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Abstract: In this paper, we present a regulated charge pump with extremely low output ripple
(<1 mV) that can be used for accurate programming of nonvolatile memory. We present a technique
to include a low-drop-out regulator inside the charge-pump regulation loop to reduce the ripple. This
charge pump was fabricated in a 0.35 µm standard CMOS process. The die area of this charge pump
is 0.163 mm2. While operating from a 2.5 V supply, this charge pump generates regulated voltages
up to 10 V.

Keywords: charge pump; dc–dc converter; variable-frequency regulation; floating-gate transistor;
analog nonvolatile memory

1. Introduction

Charge-pump (CP) circuits are used to multiply the supply voltage (Vdd) to generate a high-voltage
DC output. These circuits have a wide range of applications including liquid-crystal display (LCD)
drivers, micro electro-mechanical systems (MEMS), power-supply generation, and the programming
of nonvolatile memory ([1–4]). Since charge pumps use switched-capacitor techniques to generate
elevated voltages, the output of the charge pumps typically have significant ripple. However, in some
applications, significant ripple cannot be tolerated.

In [5], we presented a high-voltage charge pump that was able to achieve relatively low output
ripple by using a variable-frequency regulation technique. In this paper, we extend our previous results
in [5] to achieve extremely low ripple in the output voltage. Specifically, our new objective was to be
able to generate output voltages that are 2–4 times the supply voltage while maintaining an output
ripple less than 1 mV. In this paper, we present a method to reduce output ripple in high-voltage charge
pumps by adding a high power-supply-rejection ratio (PSRR) low-drop-out regulator (LDO) inside the
regulation loop of the charge pump. In [6], we presented early results of such a circuit, and here we
present an improved version that has significantly better line/load regulation and a more detailed
stability analysis. We also use a feed-forward compensation technique to improve the phase margin of
the LDO. The new charge pump was fabricated in a standard 0.35 µm CMOS process. While operating
from a 2.5 V supply, the charge pump generates regulated voltages up to 10 V. The maximum efficiency
of the charge pump is 25.7% for 48 µA of load current and an output voltage of 10 V. The output ripple
is less than 1 mV for a wide range of load currents and output voltages.

In the remainder of this paper, we describe the development of this regulated charge pump.
Section 2 describes the background of high-voltage charge pumps. Section 3 presents the details of
the proposed charge pump and LDO, along with a stability analysis. The experimental results of the
proposed charge pump are presented in Section 4, and conclusions are presented in Section 5.
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2. Charge-Pump Background

A simplified version of a charge pump is shown in Figure 1a. By using alternating clock phases,
φ1 and φ2, a large voltage at the output can be generated, where each charge-pump stage adds an
additional Vdd to the output. The resulting output voltage is

Vout = (N + 1)Vdd − N
IL

Cp f
, (1)

where N is the number of stages, IL is the load current, Cp is the size of the pumping capacitor, and f
is the frequency of the clock. Between clock phases, the load current discharges the output voltage,
which results in a ripple in the output voltage given by

∆V =
IL∆t
CL

, (2)

where CL is the capacitance loading the output node and ∆t is the period of the ripple, which is
established by the clock frequency. Depending on the load current, the size of the capacitors, and the
clock frequency, this ripple can be significant.

Cp2Cp1

φ1 φ2

φ1V1 V2Vdd

Vout

CL IL

φ2 φ2

(a)

φ1

φ2

V1

V2

Vout

Vdd

2Vdd

3Vdd

(b)

Figure 1. (a) Ideal charge pump. (b) Operation of the ideal charge pump.

From Equation (2), increasing the load capacitance can reduce the ripple, but doing so comes at
the expense of a longer rise time and a significant increase in the area consumed by the circuit.
Often, a large off-chip capacitor is used to ensure a low-ripple output (e.g., [7]). A number of
designs have been introduced to help reduce the amount of ripple at the output while remaining
fully integrated on-chip, with many of these designs focused on providing a low supply voltage
for energy-harvesting applications [8,9]. The work in [10] showed that, for high-voltage charge
pumps (e.g., Vout > 2Vdd), the output ripple and efficiency of a charge pump can be improved by using
complementary charge-pump structures, and simulated ripples of 65–73 mV were achieved. The charge
pumps of [11,12] leveraged closed-loop structures to achieve ripple voltages in the tens-of-millivolts
range; however, closed-loop operation does not guarantee low ripple voltages [13,14].

