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Abstract

Many species execute ballistic escape reactions to avoid imminent danger. Despite fast

reaction times, responses are often highly regulated, reflecting a trade-off between costly

motor actions and perceived threat level. However, how sensory cues are integrated within

premotor escape circuits remains poorly understood. Here, we show that in zebrafish, less

precipitous threats elicit a delayed escape, characterized by flexible trajectories, which are

driven by a cluster of 38 prepontine neurons that are completely separate from the fast

escape pathway. Whereas neurons that initiate rapid escapes receive direct auditory input

and drive motor neurons, input and output pathways for delayed escapes are indirect, facili-

tating integration of cross-modal sensory information. These results show that rapid deci-

sion-making in the escape system is enabled by parallel pathways for ballistic responses

and flexible delayed actions and defines a neuronal substrate for hierarchical choice in the

vertebrate nervous system.

Introduction

Escape behaviors are fast defensive responses to threats that are typically driven by short senso-

rimotor reflex arcs [1]. However, in humans and other animals, threat imminence strongly

influences the selection of defensive strategies [2]. Indeed, some species possess multiple

modes of escape, including less powerful responses, characterized by delayed initiation and

less-vigorous motor activity [3–5]. Such delayed escape reactions are frequently produced in

response to the same stimuli that drive fast escape responses but are preferentially elicited by

weaker cues. There has been little work characterizing circuits that mediate delayed escapes

[6], precluding analysis of neuronal mechanisms that select and coordinate threat responses.
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Escape behavior, triggered by abrupt tactile, auditory, or visual stimuli, has been studied

extensively in teleost fish. Central to the escape circuit are the Mauthner cells (M-cells), a bilat-

eral pair of giant reticulospinal neurons that trigger explosive C-start evasive maneuvers with a

single action potential [7–9]. However, a second class of escape swim has also been described

[10–14]. Zebrafish larvae respond to auditory stimuli with kinematically distinct Mauthner-

initiated short-latency C-starts (SLCs) and long-latency C-starts (LLCs) [10,15,16]. Like

delayed escapes in other species, LLCs are less vigorous, more variable, and preferentially elic-

ited by weaker stimuli. However, neurons that initiate LLCs have not been described, and it is

not known whether LLCs share neuronal pathways with SLCs or why the initiation of LLCs is

delayed relative to Mauthner-mediated responses.

To resolve these questions, we conducted an unbiased circuit-breaking screen to identify

specific neurons that drive delayed escapes in zebrafish. We discovered a bilateral cluster of

approximately 20 neurons per side in the prepontine hindbrain that initiate delayed escapes.

Prepontine escape neurons are only active on trials in which larvae initiate a delayed escape

but do not project directly to the spinal cord, indicating that they act as premotor neurons.

Finally, results from behavioral experiments suggested that delayed escapes facilitate multi-

modal integration. Our data reveal that rapid behavioral choice is subserved by parallel path-

ways for ballistic and flexible delayed escapes and provides an identified and experimentally

tractable neuronal substrate to study hierarchical decision-making within the vertebrate ner-

vous system.

Results

We used high-speed video to analyze escapes triggered by acoustic/vibrational stimuli in free-

swimming larvae that were 6 d post-fertilization (dpf) (Fig 1A). Auditory C-start reactions

comprise a fast C-bend (C1), counterbend to the other side, and swim bout. As previously

described, the distribution of latencies from stimulus onset to C1 initiation was bimodally dis-

tributed: larvae initiated an SLC within 12 ms of the stimulus or an LLC 16–50 ms after the

stimulus (Fig 1B). We also confirmed that individual larvae executed both SLC and LLC

escapes on different trials to stimuli of the same intensity (Fig 1B). Whereas SLCs were highly

stereotyped all-or-nothing responses, LLC responses were kinematically variable, showing a

significantly greater coefficient of variation for all C1 movement parameters (Figs 1C and

S1A), and were less vigorous, resulting in a smaller net displacement (Fig 1D). The relatively

long reaction time, high variability, and slower speed of LLCs are features shared with second-

ary modes of escape in other species [4,5,17].

To identify neurons that subserve delayed escapes, we initiated a circuit-breaking screen

using a library of Gal4 lines to selectively chemogenetically ablate subsets of neurons using an

engineered nitroreductase variant (epNTR, see Methods) before testing escape behavior (Fig

2A). Lines were chosen in the Zebrafish Brain Browser (ZBB) based on three-dimensional

(3D) transgene expression patterns to maximize cumulative coverage within the brain [18].

We confirmed 3 lines in which LLC responses were reduced by more than 50% after ablation

(y252-Gal4, y293-Gal4, and y330-Gal4; Fig 2B and 2C). Critically, SLC responses were not

reduced but in 2 cases were actually increased (y252-Gal4 and y293-Gal4; S1B Fig), indicating

that decreases in LLC responsiveness were unlikely to be due to impairments in sensory sensi-

tivity. Additional motor phenotypes differed between the lines, presumably because of the dis-

tinct sets of neurons ablated in each (Figs 2D, S1B and S1C). We reasoned that the 3 lines may

label a shared population of neurons critical for LLCs and evaluated overlap in co-registered

whole-brain images of Gal4 expression [18]. Strikingly, three-way colocalization was restricted

to a single area in the prepontine hindbrain: a bilateral region of rhombomere 1 (R1) located
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dorsolaterally to the locus coeruleus, comprising 19 ± 1.7 neurons per side (mean/s.e.m. for

n = 10 y293-Gal4 larvae; Figs 2E, 2F and S2). Neurons in the prepontine cluster were therefore

candidates for driving delayed escape behavior.

