched genes for each
fertility status ranked by the highest to lowest fold change in expression; all detected at an FDR < 1%

Gene symbol Gene name Fold change P-value

Highly expressed in embryos of high fertility sires

ENSBTAG00000040367 36.63 4.7e−6

POLL Polymerase (DNA directed), lambda 14.86 6.3e−5

CYCS Cytochrome C1 somatic 13.85 2.1e-.9

MEPCE Methylphosphate capping enzyme 8.95 7.9e−5

TFB2M Transcription factor B2, mitochondria 7.71 6.3e−14

RPS27 Ribosomal protein S27 7.68 4.7e−10

APOM Apolipoprotein M 7.57 3.2e−8

ATP6V0E1 ATPase H+ transporting, lysosomal 9 kDa, V0 subunit e1 6.78 1.3e−11

SLC25A14 Solute carrier family 25 (mitochondrial carrier, brain) membrane 14 6.32 8.5e−7

NDUFA1 NADH dehydrogenase (ubiquionone) 1 alpha subcomplex, 7, 14.5 kDA 6.31 1.3e−11

SFXN4 Sideroflexin 4 5.55 1.3e−7

RPS20 Ribosomal protein S20 5.53 2.3e−7

RPS11 Ribosomal protein S11 5.39 1.3e−7

PSMA1 Proteasome (prosome, macropain) subunit, alpha-type 1 5.25 8.0e−9

HCFC1R1 Host cell factor c1 regulator (XPO1 dependent) 5.25 1.8e−5

DDT D-dopa-chrome tautomerase 5.17 4.8e−9

EBP Emopamil binding protein (sterol isomerase) 5.05 9.3e−10

GABARAP GABA(A) receptor-associated protein 4.97 9.9e−11

TMSB10 Thymosin beta 10 4.88 6.2e−8

ENSBTAG00000006383 4.86 1.2e−9

Highly expressed in embryos of low fertility sires

ENSBTAG00000046713 205.21 1.0e−6

TTC37 Tetratricopeptide repeat domain 37 130.66 7.5e−5

ENSBTAG00000048042 35.43 5.9−5

ALKBH2 alkB, alkylation repair homolog 2 16.90 4.3e−5

ENSBTAG00000021503 8.30 1.0e−5

PHF14 PHD finger protein 14 7.49 5.3e−5

SREK1 Splicing regulatory glutamine/lysine-rich protein 1 6.19 2.4e−7

SLC16A7 Solute carrier family 16 (monocarboxylate transporter), member 7 5.73 9.2e−5

EEA1 Early endosome antigen 1 5.62 4.4e−5

BDP1 B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIb 5.36 4.6e−5

ANKRD12 Ankyrin repeat domain 12 4.98 5.7e−7

ENSBTAG00000011789 4.93 4.0e−5

SMC4 Structural maintenance of chromosome 4 4.86 9.9e−9

AKAP9 A kinase (PRKA) anchor protein 9 4.62 3.4e−5

HMGN5 High mobility group nucleosome binding domain 5 4.57 2.0e−5

ENSBTAG00000032360 4.55 3.6e−9

GADD45A Growth arrest and DNA-damage inducible, alpha 4.51 7.7e−5

SURF2 Surfeit 2 4.33 5.1e−5

CCDC186 Coiled-coild domain containing 186 4.31 4.2e−5

NOL7 Nucleolar protein 7, 27kDA 4.28 5.9e−7
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zygotes, the blastocyst rate of supplemented embryos was
significantly reduced by 10.92% (P < 0.001), which was
about 70% of the control embryos (Table 4). Similarly,
blastocyst rate was reduced by 9.58% with 5 μM gapmer
(P < 0.05) in comparison to control non-supplemented zy-
gotes (Table 4). Further examination of the mRNA expres-
sion revealed a significant reduction in gene expression
using 1 μM TFB2M gapmer supplemented blastocysts in
comparison to controls (P < 0.05; Fig. 2). The relative
expression of the 5 μM TFB2M gapmer was also greatly
reduced and tended towards significance, however,
expression was variable across the 2 IVF replicates
(P = 0.11; Fig. 2).