In [5], we described a method to create a closed-loop charge pump that uses frequency regulation
to help reduce the output ripple and still provide high output voltages. The circuit of [5] is shown in
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Figure 2. Due to the frequency regulation in the closed-loop structure, the output ripple value can be
established by setting capacitor values, as described by

∆V =
Cp

2NCL
[(N + 1)Vdd −Vout] . (3)

This structure was able to provide ripple voltages down to the tens-of-millivolt range for
reasonably sized on-chip load capacitances [5]. However, Equation (3) shows that improving the
ripple is inversely proportional to CL. Therefore, to achieve very low output ripple (e.g., <1 mV),
the load capacitance would become too large to integrate on-chip. For example, the charge pump
of [5] would require CL � 1 nF for a ripple of 1mV, which would consume a considerable amount of
chip real estate.

Charge Pump

Current-Controlled 
Ring Oscillator

Vtarg

clk 4-Phase 
Clk Gen

2.5V

Vfb

4x

Iload

Vout

R2

R1

Figure 2. Block diagram of the variable-frequency charge pump we presented in [5].

Our application of this low-ripple charge pump is to precisely program analog nonvolatile
memory elements. Programming floating-gate (FG) transistors, which are the core elements in
many nonvolatile memory arrays, requires elevated voltages to enable Fowler–Nordheim tunneling
and hot-electron injection to modify the charge on the “floating” gate voltage [15]. The amount
of ripple provided by our charge-pump in [5] was acceptable for the global erasure mechanism
(Fowler–Nordheim tunneling), since precise programming in the erasure mode is not necessary.
However, to accurately program FG devices to an exact amount of charge, the hot-electron injection
voltages must be controlled extremely precisely [16]. A key criteria for accurate programming of
FG devices to a desired analog value is a precise voltage between the drain and the source. Using
conventional programming techniques for analog floating-gate memories, such as [15–17], this criteria
results in the need of a very precise supply voltage for the FG devices with extremely low ripple
(less than 1 mV).

One common method to reduce variation in a supply voltage is to use a voltage-regulator circuit.
Since we are using the charge pump to create an elevated supply voltage that enables hot-electron
injection, a voltage regulator after the charge pump should be able to attenuate the ripple significantly.

As a result, a voltage regulator could follow a simple open-loop charge pump (which has a very
large output ripple). This technique has two major problems. First, it is hard to achieve ultra-low
output ripple (less than 1 mV), because the ripple at the output of the charge-pump is so large and
because the output voltage of an open-loop charge pump is highly dependent upon the load current,
as shown in Equation (1). Second, to be able to supply large-enough load currents, the output of an
open-loop charge pump would have to be significantly high. Based upon simulations, in the case of
our application, the charge-pump output voltage would need to be on the order of 20 V. This high
voltage has a significant potential problem of stressing the devices in the voltage regulator, where high
voltages across a single device can damage the junctions of the transistor.
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Likewise, a closed-loop charge pump like Figure 2 could be used to generate relatively low
output ripple, and it can then be combined with a voltage regulator to further reduce the output ripple.
The voltage regulator could either follow the closed-loop charge pump or be placed within the feedback
loop of the charge pump. Regardless, the stability and phase margin of the voltage regulator are critical
factors in ensuring that the overall output voltage meets the needs of programming analog nonvolatile
memory. If the high voltage produced by the resulting circuit ever overshoots its final value, that
excess voltage could significantly affect the accuracy of programming. Since the hot-electron injection
process depends exponentially upon the drain-to-source voltage [15], even a temporary overshoot
of the desired supply voltage can result in drastic inaccuracies of programming analog nonvolatile
memory. Since the elevated voltage for programming floating-gate transistors is only enabled when
programming, the startup transients—particularly overshoot—are of critical importance.

