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Abstract: In this paper, we provide a comprehensive analysis of macrodiversity for millimeter wave
(mmWave) cellular networks. The key issue with mmWave networks is that signals are prone
to blocking by objects in the environment, which causes paths to go from line-of-sight (LOS) to
non-LOS (NLOS). We identify macrodiversity as an important strategy for mitigating blocking,
as with macrodiversity the user will attempt to connect with two or more base stations. Diversity
is achieved because if the closest base station is blocked, then the next base station might still be
unblocked. However, since it is possible for a single blockage to simultaneously block the paths to two
base stations, the issue of correlated blocking must be taken into account by the analysis. Our analysis
characterizes the macrodiverity gain in the presence of correlated random blocking and interference.
To do so, we develop a framework to determine distributions for the LOS probability, Signal to Noise
Ratio (SNR), and Signal to Interference and Noise Ratio (SINR) by taking into account correlated
blocking. We validate our framework by comparing our analysis, which models blockages using a
random point process, with an analysis that uses real-world data to account for blockage. We consider
a cellular uplink with both diversity combining and selection combining schemes. We also study the
impact of blockage size and blockage density along with the effect of co-channel interference arising
from other cells. We show that the assumption of independent blocking can lead to an incorrect
evaluation of macrodiversity gain, as the correlation tends to decrease macrodiversity gain.

Keywords: correlated blocking; millimeter wave; line-of-sight; macrodiversity

1. Introduction

Millimeter-wave (mmWave) has emerged in recent years as a viable candidate for
infrastructure-based (i.e., cellular) systems [1–5]. Communicating at mmWave frequencies is attractive
due to the potential to support high data rates at low latency [1,2,6]. At mmWave frequencies, signals
are prone to blocking by objects intersecting the paths and severely reducing the signal strength,
and thus the Signal to Noise Ratio (SNR) [7–10]. For instance, blocking by walls provides isolation
between indoor and outdoor environments, making it difficult for an outdoor base station to provide
coverage indoors [11]. To mitigate the issue of blocking in mmWave cellular networks, macrodiversity
has emerged as a promising solution, where the user attempts to connect to multiple base stations [12].
With macrodiversity, the probability of having at least one line-of-sight (LOS) path to a base station
increases, which can improve the system performance [13–15].

An effective methodology to study wireless systems in general, and mmWave systems in
particular, is to embrace the tools of stochastic geometry to analyze the SNR and interference in
the network [3,15–20]. With stochastic geometry, the locations of base stations and blockages are
assumed to be drawn from an appropriate point process, such as a Poisson point process (PPP). When
blocking is modeled as a random process, the probability that a link is LOS is an exponentially decaying

Electronics 2019, 8, 1187; doi:10.3390/electronics8101187 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-2553-790X
https://orcid.org/0000-0001-6089-0509
http://www.mdpi.com/2079-9292/8/10/1187?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8101187
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 1187 2 of 17

function of link distance. While many papers assume that blocking is independent [11,17], in reality
the blocking of multiple paths may be correlated [18]. The correlation effects are especially important
for macrodiverity networks when base stations are close to each other, or more generally when base
stations have a similar angle to the transmitter. In this case, when one base station is blocked, there is a
significant probability that another base station is also blocked [13–15].

Prior work has considered the SINR distribution of mmWave personal networks [16,17,21]. Such
work assumes that the blockages are drawn from a point process (or, more specifically, that the centers
of the blockages are drawn from a point process and each blockage is characterized by either a constant
or random width). Meanwhile, the transmitters are either in fixed locations or their locations are also
drawn from a point process. A universal assumption in this prior art is that the blocking is independent;
i.e., each transmitter is blocked independently from the other transmitters. As blocking has a major
influence on the distribution of signals, it must be carefully taken into account. Independent blocking
is a crude approximation that fails to accurately capture the true environment, especially when the
base stations, or, alternatively, the user equipments (UEs), are closely spaced in the angular domain or
when there are few sources of blocking. We note that blocking can be correlated even when the sources
of blockage are placed independently according to a point process.

The issue of blockage correlation was considered in [22–25], but it was in the context of a
localization application where the goal was to ensure that a minimum number of positioning
transmitters were visible by the receiver. As such, this prior work was only concerned with the
number of unblocked transmissions rather than the distribution of the received aggregate signal (i.e.,
source or interference power). In [18], correlated blocking between interferers was considered for
wireless personal area network. Recently, correlation between base stations was considered in [13,14]
for infrastructure-based networks with macrodiversity, but in these references the only performance
metric considered is the nth order LOS probability; i.e., the probability that at least one of the n
closest base stations is LOS. However, a full characterization of performance requires other important
performance metrics, including the distributions of the SNR and, when there is interference, the Signal
to Interference and Noise Ratio (SINR). Alternatively, the performance can be characterized by the
coverage probability, which is the complimentary cumulative distribution function of the SNR or SINR,
or the rate distribution, which can be found by using information theory to link the SNR or SINR to
the achievable rate.