Evaluation of sperm DNA methylation by MBD-Sequencing
MBD-Sequencing (MBD-Seq) was performed for three
pools derived from high fertility spermatozoa and three
pools derived from low fertility spermatozoa, where n = 2
bulls per pool and fertility status was based on SCR. Se-
quencing of DNA regions enriched in methylation sites
resulted in a mean of 44,594,169 reads and 52,000,562
reads for high fertility and low fertility pools, respectively.
Reads were then aligned to the Bos_taurus_UMD_3.1
reference genome. For all pooled DNA samples, a high
percentage of reads aligned to the reference genome,
where the total aligned reads was 96.98–97.61% for high

pools and 96.27–97.96% for low pools. Figure 3 demon-
strates the binding affinity to methyl domain proteins in
which significant differences were observed for the overall
normalized reads across binding sites between high and
low fertility spermatozoa (P < 0.0001). Overall, a higher
degree of methylation was observed for spermatozoa of
high fertility sires as evident by the greater number of
methylated binding domains.

Analysis of differentially methylated regions
To determine whether the captured methylated regions
differed between high and low fertility sires, analysis of
DMRs was performed. The DMRs width ranged from
250 to 3423 bp, with a mean of 521.97 ± 408.52 bp. The
DMRs were distributed across 23 chromosomes in
which chromosome 5 had the largest number of DMRs
(8/76 or 10.5% of the DMRs) and 7 DMRs were
unmapped to a specific chromosome (Additional file 5:
Figure S1). The DMRs that mapped to unknown regions
warrant further investigation and are likely due to poorly
annotated regions of the reference genome. Considering
the chromosomal length, chromosome 18 had the largest
percentage of DMRs (7.5%) followed by chromosome 5
(6.6%), 12 (6.5%) and 15 (4.6%). Differential methylation
analysis revealed a total of 76, 40, and 8 DMRs at a 10%,
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Fig. 1 Gene expression validation by qRT-PCR. Expression is represented
as the fold change in gene expression in embryos derived from high
SCR compared to low SCR sires. Error bars represent the standard error
of the mean fold change across 3 qRT-PCR replicates

Table 4 Embryonic development following TFB2M gapmer supplementation to presumptive zygotes

Treatment Total oocytes Number of
unfertilized oocytes

Cleavage rate Number of
blastocysts

Blastocyst rate

Control 330 75 77.27%a 93 36.47%a

1 μM TFB2M Gapmer 288 61 78.82%a 58 25.55%b

5 μM TFB2M Gapmer 157 38 75.32%a 32 26.89%b

Differing superscripts within a column denote statistical significance (P < 0.05; Chi-Squared test)

Control TFB2M-
gapmer 1µM

TFB2M-
gapmer 5µM
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Fig. 2 Relative expression of TFB2M in control compared to gapmer
supplemented blastocysts. Expression is relative to control blastocysts.
Error bars represent the standard error of the mean fold change in
expression across n = 3 and n = 2 IVF replicates for 1 μM and 5 μM
gapmer supplemented blastocyst, respectively
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5% and 1% FDR, respectively (raw data is included in
Additional file 6: Table S5). At a 10% FDR, 60 DMRs had
enriched methylation levels in sperm of high fertility sires
and 16 DMRs had enriched methylation levels in sperm of
low fertility sires (Table 5). Figure 4 illustrates the methyla-
tion rate at each DMR (FDR 10%), where overall a higher
level of methylation was observed across spermatozoa of
high fertility sires. Furthermore, principle component
analysis confirmed high similarity between pools of similar
fertility and dissimilarity between high and low pools as
75% of the variance was explained by fertility status
(Additional file 7: Figure S2). Cluster analysis revealed
repeatability across samples and a distinct methylation
signature between high and low fertility spermatozoa.
A total of 25 of the 76 DMRs identified at a 10% FDR

were located within a gene and of these 20 DMRs were
more highly methylated in spermatozoa of high fertility
sires and five DMRs were more highly methylated in

Fig. 3 Binding affinity of reads associated with methyl domain proteins
between high and low SCR spermatozoa

Table 5 MBD-Seq identification of DMRs located within genes identified at a FDR of 10%