In this paper, we present a circuit in which a low-drop-out regulator is inserted inside the feedback
loop of a closed-loop, variable-frequency charge pump. The block diagram of the proposed charge
pump is shown in Figure 3. This circuit is able to provide extremely low output ripple, and it can also
be designed so that there is no possibility of overshoot of the output voltage, which will be discussed
further in the frequency-stability discussion. Additionally, we present a method to self-bias a cascoded
pass transistor in the voltage regulator, which helps improve the ripple suppression at the output.

Additional design considerations for the application of programming floating-gate transistors via
hot-electron injection for analog applications are as follows. The exact voltage needed for hot-electron
injection depends on the FG device being programmed. For a typical ∼7 nm gate-oxide device
(i.e., 3.3 V device), which is the minimum oxide thickness required for long-term charge retention on
an FG [5], a source-to-drain voltage of approximately >5 V is required for reasonably fast programming
via hot-electron injection [6,16]. However, the programming support circuitry in many floating-gate
programming systems for analog applications requires additional voltage overhead, so the charge
pump must be able to accommodate higher output voltages. In the system of [18], a voltage of 6.5 V is
typically used. The required output current of the charge pump is modest, but it needs to be able to
handle changing current values as the devices are programmed. In the programming system of [18],
the charge pump needs to supply the programming support circuitry in addition to the FG transistors,
themselves, and the maximum current is approximately 20 µA. Of note, the elevated voltages are
only needed on an infrequent basis. Since the purpose of many programmable analog systems is for
trimming, offset removal, bias current generation, and other values that require a static amount of
charge on the floating gate [19], the charge pump used for providing injection voltages will only be
turned on “as needed” for programming, which is likely an infrequent occurrence (e.g., daily, monthly,
or yearly) and for a short period of time (approximately one second). Accordingly, high efficiency is
not a critical need for this particular charge-pump application.

Iload

Charge Pump

Current-Controlled 
Ring Oscillator

Vtarg

clk 4-Phase 
Clk Gen

2.5V

Vfb

2x

VoutVtarg

R1

LDO

R2

Figure 3. Block diagram of the proposed low-output-ripple charge pump.
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3. Low-Output-Ripple Charge Pump

3.1. Closed-Loop Variable-Frequency Regulation

Figure 2 contains a block diagram of the high-voltage charge pump with variable-frequency
regulation that we introduced in [5]. The operation of this circuit is as follows. Starting from the
output node, a voltage divider shifts the output voltage down by a factor of R1/(R1 + R2) so that
the feedback voltage (Vf b) is between ground and Vdd. The difference between Vf b and the target
voltage (Vtarg) is converted into a current through the combination of an operational transconductance
amplifier followed by a rectifying current mirror, and this resulting current modulates the frequency of
a current-controlled ring oscillator. After being split into a 4-phase clock, the modulated clock signal is
used to generate the pumping voltages in the charge-pump block, which generates a high voltage. Due
to the negative feedback, the output settles on a voltage of 1 + R2

R1
. Equation (3) provides a designable

equation that can be used to reduce the ripple of the output voltage, but when using reasonably sized
on-chip capacitors, this ripple can still result in a value that is too large for some applications, such as
precise programming of floating-gate transistors.

To further suppress the ripple voltage at the output node, we introduce a low-drop-out regulator
(LDO) inside the feedback loop, as depicted in Figure 4. The design considerations of this LDO are
presented next to ensure that (1) all transistors operate in saturation for good ripple suppression and
that (2) the system remains stable and does not have any overshoot of the final voltage value.

Iload

Charge Pump

Current-Controlled 
Ring Oscillator

Vtarg

clk 4-Phase 
Clk Gen

2.5V

Vfb

2x

R1

R2

VCP

R3

Vtarg

Vout

Vcasc

Mpass

Mcasc

Vx

VOTA

Cc

R

Top

Bottom

(a) (b)

CCP

Figure 4. (a) Circuit diagram of the proposed injection charge pump with a low-drop-out regulator
(LDO) in the loop. (b) Resistor divider cell.

