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Echo Behavior in Large Populations of Chemical Oscillators

Tianran Chen,1 Mark R. Tinsley,1 Edward Ott,2 and Kenneth Showalter1
1C. Eugene Bennett Department of Chemistry, West Virginia University,

Morgantown, West Virginia 26506-6045, USA
2Institute for Research in Electronics and Applied Physics,

University of Maryland, College Park, Maryland 20742, USA
(Received 14 August 2016; revised manuscript received 1 October 2016; published 15 December 2016)

Experimental and theoretical studies are reported, for the first time, on the observation and
characterization of echo phenomena in oscillatory chemical reactions. Populations of uncoupled and
coupled oscillators are globally perturbed. The macroscopic response to this perturbation dies out with
time: At some time τ after the perturbation (where τ is long enough that the response has died out), the
system is again perturbed, and the initial response to this second perturbation again dies out. Echoes can
potentially appear as responses that arise at 2τ; 3τ; ... after the first perturbation. The phase-resetting
character of the chemical oscillators allows a detailed analysis, offering insights into the origin of the echo
in terms of an intricate structure of phase relationships. Groups of oscillators experiencing different
perturbations are analyzed with a geometric approach and in an analytical theory. The characterization of
echo phenomena in populations of chemical oscillators reinforces recent theoretical studies of the behavior
in populations of phase oscillators [E. Ott et al., Chaos 18, 037115 (2008)]. This indicates the generality of
the behavior, including its likely occurrence in biological systems.

DOI: 10.1103/PhysRevX.6.041054 Subject Areas: Chemical Physics, Nonlinear Dynamics

I. INTRODUCTION

Populations of coupled oscillators display dynamical
behavior that is relevant to many natural and manmade
systems [1]. Many of the properties of oscillator systems
can be captured by using a phase-model approach, originally
introduced byWinfree and Kuramoto [2,3]. In a recent study
[4], echo behavior was discovered and characterized in
populations of phase oscillators. Echo behavior has been
studied in a number of fields in physics, in which a nonlinear
system subjected to two successive pulses, separated by time
τ, shows a measurable response, or “echo,” at a time 2τ after
the first perturbation [5]. Example systems include nuclear
magnetic resonance, cavity quantum electrodynamics, and
plasma waves [6–10].
An interesting aspect of echo phenomena is that macro-

scopic evidence of the application of the pulses is absent
immediately after the decay of the response to the second
pulse. Thus, the appearance of the echo at time2τ implies that
the system retains memory of the past application of the two
pulses, even though macroscopically this information
appears to have been lost. The system retention of the
information resides in the microscopic state through an
intricate structure of oscillator phase relationships that is
not apparent macroscopically.

The treatment in Ref. [4] is of particular interest
because it is potentially applicable in a very general setting
relevant to often-encountered situations of many coupled
oscillators. This includes applications in biology (e.g., in
collections of oscillating yeast cells [11]), ecology (e.g.,
groups of periodically flashing fireflies [12,13] or croaking
frogs [14]), mechanics (e.g., many coupled metronomes
[15]), etc. Thus, all these types of systems should be
amenable to experimental realization of echo phenomena.
Moreover, realization of this goal in one of these settings
opens the possibility of employing echoes in system
diagnostics, e.g., determination of the underlying distribu-
tion function of the oscillator frequencies from a macro-
scopic measurement (Sec. V).
In this paper, in order to illustrate the wide potential

applicability of echo phenomena to large systems of
coupled oscillators, we present the first demonstration of
echoes in a chemical system: populations of photosensitive
Belousov-Zhabotinsky (BZ) chemical oscillators [16–18].
We develop a geometric analysis that allows an under-
standing of how the echo is manifested through the phase-
resetting properties of the system. Furthermore, we show
that while the global order parameter is an important tool
for demonstrating memory in the system, richer structural
(phase-frequency) information is embedded within the
separate subpopulations of oscillators associated with
different responses to the two perturbations. Finally, we
present a general analytical theory for echo phenomena and
apply it in a specific analysis of the chemical oscillator
system.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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II. EXPERIMENTS

Preliminary computational studies revealed that a large
number of oscillators would be required to observe the echo
phenomenon in the photosensitive BZ system.We therefore
developed an oscillator array that permits the simultaneous
perturbing and coupling of over 1000 oscillators. (Our
previous studies of photochemically coupled BZ oscillators
have been limited to approximately 40 oscillators [19–23].)
In the oscillator array, the photosensitive oscillators are
catalyst-loaded beads of about 200 μm in diameter, each of
which is fixed on a film of polydimethylsiloxane (PDMS),
which is then positioned in an open reactor that is
continually replenished with a catalyst-free BZ solution.
Chemistry.—The BZ oscillators are individually moni-

tored with a CCD camera, where the gray level is propor-
tional to the concentration of the oxidized catalyst,
RuðbpyÞ3þ3 , and they are illuminated with a spatial light
modulator (SLM) for a prescribed duration and intensity.
The illumination generates the excited form of the reduced
catalyst, RuðbpyÞ2þ�

3 , which initiates a sequence of photo-
chemical reactions that produce the autocatalyst HBrO2