We next laser ablated prepontine neurons in R1 to test whether they are required for

delayed escapes. Focal ablation of the bilateral clusters completely abolished delayed escapes

across all stimulus intensities (Fig 2G). In contrast, LLCs were unimpaired in control experi-

ments in which we eliminated a cluster of neurons in R6 that were colabeled by y252-Gal4 and

y293-Gal4 (Fig 2H, S3A Fig). After unilateral ablation of the prepontine cluster, more than

80% of LLCs were directed toward the intact side (Fig 2I). Prepontine ablations did not affect

motor performance but reduced the probability of fast escapes, an effect that is likely to be

nonspecific (potentially because of damage to the underlying locus coeruleus) because unilat-

eral lesions did not affect SLC direction (S3B–S3D Fig). Taken together, transgenic and laser

ablation experiments reveal that a bilateral cluster of neurons in the prepontine hindbrain are

essential for delayed escapes. These neurons are adjacent to the locus coeruleus but not labeled

by the monoaminergic marker vesicular monoamine transporter 2 (vmat2) (Fig 2F). The trans-

gene in y293-Gal4 is integrated in the first intron of fibronectin type III domain containing 5b

Fig 1. Ballistic and delayed escape reactions performed by larval zebrafish. (A) Schematic of behavioral

experiments in free-swimming larvae: groups of 15–20 6-dpf larvae were imaged from above at 1,000 frames per

second with a high-speed camera. An infrared LED array below provided illumination. Nondirectional acoustic/

vibratory stimuli were delivered to the arena by a minishaker. (B) Frequency histogram of response latencies for

individual larvae (n = 15). Inset: Time-lapse images of initial C-bend for larvae performing an SLC or an LLC, color-

coded by millisecond poststimulus. (C) Coefficient of variation (“Coeff. Variation”) for the initial bend angle (“C1”),

counterbend angle (“C2”), and net displacement (“Displ.”) for SLC (“S”) and LLC (“L”) responses. n = 16 groups of

larvae. �p< 0.001, paired t test. (D) Spatial distribution of head locations 5 ms (red) and 25 ms (blue) after escape

initiation for SLC (n = 199) and LLC (n = 220) reactions, relative to initial position (diamond). Underlying numerical

data are included in S1 Data. dpf, day post-fertilization; LED, light-emitting diode; LLC, long-latency C-start; SLC,

short-latency C-start.

https://doi.org/10.1371/journal.pbio.3000480.g001
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Fig 2. A cluster of neurons in the prepontine hindbrain initiates delayed escapes. (A) Schematic of circuit-breaking

screen: 28 Gal4 enhancer trap lines were crossed to UAS:epNTR, and labeled neurons were ablated and tested for

escape behavior. Right: heat maps representing maximum horizontal and sagittal projections of brain coverage

(number of lines labeling a given voxel). (B) Histogram of the change in LLC probability following ablation (compared

to MET-treated non-epNTR-expressing sibling controls) for each line screened. Magenta: Gal4 lines with a>50%

reduction. A minimum of 7 larvae were used per condition per line. %LLC is the percentage of trials on which an LLC

was performed as a fraction of trials with no SLC response. (C) LLC probability for lines highlighted in (B). LLC

probability after ablation (magenta) and in MET-treated sibling controls (black). y252-Gal4 (n = 22 control, 31 ablated

larvae), y293-Gal4 (n = 17, 17), y330-Gal4 (n = 8, 7). ���p< 0.001, ��p< 0.01, �p< 0.05, t test. (D) Maximum

horizontal projections for Gal4 lines with reduced LLC probability after ablation. Expression is color-coded for depth

(μm below image top). (E) Expression overlap between y252-Gal4 and y293-Gal4 (magenta) and between all 3 lines

(green). Boxed area enlarged in (E’). (F) Coronal (top) and dorsal (bottom) projections of confocal substacks through

the R1 cluster in y293-Gal4; UAS:Kaede (green); vmat2:GFPpku2 (magenta) larvae. Prior to imaging, Kaede was

photoconverted to red. Arrows indicate LC and Ra labeled by vmat2:GFP. Both Kaede and GFP are expressed in the

raphe (white). (G-H) LLC probability after laser ablation of R1 (G, n = 9) and R6 (H, n = 16) in y293-Gal4. �p< 0.05, t
test. (I) Percent of LLCs made in a rightward direction after left R1 ablation (“Uni,” n = 14) and nonablated controls

(n = 24). �p< 0.05, t test. Scale bars: 100 μm in (A, D, E); 25 μm in (F); 40 μm in (G-I). Underlying numerical data are

included in S1 Data, and unprocessed image stacks in (F) are available at https://doi.org/10.5281/zenodo.3382102. a,

anterior; d, dorsal; dpf, day post-fertilization; epNTR, engineered nitroreductase variant; GFP, green fluorescence

protein; LC, locus coeruleus; LLC, long-latency C-start; m, medial; MET, metronidazole; R1, rhombomere 1; Ra,

raphe; SLC, short-latency C-start.

https://doi.org/10.1371/journal.pbio.3000480.g002
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(fndc5b) and therefore likely reflects the spatial expression pattern of this gene [18]. In the

Allen Mouse Brain Atlas, Fndc5 is also expressed adjacent to the locus coeruleus, in the vestib-

ular nuclei [19,20], a region previously implicated in driving vestibular startle responses in

mammals (S4 Fig) [21,22]. These and other similarities (see Discussion) suggest that prepon-

tine escape neurons in fish may be homologous to the mammalian superior vestibular nucleus

(SUV).

Prepontine neurons might directly initiate escape reactions or regulate the responsiveness

of another pathway. To test whether prepontine neuron activation drives escape behavior, we

expressed the channelrhodopsin variant ChEF in y293-Gal4 neurons and selectively stimulated

prepontine neurons in head-embedded larvae using a digital mirror device (DMD) (Fig 3A

and 3B)[23]. Control ChEF-negative larvae did not respond to light-emitting diode (LED) illu-

mination. Unilateral illumination of ChEF-positive neurons elicited behavioral responses in

54.6% of trials, of which half were initiated with a large-angle tail flexion similar to C-start

responses in free-swimming fish (Fig 3C and 3D, and S1 Video). C-start-like responses trig-

gered by unilateral optogenetic activation were primarily initiated to the ipsilateral side (Fig

3E). These results confirm that prepontine neurons drive escape-like behavior and support the

finding from unilateral lesion experiments that neurons in each hemisphere predominantly,

although not exclusively, drive ipsilateral responses.