3.2. Low-Drop-Out Regulator

A schematic of the LDO used in this charge pump is shown in Figure 5. Instead of using a
single pass transistor, as is common in many LDO designs, we used a composite pass transistor
composed of a series connection of two p-channel MOSFET (pFET) transistors in order to achieve
extremely low output ripple. This LDO is based upon the high-PSRR LDO that was presented in [20].
The output impedance of the composite pass transistor (Mpass + Mcasc) is much higher than that of
a single transistor. Additionally, this cascode structure permits smaller device sizes (Mpass + Mcasc)
than would be required for a single pass transistor, which leads to smaller gate capacitance associated
with the pass transistor. This reduced capacitance is an advantage because the parasitic capacitor that
needs to be driven by the operational transconductance amplifier (OTA) is smaller, thereby relaxing
the LDO compensation [20]. Since transistors Mpass and Mcasc can be exposed to large voltages, these
two transistors have been composed of thick-oxide I/O devices.



Electronics 2019, 8, 1293 6 of 16

Iload

Vfb
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Vout
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Vx
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Figure 5. Circuit structure of the proposed LDO.

Providing a correct bias voltage to the gate of Mcasc is a challenging task, particularly because the
required voltage in steady-state is above the typical supply rail, and also during startup, the cascode
bias needs to adapt to the rising voltages. This issue has not been covered in [20]. Mcasc requires
a voltage at Vcasc to always keep this transistor in the above-threshold saturation region when the
charge pump is enabled. Thus, Vcasc must change adaptively with the output voltage during the initial
startup transient. Designing a separate voltage source to provide Vcasc would add more area and
power overhead, particularly since Vcasc > Vdd in steady-state conditions, meaning that another charge
pump would likely be needed just to generate this bias voltage.

In the proposed circuit, we use a simple technique to provide a suitable voltage for Vcasc. A fraction
of the output voltage is always available through the resistive divider. By using the resistive divider
(R1 + R2)/(R1 + R2 + R3) from Vout to Vcasc with R1 = R2/3 = R3, we establish Vcasc = 4Vout/5 at
the gate of Mcasc to bias this transistor in the correct region. Therefore, the maximum allowable voltage
at Vout must be

Vout < 5|VTh,casc| (4)

to ensure saturated operation of Mcasc, where VTh,casc is the threshold voltage of Mcasc and the
“Th” denotes the parameter of a thick-oxide transistor. Accordingly, the condition to keep Mpass

in saturation is

VCP >
4Vout

5
+ VTh,casc +

√
2IL

Kpass
+

√
2IL

Kcasc
, (5)

where VCP is the output of the charge pump (i.e., input/supply voltage for the LDO) and
Ki = µCox(W/L)i. Equation (5) shows that Mpass can be biased in saturation for a given Vout and IL by
a correct choice of the W/L ratios of Mpass and Mcasc and also by careful selection of the charge-pump
parameters that set VCP—specifically, the number of charge transfer stages (N) and the size of the
pumping capacitors—as given by Vout in Equation (1). Note that the frequency of the charge pump
from Equation (1) is dependent upon the load current and output voltage when placed in a closed loop.

Unlike our early results in [6] where the body of Mcasc was tied to the output of the open-loop
charge pump (VCP), a body-source connected cascode device (Mcasc) is used to minimize the threshold
voltage for Mcasc. Thus, the necessary VCP in Equation (5) becomes smaller, which relaxes the design
of the open-loop charge pump.
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3.3. Stability Analysis of the LDO

A feed-forward capacitor, CC, inside the LDO loop is employed to improve the loop stability of the
LDO, as shown in Figure 5. The frequency analysis of the proposed LDO, including the feed-forward
capacitor, is performed in this section. The first pole is at the gate of the pass transistor (Mpass). This
pole can be expressed as

P1 =
1

ROACpass
, (6)

where ROA is the output impedance of the OTA, and Cpass is the parasitic gate capacitance. The output
impedance of the OTA is high. However, the capacitance seen at the gate of the pass transistor is
very small due to the cascode structure permitting a smaller pass transistor to be used than in a
conventional LDO utilizing a single pass transistor. Thus, this pole resides at very-high frequencies.
The compensation network adds one zero and one pole, which can be given by [21]