[19,22,24,25].
Coupling and perturbations.—The background illumi-

nation ϕ0 is chosen so that the catalyst beads are in an
oscillatory state. The photosensitive BZ system allows
global coupling of the oscillators by a simple feedback
scheme, with the projected light intensity given by
ϕj ¼ ϕ0 þ kðI − IjÞ, where k is the coupling strength,
Ij is the transmitted light intensity of oscillator j, I is
the average transmitted light intensity of all N oscillators,
and ϕj is the projected light intensity on oscillator j.
Perturbations are applied by increasing the light intensity to
ϕp for 3.4 s. During an experiment, the first perturbation is
applied 168 s after introducing the coupling. The second
perturbation is then applied τ seconds later, with τ chosen to
be between 6 and 10 times the mean oscillator period.
Oscillator phase and macroscopic order parameter.—

We characterize the state of each oscillator j by a
phase variable θj ¼ ðt − tnÞ=ðtn − tn−1Þ, where tn < t
denotes the time closest to t at which Ij is maximum and
nþ 1 denotes the number of maxima in the time
interval ð0; tÞ. (Note that the phase is defined so that
θ → θ þ 1 corresponds to one oscillation.) We obtain
the global Kuramoto order parameter [3], RðtÞ ¼
N−1jPj expð2πiθjÞj, which may be thought of as mac-
roscopically quantifying the degree of synchronization of
the oscillator population, in terms of the individual
oscillator phases. The order parameter RðtÞ as a function
of time is shown in Fig. 1(a) for a typical experiment with
k ¼ 0. At the time of each perturbation, there is a large
increase in the order parameter as the oscillators are phase
synchronized. We note that the duration of the applied
perturbation in Fig. 1 is small relative to the mean period
and the delay time τ.

Echo.—Following each perturbation, the frequency
heterogeneity gives rise to phase dispersion of the oscil-
lators, leading to a decrease in the order parameter. The
echo is observed at time 2τ after the first perturbation as a
spontaneous increase in the order parameter. Echo behavior
in an experiment with weak coupling is shown in Fig. 1(b).
As is expected, the phase dispersion of the coupled
oscillators is now slower following each perturbation.
An echo is again observed at time 2τ following the first
perturbation.

III. SIMULATIONS

Insights into the echo phenomenon can be gained
through simulations of the experimental system. The
system is modeled using the Zhabotinsky-Bucholtz-
Kiyatkin-Epstein (ZBKE) model [26], modified to describe
the photosensitive, discrete BZ oscillator system [19–21].
Each oscillator is described by the concentrations of two
key species, HBrO2 and the oxidized form of the catalyst,
RuðbpyÞ3þ3 [27]. An approximately Gaussian frequency
distribution in the oscillator population is produced by
varying the stoichiometric factor in the ZBKEmodel for the
individual oscillators. In the photoexcitable model, an
increase in light intensity leads to increased production
of both bromous acid, HBrO2, and the oxidized form of the
catalyst, RuðbpyÞ3þ3 . The photochemical coupling is based
on the concentration of RuðbpyÞ3þ3 , which corresponds to
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FIG. 1. Experimental measurements illustrating echo behavior
in populations of Belousov-Zhabotinsky (BZ) oscillators. The
order parameter R is calculated from the phases of the oscillators
and plotted as a function of time. The phases of the oscillators are
determined using linear interpolation between consecutive peak
times. An echo is exhibited in the magnitude of the order
parameter R at time tp þ 2τ for a system perturbed at times tp
and tp þ τ. (a) Uncoupled system, k ¼ 0, with tp ¼ 376 s,
τ ¼ 378 s, and N ¼ 1295. (b) Coupled system, k ¼ 0.25, with
tp ¼ 373 s, τ ¼ 336 s, and N ¼ 1001. In these experiments, the
critical coupling strength for the onset of synchronization is
kc ¼ 0.70. Average natural period and standard deviation:
(a) T0 ¼ 36.5� 3.2 s and (b) T0 ¼ 42.6� 8.2 s.
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the transmitted light intensity of the micro-oscillators in the
experimental system. Simulations are carried out using up
to 100,000 oscillators, with the mean period of the
oscillators and standard deviation (42.5� 2.4) set to reflect
values seen in typical experiments. The simulations also
allow exploration of the echo behavior for much larger
values of the time delay τ, which is not possible in the
experiments because of the gradual depletion of the
immobilized catalyst RuðbpyÞ3þ3 .
Figure 2(a) shows the order parameter R as a function of

time from simulations of an uncoupled system (k ¼ 0). The
system was perturbed by momentarily increasing the light
intensity at tp ¼ 500 and again at τ ¼ 650 later. Each
perturbation is followed by rapid phase dispersion, with a
corresponding decrease in the global order parameter. An
increase in the order parameter is exhibited at time tp þ 2τ,
the echo, and a smaller second echo can be seen at time
tp þ 3τ. The second echo, which is predicted theoretically
[4], is typically not visible in the experiments because of
experimental noise, although we have observed it on
occasion. The value of τ used in the simulation is
approximately 15 times the mean period of the oscillators.
Figure 2(b) shows that the echo phenomenon also occurs
with a much larger value of τ, equal to approximately
941 periods. We note that this increase in the value of τ by a
factor of about 63 does not significantly affect the magni-
tude of the echo.

