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Sensory and Motor Systems

Systematic Analysis of Transmitter Coexpression
Reveals Organizing Principles of Local Interneuron
Heterogeneity

Kristyn M. Lizbinski, Gary Marsat, and Andrew M. Dacks

https://doi.org/10.1523/ENEURO.0212-18.2018

Department of Biology, West Virginia University, Morgantown, WV 26505

Abstract
Broad neuronal classes are surprisingly heterogeneous across many parameters, and subclasses often exhibit
partially overlapping traits including transmitter coexpression. However, the extent to which transmitter coex-
pression occurs in predictable, consistent patterns is unknown. Here, we demonstrate that pairwise coexpression
of GABA and multiple neuropeptide families by olfactory local interneurons (LNs) of the moth Manduca sexta is
highly heterogeneous, with a single LN capable of expressing neuropeptides from at least four peptide families
and few instances in which neuropeptides are consistently coexpressed. Using computational modeling, we
demonstrate that observed coexpression patterns cannot be explained by independent probabilities of expres-
sion of each neuropeptide. Our analyses point to three organizing principles that, once taken into consideration,
allow replication of overall coexpression structure: (1) peptidergic neurons are highly likely to coexpress GABA;
(2) expression probability of allatotropin depends on myoinhibitory peptide expression; and (3) the all-or-none
coexpression patterns of tachykinin neurons with several other neuropeptides. For other peptide pairs, the presence
of one peptide was not predictive of the presence of the other, and coexpression probability could be replicated by
independent probabilities. The stochastic nature of these coexpression patterns highlights the heterogeneity of
transmitter content among LNs and argues against clear-cut definition of subpopulation types based on the presence
of single neuropeptides. Furthermore, the receptors for all neuropeptides and GABA were expressed within each
population of principal neuron type in the antennal lobe (AL). Thus, activation of any given LN results in a dynamic
cocktail of modulators that have the potential to influence every level of olfactory processing within the AL.
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Significance Statement

Understanding the functional roles of individual local interneurons (LNs) is complex because traits, like
transmitter coexpression, are often partially overlapping across the population. Here, we find that single
olfactory LNs coexpress neuropeptides from at least four individual peptide families, and that GABA and
neuropeptides are partially and heterogeneously coexpressed across the entire population. The stochastic
nature of many observed coexpression patterns argues against clear-cut and exclusive definition of
subpopulations based on the expression of single neuropeptides. Overall, our results suggest that activa-
tion of any given LN causes the release of a variable combination of neuropeptides and GABA that, based
on receptor expression, target the input, output, and local processing stages of olfactory coding.
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Introduction
The historical concept of a cell type, propelled by the

work of Cajal (1995) and Golgi (1906), suggests that dis-
tinct functional classes of neurons can be identified based
on their morphology (Ramón et al., 1972; Shepherd,
2015). Yet recent advances in transcriptomics and elec-
trophysiology have revealed that even neurons within a
single cell type can still be surprisingly heterogeneous in
their synaptic, biophysical, and transcriptional profiles
(Cohen et al., 2015; Eddine et al., 2015; Okaty et al., 2015;
Li et al., 2017). Local interneurons (LNs) tend to be par-
ticularly heterogeneous across many parameters, leading
to the identification of numerous LN subtypes within cor-
tex (Flames and Marín, 2005; DeFelipe et al., 2013; Ya-
vorska and Wehr, 2016), hippocampus (Maccaferri and
Lacaille, 2003), and spinal cord (Gabitto et al., 2016;
Sweeney et al., 2018). For example, two spinal interneu-
ron populations that support different motor output (limb
vs thoracic) can be distinguished, and further subdivided,
based on transcription factor expression profile (Sweeney
et al., 2018). Similarly, 13 distinct groups of GABAergic
cortical interneurons exhibit partially overlapping expres-
sion of multiple neuropeptides and modulators (Gonchar
et al., 2007). Thus, parameters used to classify LN sub-
populations can be partially overlapping across function-
ally distinct subpopulations. Consequently, attempting to
assign a unified functional role to subpopulations based
on single molecular markers or transmitters is misleading.
How then, do we reconcile heterogeneity within cell
types?

To determine the organizing principles that govern neu-
ronal heterogeneity, it is critical to use a combinatorial
approach, which takes multiple parameters, such as
transmitter coexpression, into consideration. The insect
antennal lobe (AL), analogous to the olfactory bulb, is an
excellent system in which to approach this problem owing
to the wealth of information on local interneuron physiol-