P2 =
5

(R2 + R3)CC
=

5
4RcellCC

, (7)

Z1 =
1

(R2 + R3)CC
=

1
4RcellCC

, (8)

where CC is the compensation capacitor and Rcell is the single resistive cell expressed by Equation (12)
and discussed in the next subsection. Vx is a low-resistance node, and the resistance seen from this
node at low frequencies can be expressed as

Rx =
1

gm,casc
+

5Rcell
gm,cascrds,casc

, (9)

where gm,casc is the transconductance of the cascode transistor and rds,casc is the output impedance of
the cascode transistor. Thus, the pole generated at this node resides at very-high frequencies. Finally,
the last pole is at the output of the LDO. Assuming that CL is the load capacitor and that the output
resistance of this LDO is Rout as given by

Rout =
10Rcellrds,casc + 5Rcellr2

ds
2rds,casc + 5Rcell + (A + 4)Rcellrdsgm,casc + gm,cascr2

ds + Agm,passgm,cascRcellr2
ds

, (10)

then the output pole can be expressed as

Pout =
1

RoutCL
. (11)

As just described, the LDO presented in Figure 5 has four poles and one zero. P1 and Px are at
very-high frequencies and are negligible. The other two poles (P2 and Pout) and the zero (Z1) are at
lower frequencies and contribute significantly to the stability of the LDO. Pout is the dominant pole
of this system. Z1 compensates the effect of the other poles and improves the phase margin of the
LDO regulator. The ratio of P2/Z1 = 5, and, therefore, the phase boost gained from the feed-forward
compensation is observed between Z1 and P2, which is a narrow range. We set this range to be around
the unity-gain bandwidth of the system for both no-load and 50 µA load currents. This frequency range
and the peak phase boost are visible in the loop-gain simulations shown in Figure 6 for both no-load
and 50 µA load conditions. Consequently, the phase margin can be made large enough so that there
will be no significant overshoot. The phase margin for the no-load and 50 µA load-current conditions
are 73 and 67 degrees, respectively, which indicates that the LDO will not undergo significant overshoot
in startup conditions. The supply voltage that we used for the LDO in this simulation was 8 V, and the
load capacitor was 80 pF, which are typical values for our application.
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Figure 6. Simulated loop gain of the proposed LDO under no-load and 50 µA load.

In the complete charge-pump circuit, the current consumed by the amplifier is directly drawn
from the open-loop charge pump. Increasing this current will directly affect the actual load current
limit of the charge-pump circuit. To reduce this current to the minimum level, we have used a
simple 5-transistor OTA as our amplifier. This simple OTA will limit the loop-gain of the system,
however. Therefore, there is a trade-off between the current consumption of the OTA and the maximum
achievable loop gain to improve the PSRR of this system.

3.4. Complete Charge Pump

Figure 4a shows the block diagram of the entire low-output-ripple charge pump, including the
LDO. The charge-pump block is constructed from a cascade of seven charge transfer stages (CTS).
Seven stages were needed so that VCP, which is the output of the charge-pump block, is able to
meet the criteria of Equation (5) for the desired Vout, IL, and the transistor sizes needed in the LDO
pass transistors.

The schematic of the CTS block is given in Figure 7. A brief synopsis of the CTS is as follows,
and a detailed description of the CTS is provided in [5]. The CTS blocks leverage a 4-phase
non-overlapping clock, as shown in Figure 7b, that allows the parallel upper/lower paths of the
CTS to operate in opposite phases, thereby helping to reduce the overall ripple. Two switches in series
(e.g., Msw1 and Msw3) are used to limit the voltage drop across any single transistor to only Vdd so that
the transistors do not undergo significant stress. Active-well biasing (Mbb transistors) is used to ensure
that the wells of the switch transistors (Msw transistors) are always biased to the highest potential
encountered by the switch transistors.