Rapid reaction times for M-cell–initiated escapes are achieved through a short sensorimo-

tor pathway, use of electrical synapses, and the large caliber of the Mauthner axon [24]. Thus,

during fast escapes, the VIIIth nerve directly activates Mauthner neurons, which form mono-

synaptic contacts with motor neurons throughout the contralateral spinal cord [25,26]. As a

step toward characterizing the delayed escape pathway, we reconstructed prepontine y293 neu-

rons. For tracing, we sparsely labeled neurons by crossing y293-Gal4 to a heat shock–inducible

Fig 3. Optogenetic prepontine neuron stimulation elicits C-start behavior. (A) Schematic of optogenetic

stimulation and two-photon calcium imaging: a DMD was used to spatially restrict 460-nm LED excitation (green

box) within the brain of head-embedded larvae (blue box) mounted on a stage with a speaker for acoustic/vibratory

stimulation, an infrared light source for tail illumination, and a high-speed camera for behavioral readout (orange

box). (B) Two-photon optical section of mCherry expression in y293-Gal4, UAS:ChEF-2a-mCherry larva with the area

around one prepontine cluster (asterisks) stimulated by the DMD outlined in blue. Scale bar 40 μm. (C) C-start and

swim-like (C’) behaviors elicited by unilateral optogenetic stimulation of prepontine neurons in y293-Gal4, UAS:

ChEF-positive larvae. Scale bars 500 μm. (D) Percent of behaviors elicited by illumination of larvae expressing ChEF

(ChEF+; 229 trials, n = 8 larvae) and nonexpressing sibling controls (ChEF−; 63 trials, n = 7 larvae). C-start-like

responses (“C,” green), swim-like bouts (“Sw,” red), other responses (blue), nr (gray). (E) Number of C-start responses

made ipsilateral (“IPSI”) and contralateral (“CON”) to the side of optogenetic stimulation, color-coded for each of the

8 larvae tested. χ2 = 15.25, �p< 0.001. Underlying numerical data are included in S1 Data. DMD, digital mirror device;

LED, light-emitting diode; mCherry, monomeric Cherry; nr, no response.

https://doi.org/10.1371/journal.pbio.3000480.g003
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B3 recombinase and an upstream activating sequence (UAS) reporter with B3 recombinase

“blown-out” (blo) recognition sites (Fig 4A) [27]. B3 is relatively inefficient in larval zebrafish,

allowing heat-shock conditions to be titrated to achieve stochastic expression of membrane-

tagged red fluorescent protein (RFP) from the UAS:bloSwitch reporters [28]. We imaged 20

prepontine neurons and manually reconstructed 5 to visualize their morphology, revealing

bilateral terminations in the cerebellar eminentia granularis (EG) and the caudal hindbrain

(Figs 4B and S5A). A single neurite from each neuron projected ventrally then bifurcated into

lateral and medial branches (Fig 4C). The lateral branch terminated nearby, arborizing in or

below the EG (Fig 4D). The medial branch split again: one fork extended through a dense neu-

ropil area to the caudal hindbrain (Fig 4E), and the other crossed the midline (through the

raphe nucleus) to the bifurcation zone of neurites from the contralateral prepontine cluster

(Fig 4B and 4C, arrows). Here, as on the ipsilateral side, the process split, arborizing within the

EG (Fig 4D) and extending to the caudal hindbrain (Fig 4E). This quadripartite morphology

Fig 4. Prepontine escape neurons project reciprocally to the caudal hindbrain and cerebellum. (A) Schematic of 3

transgene system used for B3-recombinase–based neuronal tracing. (B-E) Representative traced neuron in 6-dpf larva

(green, for others, see S5 Fig), registered to ZBB atlas [18]. Background is elavl3:Cer (gray). (B) Horizontal maximum

whole-brain projection of a reconstructed neuron from y293-Gal4 (ZBB, magenta). Asterisks: projections of the 4

primary neurites. Arrow: commissural projection. Dashed lines indicate views in (C) and (E). (C) Coronal substack

projection from the area indicated in (B). Arrow: commissural projection. Scale bar 50 μm. Views in (D) outlined. (D)

Coronal projections of neurites extending into the ipsilateral (D’) and contralateral (D) EG (yellow). (E) Dorsal

projection through the caudal medulla lateral neuropil area (ZBB anti-zrf2, purple). Cellular regions labeled by Tg
(elavl3:nls-mCar)y517 (ZBB, yellow). Inset: sagittal view of same region. a, anterior; d, dorsal; EG, eminentia

granularis; hsp70, heat-shock protein 70; lynRFP, membrane-tagged red fluorescent protein; MO, medulla oblongata;

nGFP, nuclear-localized green fluorescent protein; Ra, raphe; SC, spinal cord; ZBB, Zebrafish Brain Browser.

https://doi.org/10.1371/journal.pbio.3000480.g004
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was shared by all 20 neurons imaged, with the only salient differences being (1) the caudal

extent of hindbrain projections (S5B Fig) and (2) whether neurites projected bilaterally into

the EG (S5C Fig). Neurites were not apposed to VIIIth nerve projections (S5D and S5E Fig).

Moreover, although y293 neurons form presynaptic terminals in a neuropil zone at the same

rostro-caudal level as the anterior-most population of motor neurons (S5F and S5G Fig), they

do not project further into the spinal cord and therefore cannot directly activate motor neu-

rons throughout the length of the spinal cord to drive a C-start response. Thus, unlike the

pathway for fast escapes, in which only 3 synapses are interposed between hair cells and motor

neurons, prepontine escape neurons are not directly connected to either sensory input or all

necessary motor output neurons, which likely contributes to the longer latency of the

response.

We reasoned that the extended pathway and greater reaction time for delayed escapes may

provide an opportunity to integrate additional information from the environment to guide

LLC trajectories. Because zebrafish larvae are strongly attracted to light, we combined a light

spot with an acoustic stimulus and tested escape trajectories (Fig 5A). In this paradigm, nondi-

rectional broad-field illumination on control trials was replaced with a localized light spot sev-

eral seconds before delivery of a nondirectional acoustic stimulus. Whereas SLC trajectories

were similar during broad-field illumination and during light-spot exposure, LLC trajectories

were preferentially performed toward the spot (Fig 5B–5E). Moreover, body curvature and

angular velocity during the initial C-bend were increased during directionalized delayed

escapes, whereas other kinematic parameters were unchanged (Figs 5F, 5G and S6A). Directio-

nalized responses were absent in atonal bHLH transcription factor 7 (atoh7) mutants, which

lack retinofugal projections, confirming that retinal signaling is responsible for guiding

delayed escape trajectories (S6B Fig). Thus, external visual cues strongly influence LLC but not

SLC escape trajectory in larvae, consistent with the idea that the longer latency of delayed

escapes provides additional time for integration of sensory information into computations

that guide path selection.

