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Module analysis for multiple-choice responses (MAMCR) was applied to a large sample of Force
Concept Inventory (FCI) pretest and post-test responses (Npre ¼ 4509 and Npost ¼ 4716) to replicate the
results of the original MAMCR study and to understand the origins of the gender differences reported in a
previous study of this dataset. When the results of MAMCR could not be replicated, a modification of the
method was introduced, modified module analysis (MMA). MMA was productive in understanding the
structure of the incorrect answers in the FCI, identifying 9 groups of incorrect answers on the pretest and 11
groups on the post-test. These groups, in most cases, could be mapped on to common misconceptions used
by the authors of the FCI to create distractors for the instrument. Of these incorrect answer groups, 6 of the
pretest groups and 8 of the post-test groups were the same for men and women. Two of the male-only
pretest groups disappeared with instruction while the third male-only pretest group was identified for both
men and women postinstruction. Three of the groups identified for both men and women on the post-test
were not present for either on the pretest. The rest of the identified incorrect answer groups did not represent
misconceptions, but were rather related to the blocked structure of some FCI items where multiple items are
related to a common stem. The groups identified had little relation to the gender unfair items previously
identified for this dataset, and therefore, differences in the structure of student misconceptions between men
and women cannot explain the gender differences reported for the FCI.

DOI: 10.1103/PhysRevPhysEducRes.15.020122

I. INTRODUCTION

The “gender gap,” gender differences between the scores
of men and women on the Force Concept Inventory (FCI)
[1] and other instruments developed by physics education
research (PER), has been extensively studied (see the
review by Madsen, McKagan, and Sayre [2]). For the
FCI, a substantial number of studies have suggested that
some of the gender differences observed resulted from
different response patterns of men and women to a subset of
the items in the instrument; see Traxler et al. for an
overview of this research [3]. The origin of these differ-
ential response patterns is, however, unknown.

A. Research questions

The purpose of this study is to apply module analysis for
multiple-choice responses (MAMCR) introduced by Brewe
et al. [4] to a large sample of FCI responses known to
contain a subset of items that produce substantially differ-
ent response patterns for men and women in order to
determine if the structure of the misconceptions of men and
women differ on these items. When the MAMCR method
did not yield productive results for the large sample in this
study, the reasons for the failure of MAMCRwere explored
and a modification to the algorithm was proposed called
“modified module analysis.” The modified algorithm was
used to explore gendered differences in the patterns of
incorrect answers on the FCI.
In general, network analysis uses the term “community”

and “module” interchangeably to represent connected
(under some definition) subsets of a network. We adopt
the term community instead of module in anticipation of
the “igraph” package [5] in the “R” software system [6]
becoming the primary network analysis tool in PER.
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In igraph, algorithms to detect structure within a graph are
called “community detection” algorithms.
This study explored the following research questions:
RQ1 Are the results of module analysis for multiple-

choice responses replicable for large FCI datasets? If not,
what changes to the algorithm are required to detect
meaningful communities of incorrect answers?
RQ2 How do the communities detected change as net-

work-building parameters are modified? Do these changes
support the existence of a coherent non-Newtonian con-
ceptual model?
RQ3 How is the incorrect answer community structure

different between the pretest and the post-test?
RQ4 How is the incorrect answer community structure

different for men and women? Do the differences explain
the gender unfairness identified in the instrument?
This work extends the module analysis technique to a

larger dataset, explores alternate choices during that analy-
sis, and contrasts structure between pre- and post-test data.
Structural clues in the community structure are examined to
explain unresolved questions about gender differences in
answer choices [3].

B. Previous studies of the FCI

The FCI, either in aggregate or disaggregating by gender,
is one of the most studied instruments in PER. The present
study examines item-level structure disaggregated by
gender. The structure of the incorrect answers is examined
to identify coherent patterns of incorrect answers.

1. Exploratory analyses of the FCI

Many studies have examined the structure of the FCI,
primarily using exploratory factor analysis (EFA). These
studies began soon after the publication of the FCI when
Huffman and Heller [7] failed to extract the factor structure
suggested by the authors of the instrument [1], identifying
only one factor for a sample of university students. A later
work by Scott, Schumayer, and Gray [8] applied EFA to
FCI post-test scores and found an optimal model with 5
factors; however, one of the factors explained much of the
variance. The result that a single factor explains the
majority of the variance is fairly robust and is further
supported by the high Cronbach α values reported [9]. Scott
and Schumayer [10] replicated their 5 factor analysis using
Multidimensional Item Response Theory (MIRT) on the
same sample. Semak et al. [11] reported optimal models
with 5 factors on the pretest and 6 factors on the post-test
for calculus-based introductory physics students. Stewart
et al. also performed EFA using MIRT and reported 9
factors as optimal [12].

2. Gender and the FCI

In an extensive review of gender differences on physics
concept inventories [2],men outperformedwomen by 13%on

pretests and 12% on post-tests of conceptual mechanics: the
FCI and the Force and Motion Conceptual Evaluation [13].
Many reasons have been explored to explain these

differences. Differences in high school physics class elec-
tion [14–16]may cause differences in college physics grades
[17,18]; FCI scores correlatewith physics grades. Cognitive
differences have also been advanced as explanations of
academic gender differences [19–22] with women scoring
generally higher on verbal reasoning tasks and men scoring
generally higher on spatial reasoning tasks. Psychocultural
factors have also been explored as explanations of academic
performance differences including mathematics anxiety
[23,24], science anxiety [25–27], and stereotype threat
[28]. For a more detailed discussion about the many sources
that may influence the overall gender differences on physics
conceptual inventories, see Henderson et al. [29].

3. Item fairness and the FCI

In addition to student-centered explanations for concep-
tual inventory gender differences, bias in the individual FCI
items has been investigated as a source of these gender
differences. McCullough and Meltzer [30] randomly gave
students the original FCI or a version where each problem’s
context was modified to be more stereotypically familiar to
women and found significant differences in performance on
multiple items. Multiple studies have reported item unfair-
ness in unmodified items in the FCI [3,31,32]. Recent
research has suggested that other commonly used con-
ceptual physics instruments do not contain a substantial
number of unfair items [33]. Traxler et al. provide a
thorough summary of research into the item fairness of the
FCI [3].