ogy, morphology, and transmitter content combined with
its relative numerical simplicity. The olfactory system de-
tects and transforms odor input into meaningful output,
ultimately informing an animal’s choice to mate, seek
food, or avoid predators (Ache and Young, 2005). Odor-
ants are first detected by olfactory receptor neurons
(ORNs), which synapse onto projection neurons (PNs)
within substructures called glomeruli that form an odor-
topic map within the AL. The input/output relationship
between ORNs and PNs is refined by a diverse population
of LNs that transform odor information via a variety of
mechanisms (Wilson, 2013). In Manduca sexta, LNs are
primarily inhibitory (Christensen et al., 1993), broadly
tuned to odorants, exhibit both inhibitory and excitatory
responses, and are highly morphologically and physiolog-
ically diverse (Hildebrand et al., 1992; Reisenman et al.,
2011). However, there are no correlations between mor-
phology, physiology, and GABA expression in Manduca
LNs (Reisenman et al., 2011), suggesting a high degree of
heterogeneity within this population. Furthermore, in Man-
duca, as well as other insects, AL LNs express a combi-
nation of GABA and multiple neuropeptides (Homberg
et al., 1990; Schachtner et al., 2004; Utz et al., 2007, 2008;
Reisenman et al., 2011; Fusca et al., 2015). Consequently,
understanding the functional roles of individual LNs is
complex, as we lack a systematic analysis of transmitter
coexpression (Nässel, 2018).

We used the olfactory system of Manduca to determine
if subclasses of LNs have common transmitter profiles.
We characterized each pairwise coexpression pattern for
GABA and five neuropeptides and found that although
almost all peptidergic LNs coexpress GABA, neuropep-
tide coexpression is heterogeneous across LNs. Using
computational modeling, we demonstrate that many co-
expression patterns cannot be explained by independent
probabilities of expression of each peptide, highlighting
that certain pairs of peptides co-occur more (or less) often
than by chance. For other pairs, the presence of one
peptide was not predictive of the presence of the other,
and coexpression probability could be replicated by inde-
pendent probabilities. The stochastic nature of these co-
expression patterns highlights the heterogeneity of
transmitter content among LNs and argues against clear-
cut and exclusive definition of subpopulation types based
on the presence of a single neuropeptide. One possible
explanation for this heterogeneity is that principal cell
classes within the AL express different GABA and neuro-
peptide receptors. This would segregate the influence of
each modulator across different cell types (Nusbaum
et al., 2001, 2017; Tritsch et al., 2016), as is the case for
the clock network of Drosophila melanogaster (Liang
et al., 2017). However, this is not likely to be the case here,
as all neuropeptide and GABAB receptors were expressed
within every cell class of the AL (ORNs, PNs, and LNs).
Overall, our results suggest that activation of any given LN
likely releases a variable combination of peptides and
GABA to potentially influence every cell class within the
AL.
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Materials and Methods
Animals

Manduca sexta were raised at West Virginia University
as previously described (Bell and Joachim, 1976; Daly
et al., 2013). Equal numbers of unmated adult males and
female moths were pooled for all data.

Immunocytochemistry
Brains were dissected in physiological saline (Chris-

tensen and Hildebrand, 1987), fixed in 4% paraformalde-
hyde overnight at 4°C, and embedded in 5% agarose to
be sectioned at 100 �m using a Leica VT 1000S vi-
bratome. Sections were washed in PBS with 1% Triton
X-100 (PBST), blocked in PBST and 2% immunoglobulin
G (IgG)-free BSA (Jackson Immunoresearch; Cat# 001-
000-161), and then incubated in blocking solution with 5
mM sodium azide and primary antibodies. For all rabbit-
neuropeptide/mouse-GABA protocols, sectioned tissue
was incubated for 48 h at dilutions of 1:3000 and 1:500,
respectively. Sections were then briefly washed with PBS
and PBST, cleared with ascending glycerol washes, and
then mounted on slides with Vectashield (Vector Labora-
tories; Cat# H-1000). All neuropeptide antibodies used in
this study were raised in rabbit. For protocols in which we
labeled with two antisera raised in rabbit, we used APEX
Antibody Labeling Kits 488, 555, 647 (Invitrogen; Cat#
A10468, A10470, A10475, respectively) to directly attach
a fluorophore with excitation/emission spectra at different
wavelengths to each primary to avoid cross-labeling from
a secondary antibody (Bradley et al., 2016). Using the
resin tip from the APEX kit, a small amount of the antibody
(10–20 �g) was pushed through the resin using an elution
syringe, and the reactive dye was prepared using DMSO
and a labeling buffer (solutions provided in APEX kit). The
reactive dye was eluted through the tip onto the antibody
remaining in the resin to covalently bond the fluorescent
label to the IgG antibodies. The tip was incubated over-
night 4°C or at room temperature for 2 h, and the labeled
product was eluted through the tip. Resulting labeled
antibody volume of 50 �l in a total volume of 2400 �l was
used to label 6 brains at equal dilution of 400 �l per well
and incubated for 72 h in 3% Triton X-100 with PBSAT.
Sections were then washed and mounted as above.

Antibody characterization
Specificity controls (including pre-adsorption controls)

for the allatostatin-A (AST-A), allatotropin (Mas-AT),
tachykinin (TK), and myoinhibitory peptide (MIP) antibod-
ies in Manduca brain tissue are described completely in
Lizbinski et al. (2016). GABA pre-adsorption controls in
Manduca AL tissue for the mouse GABA antiserum are
described in Bradley et al. (2016). The antibodies used in
this study likely cross-react with several isoforms within
the same peptide family. Thus, our results can only re-
solve principles at the level of peptide family and not
individual peptide isoforms.