In this paper, we propose a novel approach for fully characterizing the performance of
macrodiversity in the presence of correlated blocking. While, like [13,14], we are able to characterize the
spatially averaged LOS probability (i.e., the LOS probability averaged over many network realizations),
our analysis shows the distribution of the LOS probability, which is the fraction of network realizations
that can guarantee a threshold LOS probability rather than its mere spatial average. Moreover, we
are able to similarly capture the distributions of the SNR and SINR. Furthermore we validate our
framework by comparing the analysis to a real data building model.

We assume that the centers of the blockages are placed according to a PPP. We first analyze the
distributions of LOS probability for first- and second-order macrodiversity. We then consider the
distribution of SNR and SINR for the cellular uplink with both selection combining and diversity
combining. The signal model is such that blocked signals are completely attenuated, while LOS,
i.e., non-blocked, signals are subject to an exponential path loss and additive white Gaussian noise
(AWGN). Though it complicates the exposition and notation, the methodology can be extended to
more elaborate models, such as one wherein all signals are subject to fading and non-LOS (NLOS)
signals are partially attenuated (see, e.g., [17]).

The remainder of the paper is organized as follows. We begin by providing the system model
in Section 2, wherein there are base stations and blockages, each drawn from a PPP. In Section 3
we provide an analysis of the LOS probability under correlated blocking and derive the blockage
correlation coefficient using arguments based on the geometry and the properties of the blockage
point process; i.e., by using stochastic geometry. Section 4 provides a framework of the distribution
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of SNR, where the results depend on the blockage correlation coefficient. In Section 5, we validate
our framework by comparing the analysis to a real data model. Then in Section 6, interference is
considered and the SINR distribution is formalized. Finally, Section 7 concludes the paper, suggesting
extensions and generalizations of the work.

2. System Model

2.1. Network Topology

Consider a mmWave cellular network consisting of base stations, blockages, and a source
transmitter, which is a UE. The UE attempts to connect to the N closest base stations, and therefore
operates in a Nth order macrodiversity mode. The locations of the base stations are modeled as an
infinite homogeneous PPP with density λbs. We assume the centers of the blockages also form a
homogeneous PPP with density λbl , independent from the base station process. Let Y0 indicate the
source transmitter and its location. Due to the stationarity of the PPPs, and without loss of generality,
we can assume the coordinates are chosen such that the source transmitter is located at the origin;
i.e., Y0 = 0. In Section 6, we will consider additional transmitters located in neighboring cells, which
act as interferers.

Let Xi for i ∈ Z+ denote the base stations and their locations. Let Ri = |Xi| be the distance from
Y0 to Xi. Base stations are ordered according to their distances to Y0 such that R1 ≤ R2 ≤ .... The signal
of the source transmitter is received at the closest N base stations, and hence, N is the number of Xi
connected to Y0. For a PPP, a derivation of the distribution of R1, ..., RN is given in Appendix B, which
implies a methodology for generating these distances within a simulation.

Figure 1 shows an example of second-order macrodiversity (N = 2) cellular network where the
user attempts to connect to its closest two base stations. The solid line indicates the link from the
user to the base station is LOS, while the dashed line indicates the link is NLOS. The figure shows
examples of two different blockage scenarios. In Figure 1a the closest base station (X1) is LOS while X2

is NLOS to the user, in which case the blockage only blocks a single link. In Figure 1b a single blockage
blocks both links to X1 and X2. The fact that sometimes a single blockage can block both links is an
illustration of the effect of correlated blocking.

(a) One base station is blocked. (b) Closest two base
stations are blocked.