C. Misconceptions and the FCI

Since the early 1980s, student difficulties, most com-
monly known as “misconceptions” or “alternate concep-
tions or hypotheses,” have been extensively studied within
physics classrooms. The early work done by Clement and
colleagues [34–36] qualitatively analyzing the “alternate
view of the relationship between force and acceleration” that
are grounded in students’ experiences has influenced much
of the research examining conceptual understanding in
physics. Halloun and Hestenes [37,38] further explored this
idea by collecting a taxonomy of “common sense concepts”
that conflict with student understanding of Newtonian
mechanics. Hestenes, Wells, and Swackhamer developed
the FCI [1] with the intent of measuring student conceptual
understanding of Newtonian theory, specifically analyzing
student misconceptions pre- and post-instruction [39].
The authors of the FCI provided a detailed description

of the misconceptions measured by the instrument [1].
A summary of those misconceptions follow.
Impetus.—Dating back to pre-Galilean times, the impe-

tus model involves the idea that an object has a “motive
power” that can explain why an object remains in motion
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regardless of any external forces [1,38]. Students with this
misconception do not fully understand Newton’s 1st law.
For example, FCI items 6 and 7 describe a ball moving in a
circle and ask about the path the ball will take after it exits a
circular path. Selecting the circular trajectory after exiting
the track demonstrates the misconception that the ball has a
circular impetus.
Active force.—The misconception that motion implies

force involves the idea that an object in motion must be
experiencing a force. This misconception involves a naive
understanding of the difference between velocity and accel-
eration [1,34] and demonstrates that Newton’s 2nd law is not
well understood. For example, item 11 asks about the forces
on a hockey puck traveling on a frictionless surface after it
has been kicked. The motion implies force misconception
would predict that there is a force in the direction of motion;
response 11C describes the forces on the puck as “a down-
ward force of gravity, an upward force exerted by the surface,
and a horizontal force in the direction of motion” [1].
Action-reaction pairs.—The misconception that the

larger object exerts a greater force on a smaller object
stems from the “dominance principle” [1,38]. This mis-
conception demonstrates that Newton’s 3rd law is not well
understood. For example, items 4 and 15 describe a small
car pushing a large truck and ask the student to describe the
forces between the two objects. The dominance principle
misconception would predict that the truck exerts a larger
force on the car than the car exerts on the truck. In addition
to the dominance principle, there are other misconceptions
related to the naive understanding of Newton’s 3rd law.
Items 15, 16, and 28 also test the misconception that the
most active agent produces the greatest force.
Concatenation of influences.—This misconception

involves the idea that forces influence with “one force
winning out over the other” [1]. This misconception demon-
strates that the superposition principle for Newtonian forces
is notwell understood. For example, items 8 and 9 describe a
hockey puck sliding horizontally at a constant speed on a
frictionless surface. These items ask for the path that the
hockey puck would take and the speed of the puck after it
receives a swift kick. The misconception of “one force
winning” would predict that the last force (i.e., the swift
kick) determines the motion and speed of the puck.
Gravity.—The misconception that gravity is not a force

stems from the Aristotelian physics idea that heavier
objects tend to move toward the center of Earth and lighter
objects tend to move away from the center of Earth [1,38].
For example, FCI item 1 describes two metal balls of
different weights that are dropped at the same time; the item
asks about the amount of time it takes for the two balls to hit
the ground. The gravity misconception predicts that the
heavier ball falls faster.
The above descriptions are only a few examples of the

misconceptions measured by the FCI; others can be found
in Hestenes and Jackson’s detailed taxonomy [40].

Recently, quantitative studies have been used to begin to
further understand the misconception structure of the
FCI. Scott and Schumayer [41] applied EFA to all 150
responses, 5 per item, on the FCI pretest. The two most
important factors each contained responses from the
majority of the items in the FCI; contained both incorrect
and correct responses; and mixed conceptually very differ-
ent correct reasoning. Eaton, Vavruska, and Willoughby
[42] replicated this work for both pretest and post-test data;
no consistent theme could be identified for multiple factors
in their study. The failure of these studies to identify an
intelligible factor structure containing items requiring
related Newtonian reasoning may indicate that factoring
the incorrect and correct responses together in the same
analysis is not productive.
Scott and Schumayer provided additional analysis of two

of their factors using network analytic techniques [43]. As
in this work, the network was constructed using the
correlation matrix; however, only correlations within the
factors identified in their early factor analysis were con-
sidered. This work reported node centrality measures, but
did not use the community detection methods of MAMCR.

D. Theories of knowledge

Many researchers have investigated students’ conceptual
understanding by exploring the misconceptions outlined
above. Early research explored the overall common diffi-
culties and beliefs that students had about Newtonian
mechanics [44–50]. More recently, researchers have
designed systematic studies to explore student understand-
ing and the epistemological development of Newton’s laws
of motion [13,51–54]. For example, Rosenblatt and Heckler
developed a new assessment to investigate student under-
standing of the relationship between force, velocity, and
acceleration [52]. This study found that understanding the
relationship between velocity and acceleration was neces-
sary to understanding the relationship between velocity and
force; however, the reverse was not necessarily true.
Modeling coherent patterns of student wrong answers as

misconceptions is only one of many ways to explain
patterns of reasoning about mechanics. Other important
theories include knowledge in pieces [55,56] and onto-
logical categories [57–59]. The knowledge-in-pieces
framework posits that student knowledge is formed of a
number of granular pieces of reasoning that are activated
either individually or collectively to produce a solution.
These reasoning pieces have been explored by many
authors and have been conceptualized as phenomenological
primitives (p prims) [55,56], resources [60–62], or facets of
knowledge [63]. In the knowledge-in-pieces frame-
work, misconceptions become coherently activated sets
of p prims. Unlike the misconception view, the knowledge-
in-pieces view identifies positive intellectual components
which a instructor can activate to encourage the knowledge
construction process.
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The relation of the misconception view and the
knowledge-in-pieces framework is complex. For a careful
and accessible exploration of the relation and differences,
see Scherr [64]. We adopt the definitions from this work.
The misconception model refers to “a model of student
thinking in which student ideas are imagined to be
determinant, coherent, context-independent, stable, and
rigid” [64]. The knowledge-in-pieces model views student
ideas “as being at least potentially truth-indeterminate,
independent of one another, context-dependent, fluctuat-
ing, and pliable” [64].
The ontological categories framework is substantially

different than either the misconception view or the
knowledge-in-pieces view; the ontological categories
framework proposes that incorrect student answers result
from a misclassification of a concept. For example, mis-
classification of the concept of force as a substance that
can be used up might lead a student to predict an object
would come to rest after the applied force is removed. A
substantial amount of research has also investigated how
students’ conceptual knowledge changes over time [65].
The framework chosen, knowledge-in-pieces, miscon-

ceptions, or ontological categories, has different conse-
quences for instruction or curriculum design in how they
draw out and make use of student ideas [61]. However,
it is less clear that this difference is measured by
conceptual inventories. Incoherence in student answers
for the same concept might suggest a knowledge-in-
pieces view, where different problem contexts can trigger
different p prims even if a physicist would see the
scenarios as isomorphic. However, the FCI was not
designed to measure this effect, and as such, a separate
instrument designed around the knowledge-in-pieces or
ontological categories frameworks is likely required to
fully explore either framework.
The quantitative method in the present work identified

small segments of incorrect reasoning. Intrinsically, the
method applied identifies incorrect reasoning applied across
items with multiple contexts suggesting the structures
identified are better described as misconceptions using
the above definitions. In addition, the FCI was strongly
developedwithin themisconception view and, therefore, the
current work will primarily employ the misconception
description of novice understanding [66,67]. We note in
Sec. III where alternative frameworks seem relevant.
Ultimately, while we call groups of incorrect answers
identified by network analytic techniques “misconceptions,”
this work is purely quantitative and cannot distinguish
between the various theoretical frameworks developed to
explain incorrect answering patterns.

E. Background studies

This work drew heavily from three previous studies
which will be referenced as study 1, study 2, and study 3 in
this work.