GABA: The GABA antibody (Sigma Aldrich, cat# A2052)
was raised in rabbit against GABA coupled to BSA with
paraformaldehyde. MIP: Antiserum raised in rabbit against
MIP conjugated to thyroglobulin was produced by M. Eck-

ert, Jena, Germany, and provided by C. Wegener, Marburg,
Germany (Predel et al., 2001; RRID: AB_2314803). Mas-AT:
Antiserum raised in rabbit against Manduca allatotropin
(Mas-AT) was kindly provided by Dr. J. Veenstra, University
of Bordeaux, Talence, France (Veenstra and Hagedorn,
1995; RRID: AB_2313973). AST-A: Antiserum was raised
(Reichwald et al., 1994) in rabbit against octadecapeptide-
allatostatin (Pratt et al., 1991), ASB2 (AYSYVSEYKALPVYN-
FGL-NH2) of Diploptera punctata, and kindly provided by Dr.
J. Veenstra. It recognizes AKSYNFGLamide, a form of AST
and other AST-like peptides. TK: Antiserum raised in rabbit
against locust tachykinin II with bovine thyroglobulin with
glutaraldehyde was kindly provided to us by Dr. J. Veenstra
(RRID: AB_2341129). FMRF: FMRFamide antiserum was
raised against synthetic RF-amide coupled to bovine thyro-
globulin with glutaraldehyde and provided by Dr. Eve Marder
(Marder et al., 1987). Pre-adsorption controls of the antise-
rum against synthetic FMRFamide eliminated labeling in lar-
val Manduca nervous tissue (Witten and Truman, 1996).

Confocal microscopy
Image stacks were scanned using an Olympus Flu-

oview FV1000 confocal microscope with argon and green
and red HeNe lasers. Scans were taken at either 800 �
800- or 1024 � 1024-pixel resolution, 1.5 �m between
optical sections, using both 20�/0.80 Oil UPlanApo and
40�/1.30 Oil � 0.17/FN 26.5, 80 �m pinhole size, Olym-
pus lenses. Fluoview (FV10-ASW Viewer software, v.4.2b)
was also used to set brightness levels, and Corel Draw X4
was used to organize figures.

Cell counts and coexpression
Images of immunostained brains were exported as .tiff

stacks in Fluoview software. Stacks were then imported
into VAA3D software (available at https://github.com/
Vaa3D/release/releases/; Peng et al., 2010, 2014a,b; Bria
et al., 2016) to determine individual cell counts and coex-
pression cell counts. The number of local interneurons in
the lateral cell cluster that express each transmitter were
counted in VAA3D (n � 6 brains per label combination, 3
brains per sex). We used cell body size and location within
the lateral cell cluster to distinguish between LNs and PNs
(Homberg et al., 1988). The average and standard devia-
tion of number of cells per AL that expressed a given
transmitter were calculated for each combination. Wil-
coxon rank sum tests were performed using Prism v.5.01
(GraphPad) to determine if there was any significant dif-
ference between the left and the right AL for each brain.
Coexpression ratios were determined by dividing the
number of cells expressing both an individual neuropep-
tide and GABA by the total number of cells expressing just
the neuropeptide and calculated in Excel. Neuropeptide
coexpression ratios were determined in the same manner
for every possible pairwise combination using data from
peptides stained using the APEX kits. FMRF/MIP coex-
pression ratios were not calculated, as the APEX kits
labeled significantly fewer MIP neurons than all other
runs, and therefore the ratios would not have reflected
accurate coexpression. Thus, FMRF/MIP coexpression
was not used in subsequent models or computational
analysis as a constraint or a relationship to replicate. All
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other neuropeptide/neuropeptide coexpression experi-
ments labeled an accurate number of cell bodies when
compared to cell counts from GABA/neuropeptide runs
using indirect immunocytochemistry. Cell count totals
and standard deviations from APEX kit labeling (Fig. 2)
were used in all model iterations, as coexpression ratios
were calculated using that data.

Putative neuropeptide receptor sequence BLAST
We used receptor sequences from closely related in-

vertebrate species to identify putative sequence ho-
mologs on Manduca scaffolds. Protein sequences from
Drosophila and other closely related species were identi-
fied by annotation (see Table 2) and queried against the
Manduca genome using tblastn (National Agricultural Li-
brary, i5k initiative, https://i5k.nal.usda.gov/Manduca-
_sexta). Top matches to each receptor sequence in
Manduca were subsequently queried against the NCBI nr
database to confirm their putative annotation as Manduca
receptor homologs. These sequences were used for
primer design for RT-qPCR analysis of putative neuropep-

tide receptor expression in the antennae, medial and
lateral cell clusters, and brain. Sequences that were pre-
viously identified in Manduca for Mas-ATr and RpS3 (Ji-
ang et al., 1996; Horodyski et al., 2011) were downloaded
as FASTA files from NCBI (http://www.ncbi.nlm.nih.gov/
gene/?term�) and used to design RT-qPCR primers. Open
reading frames were established using ORF Finder at
https://www.ncbi.nlm.nih.gov/orffinder/. A recent study par-
tially annotated the Manduca genome (Kanost et al., 2016).
We used the Manduca raw sequence and assembled ge-
nome sequence at NCBI Assembly ID GCA_000262585
from Kanost (http://www.ncbi.nlm.nih.gov/assembly/
GCA_000262585.1; Kanost et al., 2016) and identified the
sequence IDs for each of the transcripts in question
(Table 1). None of the putative receptor sequences are cur-
rently annotated in NCBI Assembly ID GCA_000262585.