Any experimental system has inherent noise, including
our system of photosensitive BZ oscillators. The impact of
noise on the echo behavior can be explored in the numerical
system by introducing additive, independent, Gaussian
white noise to each oscillator in the simulation, with noise
intensity D [28,29]. The inset in Fig. 2(a) shows that the
effect of increasing the noise intensity is to decrease
the magnitude of the echo. At larger magnitudes of noise,
the echo phenomenon is no longer observed. For a fixed,
nonzero noise level, the size of the echo decreases with
increasing τ, as shown in Ref. [4], since the effect of the
noise is accumulated over longer time intervals. It is
interesting to note that the decrease of echo strength with
increasing separation from the second perturbation has
been proposed as the basis of a diagnostic tool for
measuring the intrinsic collisional fluctuations (noise) in
plasmas [30–32].
Figure 3(a) reveals that, as in the experimental system, the

introduction of coupling leads to slower phase dispersion of
the oscillators following each perturbation. The impact of the
coupling strength on the magnitude of the order parameter at
the time of the echo is shown in Fig. 3(b). The magnitude of
the echo is an increasing function of k. At larger values of k,
however, the phase dispersion is sufficiently slow that the
oscillators cannot fully disperse by the time of the echo,
which interferes with the echo phenomenon.
Another factor impacting the magnitude of the echo is

the size of the perturbation, as shown in Fig. 4(a). The
horizontal axis of this figure is a quantity denoted X
(defined subsequently) that increases monotonically with
the size of the perturbation. The vertical axis is the
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FIG. 2. Simulations of the modified ZBKE model [19–21,26]
illustrating echo behavior in populations of uncoupled photo-
sensitive BZ oscillators. The order parameter R is calculated from
the phases of the oscillators and plotted as a function of time. An
echo is exhibited in the magnitude of R at time tp þ 2τ for a
system perturbed at times tp and tp þ τ. (a) System with k ¼ 0,
tp ¼ 500, τ ¼ 650, ϕp ¼ 0.147, and N ¼ 5000. Half width at
half maximum for first and second perturbations (þ) and width at
half maximum for first and second echoes (�). Inset: Maximum
value of R at the time of the echo as a function of the noise
intensity D. (b) System with k ¼ 0, tp ¼ 5000, τ ¼ 40000,
ϕp ¼ 0.147, and N ¼ 5000. Average natural period and standard
deviation T0 ¼ 42.5� 2.4 (dimensionless time units).
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FIG. 3. (a) Numerical simulation of a coupled system with
k ¼ 3.35 × 10−4, τ ¼ 650, ϕp ¼ 0.147, and N ¼ 5000. Note the
slower phase dispersion following each perturbation and the
slightly larger magnitude of the echo. (b) Maximum value of
the order parameter R at the time of the echo as a function of
coupling strength from simulations. The critical coupling strength
for the onset of synchronization is kc ¼ 3.0 × 10−3 for the
simulations in (a) and (b).
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maximum value of the order parameter at the time of the
echo from our simulations.

IV. PHASE ANALYSIS

A. Phase resetting

In order to explain the definition of the quantity X, as
well as provide a basis for our later analysis, we now
introduce the phase response curve (PRC) [33], which is a
plot of the change in phase Δθ on perturbing an isolated
oscillator as a function of the preperturbation phase θ.
Figure 4(b) shows two PRCs constructed from simulations
using large and small perturbations. As shown in the figure,
we define X as the size of the phase-resetting region,
indicated in both graphs as the maximum possible phase
advance. Since the size of the phase-resetting region is a
monotonically increasing function of the perturbation size,
we are effectively illustrating the size of the echo as a
function of the perturbation size in Fig. 4(a). This plot
shows a maximum echo response for a value of X ¼ 0.6.
To gain further insights into the echo phenomenon from

our simulations, we plot the phase of each oscillator as a
function of its frequency at various times during the
simulation. As shown in Fig. 5(a), prior to the first
perturbation, the oscillators (plotted as blue dots) are
distributed randomly in phase. Immediately following
the first perturbation, the oscillators that were in the
resetting region of their phase are phase reset to zero,
Fig. 5(b), where the reset oscillators are plotted as red dots
overlying the unreset oscillators plotted as blue dots. The
phases of each of the oscillators that were perturbed, as well
as the phases of the oscillators that were not perturbed, then
evolve as ωiðt − tpÞ, where ωi is the frequency of the ith
oscillator. Oscillators with higher frequencies advance

faster, and the phases form a set of points lying along a
band, the steepness of which increases with time. At any
arbitrary time between the first and second perturbations,
the phases of the oscillators lie along a series of offset band
segments due to wrapping of the phases (from 1 to 0), as
shown in Fig. 5(c). The steepness and number of the bands
increase with time, while their thickness decreases. This
can be seen in Fig. 5(c), which corresponds to the time
halfway between the two perturbations, compared to
Fig. 5(d), which corresponds to the time immediately prior
to the second perturbation. At the time of the second
perturbation, tp þ τ, any oscillator lying in the resetting
region is phase reset to zero, as shown in Fig. 5(e), where
the red (blue) oscillators of Fig. 5(d) that are reset are
plotted in Fig. 5(e) with their color changed from red (blue)
to green (black). At the time of the echo, tp þ 2τ, the
oscillators are distributed along either a set of thin bands or
a set of short steeper band segments that appear to branch
off the primary bands, Fig. 5(f). Note that the four colors
appearing in Figs. 5(e) and 5(f) correspond to four distinct
groups of oscillators: Group I (green) contains those
oscillators that are reset by both perturbations; group II
(red) contains those oscillators that are reset by the first but
not the second perturbation; group III (black) contains
those oscillators that are reset by the second but not the first
perturbation; group IV (blue) contains those oscillators that
are not phase reset by either perturbation.
Figure 6 shows the equivalent phase vs frequency plots