1. Study 1: Module analysis

In study 1, Brewe, Bruun, and Bearden introduced
module analysis for multiple-choice responses (MAMCR)
to analyze concept inventory data at the level of individual
responses to the items [4]. Unlike many analysis techniques
applied to FCI data, which consider only a student’s overall
score or only the correct answers to individual items,
MAMCR considers each answer choice a student selected
in order to provide a fine-grained examination of students’
misconceptions of Newtonian physics and to allow instruc-
tors to target specific errors.
MAMCR is based on network analytic techniques

[68,69]. A network is represented by a graph where nodes
are connected to one another by edges. Edges can be
weighted, where the value of the weight represents some
aspect of the interaction. Network analysis is a highly
successful and versatile set of methods which have been
applied to a variety of problems including the probability of
homicide victimization among people living in a disadvan-
taged neighborhood [70], the mapping of functional net-
works in the brain from electrical signals [71], passing
patterns of soccer teams in the World Cup [72], and the
response of plants to bacterial infection [73].
Study 1 examined the FCI post-test scores of 143 first-

year physics majors at a Danish university. The sample was
78% male and scored relatively highly on the exam: pretest
65� 22% and post-test 81� 18%.
To analyze the FCI, each response was assigned to a

node in the network; for example, if a student selected the
choice “D” on FCI item 1, then 1D would be a node. An
edge was added for each time a student selected two
responses; for example, if a student selected 1D and 2E,
then an edge was drawn connecting 1D and 2E. The correct
responses were removed from the network leaving the
network of incorrect responses.
In order to find connected responses in the network, a

community detection algorithm (CDA) was applied to the
network. There are many different types of CDAs [74]; in
study 1, the Infomap algorithm was chosen [75].
Study 1 identified nine modules, each representing a

separate misconception in student thinking. Two modules
could be clearly interpreted: module 1 “the impetus model”
and module 2 “more force yields more results.” The other
seven modules were more difficult to interpret.
In study 1, Brewe et al. emphasized that the results

of this study should be generalized with care. The group
of students tested was small, unusually high scoring,
and had limited diversity. Likewise, there were several
choices made during the process of applying MAMCR to
the data which could have been made differently. Both the
choice of sparsificationmethod (described in Sec. III) and the
decision of how to group responses that cluster together only
on some of the one-thousand applications of Infomap was
somewhat arbitrary, as was the interpretation of the meaning
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of the modules. As will be seen in Sec. III, our dataset
required different choices to be made.
The current work will conclude that MAMCR does not

scale to larger datasets and that the modules identified in
study 1 were the result of the small sample size and some of
the decisions made in applying the algorithm; as such, the
results of study 1 will not be further discussed in this work.

2. Study 2: Item fairness and the FCI

In study 2, Traxler et al. [3] explored item-level gender
fairness of the FCI using classical test theory [76], item
response theory [77], and differential item functioning (DIF)
[78,79] analysis. An item is fair to men and women if men
andwomen of equal overall ability score equally on the item.
Using three samples, a graphical analysis identified five FCI
items that were substantially unfair to women: item 14
(bowling ball falling out of an airplane), items 21 through 23
(sideways-drifting rocket with engine turning on and off),
and item 27 (a large box being pushed across a horizontal
floor). A further DIF analysis, which controlled for the
student’s overall post-test score, identified eight items on
the FCI as substantially unfair. These eight items included
the five items identified in the graphical analysis along
with items 9, 12 (the trajectory of a cannon ball shot off
of a cliff), and 15. Many of the unfair items had been
identified as unfair in previous studies [3,30–32]. Two of
these were unfair to men: item 9 (speed of a puck after it
receives a kick) and item 15 (a small car pushing a large
truck). Overall, study 2 demonstrated that eliminating all
unfair items on the FCI to create a fair instrument reduced
the gender gap by 50% in the largest sample.
Study 2, however, could not identify the source of the

unfairness. The distribution of student responses was ana-
lyzed. Focusing on the five items thatwere identifiedwith the
graphical analysis and the DIF analysis, incorrect female
responses were predominately one of the distractors in each
of the FCI items; however, the distractors chosen by the male
students were less uniform in all five FCI items. Overall,
study 2 concluded that no physical principle or common
misconception could explain the unfairness identified in
these FCI items; however, this conclusion was drawn from a
qualitative inspection of the items. The current study builds
on the work in study 2 by performing a quantitative analysis
of the incorrect responses of men and women.

3. Study 3: Multidimensional Item Response
Theory and the FCI

In study 3, Stewart et al. examined the correct answer
structure of the FCI using both exploratory and confirma-
tory methods [12]. The study in the current work applies
network analytic methods to understand the incorrect
answer structure of the FCI. This structure might be
influenced by features of the FCI which produce correla-
tions between the correct answers. If a consistent miscon-
ception is being applied, it would form an alternate incorrect

answer to sets of related correct answers. In study 3,
exploratory factor analysis (EFA) suggested that the practice
of “blocking” items produced correlations between the items
within the block. A block of items is a sequence of items
which all refer to a commonstemorwhereone item refers to a
previous item. Blocking has also been called “item chaining”
in previous studies [80]. TheFCI contains itemblocksf5; 6g,
f8; 9; 10; 11g, f15; 16g, f21; 22; 23; 24g, and f25; 26; 27g.
Study 3 reported that often the factors identified by EFA
strongly loaded on items in the same block, suggesting that
blocking was generating correlations among the items in the
block. Study 3 concluded that exploratory methods such as
EFA were not productive in understanding the physical
concepts measured by the FCI.
Study 3 went on to produce a detailed model of the

reasoning required to solve the FCI. MIRTwas used to test
alternate models and allowed the identification of an
optimal model. This model allowed the identification of
groups of items with very similar solution structure:
f5; 18g, f6; 7g, f17; 25g, and f4; 15; 28g. The items in
each of these groups require the same set of logical
reasoning for their solutions; as such they differ by only
surface features and experts would view them as equivalent
problems. The misconception view asserts that misconcep-
tions are context-independent and, therefore, students
should hold the same misconception for each item in the
group. Study 3 only included the first item in a block in
the analysis and it is likely that item 16 should be added to
the last block which represents Newton’s 3rd law items.
This mapping of item blocks and groups with similar
solution will be important to understanding the incorrect
answer structure presented in this work.

II. METHODS

A. Instrument

The FCI is a 30-item instrument designed to measure a
student’s facility with Newtonian mechanics [1]. Each item
includes one correct response and four incorrect responses.
The instrument includes items involving Newton’s three
laws as well as items probing an understanding of one- and
two-dimensional kinematics. The instrument does not
cover many topics in Newtonian mechanics; for example,
conservation of energy and momentum are not covered.
The instrument was also constructed with distractors
representing common student misconceptions. The instru-
ment was revised after its initial publication [81]; this study
uses the revised instrument. The revised instrument is
available at PhysPort [82].