Primer design
Open reading frame nucleotide sequences for each re-

ceptor, as established above, were used as the basis
for primer design for RT-qPCR. Primers were designed us-
ing https://www.idtdna.com/calc/Analyzer/Home/
Instructions and checked for optimal conditions using Oli-
goAnalyzer 3.1 (https://www.idtdna.com/calc/analyzer).
Primers and amplicons were then run through a BLAST of
the Manduca genome to determine if they matched to the
specified sequence and to rule out potential priming mis-
matches with other parts of the genome. Table 2 lists primer
sequences and annealing temperatures. All primers used for
RT-qPCR amplified a 90–125-bp stretch of sequence.

Real-time quantitative PCR (RT qPCR)
Antennae, medial cell clusters, lateral cell clusters, and

brains were collected from 2–6-d-old, unmated, naive

Table 1. Neuropeptide cell body totals and percentage co-
expression with GABA

Neuropeptide

Average no.
of cell bodies
in lateral cell
cluster

% coexpression
with GABA

TK 12.16 � 0.55 84.6
FMRF 58.16 � 17.48 92.8
Mas-AT 143.58 � 24.38 97.2
MIP 150.66 � 16.79 97.5
AST-A 47.4 � 12.83 96.7

Table 2. BLAST results for neuropeptide receptor primer design and primer sequences
Primer sequences

Receptor

Accession no.
of sequence for
forward BLAST and
origin species

Returned M. sexta
subject sequence
ID and E value

Accession no.
of reverse BLAST
top hit Forward Reverse

Annealing
temp. (°C)

TKr AAA28722.1 (D.
melanogaster)

Msex2.00568-RA scaffold00007:
996602-1079056(�);
JH668285.1; E value: e-103

NP_001127749.1 (Bombyx
mori)

ACAGGTACGTGGCGATAGTG AGCTGGCACACCAAACAGTA 58.3

FMRFr AHN57950.1 (D.
melanogaster)

Msex2.13475-RA scaffold01034:
41471-49046(�);
JH669301.1; E value: 2e-77

NP_001037007.1 (Bombyx
mori)

ACCGTGCTCATCCTTACCTC TGCGGACACACGTGATAGTA 58.3

ASTr AAG22404.3 (D.
melanogaster)

Msex2.08175-RB scaffold00218:
172215-185483(–);
JH668496.1; E value: e-100

ACJ06649.1 (Spodoptera
littoralis)

ATCTGGCCGTAGCTGATCTT GCATTACATAATCCGTTGCG 58.3

MIPr NP_001108346.1
(Bombyx mori)

Msex2.12746-RA scaffold00798:
532-18804(�); JH669075.1; E
value: e-139

AGE92037.1 (Spodoptera
litura)

GGGTTCAGGGTACTGTTCGT GAACAGGAGCACATTCAGGA 58.3

Mas-ATr ADX66344.1 (M. sexta;
Horodyski et al.,
2011)

JH668656.1 N/A TTCCTTGGAGACGTGCTGT ACTTGAACTTGAGCGGG 52

GABAB-R1 HG004164.1 (Heliothis
virescens; at
European Nucleotide
Archive)

Msex2.03321-RA scaffold00068:
510618-566612(–);
JH668346.1; E value:
0.0

XM_013339859.1
(Amyelois transitella)

TATTTCGGGAATGACTTCTG TCAATATCATATCCGGCTTC 58.3

RPs3 U12708 (M. sexta; Jiang
et al., 1996)

JH668297.1 N/A CATGATCCACTCCGGTGAC GACCTTAATTCCGAGCACTCC 58.3

vGLUT FBgn0031424 (D.
melanogaster; at
FlyBase)

JH668481; E value: 5e-18 XM_014627996.1
(Dinoponera
quadriceps)