for the individual oscillators in the experimental system.
While there is evidently noise present in the system, the
same underlying features as in the numerical simulation
are clearly visible. A certain fraction of the initially
randomly distributed oscillators, Fig. 6(a), are phase reset
by the first perturbation, Fig. 6(b). The oscillators then
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FIG. 4. (a) Magnitude of the order parameter R at the time of the echo as a function of the size of the phase-resetting region X, which
increases monotonically with the size of the perturbation. We show ZBKE simulation values (dark blue line) and values calculated with
the geometric approach using groups I and II (light blue line). The red dashed line shows values calculated with the geometric approach
using groups I–IV or with Eq. (16) from the analytical theory. (b) Phase response curves for stimuli ϕp ¼ 0.147 (blue line) and
ϕp ¼ 0.0218 (red line) from ZBKE simulations. The sizes of the associated phase-resetting regions X are shown by the red and blue
horizontal arrows, respectively. Simulation parameters are as in Fig. 2.
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evolve into a series of bands that steepen with time,
Figs. 6(c) and 6(d). A certain fraction of the oscillators are
phase reset at the second perturbation, Fig. 6(e), and
banding structure is again visible at the time of the echo,
Fig. 6(f).

B. Structure of phase distribution

Examination of Figs. 5(f) and 6(f) reveals that there is
structure and information within the phase distribution of
the oscillators at the time of the echo. How this arises,
however, and why it leads to an increase in the order
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parameter at time tp þ 2τ is not immediately apparent. To
gain a better understanding, we focus on the numerical
simulations and the division of the oscillator populations
into four groups as previously discussed. By tracking the
behaviors of groups I and II, we find that much of the
underlying structure of the echo can be understood since
groups III and IV make a smaller contribution to the size of
the order parameter at the time of the echo. Thus, we first
focus on groups I and II. Assuming that the oscillators are
uniformly distributed in phase at the time of the perturba-
tion, we can approximate X in Fig. 4(a) as the fraction of all
of the oscillators that are phase reset by a perturbation. The
occupancies of groups I and II are then estimated to beNX2

and NXð1 − XÞ, respectively.
Figure 7 shows plots of phase as a function of frequency

of the oscillators belonging to groups I and II at different
times during the simulation. Just prior to the first pertur-
bation, the oscillators of both of these groups are, by
definition, found between phases (1 − X) and 1, as shown
in Figs. 7(a)(i) and 7(b)(i). Because of the random phases at
t ¼ 0 used in the simulation, there is no dependence of
phase on frequency. Both sets of oscillators are phase reset
to zero by the first perturbation. At the time of the second
perturbation, the line segments in group II mutually align in
the refractory region of the phase, as shown in Fig. 7(b)(ii).
In contrast, the line segments associated with the group I
oscillators align in the resetting region of the phase and are
phase reset to 0 by the second perturbation, as shown in
Fig. 7(a)(ii).
At the time of the echo, the group I oscillators have

exactly the same phases as immediately prior to the second
perturbation, with the oscillators arranged along a series of
mutually aligned line segments in the resetting region of the
phase, as shown in Fig. 7(a)(iii). The group II oscillators,

which were not phase reset at the second perturbation, are
now aligned along a series of line segments that are steeper
than and twice as long as they were at the time of the second
perturbation, Fig. 7(b)(iii).
In Fig. 7, there are gaps in the observed frequencies of

both groups, with the missing frequencies in the group I
plots corresponding to the frequencies present in the group
II plots, and vice versa. This occurs because the definition
of each group places separate restrictions on the allowed
frequencies of its member oscillators. For example, oscil-
lators in group II are defined as those that are phase reset by
the first perturbation but not the second; i.e., their phases
must lie between 0 and (1 − X) at time tp þ τ. Since they
start at zero phase at time tp, the allowed frequencies of the
oscillators are given by n=τ þ ξ=τ, with ξ restricted to the
range 0 ≤ ξ < ð1 − XÞ, where n can take any integer value.
The separate line segments in Fig. 7(b)(ii) correspond to
increasing values of n, with the oscillators arranged along
the central line segment having the range of frequencies
corresponding to n ¼ 15. This is in agreement with the
value of τ for this simulation, being approximately 15 times
the value of the mean period of the oscillators. The group I
oscillators have frequencies n=τ þ ξ=τ, with ξ restricted to
the range ð1 − XÞ ≤ ξ < 1. This ensures that they lie within
the resetting region at the time of the second perturbation.
With this formulation of the allowed frequencies, we can

understand why the oscillators in group II are distributed
along longer and steeper line segments at time 2τ. An
arbitrary oscillator in group II at time τ following the first
perturbation will have phase ξ, while at time 2τ following
the first perturbation, its phase will be 2ξ. For both groups,
these allowed frequencies also ensure that the line segments
associated with each value of n will mutually align at
integer multiples of time τ following the first perturbation.
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C. Geometric phase analysis