B. Sample

The data for this study were collected at a large southern
land-grant university serving approximately 25 000 students.
Overall university undergraduate demographics were 79%
White, 5%AfricanAmerican, 6%Hispanic, andothergroups
each with 3% or fewer [83].
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The sample was collected in the introductory calculus-
based mechanics class serving primarily physical scientists
and engineers. The sample has been analyzed previously by
Traxler et al. (study 2) [3]; it is referenced as sample 1 in that
work. The sample contains 4716 complete FCI post-test
records (3628 men and 1088 women) and 4509 complete
pretest records (3482 men and 1027 women). Table II in
study 2 reports basic descriptive statistics. On the pretest,
men have an average percentage score of 43%, women 32%.
On the post-test, men have an average percentage score of
73%, women 65%. The course in which the sample was
collected was presented using the same pedagogy and
managed by the same lead instructor for the period studied.
A more thorough discussion of the sample and the instruc-
tional environment may be found in study 2.

C. Analysis methods

Initial replication of study 1 was performed with the
Infomap software available from mapequation.org [84]. All
other statistical analysis was performed in the R statistical
software system [6]. This work failed to replicate the study 1
results and proposes amodified analysismethod; as such, the
analysis method is a result of the work and the various
network techniques employed are described as they are used.

III. RESULTS

A. Module analysis

Figure 1 outlines the original and modified analysis
steps. The original module analysis method presented in
study 1 first formed a bipartite network, a network that

FIG. 1. Workflow of analysis for the original module analysis method (left branch) and our modified version (right branch).
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includes two types of nodes where all edges connect nodes
of different types. This network included nodes represent-
ing students and nodes representing FCI responses. The
bipartite network is then projected onto a unipartite net-
work containing only nodes representing FCI responses.
Edges in this network connect different responses of the
same student. Edge weights represent the number of
students who selected the pair of responses connected
by the edge. For example, if 40 students selected FCI
responses 1A and 2B, where the number is the item number
and the letter is the response within the item, there would be
an edge between node 1A and node 2B with weight 40.
While the bipartite network can be used to extract addi-
tional properties of the network [85], this was not done
in study 1. As such, we began with the unipartite
network. The unipartite network can be represented by a
two-dimensional matrix, called the adjacency matrix,
adjðX; YÞ, where X and Y are FCI item responses (for
example, X ¼ 1A). The value adjðX; YÞ is the number of
students who selected response X and response Y. In the
above example, adjð1A; 2BÞ ¼ 40. The network represent-
ing the post-test responses of women on the FCI post-test is
shown in Fig. 2. Because of the differences identified
between men and women in study 2 for this sample, all
results are reported disaggregated by gender. The network
in Fig. 2 is fairly representative of the pretest and post-test
networks for men and women. Figure 2 uses a node
placement algorithm that places more densely connected
nodes close to one another. As in study 1, only incorrect
responses were included in the network. The correct
responses are highly correlated and are often the most
commonly selected responses. If they are included in the
network, they form a tightly connected community that
prevents exploration of the incorrect answers. Figure 2 is
presented as an example of a network based on the
adjacency matrix; in what follows, we will propose a
modification to this network converting it to a correlation
network. It is the correlation network in Fig. 4 that is used
in the primary analysis in this work. For interested readers,
an enlarged version of the network in Fig. 2 is presented in
the Supplemental Material [86].

To attempt to replicate the results of study 1, community
detection algorithms were applied to the network shown in
Fig. 2. First, a complete replication was attempted which
employed the “Infomap” software [84] as was originally
used in study 1. This software, designed for very large
networks, presents such significant installation and use
barriers that it seems unlikely that it will ever achieve broad
acceptance in PER. A second path to replication using the
infomap implementation in the igraph package [5] in R was
also attempted.
To extract meaningful structure from a high-density

network, the network must generally be simplified without
removing important structure. The process of simplifying a
network by removing edges is called “sparsification.” The
network sparsification method used in study 1 was locally
adaptive network sparsification (LANS) [87]. The LANS
algorithm removes edges based on the distribution of edge
weights connected to each node. The probability of
selecting an edge with a smaller weight at random is
compared to a predetermined significance level and only
edges above that level are retained. This method is locally
adaptive because it depends only on the edges incident on a
single node. A consequence of sparsifying based on the
distribution of weights incident on each node is that no
node will have its last edge removed, so no connected node
is unconnected from the rest of the network. This ensures
that local structures important to the global structure of the
network are retained.
After sparsifying with LANS (using code from Ref. [88],

Supplemental Material), the Infomap CDA was applied.
Infomap is based on information theoretic methods. The
algorithm records a random walk through the network by
assigning codewords to each node, then trying to minimize
the length of the description. Nodes visited more often are
given shorter codes. Communities where the random
walker tends to spend more time are given their own
unique codes. The information needed to represent the
network is reduced because the codes for individual nodes
can be reused within different communities. This process
results in communities of nodes that are connected more to
each other than to nodes outside the community. Because
Infomap is not deterministic, it was run 1000 times and the
communities that were most often found were selected as
the misconception modules in study 1.
Applying Infomap with LANS sparsification failed to

identify meaningful community structure for the large
dataset in the current study; Infomap consistently identified
only one large community.
To explore the source of the discrepancy with study 1, an

alternate implementation of Infomap was employed; this
implementation was part of the igraph package in the R
software system. A simpler sparsification algorithm was
also employed. The LANS algorithm statistically evaluates
each edge, but will not remove the last edge connecting a
node. This algorithm is a reasonable choice for a network
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FIG. 2. Unipartite network for the FCI post-test responses of
women.
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where every edge is purposeful (such as air travel), but may
amplify noise in a network of student responses where
some edges are the result of careless mistakes or guessing.
As such, the network was also sparsified by imposing a
threshold requiring edges to have a minimum weight.
Multiple thresholds were tried. The Infomap community
detection algorithm used in study 1 identified only one
community at all threshold values. Many other CDAs are
available in the igraph package; some identified two com-
munities even at very high thresholds. No CDA available in
igraph identified more than 2 communities.
The Infomap CDA is based on a random walk algorithm;

another class of CDAs is based on maximizing the modu-
larity of the communities within a network. Modularity is a
measure that compares, for a given division of a network into
communities, how many more intracommunity links exist
than expected by chance in an equivalent network [89].
Modularity values range from zero to one, where a network
with a modularity of zero means there is no clustering in the
network and a modularity of one is a strongly clustered
network. The fast-greedy CDA is an implementation of a
modularity-based CDA [90,91]. It works by suggesting a
random division of the network into communities, then
proceeds to move nodes, one at a time, to different com-
munities, keeping anymove that increases the modularity of
the network. The algorithm is known as “fast greedy”
because it prioritizes speed over finding the optimal sol-
ution. It is a greedy algorithm because it maximizes the
modularity based on local changes, instead of considering
the overall structure of the network.
Figure 3 shows the communities identified by the fast-

greedy CDA at an edge weight threshold ofN=2whereN is
the number of participants; only 22 nodes remain con-
nected at this threshold. Nodes in different communities are
shown with different shading.
There seem to be two likely sources of the differences of

the results of this study and study 1: sample size and the
LANS algorithm. To investigate sample size, 100 sub-
samples of 143 students each were drawn from the sample
in this study. Applying Infomap using R identified only one

community 100% of the time with no sparsification and one
community 92% of the time with the requirement that the
edge weight be at least N=10 where N is the number of
students.
The igraph package implements many CDA algorithms;

for the small network analyzed in this work, most per-
formed similarly. For rest of this work, the fast-greedy
CDA described above will be used. Again, the data was
subsampled to 143 students to compare with study 1. With
no sparsification, the fast-greedy algorithm identified 3 to 6
communities with 3 to 4 communities identified in 92% of
the runs. With the edge weight greater than N=10 sparsi-
fication, fast-greedy identified 2 to 4 communities with
66% of the runs identifying 3 communities. The commun-
ities identified made little theoretical sense within the
framework of study 3 with very different items in the
same communities. As such, while some of the differences
in the studies may be attributed to sample size, the choice of
CDA also influenced the communities identified at small
sample size. At the large sample size of the current study,
the various community detection algorithms implemented
in igraph give fairly similar results.