Fig 5. Delayed escape trajectories are guided by visual information. (A) Schematic of experiment measuring escape direction under broad-field illumination or

in darkness with only a light spot illuminated. Scale bar 1 s. (B-C) Thirty representative SLC (B) and LLC (C) escape trajectories of larvae to a nondirectional

acoustic/vibratory stimulus when under broad-field illumination (“Broad”) or when oriented to the left or to the right of a light spot. Escape direction is plotted

radially and net displacement axially. (D-E) Mean direction choice (−1 all left; +1 all right) for SLC (D) and LLC (E) responses under broad-field illumination

(“Br”; SLC, n = 367 responses; LLC, n = 372) or when the light-spot was to the left (“L”; SLC, n = 131 responses; LLC, n = 257) or to the right of the larva (“R”; SLC

n = 143; LLC, n = 283). �p< 0.001, t test. (F-G) Mean initial bend angle (F) and maximum angular velocity (G) for LLCs performed under broad-field

illumination (gray) or during directionalized responses with a light spot. �p< 0.01, t test. Underlying numerical data are included in S1 Data. Ctrl, control; LLC,

long-latency C-start; N.S., not significant; SLC, short-latency C-start.

https://doi.org/10.1371/journal.pbio.3000480.g005
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To test whether prepontine escape neurons integrate sensory information, we performed

two-photon calcium imaging of nuclear-localized GCaMP6s in head-embedded y293-Gal4 lar-

vae. In parallel, we monitored tail movements in order to correlate activity with behavior. We

simultaneously recorded from multiple prepontine y293-Gal4, UAS:GCaMP6s neurons during

presentation of an auditory stimulus and then grouped responses based on the behavioral out-

come (Fig 6A). Mean SLC responsiveness was 20.4% ± 1.5%; however, unexpectedly, LLC

responses were only elicited on 1.1% of trials in embedded larvae. The low rate of delayed

escapes in immobilized larvae precluded us from testing the effect of directionalized light sti-

muli. Nevertheless, on trials with a delayed escape, prepontine neurons on the same side as the

initial C-bend showed a significant increase in mean activity (Fig 6B and 6C). Activity was less

elevated, but also above baseline, on trials with a delayed escape on the contralateral side. How-

ever, neurons were completely inactive on trials in which the acoustic stimulus failed to elicit a

reaction, demonstrating that the prepontine clusters are not sensory interneurons but motor-

associated neurons whose activity correlates most strongly with ipsilateral delayed escape reac-

tions. Strikingly, prepontine escape neurons were also silent on trials in which the larva per-

formed a fast escape. This suggests that fast escape and delayed escape pathways are not

coactive and suggests that Mauthner-mediated fast escape responses suppress the delayed

escape pathway. We propose that the auditory stimulus recruits independent pathways for

escape and that the faster reaction time of the M-cell pathway shuts down the delayed escape

circuit, preventing transmission of potentially conflicting motor commands (Fig 7).

Discussion

Rapid escape responses in many species are mediated by giant fiber neurons, providing a con-

spicuous entry point into the underlying circuit [29]. In contrast, neuronal pathways for alter-

nate modes of escape have not been well characterized. Here, we reveal a population of

premotor neurons that initiate delayed escape behavior in larval zebrafish: a bilateral cluster of

approximately 20 neurons per side adjacent to the locus coeruleus in the prepontine hind-

brain. Although prepontine escape neurons project bilaterally to the caudal medulla oblongata,

calcium imaging, lesion, and optogenetic activation experiments all indicate that these neurons

predominantly initiate ipsilateral escapes. Delayed escape trajectories are strongly biased by

Fig 6. Prepontine neurons are active during ipsilateral delayed escapes. (A) Two-photon optical section of nuclear-

localized GCaMP6s-positive prepontine neurons in y293-Gal4 with ROIs shown in (B) indicated. (B) Representative

GCaMP6s traces for ROIs in (A) for ipsilateral LLCs (“IPSI”), contralateral LLCs (“CON”), SLCs, and NR trials. Each

vertical set of GCaMP6s traces are from the same trial. Gray bar: acoustic stimulus. Scale bar 1 ΔF/F, 5 s. (C) Change in

GCaMP6s fluorescence (ΔF/F) across response types: ipsilateral LLCs, contralateral LLCs, SLCs, and NR trials (31

neurons, n = 3 larvae). ���p< 0.001, t test. Underlying numerical data are included in S1 Data. LLC, long-latency C-

start; NR, no response; ROI, region of interest; SLC, short-latency C-start.

https://doi.org/10.1371/journal.pbio.3000480.g006
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visual cues from the environment, suggesting that these responses represent a more “delibera-

tive” mode of escape, potentially allowing larvae to better evade predators or obstacles.

The pathway we describe for auditory-induced delayed escapes is not similar to previously

described escape circuits in zebrafish. Rapid C-start escapes to head-touch stimuli are medi-

ated by the reticulospinal neurons MiD2cm and MiD3cm [30], and slow-velocity looming sti-

muli trigger non-Mauthner escapes, potentially via a set of reticulospinal neurons that show

stimulus-correlated activity [6]. However, unlike reticulospinal neurons, which traverse the

medial and lateral longitudinal fasciculi to contact targets in the spinal cord, prepontine escape

neurons project through lateral fiber tracts and terminate in a dense neuropil zone in the cau-

dal hindbrain and must therefore drive at least the majority of spinal cord motor neurons indi-

rectly. Similarly, unlike the Mauthner neurons, which receive monosynaptic auditory input

from the VIIIth nerve, prepontine escape neurons must receive polysynaptic inputs, poten-

tially within the EG, a region known to receive sensory input and where prepontine neurite

morphology resembles dendritic arborizations [31]. A third difference is the mechanism for

selecting escape direction. Feedforward inhibitory signals help to select activation of a single

M-cell [14]; however, acoustic stimuli often activate both M-cells, and downstream mecha-

nisms prevent simultaneous bilateral activation of motor pools [32]. In contrast, prepontine

neurons show much greater activity on the side ipsilateral to the escape direction. Commis-

sural processes project reciprocally to the contralateral nucleus, raising the possibility that lat-

eral inhibition ensures unilateral activation and initiation of an escape to one side.