To reduce the area required for each resistor in the LDO feedback loop, we used the resistive
elements shown in Figure 4b. Each resistive element is composed of a series combination of a drawn
resistor (98 kΩ) and a pFET, both in a single well. The diode connection of the transistor provides
a current-level-based voltage drop across the transistor. Additionally, using the voltage at the top
of the resistor to bias the well potential of the pFET increases the effective threshold voltage of the
transistor, further increasing the voltage drop across the transistor for a given current level. As a
result, the voltage dropped over the entire resistive element for a given current (i.e., a resistance) is
increased. The pFETs are much smaller than typical drawn resistors, so significant real estate may
be saved by using a smaller drawn size of the resistor. Since these resistive elements are used in a
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resistive divider, only the ratio of the resistances affects performance of the charge pump; therefore,
any current-level-based voltage drops due to the transistors will cancel out. Each resistive element has
a resistance given by

Rcell =
(gm + gmb)R + R

ro
+ 1

gm + 1
ro

≈
(

1 +
gmb
gm

)
R +

1
gm

. (12)

R1 = R3 are each composed of a single resistive element. R2 is composed of three of the resistive
elements in series for a total resistance that is three times that of R1 and R3. The effective Rcell used in
our design is 195 kΩ. Thus, the total resistive divider section has an effective resistance of 975 kΩ.

Figure 4a shows the schematic of the complete charge pump with an LDO in the loop, and the
operation of this entire circuit is as follows. Starting from the output node, a voltage divider shifts the
output voltage down by a factor of R1/(R1 + R2 + R3) = 1/5, where R1 = R2/3 = R3. Accordingly,
the feedback voltage (Vf b) is between ground and Vdd and can be measured by the circuitry that is
powered by the nominal Vdd. The difference between Vf b and the target voltage (Vtarg) is converted into
a current through the combination of an OTA followed by a rectifying current mirror. This resulting
current modulates the frequency of a current-controlled ring oscillator, which has a frequency range
from approximately 200 Hz to above 50 MHz. After being split into a 4-phase clock, the modulated
clock signal is used to generate the pumping voltages in the charge-pump block, which generates a high
voltage. The LDO structure then suppresses the ripple of the charge-pump output, and the resistive
divider ensures that the output voltage is regulated to Vout = 5Vtarg with a very small output ripple.

Msw1

Mbt1

Mbb1 Mbb2

Cbt1 Cp1

Msw3

Mbb5 Mbb6

Vx1

Vm1

Msw2

Mbt2

Mbb3 Mbb4

Cbt2 Cp2

Msw4

Mbb7 Mbb8Vx2

Vm2

Cs

Vstage,in Vstage,out

φ1b φ2

φ2b φ1

(a)

φ1b

φ2

φ2b

φ1

(b)

Figure 7. (a) The charge transfer switch (CTS). (b) Non-overlapping clock signals necessary for the
charge-pump stages.

4. Measurement Results

The complete charge pump was designed and fabricated in a 0.35 µm standard CMOS process
with device sizes given in Table 1. The rated supply voltage for this process is 3.3 V, and the chip supply
voltage is regulated down to 2.5 V for the operation of the charge pump (as well as the floating-gate
transistors and their supporting circuitry). The die area of this circuit is 504 µm × 324 µm. The die
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photo of the proposed charge pump is shown in Figure 8. Both differential amplifiers used in this
circuit are conventional 5-transistor OTAs.

Table 1. Charge pump specifications.

Element Value

Technology 0.35 µm CMOS
Vdd 2.5 V

# Stages 7
Cbt 110 fF
Cp 2.36 pF

CCP 3.93 pF
CC 787 fF
Mbb 3 µm × 0.35 µm
Mbt 3 µm × 0.35 µm
Msw 5 µm × 0.35 µm

Mpass 20 µm × 0.5 µm
Mcasc 10 µm × 5 µm

R1 = R2/3 = R3 195 kΩ
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Figure 8. Die photo of the proposed charge pump.

A Tektronix MSO4054 Mixed-Signal Oscilloscope (500 MHz) was used to measure the output
voltage. The supply voltage and the target voltage were provided by an Agilent E3631A Programmable
DC Power Supply. The load current was set by a custom off-chip current sink and was verified by a
Keithley 6485 Picoammeter.