B. Correlation analysis

Part of the cause of the failure of MAMCR to find
meaningful community structure for large samples can be
understood by comparing the adjacency matrix to the
correlation matrix. The correlation matrix also defines a
network, most usefully when a threshold value is applied.
The adjacency matrix which produced the network in Fig. 2
has no obvious clustered structure. The partial correlation
matrices reported in study 3 clearly show clustering into
distinct communities.
The correlation between item X and item Y is defined as

corrðX; YÞ ¼ E½ðX − μXÞðY − μYÞ�
σXσY

; ð1Þ

where μj is the mean of variable j, σj is the standard
deviation, and E½Z� is the expectation value of the random
variable Z. The expectation value is defined as

E½X� ¼
X

i

Xi

N
; ð2Þ

where i is a participant and N is the number of participants.
Equation (1) can be simplified to produce

corrðX; YÞ ¼ E½XY� − μXμY
σXσY

: ð3Þ

For dichotomously scored items, the sum
P

iXiYi is the
X,Y entry in the adjacency matrix, adjðX; YÞ ¼ P

iXiYi.
The correlation matrix is then related to the adjacency
matrix by

1C

2A

3C

4E

6B
7B

8B
9E

10A

11D
12B

13D15A16A
19E

20D

22A

24A

27C

28E
29B

30C

FIG. 3. Communities detected for the adjacency matrix of FCI
post-test responses of women with an edge weight threshold of
N=2 using the fast-greedy CDA.
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Figure (a) r>0.15

Figure (b) r>0.20

Figure (c) r>0.25
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FIG. 4. Post-test correlation matrices of women at varying levels of r.
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corrðX; YÞ ¼ adjðX; YÞ − NμXμY
NσXσY

: ð4Þ

A pair of items can have a large adjðX; YÞ in a number of
ways: (a) purposeful association, students preferentially
select the two items together, or (b) accidental association,
many students select both items so on average the items get
selected together often. By subtracting the product of the
means, the correlation matrix eliminates the second case
and only has large values for purposefully selected pairs.
This suggests the adjacency matrix contains many more
edges that are the result of random chance than the
correlation matrix. The correlation matrix also has the
substantial advantage of the existence of significance tests
for entries allowing the discarding of nonsignificant edges.
With this observation, we propose a modification of

MAMCR, called modified module analysis, that investi-
gates the community structure of the correlation matrix.
The remainder of this work investigates this proposal. The
differences between MAMCR and MMA are presented
schematically in Fig. 1.
To explore this proposal, the correlation matrix was

calculated for all incorrect answers. Nodes with too few
participants to be statistically reliable were eliminated; for
this work, nodes with fewer than 30 responses were
removed. Edges were removed where the correlation, r,
between the two nodes was not significant at the p ¼ 0.05
level where a Bonferroni correction was applied to reduce
the type I error rate. As with the adjacency matrix, a
threshold was then applied to simplify the network. For this
work, only positive correlations were considered; future
work will investigate networks with positive and negative
correlations. Figure 4 shows the correlation matrix for
the post-test results of women retaining only entries with
r > 0.15, r > 0.20, and r > 0.25. The representation in
Fig. 4 was produced by the qgraph package in R [92]. The
width of the line is proportional to the size of the
correlation. Node placement is for visual effect only.

C. Modified module analysis

The correlation matrices in Fig. 4 show a clear clustered
structure. MMAwas applied to understand these structures.
The communities detected for the r > 0.20 correlation
matrix are shown in Fig. 5. Figure 5 shows the communities
identified by a single application of the fast-greedy CDA.
To understand the stability of these structures, the algorithm
was applied multiple times. Because some communities
were only identified in some applications of the CDA, the
communities identified by the multiple applications of the
algorithm presented later in the paper do not fully align
with those in Fig. 5.
Both the CDA and the sample itself contain randomness,

and therefore, some of the community structure in
Fig. 5 may result from chance. To determine the part of
the community structure not resulting from random

fluctuations, bootstrapping with 1000 replications was
performed. Bootstrapping is a statistical technique that
forms a distribution of a statistic of interest by subsampling
the dataset with replacement [93]. The R “boot” package
was used to perform the bootstrapping [94]. Part of the goal
of this work was to compare the community structure of
men and women. As one part of the sparsification process,
infrequently selected nodes and insignificantly weighted
edges were removed. Both the threshold for an infrequently
selected node and edge significance depend on sample size.
For a fair comparison, a sample balanced between men and
women was required. The full dataset was very unbalanced.
To correct for this, when the male sample was bootstrapped,
1000 samples were drawn, each of the same size as the
overall female sample. For the female sample, bootstrap-
ping was performed by subsampling with replacement
which preserved the overall size of the sample.
The number of times each pair of responses was found in

the same community was recorded for each of the 1000
samples forming a “community matrix.” The community
matrix was nearly completely disconnected into small
clusters. The clusters are shown in Table I. Responses
were identified in the same communities at different rates.
We define the community fraction C as the fraction of
the bootstrap subsamples in which the pair of items were
found in the same community. The community matrix was
filtered to show items that were identified in C > 60% and
C > 80% of the communities in the 1000 bootstrap
replications in Table I. The majority of the communities
extracted from the community matrix were fully connected;
each node was connected to every other node in the
community. Some, however, were not. The intracommunity
density γ is defined as the ratio of the number of edges in
the community to the maximum number of edges possible
[69]. For communities with γ < 1, γ is presented as a
percentage in parenthesis in Table I. For example, if a
community contains four nodes then there are a maximum
of six distinct edges between the nodes. If the community
only possesses five of those edges, then γ ¼ 5=6.
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D. The structure of incorrect FCI responses

Unless otherwise stated, results below are reported for
C > 0.8 and r > 0.2.