Gene Chromosome Region Gene length Position in gene DMR P-value

Start site End site

Enriched in high fertility sires

MMP2 18 23848121–23848499 26,409 19,502 19,880 5.76e−9

PLEX2 4 96843179–96843579 546,350 268,810 269,211 1.15e−8

LOC100848700 12 71321184–71321564 178,963 42,786 43,167 1.05e−7

NXPH1 4 17613149–17613545 374,914 103,807 104,202 1.08e−6

EML6 11 37358428–37358736 287,064 69,783 70,092 1.34e−6

PIP4K2A 13 24034672–24034997 185,017 133,799 134,124 2.39e−6

C5H22orf23 5 110247288–110247609 7926 6034 6356 4.86e−6

CTCF 18 35289322–35289651 45,637 44,126 44,456 5.76e−6

LOC100848700 12 71373062–71373461 178,963 94,664 95,064 7.71e−6

AGBL4 3 9778857–97788873 1,223,677 696,031 696,348 7.98e−6

MAGI1 22 35613754–35614143 641,540 117,528 117,918 8.03e−6

ST8SIA1 5 88297961–88298379 180,249 11,094 11,513 9.73e−6

ANO6 5 35192295–35192666 234,931 135,500 135,872 9.97e−6

LOC100848700 12 71363838–71364138 178,963 85,440 85,741 1.14e−5

AAK1 11 67807683–67808077 164,724 7241 7636 1.30e−5

LOC100848495 24 2838043–2838565 23,590 23,042 23,565 1.44e−5

PIP4K2A 13 24018939–24019300 185,017 118,066 118,428 1.34e−5

PKHD1 23 24204511–24204877 458,865 408,928 409,295 1.68e−5

FGD4 5 77824043–77824292 229,764 220,686 220,936 1.72e−5

Enriched in low fertility sires

ZFYVE28 6 108448662–108452084 98,584 64,266 67,689 2.56e−9

KCNK4 29 43213341–43213911 10,180 5101 5672 6.61e−7

LOC100296550 15 47960292–47960961 2476 3.03e−6

USP40 3 113785622–113786388 89,524 6993 7760 8.86e−6

ASPDH 18 57097376–57098221 3087 529 1375 1.16e−5

NANOS2 18 53852907–53853452 548 23 569 1.98e−5
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spermatozoa of low fertility sires. A greater proportion
of the DMRs located within genes were intronic. For
example, DMRs in the genes MMP2, CTCF, KCNK4,
and ASPDH were located within intronic regions, or
spanned intronic and exonic portions of the gene body.

Validation of differentially methylated regions
To validate the MBD-Seq results, methylation was
assessed by bisulfite conversion of DNA followed by
Sanger sequencing of two DMRs identified by MBD-Seq
analysis. DMRs identified on chromosome 12 (CHR12)
and chromosome 19 (CHR19) were selected as they
represent DMRs that were highly methylated in high
fertility bulls and highly methylated in low fertility bulls,
respectively. Table 6 reports the level of methylation
observed for each CpG site, where 28–39 samples were
analyzed per high and low fertility pools for each DMR.
The CHR12 DMR had a significantly greater number of
methylated CpG sites with 82.1% methylated CpG sites
compared to lower fertility sires where 20.6% of the CpG
sites were methylated (Table 6, P < 0.0001). Compara-
tively, the CHR19 DMR had a significantly higher level
of methylated CpG sites for sperm DNA of lower fertility
sires with 34.0% methylated CpG sites, whereas higher
fertility sires exhibited 20.8% methylated CpG sites within
this DMR (Table 6, P < 0.0001). Overall, the MBD-Seq
results were validated for both DMRs, thus confirming the
observation that sperm DNA of high and low fertility sires
differ in their epigenetic signature.

Discussion
Reproductive performance of sires varies greatly in mam-
mals. However, the influence and roles of the paternal

genetic component on embryonic development are not
well understood. We hypothesized that sires of differing
fertility have different epigenetic signatures that affect not
only embryonic development, but also the embryonic
transcriptome. This study revealed that sire field fertility
status did not affect preimplantation embryonic devel-
opment in terms of both fertilization and blastocyst
rate. In contrast, embryos derived from either a high
or low fertility sire that were of similar morphology
by day 8 of development displayed significant tran-
scriptomic profiles.
Several semen quality parameters such as morphology,

motility, and binding ability have been evaluated with
limited success for in vitro prediction of sire fertility
[39]. Fertility has also been assessed by in vitro develop-
ment, however, there are discrepancies across studies as

Fig. 4 Correlation of DMR methylation levels between pools of high
and low SCR spermatozoa. Each row represents an individual DMR
and each column represents a pool from either high or low fertility
sires. DMRs represented were identified at a FDR of 10%

Table 6 Validation of MBD-Seq Differential Expression

CpG DMR on CHR12
(% methylated)

DMR on CHR19
(% methylated)

High
(n = 28)

Low
(n = 30)

High
(n = 31)