Figure 9a shows the measured transfer curve from Vtarg to Vout. The slope of this curve is 5, which
shows that the charge pump can generate a high voltage equal to 5Vtarg. Deviation from the ideal
line at the low voltages is because the input transistors of the OTAs drop out of saturation with low
Vtarg; however, since the charge pump only needs to supply voltages greater than the supply voltage,
the transfer characteristic does not need to follow the ideal slope of 5Vtarg for Vtarg < 0.5 V, thereby
significantly relaxing the requirements of the OTA designs. Deviation at high voltages is caused by the
limitations imposed on the cascode transistors described by Equations (4) and (5). Figure 9b shows the
closed-loop load regulation of the proposed charge pump for multiple output voltages, which were set
by changing the value of Vtarg. The hot-electron injection process of floating-gate transistors requires
that the voltage generating the injection conditions be constant with a range of load currents [16,18],
and Figure 9b indicates that this circuit is capable of providing a consistent output voltage under
varying load currents.
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Figure 9. (a) Measured transfer curve from Vtarg to Vout. (b) Measured load regulation of the
charge pump.

A typical value for an injection voltage in a 0.35 µm standard CMOS process is 6.5 V [6]. Figure 10
shows the measured transient response for a typical programming pulse. The charge pump is enabled
and disabled, with a steady-state output voltage of 6.5 V while loaded with a 40 µA load current and an
approximately 80 pF load capacitance. The output reaches steady-state conditions in less than 0.2 ms.
According to our measurements, the output voltage of the proposed charge pump under different
load currents converges to 5Vtarg with a behavior that is between critically damped and over-damped,
meaning that there is no overshoot. Preventing overshoot is critical in floating-gate programming
applications where a small change in the voltage can seriously impact the accuracy of programming.
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Figure 10. Measured transient response of the proposed closed-loop charge pump under 40 µA load.

The current consumption of the proposed charge pump is 0.73 mA and 1.2 mA for no load and
100 µA of load, respectively. The efficiency of a charge-pump is the ratio of the power delivered by the
charge pump to the power supplied to the charge pump, as described by

γ =
Vout IL
Vdd Ivdd

. (13)

The measured efficiency of this circuit is shown in Figure 11a for output voltages of 6.5, 9, and
10 V and varying load currents. The maximum efficiency is 25.7% and is for the 10 V output case.
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The measured efficiency is also shown for various step-up ratios (Vout/Vdd) and load currents in
Figure 11b. As also indicated by Figure 11, the charge pump provides better efficiency for higher
step-up ratios. However, a low efficiency number is not an issue in the charge pumps used for
floating-gate programming because the charge pump is only enabled for a short period of time while
programming the floating-gate transistors; otherwise, the charge pump is disabled.
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Figure 11. (a) Measured efficiency of the proposed charge pump vs. IL. (b) Measured efficiency of the
proposed charge pump vs. Vout/Vdd.

The output impedance of the proposed charge pump with IL = 50 µA for different output
voltages is shown in Figure 12. The output resistance (Rout) stays under 4 kΩ for a wide range of
output voltages. Rout begins to increase when Vout > 9 V because the loop gain of the system reduces
with very-high output voltages.
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Figure 12. Measured output resistance.

The amount of ripple at the output can have a significant impact on the accuracy of programming
floating-gate transistors. As can be seen from Figure 10, the ripple on the output voltage is very
small. Because the ripple was smaller than the limits of our measurement equipment (i.e., within
the quantization noise), we leveraged RC-extracted simulations under similar conditions as our
experimental setup of Figure 10 to determine the amount of ripple. The RC-extracted simulation
results are shown in Figure 13 with Vout = 6.5 V, CL = 80 pF, and IL = 1 µA. Figure 13 shows
that the output ripple was approximately 1mV, which is sufficiently low for our analog nonvolatile
memory programming application. Of note, this load capacitance is small enough that it can easily be
integrated on-chip, and even larger integrated capacitances could be used to further reduce the ripple.
Furthermore, these results show the effectiveness of the charge-pump-LDO loop combination; even
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the relatively low output ripple of the variable-frequency charge pump of [5] would have required
CL � 1 nF to achieve sub 1mV ripple, which is far too large to integrate on-chip in most applications.
The LDO in the loop reduces the necessary load capacitance by several orders of magnitude.
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Figure 13. Simulated output ripple for 1 µA load.