GACCACGACTAATGTGCGGA CATTGAGTTGACGATCGGCG 58.3
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adult Manduca, and RNA was extracted using a TRIzol
reagent (Molecular Research center, Cat# TR 118). Equal
numbers of pooled males and females were used for each
biological tissue sample for a total of 3 biological samples
for each tissue type (n � 3 antennae; n � 40 medial cell
clusters from 20 brains; n � 40 medial cell clusters from
20 brains; and n � 2 brains). We used the 40s ribosomal
protein s3 (RpS3) as our reference gene. RpS3 expression
values were consistent across biological replicates. RNA
was treated with TURBO DNA-free Kit (Thermo Fisher
Scientific, Cat# AM1907) to prevent genomic DNA con-
tamination, and cDNA was synthesized using the Super-
Script IV First-Strand Synthesis System (Thermo Fisher
Scientific, Cat# 18091050). We performed RT qPCR with
the Bio-Rad CFX Connect Real-Time System (Cat
#1855201) to determine the relative expression of putative
neuropeptide receptors across our tissue samples. Indi-
vidual samples were prepared by combining prepared
cDNA sample, [100 �m] forward and reverse primers,
SsoFast EvaGreen Supermix (Bio-Rad, Cat# 1725200),
and nuclease-free diH2O to a volume of 10 �l. RT– sam-
ples, no template controls (NTCs), and positive controls
with Manduca genomic DNA from the brain were run for
every plate. RT– and NTC had no amplification for all
receptors and sample types run at 58.3°C (Table 3). Op-
timal annealing temperatures were determined through a
gradient test on genomic DNA to ensure that qPCR on
cDNA was performed at optimal temperature. All primer
sets, including the reference gene, RpS3, were run using
the following protocol [95°C 2 min (95°C 5 s ¡ 58.3°C 30
s) � 39 cycles, 65.0°C 5 s stepped up to 95°C) except for
Mas-ATr primers, which were annealed at a temperature
of 52°C. All samples for RpS3 were run again at 52°C to
ensure accurate calculation of relative expression values
for Mas-ATr. Cq values for ANTa (antennae sample a), Mb
(Medial cell cluster sample b), and NTC sample for the
RpS3 run at 52°C were high (Table 3). However, amplifi-
cation curves revealed that there were no sharp amplifi-
cation peaks, and thus high Cq values were due to noise
not contamination. High Cq values with nondescript

peaks for RpS3 NTCs run at 52°C were considered 0 for
ANTa, Mb, and NTC when calculating relative expression.

qPCR relative expression analysis
Raw qPCR data can be found in Table 3. Delta Ct

(Ctreceptor – Ctreference gene) values were calculated for each
receptor using RpS3 Ct values as the reference gene and
averaged across all biological replicates for brain, lateral
cell cluster, medial cell cluster (MCC), and antennae tis-
sue samples. Relative expression levels (2��CT) were cal-
culated for all receptors. Ct values �37 were considered
nondetectable. All graphical representations for receptor
qPCR were performed in GraphPad Prism (v. 5.01).

Computational analysis of transmitter coexpression
We wrote a Matlab program to determine if our ob-

served transmitter coexpression data could be replicated
by independent probabilities of expression of each trans-
mitter. Given the known total number of LNs in the lateral
cell cluster, and the total number of LNs expressing each
neuropeptide from our cell counts, the model determines
the probability of a given neuron coexpressing two trans-
mitters. The program is given the average number of cells
expressing a given neurotransmitter and then randomly
assigns them to one of the cells in the cluster. The model
can thus determine the probability of pairwise coexpres-
sion (i.e., 100% of TK cells express MIP) in the lateral cell
cluster based on chance. Specifically, using our observed
data as the backbone of the model, we designed a matrix
with 6 columns, 1 per transmitter type (TK, FMRF, Mas-
AT, MIP, AST-A, GABA), with a row length of 360 long (the
total number of LNs in the lateral cell cluster; Homberg
et al., 1988). Within each column, the model randomly
distributes the number of cells that express a given trans-
mitter to a row between 1 and 360 (Fig. 3A). For example,
if we know that 12 cells within the lateral cell cluster are
TKergic, the model randomly picks 12 numbers between
1 and 360 in the TK column and marks that cell as TK
positive. The number of cells expressing a certain neu-
rotransmitter is chosen probabilistically based on the ob-

Table 3. Cq Values for all receptors and RpS3 from RT-qPCR

Receptor RT or RT– ANTa ANTb ANTc Ba Bb Bc Ma Mb Mc La Lb Lc Genomic
TKr RT 0 34.1 34.5 31.36 35.35 29.63 38.51 32.18 34.03 39 0 37.59 24.09

RT– 0 0 0 0 0 0 0 0 0 0 0 0 0 (NTC)
Mas-ATr RT 35.72 33.65 33.41 32.28 37.32 31.26 39.8 32.42 33.55 35.77 37.6 36.29 30.24

RT– 0 0 0 0 0 0 0 0 0 0 0 0 39.48 (NTC)
FMRFr RT 32.43 29.04 29.1 26.56 31.14 25.95 33.01 27.53 28.03 31.57 32.22 30.89 24.85

RT– 0 0 0 0 0 0 0 0 0 0 0 0 0 (NTC)
MIPr RT 33.91 31.03 30.69 29.55 33.31 27.94 34.94 28.92 30.15 34.97 35.73 33.12 23.86

RT– 0 0 0 0 0 0 0 0 0 0 0 0 0 (NTC)
AST-Ar RT 37.28 32.23 31.23 29.26 23.63 28.17 37.39 31.19 32.39 35.43 37.35 35.14 25.61

RT– 0 0 0 0 0 0 0 0 0 0 0 0 0 (NTC)
GABAB RT 32.21 29.09 28.62 27.91 31.17 25.97 33.48 27.26 28.51 33.26 35.51 31.97 23.72

RT– 0 0 0 0 0 0 0 0 0 0 0 0 0 (NTC)
vGlut RT x x x 24.43 28.40 23.21 x x x 32.60 0 31.96 24.82