Figure 1. Example network topology with two different blockage scenarios. The source transmitter is the
mobile device shown in the central cell. Its signal is transmitted to its closest two base stations. The solid line
indicates the link is line-of-sight (LOS), while the dashed line indicates the link is non-LOS (NLOS).
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2.2. Blockage Model

As in [18], each blockage is a segment of length W. To capture the worst-case scenario, as shown in
Figure 2a, it is assumed that the line representing the blockage is perpendicular to the line that connects
it to the transmitter. Although W can itself be random as in [13], we assume here that all blockages
have the same value of W. In Figure 2a, the red stars indicate the blocked base stations, which are
located in the blue shaded region. If a blockage cuts the path from Y0 to Xi, then the signal from Y0 is
NLOS, while otherwise it is LOS. Here, we assume that NLOS signals are completely blocked while
LOS signals experience exponential path-loss with a path-loss exponent α; i.e., the power received by
Xi is proportional to R−α

i .
Each base station has a blockage region associated with it, illustrated by the blue shaded rectangles

shown in Figure 2b. We use ai to denote the blockage region associated with Xi and its area; i.e., ai is
both a region and an area. If the center of a blockage falls within ai, then Xi will be blocked since at
least some part of the blockage will intersect the path between Xi and Y0. Because ai is a rectangle of
length Ri and width W, it is clear that ai = WRi. Unless X1 and X2 are exactly on opposite sides of
the region, there will be an overlapping region v common to both a1 and a2. Because of the overlap, it
is possible for a single blockage to simultaneously block both X1 and X2 if the blockage falls within
region v, which corresponds to correlated blocking.

(a)

𝑎1

𝑎2

𝑣

𝑋1

𝑋2

𝑌0

(b)

Figure 2. Illustration of the blockage model. (a) Network example consisting of base stations indicated
by the stars and blockages indicated by blue lines surrounding the transmitter, which is indicated by
the black circle. The blockages are modeled as a line of length W facing the transmitter; (b) Equivalent
blockage regions. a1 and a2 are the blockage areas, and v is the overlapping area.

3. LOS Probability Analysis Under Correlated Blocking

In this section, we analyze the LOS probability, which is denoted pLOS, and the impact of blockage
correlation. Our focus is on second-order macrodiversity, where the signal of the source transmitter Y0

is received at the two closest base stations X1 and X2. The LOS probability is the probability that at
least one Xi is LOS to the transmitter. Because the base stations are randomly located, the value of
pLOS will vary from one network realization to the next, or equivalently by a change of coordinates,
from one source transmitter location to the next. Hence, pLOS is itself a random variable and must
be described by a distribution. To determine pLOS and its distribution, we first need to define the
variable Bi which indicates that the path between Y0 and Xi is blocked. Let pB1,B2(b1, b2) be the joint
probability mass function (pmf) of {B1, B2}. Let pi denote the probability that Bi = 1, which indicates
the link from Y0 to Xi is NLOS. Furthermore, let qi = 1− pi, which is the probability that the link is
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LOS, and ρ denote the correlation coefficient between B1 and B2. As shown in Appendix A, the joint
pmf of {B1, B2} as a function of ρ found to be

pB1,B2(b1, b2) =


q1q2 + ρh for b1 = 0, b2 = 0

q1 p2 − ρh for b1 = 0, b2 = 1

p1q2 − ρh for b1 = 1, b2 = 0

p1 p2 + ρh for b1 = 1, b2 = 1

(1)

where h =
√

p1 p2q1q2.
For a two-dimensional homogeneous PPP with density λ, the number of points within an area a

is Poisson with mean λa [26]. From the probability mass function of a Poisson variable, the probability
of k points within the area is given by [27]

pK(k) =
(λa)k

k!
e−λa (2)

The event that the path to Xi is not blocked (LOS) by an object falling in area ai can be obtained
by the void probability of PPP, which is the probability that there are no blockages located in ai,
or equivalently, the probability that k = 0. Thus, qi, which is equal to the void probability, is given by
substituting k = 0 into (2) with λ = λbl and a = ai, which results in

qi = exp(−λblai) (3)

For first-order macrodiversity (N = 1), the LOS probability is given by q1. Conversely, Xi will be
NLOS when at least one blockage lands in ai and this occurs with probability pi = 1− qi given by

pi = 1− exp(−λblai) (4)

For second-order macrodiversity (N = 2), there will be a LOS signal as long as both paths are not
blocked. This corresponds to the case that B1 and B2 are both not equal to unity. When blocking is
not correlated, the corresponding LOS probability is 1− p1 p2. Correlated blocking may be taken into
account by using (1) and noting that the LOS probability is the probability that B1 and B2 are not both
equal to one, which is given by

pLOS = 1− pB1,B2(1, 1) = 1− p1 p2 − ρh (5)