Low
(n = 39)

1 80.8 11.1 0 0

2 90.0 24.0 0 0

3 95.5 9.1 17.2 14.7

4 90.0 25.0 16.2 8.1

5 81.8 25.9 6.9 3.1

6 47.8 3.5 11.1 24.3

7 95.0 18.8 26.7 38.9

8 80.8 13.8 38.5 38.5

9 90.0 5.3 9.7 23.9

10 80.8 26.9 9.7 34.3

11 90.0 35.0 10.0 37.8

12 80.8 10.5 21.4 46.2

13 81.5 37.0 22.6 41.0

14 90.0 70.0 26.7 43.6

15 30.0 43.6

16 23.3 65.8

17 34.5 55.6

18 12.9 32.4

19 3.8 28.6

20 22.6 8.1

21 32.3 40.0

22 43.3 51.3

23 37.9 44.4

Total: 82.1%* 20.6% 20.8% 34.0%*

*Denotes a statistically significant difference (P < 0.0001) between total
methylated CpG sites for a given DMR between high and low fertility
spermatozoa. n = the number of clones sequenced
The DMRs identified on chromosome 12 and chromosome 19 were assessed
for differential levels of methylation by bisulfite conversion followed by Sanger
sequencing
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to whether field fertility measures are correlated with
IVF development [39, 40]. The present study assessed
six pairs of high and low fertility bulls where IVF experi-
ments for each pair were conducted twice, and no differ-
ence was seen in regards to the fertilization or blastocyst
rates between sires of differing SCR. A previous study
assessing 21 bulls based on 56-day non-return rate
(NRR) found a positive correlation between the field fer-
tility measure of NRR and IVF cleavage and blastocyst
rate, however, large variation was also observed across
sires [41]. Moreover, studies by Ward et al. [42] and Al
Naib et al. [40] also found 150 day NRR and 90 day
NRR, respectively, were correlated with cleavage rates.
The present study did not observe a correlation between
cleavage rate (the percentage of total oocytes which
cleaved) and the fertility measure SCR. Lack of differ-
ences in cleavage could be explained by initial
characterization of each bull’s response to heparin and
the ability to capacitate, thereby allowing for optimal
fertilization. However, a former study reported no differ-
ences between bull fertility and heparin concentration
on cleavage rate nor blastocyst rate [43]. Discrepancies
in the association between fertility measures and in vitro
embryo development reported likely can be attributed to
variation in embryo production and analysis methods
across different research groups.
Despite similar embryonic development and morphology,

RNA-Seq revealed significantly different transcriptomic
profiles of embryos derived from differing fertility sires.
Many differentially expressed genes were more highly
expressed in embryos derived from high fertility sires
and functionally have roles in metabolic processes and
catalytic activities. For example, the methyl phosphate
capping enzyme (MEPCE) gene catalyzes the addition of
a methyl phosphate cap to 7sk snRNA, a gene that par-
ticipates in transcription regulation at the transition
from initiation to elongation [44, 45]. The transcription
factor B2, mitochondrial (TFB2M) gene is a mitochon-
drial transcription factor [46], where overexpression in
rat cardiac myocytes resulted in increased mRNA levels
of mitochondrial enzymes and increased mitochondrial
DNA copy [46, 47]. Another gene related to mitochon-
drial function is Cytochrome C (CYCS), which codes a
heme protein that participates in electron transfer within
the mitochondrial electron transport chain in addition
to promoting apoptosis through activation of Caspase 9
[48–50]. Several of the genes more highly expressed in
embryos derived from high fertility sires participate in
mitochondrial, and therefore, metabolic function including
the aforementioned TFB2M and CYCS, and also NDUFA1
[51] and SFXN4 [52]. Indeed, it has been hypothesized
that metabolically “quite” embryos are more viable than
those with an ‘active’ metabolism, though the range of
values in terms of gene regulation or other markers that

determine a level of ‘quietness’ is unknown [53, 54]. Here,
the roles of the highly expressed genes identified are not
well defined in embryonic development. Thus, these genes
are considered new candidates that may influence the
embryo’s developmental potential.
Several genes more highly expressed in embryos from