RT– x x x 0 0 0 x x x 0 0 0 0 (NTC)
RpS3 RT 25.61 22.49 22.16 22.91 26.65 21.41 28.89 23.16 24.04 28.93 28.6 26.04 24.18

RT– 0 0 0 0 0 0 0 0 0 0 0 0 0 (NTC)
RpS3 (at 52˚C) RT 24.54 21.85 21.87 23.18 27.04 21.31 28 23.21 24.18 26.68 28.03 25.23 18.29

RT– 4.41 0 0 39 37.27 0 37.2 5.13 28.94 36.16 38.98 0 5.23 (NTC)
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served average and standard deviation of the number of
neurons that express a given transmitter. With each iter-
ation of the model, the cells that are assigned as trans-
mitter positive within each column are randomized. The
model does this with all respective cell count totals
for each transmitter column and then calculates the per-
centage of each transmitter’s expression with another
transmitter based on independent expression of each
transmitter (across all pairwise comparisons). Standard
deviation and percentages of coexpression were re-
corded across 10,000 iterations of the model. We then
compared our observed coexpression percentages to the
model’s output to determine if independent probabilities
of expression of each transmitter could explain observed
coexpression.

The model described above has no initial assumption
about the likelihood of coexpression, and only the overall
number of cells expressing each of the transmitter is
determined initially. We used a similar model to determine
if assigning dependent coexpression relationships for
specific pairs of transmitters could replicate the coex-
pression patterns for other transmitter pairs. To do this,
we built certain coexpression relationships explicitly as
initial assumptions. For example, if we know that on av-
erage 100% of TKergic cells are also MIPergic, the pro-
gram explicitly forces 100% of the cells that are assigned
to be TK positive to also be MIP positive. This coexpres-
sion relationship is thus no longer determined based on
independent expression probabilities like the first version
of the script, but rather is an initial assumption: a rule. We
can then determine if this rule alone shifts the coexpres-
sion of other transmitter types closer to the observed
coexpression percentages. We applied these rules one by
one (for a total of 94 different models), for every pairwise
comparison of coexpression and statistically compared
the output of the independent expression model to the
output of the rule-based model as well as the observed
coexpression patterns we identified with immunocyto-
chemistry. This allowed us to determine if specific coex-
pression relationships could replicate other coexpression
relationships within LNs. The script was run on a Windows
7 desktop, with an Intel Core 17-3770 CPU @ 3.4GHz
processor, and a 64-bit operating system.

Code accessibility
Custom MatLab scripts available at https://www.

dacksneuroscience.com/matlab-scripts.html, at https://
github.com/lizbinskik2/co-expression-probability, or on
request. The code is also available as Extended Data.

Experimental design and statistical analysis
The model outputs a predicted percentage of coex-

pression for every pairwise coexpression relationship. To
statistically determine how well the model replicated ob-
served coexpression percentages, we used standard de-
viation indices (SDIs) to determine how close the model’s
predicted coexpression percentage is to observed prob-
ability of coexpression. Similar to a Z-score, this measure
is calculated as follows:

SDI � �Meanmodel � Meanobserved�/stdevgreatest,

where Meanmodel � mean probability of coexpression of
any two given neurotransmitters from the model, e.g.,
mean % TK coexpressed with MIP; Meanobserved � mean
probability of coexpression of any two given neurotrans-
mitters from the observed coexpression relationships;
and stdevgreatest � the greatest standard deviation from
either the model or observed data for a given coexpres-
sion relationship.

Weighted SDIs were calculated to reflect the match
between data and model for the overall population of LN
by weighting the contribution of each neurotransmitter
proportionally to its prevalence:

Weighted SDI � � ��Meanmodel �

Meanobserved/stdevgreatest� � �ncoexpressed/ntotal�� .

For example, there are only 12 TK neurons in a total of
360 LNs, but 142 Mas-AT neurons. Therefore, predicting
the number of Mas-AT neurons versus TK neurons should
carry more weight when determining the accuracy of each
model. Weighted SDIs for each coexpression relationship
(i.e., weighted SDI for the TK/MIP coexpression) were
summed across relationships for an overall measure of
the accuracy with which each model iteration replicated
observed coexpression patterns.

SDI values can be interpreted by the following scale: 0,
perfect consensus between model and experimental da-
ta; 1, model results are within one standard deviation of
experimental data and thus replicate the data reasonably
well; and 2, model results are within two standard devia-
tion of experimental data and thus do not replicate the
data accurately. To determine the percent improvement
of each model at replicating observed coexpression (Fig.
3G), all weighted SDIs were normalized with respect to the
weighted SDI of the independent expression model using
the following formula:

% improvement from independent expression model �

�1 � �weighted SDIx/weighted SDIind�� � 100.

All statistics were performed in GraphPad prism (v.
5.01).

Results
The AL of Manduca is surrounded by 3 cell clusters that

house the cell bodies of projection neurons and LNs. The
lateral cell cluster consists of 	950 cell bodies, including
590 projection neurons and 	360 total LNs (Homberg
et al., 1988), of which 	170 are GABAergic (Hoskins et al.,
1986). Manduca LNs are diverse across several traits, with
no correlations between physiologic properties, morpho-
logic properties, or GABA expression patterns in LNs
(Reisenman et al., 2011). We therefore took a systematic
approach to determine if transmitter coexpression could
reliably subcategorize and explain the apparent heteroge-
neity of LN cellular properties.