The blockage correlation coefficient ρ can be found from (1),

ρ =
pB1,B2(0, 0)− q1q2

h
(6)

where pB1,B2(0, 0) is the probability that both X1 and X2 are LOS. Looking at Figure 2b, this can occur
when there are no blockages inside a1 and a2. Taking into account the overlap v, this probability is the
void probability for area (a1 + a2 − v), which is given by

pB1,B2(0, 0) = e−λbl(a1+a2−v) (7)

Details on how to compute the overlapping area v are provided in [18]. Substituting (7) into (6) into (5)
and using the definitions of pi and qi yields

pLOS = e−λbl a1 + e−λbl a2 − e−λbl(a1+a2−v) (8)
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Let θ be the angular separation between X1 and X2. The relationship between the angular
separation θ and the correlation coefficient ρ is illustrated in Figure 3 using an example. In the example,
the distances from the source transmitter to the two base stations are fixed at R1 = 1.2 and R2 = 1.5 and
the base station density is λbs = 0.3. In Figure 3a, we fixed the blockage density at λbl = 0.6, and the
blockage width W is varied. In Figure 3b, W = 0.5 and the value of λbl is varied. Both figures show that
ρ decreases with increasing θ. This is because the area v gets smaller as θ increases. As θ approaches
180 degrees, v approaches zero, and the correlation is minimized. The figures show that correlation is
more dramatic when W is large, since a single large blockage is likely to simultaneously block both
base stations, and when λbl is small, which corresponds to the case that there are fewer blockages.

0 20 40 60 80 100 120 140 160 180

 (degrees)

0

0.2

0.4

0.6

0.8

1
W=1
W=0.5
W=0.1

(a) Different values of blockage width (W)

0 20 40 60 80 100 120 140 160 180

 (degrees)

0

0.2

0.4

0.6

0.8

1

bl
=0.1

bl
=0.5

bl
=1

(b) Different values of blockage density (λbl)

Figure 3. The correlation coefficient (ρ) versus the angular separation (θ) between X1 and X2.

Figure 4 shows the empirical cumulative distribution function (CDF) of pLOS over 1000 network
realizations for first- and second-order macrodiversity, both with and without considering blockage
correlation. The distributions are computed by fixing the value of W = 0.8 and using two different
values of the average number of blockages per base station (λbl/λbs). The CDF of pLOS quantifies
the likelihood that the pLOS is below some value. The figure shows the probability that pLOS is
below some value increases significantly when the number of blockages per base station is high.
The effect of correlated blocking is more pronounced when there are fewer blockages per base station.
The macrodiversity gain is the improvement in performance for N = 2 as compared to N = 1, in the
figure the macrodiversity gain is higher when the number of blockages per base station is lower even
though the amount of reduction in gain due to correlation is higher when λbl/λbs is lower.

Figure 5 shows the variation of pLOS when averaged over 1000 network realizations. In this
figure, 1000 pLOS values is found for different 1000 network realization, then the averaged pLOS
is calculated for different values of blockage density λbl . The derivation of the distances for each
network realization can be found in Appendix B. The plot shows average pLOS as a function of λbl
while keeping base station density λbs fixed at 0.3. The spatially averaged pLOS is computed for
two different values of blockage width W. Compared to the case of no diversity (when N = 1),
the second-order macrodiversity can significantly increase pLOS. However, pLOS decreases when
blockage size or blockage density is higher. Moreover, correlated blocking reduces the pLOS compared
to independent blocking, and larger blockages increase the correlation, since a single large blockage is
likely to simultaneously block both base stations. Comparing the two pairs of correlated/uncorrelated
blocking curves, the correlation is more dramatic when λbl is low, since at low λbl both base stations
are typically blocked by the same blockage (located in area v).
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Figure 4. The empirical cumulative distribution function (CDF) of pLOS over 1000 network realizations
when N = 1, 2, with and without considering blockage correlation at fixed blockage width W = 0.8.
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W=0.3

W=0.8

Figure 5. The variation of the spatially averaged pLOS over 1000 network realizations with respect to
blockage density λbl when N = 1, 2, with and without considering blockage correlation at fixed base
station density λbs = 0.3.