The value of the order parameter at the time of the echo
can now be estimated based on the phase distributions of
the group I–IV oscillators. The shapes of the distributions
are determined by geometric restrictions on the phase-
frequency relationships of each group. For example, the
phase distribution of the oscillators in group I is simply the
rectangle corresponding to the phase-resetting region, as
defined in Fig. 4(b) and illustrated in Fig. 5(b). As shown in
Fig. 8(a), the group I oscillators are found between (1 − X)
and 1, while the group II oscillators are found between 0
and 2ð1 − XÞ. Our approach assumes that the frequencies
of the oscillators in a given group are uniformly distributed
through their respective regions immediately prior to each
perturbation, which is valid for large N. The actual
distributions determined from ZBKE simulations, shown
in Fig. 8(a), verify the validity of this assumption.
The order parameter calculated using the phase distribu-

tions of groups I and II as a function of X is shown in
Fig. 4(a) by the light blue curve. The estimate of the order
parameter can be improved by including the impact of
groups III and IV. The phase distributions of these oscillators
at the time of the echo are also determined using a geometric
approach, which is described in Appendix A. Figure 8(a)
shows these geometrically determined distributions along
with the distributions from ZBKE model simulations.
The overall phase distribution of all oscillators is shown

in Fig. 8(a), where the dominant asymmetry, which leads to
the larger value of R, arises from the overlap of oscillators
from groups I and II, with smaller contributions from
groups III and IV. Figure 4(a) shows remarkably good
agreement between the magnitude of the geometrically
determined order parameter at the time of the echo as a
function of X, shown by the red dashed curve, with that
calculated using the ZBKE model.

A close-up of the central branched banddescribed earlier in
Fig. 5(f) is shown in Fig. 8(b), color coded by the four groups.
The members of groups I and II are seen to span the entire
range of allowed frequencies, i.e., between 14=τ and 15=τ, as
discussed above. Member oscillators of these two groups are
uniformly distributed along their respective line segments.
Group III oscillators are also distributed along a thin line,
although the distribution is now not uniform. Figure 8(a)
shows the geometrically estimated (black line) and simula-
tion-determined (black symbols) density distributions. The
unperturbed oscillators of group IV are restricted to certain
regions of this phase-frequency plot. These ranges arise, as for
groups I–III, from frequency and initial phase restrictions on
the oscillators that permit them to be a member of the group.

V. THEORETICAL ANALYSIS OF ECHO
BEHAVIOR IN THE CASE OF NOISE-FREE

UNCOUPLED OSCILLATORS

To make the theoretical treatment tractable, we consider
the case where there is no coupling between the oscillators,
but, unlike the theoretical treatment in Ref. [4], we do not
take the externally applied perturbations to be small. For
convenience, we assume that two equal-amplitude external
pulse perturbations (unequal amplitudes can be easily
incorporated), each of negligible duration, are applied at
time t ¼ 0 and at time t ¼ τ, and we wish to evaluate the
order parameter response, RðtÞ ¼ N−1jPj expð2πiθjÞj, in
the limit where the number of oscillators N is large. As in
Sec. IV, we assume that the action of a pulse perturbation
can be described by a phase response curve, such that if the
phase of an oscillator is θ− just before application of a pulse
perturbation, then its phase θþ just after application of the
pulse perturbation is

θþ ¼ ρðθ−Þ; ð1Þ
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FIG. 8. (a) Geometrical prediction of phase distribution of oscillators (solid lines) and ZBKE simulation values (symbols) at the time of
the echo. Green (open circle), red (plus), black (diamond), and blue (star) symbols and lines correspond to groups I, II, III, and IV,
respectively. The violet symbols (times) and line correspond to the sum of the distributions of the four groups. The ZBKE simulations were
carried outwith a large number of oscillators,N ¼ 100 000. (b)Detail of structure fromFig. 5(f), color coded according to the four different
groups in (a) at the time of the echo. The frequencies indicated by the left and right filled red circles correspond to 14=τ and 15=τ,
respectively. Only half of the population of group III oscillators (black) are plotted in order to not obscure the group I oscillators (green).
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where a plot of Δðθ−Þ ¼ ðθþ − θ−Þ mod 1 versus θ− is the phase response curve (PRC) [recall that we use the notation
0 ≤ θ < 1; i.e., the interval [0, 1) corresponds to one complete cycle of an oscillation]. In the absence of a pulse, the phase

θjðtÞ of oscillator j is governed by θj ¼ θ̂j modulo 1, dθ̂jðtÞ=dt ¼ fj. Thus,

θjðtÞ ¼
� ðρðθ0jÞ þ fjtÞ modulo 1 for 0 < t < τ

fρ½ρðθ0jÞ þ fjτ� þ fjðt − τÞg modulo 1 for t > τ;
ð2Þ

where θ0j ¼ θjð0−Þ is the oscillator phase just before
application of the first perturbing pulse. The initial
phases θ0j (j ¼ 1; 2;…; N) are assumed to be uniformly
distributed in [0, 1). Appropriate to the large-N limit, we
drop the subscripts j on θj and fj, and express the complex
order parameter R̂ðtÞ ¼ N−1P

j expð2πiθjÞ response for
0 < t < τ as

R̂ðtÞ ¼
Z

1

0

dθ0

Z þ∞

−∞
dfGðfÞλðθ0Þe2πift; for 0 < t < τ;