1. Types of incorrect communities

Table II classifies the incorrect reasoning for each
community of incorrect answers in Table I. These can be
divided into two general classes: communities resulting
from blocking and communities resulting for consistently
applied incorrect reasoning (misconceptions). Communities

f8A; 9Bg, f21B; 23Cg, and f21C; 22Ag are answers within
blocked problems where the second answer in the pair
would be correct if the first answer was correct. The other
communities apply either the same incorrect reasoning or
related incorrect reasoning.
Hestenes and Jackson produced a detailed taxonomy of

the naive conceptions (their terminology) tested by the FCI
[40]. Table II shows a mapping of this taxonomy onto the
incorrect answer communities identified in the current
work. The taxonomy divides the naive conceptions into
a general category and a number of subcategories. The
number in parenthesis in Table II is the subcategory label
[40]. Items marked with an asterisk in Table II are part of
item blocks. Because the relation between the items seems
to be largely generated by the interdependencies resulting
from blocking rather than consistently applied misconcep-
tions, the blocked items will not be discussed further.
Some issues arise in comparing the proposed FCI

taxonomy with communities identified by MMA and the
similar item blocks identified in study 3. First, for some of
items in the incorrect communities, no misconception was
identified (items 1D, 2C, and 2D). Students are answering
these items in a correlated manner which implies the
possibility of consistent reasoning patterns; for these items
a possible misconception was suggested. The new mis-
conception was labeled “(Add).” Table II shows that often
the items in the incorrect communities identified by MMA
belong to multiple naive misconception categories and have
different subcategories. This would seem to imply that the
naive conception taxonomy is more detailed than the actual
application of misconceptions by students as measured by
the FCI. For example, in the Newton’s 3rd law community,
f4A; 15C; 28Dg, different items involve objects of different
activity from one student pushing on another student (item
28, one active object), to a car pushing a truck (item 15, one
active object), to a head-on collision (item 4, two active
objects). Further, the three items involve objects of different
mass with the more active object having less mass in item
15 and more mass in item 28. It is unclear why these items
involving multiple different misconceptions are answered
consistently incorrectly. This may result from all of the
responses representing a failure to understand Newton’s 3rd
law or from students reasoning in a manner inconsistent
with the misconception view.
Table II includes a column which proposes a title for the

dominant misconception. In many cases, the dominant
misconception was identified as the misconception shared
by the majority of the items. In some cases, a dominant
misconception was proposed. For the Newton’s 3rd law
community, f4A; 15C; 28Dg, multiple misconceptions
were shared equally and no dominant misconception was
identified. In the following, the combination of the greater
mass implies greater force and most active agent produces
greater force misconceptions are called “Newton’s 3rd law
misconceptions.”

TABLE I. Communities identified in the pretest and post-test
incorrect answers at r > 0.2 and differing levels of the commu-
nity fraction C. The number in parenthesis is the intracommunity
density γ for communities where the intracommunity density is
not one.

Pretest Post-test

Community Men Women Men Women

C > 60%

1A, 2C, 15B, 19B X(67%)
1D, 2D X X
3B, 13B X
4A, 15C, 28D X X X
4A, 15C, 16C, 28D X
5D, 11C, 13C, 18D, 30E X
5D, 11C, 13C, 18D, 19D, 30E X(73%)
5E, 18E X X X X
6A, 7A X X X X
8A, 9B X X X X
8E, 10D X
11B, 29A X X
15D, 16D X X
17A, 25D X X
21B, 23C X X
21C, 22A, 23A, 26A X(83%)
21C, 22A X X
23D, 24C X X X X

C > 80%

1A, 2C X
1D, 2D X
4A, 15C, 28D X X X X
5D, 11C, 13C, 18D, 30E X(60%)
5D, 18D X
5E, 18E X X X X
6A, 7A X X X X
8A, 9B X X X X
11B, 29A X X
11C, 13C, 30E X
17A, 25D X X
21B, 23C X X
21C, 22A X X X
23D, 24C X X X X

EXPLORING THE STRUCTURE OF … PHYS. REV. PHYS. EDUC. RES. 15, 020122 (2019)

020122-11



The communities f1A; 2Cg and f1D; 2Dg are difficult to
resolve with the “gravity” misconception described in
Sec. I C where heavier objects tend to move nearer the
center of Earth. Response 1A is a clear application of this
misconception, while item 1D applies the opposite of the
misconception where lighter objects tend to move closer to
the center of Earth. This misconception has been added and
the category labeled as “Unknown.” More research would
be needed to determine if the students were applying a
misconception about gravity or a more general miscon-
ception that lighter objects travel faster. Neither responses
2C or 2D fit within the gravity misconception; both reason
that the object that falls faster travels farthest. This
misconception has been added for both objects, but it is
equally possible the students are applying less coherent
reasoning not well represented by the misconception view.
The students could be applying the p prim “larger implies

larger” to the result that the object travels faster. Again,
more research is needed to resolve the ambiguity.
Multiple items were identified as involving the miscon-

ception of circular impetus. Circular impetus is used in two
alternate ways. In responses 6A and 7A, circular impetus
involves an object continuing to move in a circle after a
constraint is removed. Item 5 represents a ball shot into a
circular channel and item 18 represents a boy swinging on
a rope. In responses 5D, 5E, 18D, and 18E, the constraint
is still in place. Both items 5 and 18 also include a force of
the channel or rope in the list of forces; these forces are
unnecessary if the object moves in a circle of its own
accord. As such, we propose removing the circular impetus
misconceptions from 5D, 18D, 5E, and 18E; these items
have been labeled (Remove) in Table II. This suggestion
is supported by the failure to find f5D; 5E; 6A; 7A; 18D;
18Eg as a single community.

TABLE II. Misconceptions represented by incorrect answer communities. Communities marked with a � result from blocked
problems. Proposed additions are marked (Add). Proposed items to be removed are marked (Remove). If Add or Remove is placed
before all items, it applies to all items. If Add or Remove is placed before only one of many items, it applies to that item.

Naive conceptions

Community Category Subcatagory Dominant misconception

1A, 2C Gravity
1A (G3): Heavier objects fall faster

Heavier objects fall faster(Add) 2C: Heavier objects travel farther

1D, 2D Unknown
(Add) 1D: Lighter objects fall faster

Lighter objects fall faster(Add) 2D: Lighter objects travel farther

4A, 15C, 28D Action-reaction pairs
4A, 28D (AR1): Greater mass implies greater force Greater mass implies greater force
15C, 28D (AR2): Most active agent produces greatest force Most active agent produces greatest force

5D, 18D
Impetus
Active forces

(Remove) 5D, 18D (I5): Circular impetus

Motion implies active forces5D (I1): Impetus supplied by “hit”
5D, (Add) 18D (AF2): Motion implies active forces

5E, 18E
Impetus
Active forces

5E (I1): Impetus supplied by “hit”
(Remove) 5E (I5): Circular impetus Motion implies active forces

Centrifugal force5E (I1): Motion implies active forces
5E, 18E (CF): Centrifugal force

6A,7A Impetus 6A, 7A (I5): Circular impetus Circular impetus

8A, 9B* Concatenation of influences 8A, 9B (CI3): Last force to act determines motion

11B, 29A Other influences on motion 29A (Ob): Obstacles exert no force

Motion implies active forcesImpetus (Remove) 11B (I1): Impetus supplied by “hit”
(Add) 11B (AF2): Motion implies active forces

11C, 13C, 30E Impetus

11C, 30E (I1): Impetus supplied by “hit”

Motion implies active forces(Add) 11C, 13C (AF2): Motion implies active force
13C (I3): Impetus dissipation

17A, 25D
Concatenation of influences 17A, (Add) 25D (CI1): Largest force determines motion