4. SNR Distribution

In this section, we consider the distribution of the SNR. Macrodiversity can be achieved by using
either diversity combining, where the signals from the multiple base stations are maximum ratio
combined, or selection combining, where only the signal with the strongest SNR is used. For nth-order
macrodiversity, the SNR with diversity combining is [28]

SNR = SNR0

n

∑
i=1

(1− Bi)Ωi︸ ︷︷ ︸
Z

(9)

where Ωi = R−α
i is the power gain between the source transmitter Y0 to the ith base station and SNR0

is the SNR of an unblocked reference link of unit distance. Bi is used to indicate that the path between
Y0 and Xi is blocked, and thus when Bi = 1, Ωi does not factor into the SNR.
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The CDF of SNR, FSNR(β), quantifies the likelihood that the combined SNR at the closest n base
stations is below some threshold β. If β is interpreted as the minimum acceptable SNR required to
achieve reliable communications, then FSNR(β) is the outage probability of the system Po(β) = FSNR(β).
The coverage probability is the complimentary CDF, Pc(β) = 1− FSNR(β) and is the likelihood that the
SNR is sufficiently high to provide coverage. The rate distribution can be found by linking the threshold
β to the transmission rate, for instance by using the appropriate expression for channel capacity.

The CDF of SNR evaluated at threshold β is as follows:

FSNR(β) = P [SNR ≤ β] = P
[

Z ≤ β

SNR0

]
= FZ

(
β

SNR0

)
. (10)

The discrete variable Z represents the sum of the unblocked signals. To find the CDF of Z we need
to find the probability of each value of Z, which is found as follows for second-order macrodiversity.
The probability that Z = 0 can be found by noting that Z = 0 when both X1 and X2 are blocked.
From (1), this is

pZ(0) = pB1,B2(1, 1) = p1 p2 + ρh. (11)

The probability that Z = Ωi, i ∈ {1, 2} can be found by noting that Z = Ωi when only Xi is LOS.
From (1), this is

pZ(Ω1) = pB1,B2(0, 1) = q1 p2 − ρh. (12)

pZ(Ω2) = pB1,B2(1, 0) = p1q2 − ρh. (13)

Finally, by noting that Z = Ω1 + Ω2 when both X1 and X2 are LOS leads to

pZ(Ω1 + Ω2) = pB1,B2(0, 0) = q1q2 + ρh. (14)

From (11) to (14), the CDF of Z is found to be:

FZ(z)=



0 for z < 0

p1 p2 + ρh for 0 ≤ z < Ω2

p1 for Ω2 ≤ z < Ω1

p1 + q1 p2 − ρh for Ω1 ≤ z < Ω1 + Ω2

1 for z ≥ Ω1 + Ω2.

(15)

Next, in the case of selection combining, the SNR is [28]

SNR = SNR0 max

[
(1− B1)Ω1, (1− B2)Ω2, . . . , (1− Bn)Ωn

]
︸ ︷︷ ︸

Z

(16)

and its CDF, from (11) to (13), is found for second-order macrodiversity to be:

FZ (z) =



0 for z < 0

p1 p2 + ρh for 0 ≤ z < Ω2

p1 for Ω2 ≤ z < Ω1

1 for z ≥ Ω1.

(17)
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Figure 6 is an example showing the effect that the value of the correlation coefficient ρ has upon
the CDF of SNR. The curves were computed by placing the base stations at distances R1 = 2 and
R2 = 5, and fixing the values of α = 2 and SNR0 = 15 dB. The values of qi and pi were computed
using (3) and (4) respectively, by assuming W = 0.6, λbl = 0.3. The CDF is found assuming values of
ρ between ρ = 0 to ρ = 0.8 in increments of 0.1; the value of ρ can be adjusted by varying the angle
θ between the two base stations. The dashed red line represents the case that ρ = 0, corresponding
to uncorrelated blocking. The solid blue lines correspond to positive values of ρ in increments of 0.1,
where the thinnest line corresponds to ρ = 0.1 and the thickest line corresponds to ρ = 0.8.

Figure 6 shows a first step up at 9.7 dB, and the increment of the step is equal to the probability that
both base stations are NLOS. The magnitude of the step gets larger as the blocking is more correlated,
because correlation increases the chance that both base stations are NLOS (i.e., pB1,B2(1, 1)). The next
step up occurs at 12.7 dB, which is the SNR when just one of the two closest base stations is blocked,
which in this case is the closest base station X1. The next step at 14.5 dB represents the case when only
X2 is blocked, The magnitude of the two jumps is equal to the probability that only the corresponding
one base station is LOS, and this magnitude decreases with positive correlation, because if one base
station is LOS the other one is NLOS. Finally, there is a step at 15.2 dB, which corresponds to the case
that both base stations are LOS. Notice that when ρ = 0.8, the two middle steps merge. This is because
for such a high value of, it is impossible for just one base station to be blocked, and most likely that
both base stations are blocked, so the curve goes directly from SNR = 9.7 dB to SNR = 15.2 dB.