ð3Þ

where GðfÞ is the oscillator distribution function
(
Rþ∞
−∞ GðfÞdf ¼ 1), and

λðθ0Þ ¼ exp½2πiρðθ0Þ�: ð4Þ
For t > τ, θðtÞ ¼ θðτþÞ þ fðt − τÞ, where τþ denotes the

time instant just after the second pulse perturbation. Thus,
we can express R̂ðtÞ for t > τ,

R̂ðtÞ ¼
Z

1

0

dθ0

Z þ∞

−∞
dfGðfÞηðθ0; fτÞe2πift; for t > τ;

ð5Þ
where η ¼ expf2πi½θðτþÞ − fτ�g, or

ηðθ0; fτÞ ¼ expf2πi½ρðρðθ0Þ þ fτÞ − fτ�g: ð6Þ

From Eqs. (3) and (4), we obtain

R̂ðtÞ ¼ A ~GðtÞ; for 0 < t < τ; ð7Þ

where

A ¼
Z

1

0

λðθ0Þdθ0; ð8Þ

and ~G denotes the inverse Fourier transform of the
frequency distribution function GðfÞ,

~GðtÞ ¼
Z þ∞

−∞
GðfÞe2πiftdf:

For example, ifGðfÞ is a Gaussian distribution with mean f
and variance ðΔfÞ2,

GðfÞ ¼ 1ffiffiffiffiffiffi
2π

p
Δf

expf−ðf − fÞ2=½2ðΔfÞ2�g; ð9Þ

then

~GðtÞ ¼ exp

�
−
1

2
ð2πΔftÞ2 þ 2πift

�
; for t > 0: ð10Þ

Thus, the initial response to the first pulse perturbation is
confined to a time interval of order ðΔfÞ−1.
Letting ξ ¼ fτ and noting from Eq. (6) thatR

1
0 ηðθ0; ξÞdθ0 is periodic with period one in ξ, we expand
it in a Fourier series,

Z
1

0

ηðθ0; ξÞdθ0 ¼
Xþ∞

q¼−∞
Cq expð−2πiqξÞ; ð11Þ

where

Cq ¼
Z

1

0

dθ0

Z
1

0

dξe2πqiξηðθ0; ξÞ: ð12Þ

Inserting Eq. (11) into Eq. (5), we obtain R̂ðtÞ for t > τ,

R̂ðtÞ ¼
Xþ∞

q¼−∞
Cq

~Gðt − qτÞ: ð13Þ

Thus, the response to the initial perturbation [A ~GðtÞ
for t > 0, cf. Eq. (7)], the immediate response to the second
perturbation, the term C1

~Gðt − τÞ, for t > τ [Eq. (13)], and
the echoes at times t ¼ qτ [given by Cq

~Gðt − qτÞ, q ¼
2; 3; ...] all have the same shape [Eq. (10)]. For the example
of Gaussian GðfÞ, the pulse width at half maximum is

Δt ¼
ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
=ð2πΔfÞ ≅ T2

ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
=ð2πΔTÞ; ð14Þ

where ΔT is the spread in the oscillator period T ð≫ΔTÞ.
Assuming that Δt ≪ τ (the case of interest), the response to
the two pulse perturbations and the individual echo responses
are all well separated in time, as illustrated in Fig. 2(a). We
find that the standard deviation ΔT predicted from the half
width at half maximum, Δt=2, following the first or second
perturbation or the full width at half maximumΔt for the first
or second echo agreeswell with the simulationvalues. For the
experiment shown in Fig. 1(a), the predicted standard
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deviation is 3.3 s compared to the actual value of 3.2 s, and for
the simulation shown in Fig. 2(a), the predicted value is 2.5
compared to the actual value of 2.4. We also note that if the
mean period is not known, it can be readily found from the
oscillations of the real part of the order parameter, Re½R̂ðtÞ�,
following the perturbations or at the echoes.
We emphasis that, in the preceding, we have neglected

collective interactions that couple the oscillator phases.
Such interactions have been treated in Ref. [4] by the
use of perturbation theory (appropriate when the pulse
perturbations are small). In the case where oscillator
coupling is included [4], the decay of the response
following a pulse perturbation or of an echo is typically
exponential in time. In contrast, without coupling, depend-
ing on GðfÞ, the decay can be faster than exponential, as
illustrated by Eq. (10). This is consistent with the slower
post-perturbation fall-off seen in Fig. 1(b) (nonzero cou-
pling) as compared to Fig. 1(a) (no coupling) in the
experiments and in Fig. 3(a) (nonzero coupling) as com-
pared to Fig. 2(a) (no coupling) in the simulations.
For the case of the BZ reaction PRC [Fig. 4(b)], a good

approximation to ρðθÞ is

ρðθÞ ¼
�
θ for 0 ≤ θ < ð1 − XÞ
0 for ð1 − XÞ ≤ θ < 1:

ð15Þ

In this case, the integral in Eq. (12) can be explicitly
evaluated analytically (see Appendix B), with the result