Neuropeptide coexpression is highly heterogeneous
We first determined the pairwise coexpression relation-

ships for GABA and multiple neuropeptides TK, FMRF,
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Mas-AT, MIP, and AST-A in LNs (Fig. 1A–E). We chose
these neuropeptides because there are available antibod-
ies of sufficient quality, we have performed the proper
pre-adsorption controls for each of them, and finally these
neuropeptides have the best functional, biochemical, and
developmental characterization in Manduca as well as

other insect species (Carroll et al., 1986; Blackburn et al.,
2001; Skaer et al., 2002; Teal, 2002; Utz and Schachtner,
2005; Utz et al., 2007; Yapici et al., 2008; Ignell et al.,
2009; Asahina et al., 2014; Ko et al., 2015). All moths were
naïve and unmated adults, and equal numbers of males
and females were used for each transmitter combination.

Figure 1. Peptidergic LNs predominantly coexpress GABA. Dashed lines, coexpressed; solid lines, not coexpressed. A, Lateral cell
cluster (LCC) labeled for GABA (magenta) and TK (white). B, LCC labeled for GABA (magenta) and Mas-AT (yellow). C, LCC labeled
for GABA (magenta) and MIP (orange). D, LCC labeled for GABA (magenta) and FMRFamide (cyan). E, LCC labeled for GABA
(magenta) and AST-A (green). F, Bar graph of average number of cell bodies (above bars) that express each transmitter type per AL
and the percentage (within bars) of each neuropeptide population per AL that coexpress GABA. See Table 2 for averages and
standard deviations. n � 6 animals per combination. All scale bars � 50 �m.
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Using a paired t test, we found no significant differences
between the left and right lateral cell clusters for all pep-
tides: Mas-AT (t � 1.718; df � 5; p � 0.1465), MIP (t �
0.1056; df � 5; p � 0.9200), FMRF (t � 0.5324; df � 5; p
� 0.6172), TK (t � 1.085; df � 5; p � 0.3276), AST-A (t �
0.6407; df � 5; p � 0.5499). We also compared counts
from male and female moths and, using a paired t test, we
found no significant differences in cell counts between
males and females for MIP (t � 1.531; df � 2; p � 0.2654),
AST-A (t � 0.4187; df � 2; p � 0.7161), TK (t � 0.0000; df
� 2; p � 1.0), FMRF (t � 0.1220; df � 2; p � 0.9141).
There was a significant difference between males and
females in Mas-AT expression (t 11.97; df 2; p 0.0069)
with females exhibiting higher Mas-AT expression than
males (Male avg: 133, Female avg: 180). Peptidergic LNs
predominantly coexpressed GABA (Fig. 1F, Table 1), sug-
gesting that LNs can be broadly subdivided into GABAe-
rgic/peptidergic and non-GABAergic/non-peptidergic
LNs. The non-GABAergic LNs have the potential to be
glutamatergic, as RT-qPCR on lateral cell cluster mRNA
revealed that the vesicular glutamate transporter (vGLUT)
was highly expressed relative to a reference gene (40s
ribosomal protein s3; RpS3, see Table 3 for Cq values). A
large population of glutamatergic LNs in Manduca, in
addition to the GABAergic LNs, would be consistent with
the organization of the Drosophila AL (Das et al., 2011; Liu

and Wilson, 2013). We then determined the coexpression
ratios (i.e., what percentage of X-expressing neurons co-
express Y) of every pairwise combination of TK, FMRF,
Mas-AT, and MIP (Fig. 2A–G). There were few consistent
coexpression patterns, suggesting that most LNs coex-
press multiple neuropeptides to a variable degree (Fig.
2E,G,C). The exception to this rule was TK, which was
coexpressed 100% with MIP and never coexpressed with
FMRF and Mas-AT (Fig. 2A,B,D,H). The 12 TKergic LNs
were therefore the only LNs that expressed a consistent
transmitter profile. Our results are consistent with other
studies of GABA and peptide expression in Manduca
(Hoskins et al., 1986; Homberg et al., 1990; Utz et al.,
2008). Coexpression ratios for each pairwise coexpres-
sion relationship (i.e., percentage of neurons that coex-
press X and Y) revealed that apart from TK, neuropeptides
were coexpressed to a variable degree (Fig. 2H).