Table 2 shows a comparison of the proposed charge pump with other published charge pumps.
Specifically, we included other regulated charge pumps in this table that (1) were fabricated, (2) provide
Vout > 2Vdd for the process, (3) do not utilize a large off-chip capacitor to reduce the ripple, and (4) have
a reported ripple voltage less than 100 mV. Of the reported charge pumps that meet the above criteria
as shown in Table 2, our proposed charge pump is capable of the lowest ripple.

Table 2. Comparison of low-ripple charge pumps.

This Work Rumberg [5] Tseng [11] Tsai [12] Zhu [22] Mahmoud [23]

CMOS Process 0.35 µm 0.35 µm 0.18 µm 0.18 µm 0.13 µm 65 nm
Vin (V) 2.5 2.5 1.2 1 1.5 0.55–0.7
Vout (V) 2.5–10 7.5–16 6 3–6 2.7–12 3.3
# Stages 7 6 3 6 + 9 interleaved 3–10 1–4

Cp,total (pF) 33 18 18 - - 160
CL (pF) 80 80 - 54 20 400

Size (mm2) 0.163 0.069 4 0.5 0.026 0.17
Max IL (µA) 80 40 700 240 0.6 34

Max Efficiency (%) 25.7 34 - 58 49 66
Ripple (mV) <1 * 18 30 39 36 50–70

* Simulated results due to measurement limitations.

Comparing this new charge pump to our previous work [5], approximately half of the increase in
size is due to the larger pumping capacitors that were used to increase the current-driving capabilities.
The rest of the area was due to the size of the LDO and the resistive divider, which included drawn
resistors instead of only diode-connected pFETs as in [5]. This new charge pump is capable of an
order-of-magnitude lower ripple voltages. However, the inclusion of the LDO prevents the entire
circuit from generating as high voltages as in [5]; the circuit of [5] was specifically designed to be
able to achieve high voltages without subjecting any transistor to voltage drops greater than Vdd and
ensuring that no junction undergoes a breakdown voltage. However, the OTA in the LDO limits the
output voltage to 10 V.

Both [11,12] would be capable of providing the voltages necessary for programming FG transistors
via hot-electron injection if no significant voltage overhead is required for the programming circuitry,
and they both provide larger current-driving capabilities than the proposed charge pump. However,
their ripple is larger, and they consume considerably larger real estate. The circuit of [22], on the
other hand, is very compact. However, while it is able to produce a voltage that is large-enough for
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injection, the maximum load current is quite small and would likely be limiting to FG programming
applications. Even though the circuit of [23] was fabricated in a 65 nm process with a significantly
reduced supply voltage, FG devices require a gate oxide of ∼7 nm for long-term retention [5], which
sets the voltages necessary for inducing hot-electron injection. The maximum voltage of [23] is not
sufficient for FG programming.

In summary, of the circuits listed in Table 2, the proposed charge pump is the best suited to meeting
the needs of precision programming of analog components via hot-electron injection. If the floating-gate
transistors were instead being used for digital memory, many other high-voltage charge pumps would
be capable of providing the elevated voltages needed; since the charge on the FG of a digital device
does not need to be as precisely controlled, charge pumps with larger ripples would suffice [14,24,25],
and even open-loop charge pumps with output voltages that are much more dependent on the load
current (see Equation (1)) could be used [26–28]. The high accuracy needs of the analog memory
necessitates more-stringent requirements of the charge pump.

5. Conclusions

In this paper, we presented a high-voltage regulated charge pump that is capable of providing
the voltages necessary for hot-electron injection programming of floating-gate transistors while
maintaining extremely low output ripple. To reduce the ripple voltage, an LDO is incorporated
inside the charge-pump loop. This charge pump is able to provide voltages up to 10 V with ripple
voltages less than 1 mV while only being 0.163 mm2 in size. This charge pump is also a good candidate
for use in other applications that have sensitive nodes that require elevated voltages.
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