Cq ¼

8>><
>>:

Xðbq−1 − bqÞ − jbq−1j2 þ bqb1−q for q ≠ 0; 1

ð1 − XÞðX − b1Þ for q ¼ 0

X2 − ð1 − XÞb1 for q ¼ 1;

ð16Þ

where bq ¼ ½1 − expð−2πiqXÞ�=ð2πiqÞ. Using this result
for q ¼ 2 (the first echo response), we obtain the dashed
red curve in Fig. 4(a), which shows good agreement with
the dark blue curve in Fig. 4(a). The dashed red curve is
identical to the curve obtained using the geometric phase
analysis described in Sec. IV C. Note that the dark blue
curve is obtained using PRCs from ZBKE simulations, as
in Fig. 4(b), as opposed to the approximation, Eq. (15),
used in both the geometric phase analysis in Sec. IV C and
in the results presented here.

VI. CONCLUSION

Echo behavior is a somewhat counterintuitive phenome-
non. The apparent loss of information manifested by the
measured decay of the order parameter following a pulse is
not due to dissipative, entropy-increasing processes,
but instead arises through the inherent phase dispersion.
Thus, the information that perturbations have previously
occurred remains encoded within the phase structure of the

oscillators. The echo phenomenon observed with the
macroscopic order parameter, while remarkable, does not
in itself reveal the extent of this underlying information.
Only a component of the information is interrogated by
calculation of the order parameter, with the increase in R at
the time of the echo arising from the alignment of the
phase-frequency distributions primarily associated with
groups I and II.
Noise (which can be regarded as an entropy-increasing

process) can lead to the destruction of the relative phase
structure of the oscillators. Our simulations show that for a
given τ, the size of the echo decreases as the magnitude of
noise increases in the system. At sufficiently large magni-
tudes of noise, the echo no longer occurs. Equivalently,
Ref. [4] showed that for a fixed magnitude of noise, the size
of the echo decreases with increasing delay time τ. The
observation of an echo in our experimental system, Fig. 1,
indicates that the system is within the range in which the
time-integrated amount of noise is sufficiently small that
the encoded phase structure is not destroyed, as demon-
strated by Fig. 6. Within this range, as with our numerical
simulations subject to small levels of noise, the echo
phenomenon is robust.
We have presented the first example of echo behavior in

populations of chemical oscillators. Simulations using a
realistic model of the photosensitive BZ micro-oscillators
agree well with the experimental behavior. A geometric
phase analysis is presented that offers insights into the origin
of the echo and provides evidence for an intricate structure of
phase relationships underlying the behavior. A general
analytical theory is presented for echo phenomena for the
case of large perturbations and is applied to accurately predict
features of the echo behavior found experimentally and in
simulations of BZ oscillator populations. Our study demon-
strates that echo behavior is sufficiently robust to occur in
real-world settings including biological systems.
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APPENDIX A: GEOMETRIC ANALYSIS
OF PHASE STRUCTURE

We can use a geometric approach to determine the phase
distributions of the oscillators associated with group III and
IV at the time of the echo. We illustrate the approach by
considering the oscillators in group III. At time tp, these
oscillators are uniformly distributed in the region 0 to
(1 − X), as illustrated in Fig. 9(a). At time tp þ τ, they are
uniformly distributed in the region (1 − X) to 1. This places
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restrictions on their allowed frequencies, although, in
contrast to groups I and II, the restrictions are now
dependent on the particular phase of an oscillator at time
tp. Consider the oscillators with the narrow range of phases
indicated in red in Fig. 9(a). At time tp þ τ, these oscillators
will lie uniformly in the region (1 − X) to 1. Therefore, the
allowed frequencies of oscillators in this thin region are
n=τ þ ξ=τ, with ξ restricted to the range 1 − X to 1. In
Fig. 9(b), we schematically draw the phase location of these
oscillators, uniformly spread through the phase-resetting
region. Oscillators in the narrow range of phase indicated in
light blue in Fig. 9(a) show a phase advance between
0 and X. In Fig. 9(b), these oscillators are schematically
illustrated as spread through the resetting region at the time
of the second perturbation. Their allowed frequencies are
given by n=τ þ ξ=τ, with ξ restricted to the range 0 to X.
For the general narrow region of oscillators at phase θ0 at
time tp, indicated in green in Figs. 9(a) and 9(b), the value
of ξ is restricted to the range 1 − X − θ0 ≤ ξ < 1 − θ0. At
time tp þ τ, all of the oscillators are phase reset to 0, as
schematically illustrated in Fig. 9(c). The location of any
oscillator τ later can be determined using the above-allowed
frequencies. The oscillators that were in the red region will
advance through (1 − X) to 1, whereas the oscillators that
were in the light blue region will advance from 0 to X. The
location of each of these sets of oscillators in phase at the
time of the echo is shown in Fig. 9(d), with the red and blue
oscillators offset from each other in phase. These sets of
oscillators can be thought of as forming the top and bottom