Although Mauthner-initiated escape responses in adult fish are biased by visual cues, our

data indicated that at larval stages, only delayed escape trajectories were biased by visual infor-

mation [33]. In mammals, distinct neural pathways mediate active flight from imminent

threats and "slow strategic escape" from distant dangers [34]. LLCs, although slow compared

Fig 7. Escape pathways in zebrafish. (A) Parallel sensory pathways transmit acoustic information to M-cells (“McL” and “McR”) and prepontine

escape neurons (“PpL” and “PpR”). Decision-making is based on reaction time: VIIIth nerve activation of M-cells is direct, whereas prepontine

neurons receive auditory information only via an indirect pathway, allowing active M-cells to prevent the initiation of delayed escapes.

Additionally, Mauthner cells inhibit prepontine escape neurons, likely through an indirect pathway. Dashed lines indicate indirect connections. (B)

Anatomy corresponding to the model in (A). Auditory signals from the statoacoustic ganglion (VIII, brown) excite M-cells (“Mc,” blue) directly

(top) or prepontine escape neurons (“Pp,” green) indirectly (bottom). M-cells receive predominantly ipsilateral inputs and project commissurally to

drive fast escapes, whereas prepontine escape neurons project both ipsi- and contralaterally and may drive escape in either direction, although

predominantly ipsilaterally. LLC, long-latency C-start; M-cell, Mauthner cell; SLC, short-latency C-start.

https://doi.org/10.1371/journal.pbio.3000480.g007
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to Mauthner-initiated responses, are nevertheless rapid defensive reactions rather than a cog-

nitive avoidance behavior. However, our data suggest that delayed escapes may provide a win-

dow for cross-modal integration and computation of an optimal escape trajectory to evade

threats or obstacles. In addition, less vigorous, long-latency escapes may allow animals to cali-

brate the cost of behavioral responses to perceived threat [6]. Consistent with this idea, LLCs

are preferentially evoked by weak acoustic stimuli and match response vigor and speed to

stimulus intensity [10,16]. In some circumstances, the predictable path trajectories of fast

escapes are susceptible to exploitation [35]. Indeed, many prey species show “protean behav-

ior,” exhibiting intrinsically erratic or variable responses to confuse predators [36]. For zebra-

fish, the presence of alternate modes of escape and the intrinsic variability of delayed escape

behavior may reduce the predictability of escape trajectories. These roles are not exclusive:

faced with a less precipitous threat, larvae may compute an optimal escape trajectory that is

also energetically favorable and more flexible than M-cell–driven fast escape reactions.

Delayed escape neurons are located in an unannotated area of the prepontine hindbrain

between the locus coeruleus and the cerebellum. The y293-Gal4 line is an enhancer trap for

fndc5b, which is expressed in a topographically similar area in mice that is annotated as the

vestibular nucleus (VN). This is striking because the VN drives startle responses to abrupt ves-

tibular stimuli in mammals [21,22]. The precise pathway for vestibular startle has not been

characterized but, like the prepontine delayed escape pathway, is independent of the system

that drives startle responses to acoustic or somatosensory stimuli [37]. Among components of

the VN, the SUV is most similar to prepontine escape neurons: of R1 origin [38] and, at least

in frog, comprising neurons with commissural and possibly cerebellar projections [39]. Future

experiments with molecular markers will be required to provide definitive evidence, but based

on position, projections, and function, we provisionally propose that prepontine escape neu-

rons reside in the zebrafish homolog of the mammalian SUV and may represent an evolution-

arily ancient secondary pathway for rapid defensive responses to threats sensed via acoustic or

vibrational cues.

Why are multiple prepontine escape neurons active during LLC responses? A single M-cell

spike defines the latency and direction of an SLC; this spike, however, does not encode the

entire movement trajectory but acts together with parallel descending motor pathways [40].

Although it is possible that parallel descending pathways also encode LLC escape parameters,

we speculate that coactive prepontine escape neurons collectively encode primary LLC escape

parameters such as the speed and duration of the initial C-bend. In mammals, the strength of

startle responses reflects the extent of recruitment and firing rate of reticulospinal neurons in

the pontine nucleus caudalis [41,42]. Similarly, the graded vigor of delayed escapes according

to stimulus intensity may be explained by the number and/or firing rate of prepontine neurons

that respond to an auditory stimulus.

The M-cell ventral dendrite receives polysynaptic visual information via the optic tectum

[43,44]; however, visual inputs may need to be acute “looming” stimuli to be integrated into M-

cell-mediated escape decisions [6]. In our experiments using a static light spot, only delayed

escapes integrated directional visual information into trajectory decisions. One possibility is

that the integration of visual information requires the additional time provided by delayed

escape. If so, this does not reflect transmission time from the retina, as the directional visual

information was available for several seconds before the auditory stimulus. Rather, delayed

responses may reflect the complexity of multimodal integration, providing sufficient time for

the network of prepontine neurons to incorporate visual and auditory information into a trajec-

tory decision. How different visual and auditory streams are segregated between and integrated

within M-cell and prepontine escape circuits provides a tractable neuronal substrate for future

work on decision-making, multimodal integration, and circuit organization at the cellular level.
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Although we do not yet have a comprehensive picture of how short- and long-latency

escape circuits interact, we can predict features of their organization (Fig 7). Prepontine neu-

ron activity during SLC escapes would likely interfere with either the counterbend or swim

phase of the response, making it essential to prevent delayed escapes during the performance

of SLC responses. Indeed, M-cell-mediated escapes override competing motor commands

[45]. The large caliber of the Mauthner axon ensures that its motor commands reach the spinal

cord before other active descending fibers, allowing inhibition of competing signals [46]. How-

ever, M-cell inhibition of delayed escapes does not rely on spinal inhibition, as our calcium

imaging experiments revealed that prepontine neurons do not fire during M-cell-initiated SLC

responses. M-cell firing must therefore, likely indirectly, inhibit prepontine escape neurons or

their inputs. This hierarchical structure may be a general feature within decision-making cir-

cuits in which first-to-fire ethologically critical responses suppress slower, less urgent

behaviors.