9 10 11 12 13 14 15 16

SNR threshold (dB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f S
N

R

=0.8

=0

Figure 6. The CDF of the Signal to Noise Ratio (SNR) FSINR(β) using diversity combining for fixed
location of X1 and X2 for different values of ρ. The dashed red line shows the CDF when ρ = 0, and the
solid blue lines correspond to positive values of ρ in increments of 0.1.

Figure 7 shows the CDF of SNR over 1000 network realizations for diversity combining and two
different values of W when λbs = 0.4 and λbl = 0.6. In addition, SNR0 and the path loss α are fixed
at 15 dB and 3 respectively for the remaining figures in this paper. It can be observed that the CDF
increases when blockage size is larger. Compared to the case when N = 1, the use of second-order
macrodiversity decreases the SNR distribution. When compared to uncorrelated blocking, correlation
decreases the gain of macrodiversity for certain regions of the plot, particularly at low values of
SNR threshold, corresponding to the case when both base stations are blocked. Similar to pLOS,
the correlation increases with blockage size. However, the macrodiversity gain is slightly higher when
blockage width W is smaller.
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Figure 7. The distribution of SNR over 1000 network realizations when N = 1, 2 using diversity
combining, with and without considering blockage correlation at fixed values of blockage density
λbl = 0.6 and base station density λbs = 0.3.

Figure 8 shows the effect of combining scheme and λbl on SNR outage probability at threshold
β = 10 dB. As shown in the figure, the outage probability increases when λbl increases in all of the
given scenarios. When λbl = 0, first- and second-order selection combining perform identically. This
is because X1 is never blocked. However, as λbl increases, the gain of both selection combining and
diversity combining increase. At high λbl the combining scheme is less important, in which case the
paths to X1 and X2 are always blocked regardless of the chosen combining scheme. The reduction in
gain due to correlation is slightly higher when using selection combining. From Equation (17) this is
because the step when both base stations are blocked is wider compared to diversity combining case.

0 0.5 1 1.5 2
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N=1
N=2, Correlated blocking
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Diversity combining

Selection combining

Figure 8. The SNR outage probability at threshold β = 10 dB with respect to λbl when N = 1, 2,
with and without considering blockage correlation at fixed values of blockage density λbs = 0.3 and
blockage width W = 0.8.
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5. Real Data Validation

To validate our framework, we consider a region of West Virginia University campus as shown in
Figure 9 with base stations locations drawn from a PPP and a randomly placed user. The exterior walls
of the buildings highlighted in red color are considered to be the blockages. The equivalent parameters
for the statistical analysis introduced by this paper are obtained by calculating the number of buildings,
the area of each building, and the total area of the region. The average blockage width (W) is found
from the areas of the individual buildings (Ai), such that the width of each blockage Wi = 2

√
Ai/π,

while the blockage density is found as the the number of buildings divided by the total region area.

Figure 9. Map of West Virginia University (WVU) downtown campus. The red-highlighted buildings
are the blockages, and the base stations and user are randomly placed over the region.

Figure 10 shows the empirical CDF of SNR over 1000 network realizations computed using our
statistical analysis and computed using the actual data. The total region area is found to be 335, 720 m2,
the number of buildings is 49, the average building width is W = 33 m , λbl is the ratio of number of
buildings to the total area, and λbs = 3λbl . We limited the environment to be outdoor by allowing
the base stations and user to only be located outside buildings. It can be observed that the analysis
approximates the performance in the real scenario very well. Compared to the curves representing
the analysis when N = 2, it is clear that the real data model when N = 2 is closer to the case when
considering correlated blocking compared to the case assuming independent blocking. This is because
one building can simultaneously block more than one base station. In the actual region, the blockages
have different sizes and orientations, this is in contrast with our model, which assumes a constant
blockage size and orientation. Due to these differences, there is a small different between the statistical
model and the real data based model as shown in the figure.
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Figure 10. The distribution of SNR over 1000 network realizations when N = 1, 2 using diversity
combining, plotted using the real data model and the analytical model.

6. SINR Outage Analysis

Thus far, we have not assumed any interfering transmitters in the system. In practice, the received
signal is also affected by the sum interference. The goal of this section is to formulate the CDF of SINR
for second-order macrodiversity. SINR for first-order macrodeiversity along with blockage correlation
between interferers has been considered in [15]. In this section, we assume each neighboring cell has a
single interfering mobile, which is located uniformly within a disk of radius r around the base station.
Assuming a perfect packing of cells, r = (λbsπ)−1/2, which is the average cell radius. We explicitly
consider the interference from the M closest neighboring cells. The interference from more distant
cells is considered to be part of the thermal noise. Let Yj for j = 1, 2, .., M indicate the interfering
transmitters and their locations. Recall that j = 0 indicates the source transmitter Y0. The distance
from the jth transmitter to the ith base station is denoted by Ri,j.