Largest force determines motionResistance 25D (R2): Motion when force overcomes resistance

21B, 23C* Concatenation of influences 21B, 23C (CI3): Last force to act determines motion

21C, 22A*
Concatenation of influences 21C (CI2): Force compromise determines motion
Active forces 22A (AF4): Velocity proportional to applied force

23D, 24C* Impetus
23D, 24C (I3): Impetus dissipation

Impetus dissipation
23D (I2): Loss or recovery of original impetus

JAMES WELLS et al. PHYS. REV. PHYS. EDUC. RES. 15, 020122 (2019)

020122-12



The coding of the misconceptions represented by the
5D and 18D community seems problematic. Answer D
on both items includes a force in the direction of motion,
and therefore, it is unclear why item 18 is not included in
the motion implies active forces misconception. This has
been added to Table II. This is supported by the
identification of the f5D; 18Dg community. Item 18 also
does not provide a response that includes both the
centrifugal force and the motion implies active forces
misconceptions; as such, students may still be applying
the motion implies active force misconception, it is just
not tested by item 18E.
Items 17 and 25 also require some additional analysis.

Both items involve objects moving at a constant speed
under the influence of multiple forces. In both 17A and
25D, the greater force is in the direction of motion. It seems
that 25D should also test the largest force determines
motion misconception. This has been added to Table II and
is supported by the identification of the f17A; 25Dg
community.
The pretest community f11B; 29Ag is also curious. In

item 11, a hockey puck is struck activating the impetus
supplied by the “hit” misconception, but response 11B
explicitly asks about a force in the direction of motion. As
such, we propose that this item also tests the motion implies
active forces misconception. Item 29 involves a chair sitting
on a floor; response 29A identifies only the force of gravity
on the object and ignores the normal force. It seems
difficult to claim this community probes a common mis-
conception. Item 29 was also demonstrated to have poor
psychometric properties in study 2; the correlation between
11B and 29A may have resulted from 29A not functioning
as intended.
The community f11C; 13C; 30Eg continues to convolve

the motion involves active forces misconception with
the impetus supplied by the hit misconception. Response
30E explicitly discusses the force of the hit while items 11C
and 13C discuss a force in the direction of motion. We
propose that items 11C and 13C also test this misconcep-
tion. This addition is supported by the identification of
f11C; 13C; 30Eg as a community. Further, only item 13C
involves the idea of a dissipation of impetus. For this

community, while multiple misconceptions are tested, one
seems to dominate student responses, motion implies active
forces.
Finally, the blocked item responses 23D, 24C differ

from the other blocked responses. Rather than the second
response being the correct answer if the first response was
correct, both appear to be applications of the dissipation of
impetus misconception.

2. Reducing sparsification

The r > 0.2 and C > 0.8 thresholds generated a fairly
disconnected network. This network was productive in
identifying incorrect answers that were frequently selected
at the same time by the same student. As these thresholds are
relaxed, the network becomes more connected as shown in
Fig. 4. As the network becomes more connected, related
misconceptions may merge showing the students have a
coherent non-Newtonian force concept. The communities
identified at r > 0.15 and for C > 0.6 and C > 0.8 are
shown in the SupplementalMaterial [86].While relaxing the
thresholds did allow the community f5D; 11C; 13C;
18D; 30Eg to be detected for both men and women, most
other new communities identified did not result from the
merger of communities identified at more restrictive thresh-
olds. Particularly on the pretest, the larger communities do
not make much sense in terms of the framework of study 3.
This is particularly evident in themixing of theNewton’s 3rd
law items f4; 15; 16; and 28g with other items. As such, it
appears that student misconceptions exist relatively inde-
pendently as small groups of consistent answers, not as a part
of a larger coherent framework.

3. The strength of common misconceptions

One motivation of study 1 was to provide instructors
with a mechanism for identifying common misconceptions
so that specific interventions could be targeted to address
those misconceptions. The communities of incorrect
answers remaining on the post-test as shown in Table I
could be used to provide a measure of the prevalence of the
misconception in the classes studied. Table III presents an
overall average for each incorrect community in Table I on

TABLE III. Percentage of students selecting each incorrect community for the FCI post-test (C > 80%). A t test was performed to
determine if the differences between men and women were significant, the p value is presented. Cohen’s d for the difference is also
presented.

Male Female

Community Ave. (%) Ave. (%) p d Misconception

4A, 15C, 28D 32� 47 33� 47 0.27 0.02 Newton’s 3rd law misconceptions
5D, 11C, 13C, 18D, 30E 22� 42 20� 40 <0.001 0.06 Motion implies active forces
5E, 18E 7� 25 7� 25 0.69 0.01 Motion implies active forces, centrifugal force
6A, 7A 14� 35 5� 21 <0.001 0.39 Circular impetus
17A, 25D 42� 49 37� 48 <0.001 0.11 Largest force determines motion
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the post-test. Only communities that did not result from
problem blocking are presented. Averages were calculated
by assigning a score of 1 if the response was selected and 0
if it was not, then averaging over each item in the group.
Results are disaggregated by gender and the p value for a t
test to determine if differences by gender are significant is
also presented; Cohen’s d provides a measure of effect size.
Cohen suggests d ¼ 0.2 as a small effect, d ¼ 0.5 as a
medium effect, and d ¼ 0.8 as a large effect [95].
The overall difference in post-test percentage score

between men and women was 8%. The percentage of
students who answer an item correctly directly influences
the percentage of students who answer an item incorrectly;
therefore, only differences in Table III greater than 8%
represent unexpected differences between men and women.
Only items f6A; 7Ag exceed this difference, but then only
slightly with a difference of 9%. Items f6A; 7Ag are also
the only community with differences of at least a small
effect size; however, the effect size is likely inflated by the
small standard deviation of women because of a floor
effect. In general, the rate of selecting one of the commun-
ities of common incorrect answers was very similar for men
and women.
For the class studied, the results of Table III suggest that

additional effort be directed to addressing the largest force
determines motion misconception measured by f17A;
25Dg and Newton’s 3rd law misconceptions measured
by f4A; 15C; 28Dg.