low fertility sires may explain poorer development
beyond the blastocyst stage. The expression of solute
carrier family 16 (monocarboxylate transporter), member
7 (SLC16A7), was previously detected in mouse preim-
plantation development where it acts to shuttle lactate
and also plays a role in regulating redox in the early
mouse embryo [55]. Moreover, upon glucose deprivation
within early mouse embryos, the levels of SLC16A7
become upregulated during oxidative stress [56]. Upregu-
lation the growth arrest and DNA-damage-inducible,
alpha (GADD45A) gene also indicates stress as genes
within the GADD45 family are stress sensors with roles in
DNA repair, cell cycle regulation, and apoptosis as well as
DNA demethylation [57, 58]. Therefore, it is plausible that
the transcriptome differences observed in embryos derived
from low fertility sires may be indicative of poorer devel-
opmental outcome.
A limitation of the present study is the number of bull

pairings for which embryos were sequenced and
analyzed by RNA-Seq. The disparity in the total number
of reads obtained was observed between embryos com-
pared within a high/low bull pairing. Moreover, the per-
centage of uniquely mapped reads is relatively small,
which could be an artifact of loss of mRNA during the
process of RNA amplification or technical error. There-
fore to assess the validity of the differentially expressed
genes identified by RNA-Seq, expression was further
evaluated by qRT-PCR in three additional bull pairings
of embryos. The qRT-PCR results confirmed the
RNA-Seq expression results using additional biological
replicates.
Another limitation of the study is that the develop-

ment results are restricted to the preimplantation stage
of development, as embryo transfer was not feasible.
Variations in embryo implantation rate, miscarriage rate,
and the live birth rate could not be evaluated. Interest-
ingly, at the time point in which embryo transfer could
take place, embryos derived from different sires pre-
sented with similar morphology. Likewise, Driver et al.
[59] reported that preimplantation embryonic transcrip-
tome of morphologically similar in vivo and in vitro
derived embryos to be strikingly different. While it is
well established that in vivo embryos have better preg-
nancy outcomes compared to their in vitro derived
counterpart [60], differences in gene expression profiles
could plausibly underlie the embryo’s potential to progress
to establishing and maintaining a pregnancy. A study by
El-Sayed et al. [61] identified certain gene profiles within
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embryonic blastocyst biopsies were correlated with preg-
nancy outcome. Similarly, Ghanem et al. [62] also found
in vivo derived blastocyst biopsies to be associated with
pregnancy outcome, where both studies identified PLAC8
to be upregulated in transferred blastocysts that resulted
in the delivery of a calf. Genes identified in these studies
were not found to be differentially expressed in the
present study, though here RNA-Seq was utilized whereas
the previous studies utilized a microarray strategy. Hence,
future work is needed in which embryos derived from
sires of differing fertility statuses are biopsied, and the de-
velopmental outcome is followed long term to determine
developmental potential.
As a proof-of-concept that the differentially expressed

genes identified are important to embryonic develop-
ment, expression knockdown of TFB2M was performed
by antisense gapmer technology. The gene TFB2M was
selected for expression knockdown as it may play a role
in regulating embryo metabolism through its role in
transcription of mtDNA [46]. As the embryo’s genome is
activated glycolysis becomes the main mechanism of
providing ATP, and oxidative phosphorylation is inhib-
ited to maintain a more quiescent state, which confers a
more viable embryo [63]. Gapmer mediated knockdown
of TFB2M resulted in decreased development to the
blastocyst stage. The TFB2M gene was more highly
expressed in embryos derived from higher fertility sires
and gene knockdown demonstrated that reduction in
expression leads to reduced embryonic development.
Thus, embryos derived from low fertility sires with lower
expression could plausibly be developmentally compro-
mised. Interestingly, bovine spermatozoa contain a
microRNA, miR-2284x [64], which targets the TFB2M
mRNA as predicted by the online tool, TargetScan
(http://www.targetscan.org/). Further characterization of
sperm-derived factors, such as microRNAs, should,
therefore, be explored as potential contributors to
embryonic reprogramming and may be developed as
biomarkers of reproductive performance.
While the transcriptomic landscape depicts embryonic

differences influenced by the sire, it is still unclear why
or how sire field fertility is correlated with the embry-
onic transcriptome. Multiple components may attribute
to the differences observed within the embryonic
transcriptome, including the impact of paternal allelic
variation as well as the delivery of paternal factors at the
time of fertilization. Several studies have indicated that
the “RNA package” delivered at the time of fertilization
is strikingly different between bulls of differing fertility
[10, 11, 13–15]. However, it is unknown whether the
population of RNA delivered to the oocyte or other
factors such as epigenetic marks or degree of DNA integ-
rity of differing field fertility sires may contribute to the
differences observed in the embryonic transcriptome.