To calculate SINR and its distribution, we first define a matrix B which indicates the blocking
state of the paths from Yj for j = 0, 2, .., M to Xi for i = 1, 2. B is a Bernoulli Matrix of size 2 by (M + 1)
elements. Each column in B contain elements B1,j and B2,j which indicate the blocking states of the
paths from Yj to X1 and X2 respectively; i.e, the first column in B contains the pair of Bernoulli random
variables B1,0 and B2,0 that indicates the blocking state of the paths from Y0 to Xi for i = 1, 2. There are
(M + 1) pairs of Bernoulli random variables, and each pair is correlated with correlation coefficient ρj.
Because the 2(M + 1) elements of B are binary, there are 22(M+1) possible combinations of B. However,
it is possible for different realizations of B to correspond to the same value of SINR. For example, when
X1 and X2 are both blocked from Y0, the SINR will be the same value regardless of the blocking states
of the interfering transmitters. Define B(n) for n = 1, 2, ..., 22(M+1) to be the nth such combination of B.
Similar to Section 3, let pB1,j ,B2,j(b

(n)
1,j , b(n)2,j ) be the joint probability of B1,j and B2,j which are the elements

of the jth column of B(n). The probability of B(n) is given by

P(B(n)) =
M

∏
j=0

pB1,j ,B2,j(b
(n)
1,j , b(n)2,j ) (18)

The SINR of a given realization B(n) at base station Xi is given by

SINR
(n)
i =

(1− B(n)
i,0 )Ωi,0

SNR−1
0 +

M

∑
j=1

(1− B(n)
i,j )Ωi,j

(19)
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where Ωi,j = R−α
i,j is the path gain from the jth transmitter at the ith base station. The SINR of the

combined signal considering selective combining is expressed as

SINR(n) = max
(
SINR1

(n),SINR2
(n)
)

(20)

When considering diversity combining (20) changes to

SINR(n) ≤ SINR1
(n) + SINR2

(n) (21)

As described in [29], correlated interference tends to make the combined SINR less than the sum of the
individual SINRs. The bound in (21) is satisfied with equality when the interference is independent at
the two base stations.

To generalize the formula for any realization, there is a particular SINR(n) associated with each
B(n). However, as referenced above, multiple realizations of B(n) may result in the same SINR. Let
SINR(k) be the kth realization of SINR. Its probability is

P
(
SINR(k)

)
= ∑

n:SINR=SINR(k)

P
(

B(n)
)

(22)

Figure 11 shows the distributions of SINR for M = 5 and M = 0 (which is SNR) at fixed values
of λbs = 0.3, λbl = 0.6, and W = 0.6. The distributions are computed for first- and second-order
macrodiversity. It can be observed that macrodiversity gain is reduced when interference is considered.
This is because of the increase in sum interference due to macrodiversity, which implies that pLOS
alone as in [13] may not be sufficient to predict the performance of the system especially when there
are many interfering transmitters. Study of higher order macrodiversity to identify the minimum
order of macrodiversity to achieve a desired level of performance in the presence of interference is left
for future work.
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Figure 11. The distribution of Signal to Interference and Noise Ratio (SINR) over 1000 network
realizations using diversity combining for different values of number of interfering transmitters.
The curves are computed when N = 1, 2, with and without considering blockage correlation, at fixed
values of λbs = 0.3, λbl = 0.6, and W = 0.6.

Figure 12 shows the variation of SINR outage probability with respect to the number of interfering
transmitters M. The curves are computed for low and high values of λbl , while keeping λbs and W
fixed at 0.8 and 0.6 respectively. It can be seen that the outage probability increases when M increases.
Due to the fact that interference tends to also be blocked, unlike SNR and pLOS, increasing the λbl
decreases the outage probability. Similar to Figure 11, the macrodiversity gain decreases significantly
when M increases. It can be seen that N = 2 curves reaches the case when N = 1 for M = 6. Compared
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to uncorrelated blocking, the curves considering correlated blocking matches the uncorrelated cases
for high value of M, since the interfering transmitters are placed farther than source transmitter and
their overlapping area is less dominant.
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Figure 12. The outage probability of SINR at threshold β = 15 dB versus the number of interfering
transmitters (M), when N = 1, 2, with and without considering blockage correlation, at fixed values of
λbs = 0.8 and W = 0.6.