The M-cell system has given us one of the most complete pictures of neural circuit function

underlying behavior in vertebrates and remains an important model for understanding how

motor decisions are computed at the cellular level [14,43,47]. However, decision-making in a

system in which a single neuron can induce key components of a motor behavior may be dif-

ferent than decisions that are implemented by groups of coactive neurons. Our identification

of prepontine escape neurons provides an opportunity to explore how collective decisions are

implemented at the circuit level and compare how strikingly similar motor programs are initi-

ated either by a population or by a single discrete cell. Finally, prepontine escape neurons may

serve as an archetype for identifying delayed escape neurons in other model systems.

Methods

Ethics statement

All in vivo experimental procedures were conducted according to National Institutes of Health

guidelines for animal research and were approved by the NICHD Institutional Animal Care

and Use Committee (#18–007).

Animal husbandry

Wild-type zebrafish (Danio rerio) and Gal4 enhancer trap and transgenic lines used in this

study were maintained in a Tüpfel long fin (TL) strain background. Experiments were per-

formed on larvae in the first 8 dpf, before sex differentiation. Embryos were raised in E3

medium supplemented with 1.5 mM HEPES (pH 7.3) (E3h) at 28˚C on a 14 h:10 h light:dark

cycle with medium changes at least every 2 d unless otherwise described.

Mutant and transgenic lines

Images throughout were registered to the ZBB to enable comparison with other markers [18].

Gal4 lines used for the circuit-breaking screen were previously described [18,48] and main-

tained using Tg(UAS-E1b:Kaede)s1999t (UAS:Kaede) [49]. We applied the “subdivide pattern”

command in the ZBB to the huc:Cer pattern to select an initial set of 16 lines with good global

coverage and then manually selected additional lines to fill in less well represented areas. For

chemogenetic ablation experiments, these lines were crossed to nitroreductase lines Tg
(UAS-E1b:BGi-epNTR-TagRFPT-oPre)y268Tg or Tg(UAS:epNTR-TagRFPT-utr.zb3)y362Tg
[18,50]. Gal4 lines used in chemogenetic ablation experiments were brain-specific, containing

neuronal-restrictive silencing elements [48], or were crossed to the y362Tg line that includes a

synthetic 30 UTR designed to suppress non-neural expression [18]. Gal4 lines are available
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from the Zebrafish International Resource Center (ZIRC; http://zebrafish.org). UAS:bloswitch
and hsp70l:B3 lines were used for y293Et neuron tracing [28]. Atoh7sa16352 mutants were

acquired from the ZIRC [51]. The locus coeruleus was visualized using Et(gata2a:EGFP)pku2
(vmat2:GFP) [52]. Images of TgBAC(chata:Gal4-vp16)mpn202 (chata-Gal4) were as published

[53], registered to ZBB. Other lines used were Tg(mnx1:GFP)ml2 [54] and Tg(UAS-E1b:synap-
tophysin-TagRFPT)y261 [55].

Imaging

Embryos were raised in E3h media containing 300 μM N-Phenylthiourea (PTU) starting at

8–22 hpf to suppress melanophore formation with PTU changed at least every 48 h. For imag-

ing at 6 dpf, larvae were anesthetized in 0.24 mg/mL tricaine methanesulfonate (MS-222) for 3

min and mounted in 2.5% low-melting-point agarose in 3D-printed plastic inserts (ABS from

Stratasys or clear resin from FormLabs) within #1.5 thickness (0.17 ± 0.005 mm) cover glass-

bottom cell-culture chambers (Lab-Tek II 155379). An inverted laser-scanning confocal

microscope (Leica TCS SP5 II) equipped with an automated stage, and a 25x/0.95 NA apo-

chromatic water immersion lens (Leica # 11506340) was used to acquire confocal stacks. For

labeling individual neurons, y293-Gal4; UAS:bloSwitch fish were crossed to hsp70l:B3. Sparse

labeling was achieved by a 25–35-min heat shock at 37˚C at 3 dpf to induce B3 recombinase

expression. Larvae were then raised under standard conditions and imaged at 6 dpf. Neurons

were traced in Imaris 8.4.2, exported as TIFs, and converted to NIFTI for alignment with

ANTs to y293-Gal4 as a reference [56]. To photoconvert Kaede from green to red in selected

neurons, we scanned with a 405-nm laser at 30 mW for 90 s.

Genetic and laser ablations

For genetic ablations, we used an engineered variant (epNTR) of the bacterial nitroreductase

gene, which converts a cell-permeable substrate (metronidazole) into a cell-impermeable cyto-

toxin [50,57]. Gal4 enhancer trap lines were crossed to UAS:epNTR-TagRFPT and embryos

screened for red fluorescence. Nonfluorescent embryos were used as controls. At 4 dpf, larvae

were exposed to 10 mM metronidazole for 24 h, given 24 h to recover, and then tested for

escape behavior at 6 dpf. For laser excisions, subsets of Kaede-positive neurons were selectively

ablated at 4 dpf in y293-Gal4;UAS:Kaede larvae raised in PTU. Laser excisions were performed

on an upright laser-scanning confocal microscope (Leica TCS SP5 II) equipped with a multi-

photon laser (SpectraPhysics MaiTai DeepSee), automated stage, and 20x/1.00 NA apochro-

matic water-dipping lens (Leica # 11507701). Larvae to be ablated as well as controls were

mounted in 2.5% low-melting-point agarose on #1.5 thickness cover glass, which was then

inverted for the upright microscope. A 488-nm argon laser line was used to visualize target

cells and confirm ablation, whereas the multiphoton laser tuned to 800 nm was used for selec-

tive laser excision. The laser was pulsed for 5–1,000 ms at approximately 2.4 W until cell integ-

rity was compromised. Following ablation, larvae were raised in E3h until behavioral testing at

6 dpf. Successful ablations were then confirmed by confocal microscopy—only larvae with 3

cells or fewer remaining on either side were analyzed.

Free-swimming behavior

For light-spot experiments, TL larvae were tested in groups of 15–20 within a 33 × 33-mm cor-

ral, which kept larvae in view of a high-speed camera. Larvae were illuminated from above at

about 80 μW/cm2 (arena light) and by an infrared LED array for imaging purposes from

below. During light-spot trials, the arena light was replaced for 3.5 s with a light spot of about

8 μW/cm2 and an approximately 6-mm diameter focused from below. Three seconds after
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appearance of the light spot, larvae were exposed to an acoustic/vibratory stimulus. Aside from

the switching of illumination, control trials to quantify baseline responses were performed

under the same conditions. Control and light-spot trials were pseudorandomly presented 20–

40 times each at 15-s intervals. The change in illumination elicited O-bends only within the

first second, and not at 3 s when the acoustic stimulus was provided. For chemogenetic abla-

tion experiments, larvae were tested individually in 9.7 × 9.7-mm wells of a 3 × 3 grid illumi-

nated by an LED array at approximately 500 μW/cm2 from below. Different stimulus

intensities were presented 20 times each in a pseudorandom sequence at 15-s intervals to mini-

mize habituation. Genetically ablated larvae and metronidazole-treated controls were tested in

alternation.