The investigation into the epigenetic signature of the
sperm between the high and low fertility sires, revealed
76 regions to be differentially methylated between sires
of differing fertility status. Similarly, a study by Verma
et al. [65] reported methylation analysis by microarray of
high and subfertile buffalo spermatozoa in which 73
genes in high fertility and 78 genes in subfertile sperm-
atozoa were hypermethylated, where pathway analysis
characterized these genes to have roles in transcriptional
regulation and cell proliferation. Indeed, 13 differentially
methylated genes were reported to have functional roles
in sperm processing including spermatogenesis and
capacitation as well as embryonic development. A study
by Camprubi et al. [66] comparing the DNA methylation
of spermatozoa from high fertility and infertile human
semen donors identified 696 differentially methylated
CpG nucleotides associated with 501 genes, where 13
CpG sites were associated with genes plausibly involved
in spermatogenesis. Comparatively, there is no overlap
between the genes identified in the present study and
those in the study by Verma et al. [65] and Camprubi
et al. [66]. Altogether, it can be concluded that the DNA
methylation levels are strikingly different between
spermatozoa of males of differing fertility status and that
epigenetic regulation may impact key genes related to
sperm processing and embryonic development.
Several DMRs identified between high and low fertility

sires are located within genes with functional roles in
spermatogenesis and fertilization that may underpin the
differences in field fertility. For instance, a study by
Ferrer et al. [67] found that MMP2 co-localizes with
acrosin on the inner acrosomal membrane of bull
spermatozoa, where the authors suggest the protease
may mediate sperm penetration at the zona pellucida as
matrix metalloproteases function to cleave extracellular
matrix components. Another DMR was identified in the
KCK4 gene, a member a two-pore domain potassium
(K2P) channel family [68], where potassium channels
have important physiological roles in the acrosome reac-
tion and fertilization [69]. In bull spermatozoa, a study
by Hur et al. [68] reported that the protein of KCK4 lo-
calizes to the equatorial region of acrosome reacted
sperm, and that inhibitor of the K2P channels reduces
not only fertilization but also development of bovine
and mouse embryos in vitro. Interestingly, a DMR was
located in the CTCF gene, which has been associated
with spermatogenesis and male fertility [70, 71]. The
CTCF gene plays a critical role in genome-wide gene
regulation and has roles in epigenetic reprogramming,
gametogenesis and embryo development and is also
associated with fertility, as reviewed by Franco et al.
[70]. Indeed, a study by Hernandez-Hernandez et al. [71]
reported that mice with a conditional knock-out of the
CTCF gene had smaller testis and spermatogenesis was
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impacted as several males were infertile. Moreover,
spermatozoa of the CTCF-conditional knock-out mice
also demonstrated aberrant histone retention and dis-
rupted chromatin compaction. While the functions of
the DMRs identified within the present study remain to
be elucidated, several of the DMRs identified are within
genes associated with roles in spermatogenesis, fertility,
and embryonic development.
It is well understood that during the process of sperm-

atogenesis the chromatin structure undergoes drastic
remodeling by replacing histones with protamines to
achieve a high condensation of DNA. Also, sites, where
histones are retained, are within key developmental gene
regions [72]. Errors within spermatogenesis relating to
the condensation of the DNA as well as maintenance of
epigenetic marks could plausibly explain the differences
in embryonic gene expression. Indeed, less DNA
condensation, protamine exchange, and higher DNA
damage have been observed in spermatozoa of lower fer-
tility bulls in comparison to higher fertility bulls [73, 74].
Therefore, future studies should focus on better identifi-
cation of spermatogenesis errors as well as on epigenetic
marks that have an effect on the embryonic transcrip-
tome and if these errors are associated with fertility
status and developmental outcome.

Conclusions
Male fertility had received less attention in comparison
to female fertility, yet it has been demonstrated that the
male gamete contributes not only DNA but also RNA
and signaling factors to the oocyte at fertilization. The
present study identified transcriptomic differences within
embryos derived from bulls of differing fertility status at
the preimplantation stage of development. While tran-
scriptomic differences within the embryos were observed
at the preimplantation stage, the association between male
fertility and embryonic development following embryo
transfer should be investigated in the future. In addition, it
is vital to explore whether DNA condensation and
integrity as well as alterations in epigenetic signatures
within the spermatozoa contribute to sire fertility and its
effect on embryo development.
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