7. Conclusions

We have proposed a framework to analyze the second-order macrodiversity gain for an mmWave
cellular system in the presence of correlated blocking. Correlation is an important consideration for
macrodiversity because a single blockage can block multiple base stations, especially if the blockage is
sufficiently large and the base stations sufficiently close. The assumption of independent blocking leads
to an incorrect evaluation of macrodiversity gain of the system. By using the methodology in this paper,
the correlation between two base stations is found and factored into the analysis. The paper considered
the distributions of LOS probability, SNR, and, when there is interference, the SINR. The framework
was confirmed by comparing the analysis to a real data model. We show that correlated blocking
decreases the macrodiversity gain. We also study the impact of blockage size and blockage density.
We show that blockage can be both a blessing and a curse. On the one hand, the signal from the source
transmitter could be blocked, and on the other hand, interfering signals tend to also be blocked, which
leads to a completely different effect on macrodiversity gains.

The analysis can be extended in a variety of ways. In Section 6, we have already shown that any
number of interfering transmitters can be taken in to account. While this paper has focused on the
extreme case that LOS signals are AWGN while NLOS signals are completely blocked, it is possible to
adapt the analysis to more sophisticated channels, such as those where both LOS and NLOS signals
are subject to fading and path loss, but the fading and path loss parameters are different depending on
the blocking state. See, for instance, [17] for more detail. We may also consider the use of directional
antennas, which will control the effect of interference [30].

Finally, while this paper focused on second-order macrodiversity, the study can be extended
to the more general case of an arbitrary macrodiversity order. Such a study could identify the
minimum macrodiversity order required to achieve desired performance in the presence of interference.
We anticipate that when more than two base stations are connected, the effects of correlation on
macrodiversity gain will increase and the effect of interference will decrease. This is because the
likelihood that two base stations are close together increases with the number of base stations and the
ratio of the number of connected base stations to the number of interfering transmitters will increase.
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Appendix A

As in [27], the correlation coefficient between B1 and B2 is given by

ρ =
E[B1B2]− E[B1]E[B2]√

σ2
B1

σ2
B2

(A1)

where the expected value and the variance of the Bernoulli variable Bi is given by [27]

E[Bi] = pi (A2)

σ2
Bi

= piqi. (A3)

By substituting (A2) and (A3) into (A1) and solving for E[B1B2],

E[B1B2] = p1 p2 + ρ
√

p1 p2q1q2 = p1 p2 + ρh. (A4)

As in [27], we can relate pB1,B2(b1, b2) to E[B1B2] as follows:

E[B1B2] = ∑
b1

∑
b2

b1b2 pB1,B2(b1, b2) = pB1,B2(1, 1), (A5)

where solving the sum relies there being only one nonzero value for b1b2. By solving for pB1,B2(1, 1)
and using (A4),

pB1,B2(1, 1) = p1 p2 + ρh. (A6)

We can relate pB1,B2(b1, b2) to E[B1] as follows:

E[B1] = ∑
b1

∑
b2

b1 pB1,B2(b1, b2)

= pB1,B2(1, 1) + pB1,B2(1, 0). (A7)

Solving for pB1,B2(1, 0),

pB1,B2(1, 0) = E[B1]− pB1,B2(1, 1) = p1q2 − ρh. (A8)

Similarly, it can be shown that

pB1,B2(0, 1) = q1 p2 − ρh. (A9)

Finally, since [27]

∑
b1

∑
b2

pB1,B2(b1, b2) = 1, (A10)
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it follows that

pB1,B2(0, 0)= 1− pB1,B2(1, 0)− pB1,B2(0, 1)− pB1,B2(1, 1)

= q1q2 + ρh. (A11)

Appendix B

As in [13], the pdf of the smallest distance R1 is

f (r1) = 2πλr1e−λπr2
1 (A12)

for r1 ≥ 0. From (A12), we can derive the conditional CDF of Ri given Ri−1 as

FRi (ri|Ri−1 = ri−1) = 1− eλπ(r2
i −r2

i−1) (A13)

To generate random variables r1, ..., rN , let xi ∼ U(0, 1),

xi = FRi (ri|Ri−1 = ri−1) = 1− eλπ(r2
i −r2

i−1) (A14)

Solving for ri,

ri =

√
− 1

λπ
ln (1− xi) + r2

i−1 (A15)

where r0 = 0. Start by generating xi as uniform random variables, then recursively substitute each one
in (A15) to get the desired random variable ri.
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