IV. DISCUSSION

A. Research questions

This study sought to answer four research questions;
they will be addressed in the order proposed.
RQ1: Are the results of module analysis for multiple-

choice responses replicable for large FCI datasets? If not,
what changes to the algorithm are required to detect
meaningful communities of incorrect answers? The
MAMCR process described in study 1 identified only
one or two communities in our data whether using LANS or
an edge weight threshold to sparsify the network. This
result held for Infomap and for other CDAs. Reducing the
data to a comparable size by subsampling generated more
communities, but still fewer than identified in study 1;
however, the communities identified did not make con-
ceptual sense. We concluded that the community structure
identified in study 1 was the result of the low sample size
and the LANS algorithm and that modifications to
MAMCR were needed to productively identify incorrect
answer communities.
The failure of MAMCR for large samples led us to

propose a variant of the algorithm using the correlation
matrix instead of the adjacency matrix to build the network.
This matrix was sparsified by removing statistically insig-
nificant correlations and correlations below a threshold

(r < 0.2 for most of our analyses). Using the fast-greedy
CDA on this new network produced a rich set of incorrect
communities (Table I). These communities were often
related to items with related correct answers as identified
by study 3. As such, the communities represent consistent
application of incorrect reasoning to contextually different
items that would be viewed as isomorphic by experts
meeting our definition of a misconception. These commun-
ities fall into two broad categories: those employing similar
incorrect reasoning and those resulting from “blocked” items
where an incorrect choice later in the block is the correct
answer given an incorrect choice earlier in the block.
RQ2: How do the communities detected change as

network-building parameters are modified? Do these
changes support the existence of a coherent non-
Newtonian conceptual model? A more permissive thresh-
old for the correlation matrix (r > 0.15) yielded larger
communities as shown in the Supplemental Material [86].
These larger communities were not formed by the joining
of smaller communities related to the same misconception;
in fact, many of the communities contained items that had
little conceptual relation. As such, it appears that the best
model of student misconceptions are as isolated pieces of
reasoning associated with items with a similar correct
solution structure.
RQ3: How is the incorrect answer community structure

different between the pretest and the post-test? For C > 0.8
and r > 0.2, a total of 14 incorrect answer communities
were identified for either men or women pre- and post-
instruction; 5 of the communities were consistently iden-
tified for both genders pre- and postinstruction. Three of
these five represent consistently applied misconceptions:
f4A; 15C; 28Dg, Newton’s 3rd law misconceptions;
f5E; 18Eg, motion implies active forces and the existence
of a centrifugal force; and f6A; 7Ag, circular impetus. The
items from which the incorrect answers in these commun-
ities were drawn were all identified as having very similar
correct solution structure in study 3. The other two com-
munities were drawn from problem blocks: f8A; 9Bg and
f23D; 24Cg. Three incorrect communities disappeared
with instruction: for all students f11B; 29Ag, motion
implies active forces; for men only, f1A; 2Cg heavier
objects fall faster and f1D; 2Cg lighter objects fall faster.
Many incorrect communities were only identified post-
instruction including f17A; 25Dg involving items with
similar solution structure as identified in study 3.
RQ4: How is the incorrect answer community structure

different for men and women? Do the differences explain
the gender unfairness identified in the instrument?
Postinstruction, using C > 0.8 and r > 0.2, 11 commun-
ities were identified for either men or women; 8 of these
communities were identified for both men and women. One
of the other three communities was only identified for
women, f5D; 11C; 13C; 18D; 30Eg, and represents the
motion implies active forces misconception. This
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community was the merger of the two communities only
identified for men f5D; and 18Dg and f11C; 13C; 30Eg; the
female community was also not completely connected,
γ ¼ 0.6. As such, women may have a slightly more
integrated motion implies active forces misconception post-
instruction, but, in general, the misconception structure of
men and women is strikingly similar postinstruction. The
differences between men and women postinstruction did not
involve the unfair items identified in study 2 and cannot
explain the unfairness of these items.
Pre-instruction, nine communities were identified for

either men or women; six were identified for both men and
women. All of the communities not shared by men and
women were only identified for men. One of these
communities, f21C; 22Ag, was the result of blocking
and was identified for both men and women postinstruc-
tion. The other two communities unique to men, f1A; 2Cg
and f1D; 2Dg, involve the heavier objects fall faster and
the lighter objects fall faster misconceptions. The mis-
conception structure of men and women was quite
similar pre-instruction, with men holding more consistent
misconceptions.

B. Additional observations

The misconception communities identified by MMA
were not completely consistent with the naive conception
taxonomy provided by Hestenes and Jackson for the FCI
[40]. Often multiple naive conceptions were associated
with the same community. This may indicate that student
reasoning is better modeled by a more general framework
such as knowledge-in-pieces or ontological categories. It
may also indicate that the FCI cannot fully resolve the
detailed set of misconceptions identified in the taxonomy.
The results of this work were not consistent with recent

exploratory analyses of the FCI [41–43] which identified a
few large factors; these factors mixed very different correct
and incorrect responses. The small communities identified
in the current work, which are partially supported by the
taxonomy of Hestenes and Jackson, seem to indicate the
MMA may be a more productive quantitative method to
explore misconceptions.

V. IMPLICATIONS

Not all of the communities identified in Table I represent
misconceptions. Some represent combinations of depen-
dent answers. For these combinations, the second answer is
correct if the first answer were the correct answer. This
suggests that, because of the blocking of items in the FCI, a
simple scoring of the instrument with each item as correct
or incorrect may understate a student’s knowledge of the
material. Previous authors have called for reevaluating the
scoring of the FCI [96–99], but not because of problem
blocking.

The identification of three communities of incorrect
answers that were the result of item blocking further
supports the conclusions of study 3 that item blocking
should be discontinued in future PER instruments because it
may make the instruments difficult to interpret statistically.
The misconception communities identified in Table II

allow instructors to determine the strength of students’
misconceptions as they enter a physics class and the
remaining strength after instruction, as shown in Table III.
While it is unlikely many instructors will replicate theMMA
analysis for their class, the misconceptions identified in
Table II are generally consistent with both the taxonomy of
Hestenes and Jackson [40] and the theoretical model of study
3. As such, it is likely these misconception communities are
present in the thinking of students in many classes.
An instructor not wishing to apply MMA could use the
communities identified in this work and the scoring method
used to produce Table III to measure the strength of these
misconceptions in their students as a useful approximation.
This should allow instructors to adjust their classes to address
misconceptions remaining after instruction and to direct
fewer resources to addressing misconceptions that are not
present pre-instruction.

VI. FUTURE WORK

MMA was productive in extending the understanding
of the incorrect answer structure of the FCI; it will be
extended to other conceptual instruments including the
Force and Motion Conceptual Inventory [13] and the
Conceptual Survey of Electricity and Magnetism [100].
This work showed that a number of incorrect commun-

ities were only identified postinstruction. The reason for
this is unclear and additional research is needed to under-
stand this effect.
Network analysis encompasses a broad collection of

powerful analysis techniques. The analysis in this work
represents the barest beginnings of the possibilities of these
techniques. Future research may consider networks with
multiple types of nodes (possibly correct and incorrect
answers or pretest and post-test answers) or multiple types
of edges (possibly negative and positive correlations).

VII. CONCLUSION

Previous results reported for module analysis for multi-
ple-choice responses could not be replicated for a large
sample. The failure of the algorithm at large sample sizes
likely results from a combination of unpurposeful edges in
the adjacency matrix at large sample sizes and properties of
the LANS sparsification algorithm. A modification of the
algorithm, modified module analysis (MMA), based on the
correlation matrix was productive in identifying useful
community structure. MMA identified 11 communities on
the post-test and 9 on the pretest. Most of these
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communities were identified both for men and women: 8 on
the post-test, 6 on the pretest. In general, the incorrect
answer community structure identified for men and women
was very similar and could not explain the gender
differences previously identified in a subset of items in
the instrument. The communities identified at high sparsi-
fication failed to merge into larger communities addressing
similar misconceptions as sparsification was reduced.
This suggests that students do not have an integrated

non-Newtonian conceptual framework, but rather isolated
incorrect beliefs strongly tied to the type of question asked.
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