sides of a parallelogram. The location of an arbitrary set of
oscillators, which had phases close to θ0 at time tp, is
bounded by the parallelogram’s other sides. The total
number of oscillators at a particular phase in Fig. 9(d) is
proportional to the internal height of the parallelogram at
that phase. By internal height, we mean either the vertical
distance from the bottom or top side to its adjacent side, or
the parallelogram’s altitude. Assuming the altitude of the
parallelogram is 1, in the case where X ≥ 0.5, the internal
height as a function of phase, ψ , is equal to ψ=ð1 − XÞ for
ψ ≤ ð1 − XÞ, 1 for ð1 − XÞ < ψ ≤ X and ð1 − ψÞ=ð1 − XÞ
for ψ > X. In the case where X < 0.5, the internal height is
equal to ψ=ð1−XÞ for ψ ≤X, X=ð1−XÞ for X<ψ ≤ð1−XÞ,
and ð1 − ψÞ=ð1 − XÞ for ψ > ð1 − XÞ. This is plotted in
Fig. 8(a) as the black line. The phase distribution of the
oscillators in group IV at the time of the echo, as shown in
Fig. 8(a) as a blue line, can be determined with a similar
geometric approach.

APPENDIX B: EVALUATION OF THE ECHO
STRENGTH Cq GIVEN IN EQ. (16) FOR THE
APPROXIMATION TO THE BZ REACTION

PRC GIVEN IN EQ. (15)

From the previously given definitions of the oscillator
groups, the oscillator phase angles θðtÞ for groups I, II, III,
and IVare given in Table I, where θ0 denotes the uniformly
distributed oscillator phases just before application of the
first perturbation pulse at t ¼ 0.
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FIG. 9. Schematic representation for the geometric analysis of the phase distribution of group III oscillators. (a) At time tp, the
oscillators are uniformly distributed through the refractory region. (b) Just prior to the second perturbation, the same oscillators are now
uniformly distributed through the resetting region. (c) The oscillators are then phase reset by the perturbation at time tp þ τ. The red,
light blue, and green regions indicate the oscillators in one of three narrow phase ranges at time tp. The order of their vertical stacking in
(b) and (c) is arbitrary. Each horizontal band contributes equally to the total number of oscillators at a particular phase. (d) The phase
range of each set (red, blue, and green) of oscillators at the time of the echo. Since the choice of phase θ0 is arbitrary, the phase spread of
the other oscillators is bound by the sides of the parallelogram (dotted black line).
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Using Table I and the previously specified definitions of
the four groups, we can divide the unit square, 0 ≤ θ0 < 1,
0 ≤ fτ modulo 1 = ξ ≤ 1, into regions associated with each
of the four groups, as shown in Fig. 10. Specifically, we
arrive at this diagram by noting that the conditions
corresponding to the four groups are as follows:

AI∶ ð1−XÞ≤ θ0< 1; ð1−XÞ≤ ðfτÞ mod 1< 1;

AII∶ ð1−XÞ≤ θ0< 1; 0≤ ðfτÞ mod 1< ð1−XÞ;
AIII∶ 0≤ θ0< ð1−XÞ; ð1−XÞ≤ ðfτþθ0Þ mod 1< 1;

AIV∶ 0≤ θ0< ð1−XÞ; 0≤ ðfτþθ0Þ mod 1< ð1−XÞ:

In the above, the first condition in the pair of conditions for
each AK arises from the specification that the first pulse
resets (does not reset) the oscillators in AI and AII (AIII and
AIV), while the second condition arises by evaluating the
expressions for θðtÞ in the 0 < t < τ column of Table I at
the time t ¼ τ and then noting that oscillators in AI and AIII
(AII and AIV) are reset (are not reset) by the second
pulse. Region AIV appears as the union of two subregions,
A0
IV and A00

IV, within the unit square of ξ—θ0 space, with
A0
IV corresponding to (ξþ θ0) mod 1 ¼ ðξþ θ0Þ and A00

IV
corresponding to (ξþ θ0) mod 1 ¼ ðξþ θ0 − 1Þ. By
construction,

ηðθ0; fτÞ ¼ expf2πi½θðτþÞ − fτ�g; ðB1Þ

where θðτþÞ denotes the oscillator phase at the time instant
just after the second pulse perturbation. Thus, from the
rightmost column of Table I, evaluated at t ¼ τ,

ηðθ0;ξÞ¼

8>>><
>>>:

e−2πiξ for ðθ0;ξÞ in region AI

1 for ðθ0;ξÞ in region AII

e−2πiξ for ðθ0;ξÞ in region AIII

e2πiθ0 for ðθ0;ξÞ in region AIV¼A0
IVUA00

IV:

ðB2Þ

Using Eqs. (12), (B2), and Fig. 10, the Fourier coefficient
Cq can be written as

Cq ¼
Z

1

1−X
dθ0

Z
1

1−X
dξe2πiðq−1Þξ þ

Z
1

1−X
dθ0

Z
1−X

0

dξe2πiqξ

þ
Z

1−X

0

dθ0

Z
1−θ0

1−X−θ0
dξe2πiðq−1Þξ

þ
Z

1−X

0

dθ0

Z
1−X−θ0

0

dξe2πiðqξþθ0Þ

þ
Z

1−X

0

dθ0

Z
1

1−θ0
dξe2πiðqξþθ0Þ; ðB3Þ

where the five integrals respectively correspond to the five
regions, AI, AII, AIII, A0

IV, and A00
IV. Carrying out these

integrations, we obtain Eq. (16).
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