Auditory stimuli consisted of sinusoidal waveforms of 21–36 dB, of 2-ms duration, and

nominally 250 or 1,000 Hz, though the acoustic/vibrational stimuli as delivered are intrinsi-

cally broadband. Stimuli were delivered with an electrodynamic exciter (Type 4810 Mini-

shaker; Brüel & Kjær) controlled by a digital–analog data acquisition card (PCI-6221; National

Instruments). Behavioral responses of larvae were recorded at 1,000 frames/s with a high-

speed camera (DRS Lightning RDT/1 or RL Redlake MotionPro; DEL Imaging) fitted with a

50-mm macro lens (EX DG Macro, Sigma). For light-spot experiments requiring infrared illu-

mination, cameras were additionally fitted with an infrared filter (R72, Hoya Filters). Recorded

trial bouts were 120 ms in length with acoustic/vibratory stimuli delivered at 30 ms, except for

laser excisions of y293-Gal4 larvae, for which we analyzed 200 ms to ensure that LLCs were

absent and not merely delayed.

Behavioral responses were analyzed with Flote software [10]. As ongoing locomotion differ-

entially influences SLC and LLC probability, larvae were only included if they were motionless

in the 30 ms prior to acoustic stimulus. Startle responses were considered SLCs if they

occurred within 12 ms of stimulus delivery. LLC responsiveness was calculated as the mean

proportion of larvae responding with an LLC, as a fraction of all larvae still stationary after the

time period during which SLC responses occur [10]. This adjustment is made because SLC

production precludes the production of LLCs. For light-spot experiments, larvae were pooled

by quadrant based on their initial orientation to the light spot. For behavioral analysis follow-

ing PTU treatment, some low-contrast larvae were unable to be automatically tracked with

Flote, and behaviors were manually assessed with the scorer blinded to the identity of ablated

versus control conditions.

Calcium imaging and optogenetic activation

For calcium imaging or optogenetic stimulation, y293-Gal4 embryos were injected at the one-

cell stage with tol1 mRNA and a plasmid containing either UAS:BGi-nls-GCaMP6s.zf2-v2a-
nls-dsRed.zf1-afp or UAS:BGi-ChEF-v2a-mCherry-afp, respectively [28], screened for red fluo-

rescence, and raised in PTU in the dark. At 6 dpf, GCaMP6s- or ChEF-positive larvae were

embedded in 3.5% low-melting-point agarose in E3h in a petri dish with agarose cut away

from the tail caudal to the swim bladder to allow for tail movement and behavioral readout of

acoustic or optogenetic stimulation. Larvae were then placed on a custom 3D-printed stage

with temperature maintained at 28˚C by a ring-shaped Peltier device. To track tail movements,

larvae were illuminated using a 980-nm LED and imaged from below at 100 or 200 frames per

second (fps) using an infrared CCD camera (Pike F-032C IRF, Allied Vision Technologies).

Tail movements were acquired and tracked using a custom Matlab script. Each larva was tested

with a mean of 8 trials at intervals of 5–10 min. A trial comprised 4 stimuli at interstimulus

intervals of 60–90 s. Only larvae that performed both SLCs and LLCs were included for

analysis.

A neural pathway for flexible escape behavior

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000480 October 15, 2019 13 / 19

https://doi.org/10.1371/journal.pbio.3000480


GCaMP6s- or ChEF-positive neurons were imaged on a custom-built multiphoton micro-

scope with a 20x/0.90 NA water-dipping lens (Olympus) and a Ti-Sapphire laser (Coherent

Chameleon Vision-S) tuned to 950 nm and controlled in Matlab (Mathworks) by ScanImage

[58]. For calcium imaging, GCaMP6s signals from single planes through left or right prepon-

tine neurons were imaged at 1.95–13.95 fps. For optogenetic stimulation, two-photon images

of prepontine neurons in y293-Gal4 were converted into binary ROIs and projected back onto

the larval zebrafish brain by a 460-nm LED (Prizmatic) and digital micromirror device

(DLi4130, Digital Light Innovations) for durations of 10 or 100 ms controlled by Clampex

(pCLAMP 10.4, Molecular Devices). Optogenetic-stimulation ROIs covered an area of 50 ×
25 μm centered over a prepontine neuron cluster in one hemisphere. Spatial specificity of the

setup was previously assessed by photoconversion of Kaede in a targeted area (Fig 3A in [28]).

GCaMP6s ΔF/F was quantified in nuclear ROIs drawn in Fiji with frames representing approx-

imately 1 s averaged and compared 2.72 s after acoustic stimulation to those 1 s immediately

prior to stimulation. Trials with spontaneous tail movement within 100 ms prior to acoustic

stimulation were excluded from analysis.

Statistics

Analysis was performed with IDL (Harris), R (http://www.R-project.org/), and Gnumeric

(http://projects.gnome.org/gnumeric/). All t tests are two-sided, independent samples (except

where paired-sample tests were used, as noted). No animals were excluded from analysis

except for calcium imaging, for which only SLC- and LLC-responsive animals were analyzed

or for which laser ablations were incomplete. Graphs and text report means and standard

errors. Box plots show median and quartiles; whiskers show 10%–90%. Bar plots show mean

and standard error. N reported in figure legends indicates biological replicates (number of

individual larvae or independent groups of larvae).

Supporting information

S1 Data. Main data. Excel spreadsheet containing numerical data underlying main figures.

(XLSX)

S2 Data. Supporting data. Excel spreadsheet containing numerical data underlying support-

ing figures.

(XLSX)

S1 Fig. Additional motor phenotypes after chemogenetic neuronal ablation. (A) Compari-

son of initial bend angle (C1-angle), counterbend angle (C2-angle), and displacement for SLC

and LLC responses (same larvae as in Fig 1C). Probability and kinematic measures for SLC (B)

and LLC (C) responses after ablating neurons labeled in y252-Gal4, y293-Gal4, and y330-Gal4.

Significant ANOVAs are indicated at the top of each graph, after Bonferroni correction for the

16 comparisons, and �p< 0.05 for post hoc t test compared to nonablated metronidazole-

treated non-epNTR expressing sibling controls. Underlying numerical data are included in S2

Data. epNTR, engineered nitroreductase variant; LLC, long-latency C-start; Mav, maximum

angular velocity; SLC, short-latency C-start.

(TIF)

S2 Fig. Prepontine escape neurons are located between the LC and CE. (A-B) Dorsal (A)

and parasagittal (B) projections from ZBB of y293-Gal4-, y264-Gal4-, and chata-Gal4-labeled

neurons in R1–4. Prepontine neurons labeled by y293-Gal4 are located in R1, in contrast to

the anterior (“a”) and posterior trigeminal motor nuclei labeled by chata-Gal4 located in R2

and R3, respectively, and the Mc in R4 labeled by y264-Gal4. (C) Coronal projection of
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y293-Gal4 prepontine neurons situated between the LC and the CE. CE, cerebellum; d, dorsal;

LC, locus coeruleus; m, medial; Mc, Mauthner cell; R1–4, rhombomeres 1–4; Ra, raphe; ZBB,

Zebrafish Brain Browser.

(TIF)

S3 Fig. Additional phenotypes after laser ablation of neurons in R1 and R6. (A-B) LLC (A)

and SLC (B) responsiveness after R1 ablation (n = 9, green), R6 ablation (n = 16 blue), and

unablated sibling controls (n = 27, black). Significant effects of R1 ablations on LLC and SLC

probability; ANOVA F1,102 = 23.37, p< 0.001 and F1,102 = 21.79, p< 0.001, respectively. (C)

SLC kinematic measurements after bilateral R1 laser ablation (n’s as above). No significant dif-

ferences (t test). (D) SLC directionality (%Right: percent of SLC responses initiated to the

right) after unilateral (left) R1 laser ablation. n = 14 (ablated) and 24 (control). Underlying

numerical data are included in S2 Data. LLC, long-latency C-start; Mav, maximum angular

velocity; R1, rhombomere 1; SLC, short-latency C-start

(TIF)

S4 Fig. Prepontine escape neurons in fish are similar to the mouse SUV. (A) Bottom: coro-

nal projection through zebrafish rhombomere 1 (slice 512–517 from ZBB) with nuclear label-

ing on the left (elavl3:nls-mCar in purple) and neuroanatomic segmentation on the right

(magenta, OT; yellow, CE; pink, medulla oblongata; gray, neuropil). Top: coronal projection

of the outlined region showing y293-Gal4 (green, prepontine neurons), neurod:GFP (yellow,

CE) [59], and TH-Gal4 (magenta, LC) [60]. (B) Bottom: mouse P56 coronal section (slice 111

from the AMBA) with Nissl-staining on the left (purple) and neuroanatomic segmentation on

the right (magenta, superior colliculus; yellow, CE; pink, medulla oblongata; gray, fiber tracts).

Top: AMBA in situ hybridization images for TH (B) and Fndc5 (B’). Image credit: Allen Insti-
tute,modified from Allen Developing Mouse Brain Atlas. AMBA, Allen Mouse Brain Atlas; CE,

cerebellum; Fndc5, fibronectin type III domain containing 5; HB, hindbrain; LAV, lateral ves-

tibular nucleus; LC, locus coeruleus; MV, medial vestibular nucleus; OT, optic tectum; P56,

postnatal day 56; Pp, prepontine area; SUV, superior vestibular nucleus; TH, tyrosine hydroxy-
lase; ZBB, Zebrafish Brain Browser.

(TIF)

S5 Fig. Traces of individual prepontine escape neurons. (A) Dorsal standard-deviation pro-

jections of 5 traced prepontine escape neurons with elavl3:Cer as a reference (gray). (A’) Over-

lay of co-registered neurons in (A) showing conserved quadripartite morphology (asterisks).

Dotted lines indicate areas expanded in (B) and (C). (B) Enlargements of hindbrain from A’

with arrowheads indicating neuron terminals. (C) Enlargements of lateral rhombomere 1

from A’ with arrowheads marking termini in the cerebellar EG. (D) Horizontal projection of

confocal stack including prepontine escape neuron cell bodies (“Pp,” y293-Gal4; UAS:KaedeR,

red) after selective photoconversion of Kaede to red and SAG axon rostral termini (y256-Gal4;
UAS:KaedeG, green). (E) Projection of a reconstructed neuron (green) registered to ZBB, with

the y256-Gal4 pattern (magenta) that labels the SAG and its projections. (F-G) Horizontal pro-

jection (F) and zoom (G) of confocal stack through the caudal hindbrain and anterior spinal

cord of a y293-Gal4, UAS:synaptophysin-TagRFPT,mnx1-GFP larva. Scale bars: 50 μm in (A)

and (A’); 20 μm in (D-G). EG, eminentia granularis; SAG, statoacoustic ganglion; ZBB, Zebra-

fish Brain Browser.

(TIF)

S6 Fig. Kinematic measures for LLCs directionalized by a light spot. (A) Kinematic parame-

ters for acoustically evoked LLCs performed under broad-field illumination (black) or in the

presence of a light spot (blue). n = 29 groups of larvae. (B) Percent of LLCs in a rightward
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direction in the presence of a light spot for atoh7mutant larvae and siblings. ���p< 0.001,
�p< 0.05, n = 5 plates each atoh7−/− and siblings. Underlying numerical data are included in

S2 Data. atoh7, atonal bHLH transcription factor 7; C1, initial C-start bend; C2, counterbend;

LLC, long-latency C-start.

(TIF)

S1 Video. Optogenetic stimulation of y293-Gal4 prepontine neurons. Representative opto-

genetic trials from 3 ChEF-positive and a ChEF-negative control larvae (bottom right) show-

ing behavioral results to DMD illumination and optogenetic stimulation of prepontine

neurons in y293-Gal4. Light stimulation (460 nm) for 10 or 100 ms is indicated by a square in

the top right corner of each subframe with timestamp at the bottom right. DMD, digital mirror

device.
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