Computational analysis of transmitter coexpression
reveals that independent expression probability
cannot explain observed transmitter coexpression in
LNs

Two possible scenarios can explain the lack of appar-
ent systematic association between specific neuropep-
tides coexpressed by LNs. In one scenario, expression of
a given neuropeptide is independent of the expression of

Figure 2. Neuropeptide coexpression is heterogeneous. Dashed lines, coexpressed; solid lines, not coexpressed. Coexpression for
A, B: TK (white) and Mas-AT (yellow), C: FMRFamide (cyan) and Mas-AT, D: TK and MIP (orange), E: Mas-AT and MIP, F: FMRFamide
and MIP, and G: TK and FMRFamide. All scale bars � 50 �m. H, Schematic representation of transmitter coexpression by LNs. Each
circle represents the population of LNs that express a given transmitter. Arrow width and percentage located at arrowhead represent
proportion of a given LN type (arrow origin) that also express a second transmitter (arrow destination). FMRFamide and MIP
coexpression could not be calculated for technical reasons (see Methods). No TK LNs coexpressed FMRFamide or Mas-AT.
Non-GABAergic LNs are not depicted.
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another, and the likelihood of specific coexpression pat-
terns is equal to the independent probabilities of expres-
sion of each transmitter given the number of LNs that
express each transmitter. Alternatively, specific pairs of
neuropeptides are coexpressed more (or less) often than
by chance, and a certain number of such relationships
can explain the overall pattern of neuropeptide coexpres-
sion. To test these scenarios, we began by using compu-
tational modeling to test the hypothesis that coexpression
could be explained independent probabilities of expres-
sion of each transmitter alone. Given the known total
number of LNs in the lateral cell cluster (360; Homberg
et al., 1988) and the total number of LNs expressing each
neuropeptide (Fig. 1), the model calculates the probability
of a neuron coexpressing two transmitters (Fig. 3A; see
Methods). The model predicts the percentage of neurons
that coexpress every pairwise relationship of transmitters
in our study. For example, based on the number of LNs
that express Mas-AT and the number of LNs that express
FMRFamide, and the total number of LNs in the AL, the
model determines that 12% of Mas-AT neurons should
coexpress FMRF if the probability of expressing the for-
mer is independent of the probability of expressing the
latter. However, based on our immunocytochemical data,
we observed that 22% of Mas-AT neurons coexpress
FMRF (Fig 2H). We then compared every predicted coex-
pression ratio from the model (which assumes indepen-
dent probabilities of expression of each transmitter for
each pairwise relationship) to the observed coexpression
ratios (Fig. 2H) and determined how well the model repli-
cates observed coexpression (Fig. 3B). If coexpression
probabilities can be replicated by a model that assumes
independent expression of each transmitter, then as a
result, no organizing coexpression dependencies will be
identified.

We found that most coexpression relationships were
not replicated by a model assuming independent trans-
mitter expression (Fig. 4A; independent expression
model). To statistically measure how well our model rep-
licated observed coexpression patterns, we then used an
SDI for every predicted pairwise coexpression relation-
ship versus observed coexpression. An SDI score of 0
indicates that our simulation perfectly recapitulates ob-
served coexpression patterns, whereas an SDI score 
1
indicates poor performance of the model. Each predicted
coexpression ratio from the model was compared to the
observed coexpression ratios, and a SDI was calculated
[SDI � (Meanmodel – Meanobserved)/stdevgreatest]. SDI
scores for every pairwise coexpression relationship were
statistically weighted (see Methods), such that coexpres-
sion relationships that included a larger proportion of the
total LN population carried more weight. SDI scores re-
vealed that while an independent-expression model could
replicate some coexpression relationships (with a
weighted SDI of 1.49), independent expression alone
does not accurately replicate the observed coexpression
(Fig. 4B).

A few specific coexpression constraints allow
replication of overall coexpression patterns

Since the independent expression of each transmitter
did not replicate the overall probabilities of coexpression
patterns, we next sought to identify which coexpression
relationship must be adjusted to replicate the overall
structure of coexpression. We implemented, in our model,
rules according to which the probability of expression of a
transmitter is dependent on the expression of another
transmitter (Fig 5A), thereby explicitly setting the proba-
bility of coexpression to its observed value (Fig. 2H).
Therefore, the model contains a set number of coexpres-

Figure 3. Schematic representations of the computational model used to calculate the probability of LN coexpression patterns. A,
Each column represents a transmitter, and the number of rows corresponds to the total number of neurons in the population (reduced
in this illustration to 5 total cells for the sake of simplicity, 360 LNs in reality). The number of neurons in each column that are
transmitter positive correspond to the average number of neurons (standard deviations built in) that express each transmitter that we
observed using immunocytochemistry (see Fig. 1F and Table 1 for values). The model then sums across each row in a pairwise fashion
to determine the coexpression percentage of a given transmitter pair. For example, for TK/MIP, the model would predict that 1/3 or
33% of MIP neurons (orange) would coexpress TK assuming independent probabilities of expression for each transmitter. B,
Schematic representation comparing predicted coexpression percentages from the independent expression model to our observed
coexpression patterns. Each circle represents a population of LNs that express a given transmitter. Given the number of neurons that
express each individual transmitter (values in Fig. 1F and Table 1), the model calculates the probability that a neuron will coexpress
two transmitters. Line thickness represents degree to which transmitters are coexpressed. We then compare the predicted
coexpression from our independent expression model to our observed coexpression values to see if observed coexpression can be
explained based on independent probability of expression.
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sion relationships in the form of rules (for example, 42% of
MIPergic LNs coexpress Mas-AT as observed from our
immunocytochemistry), while leaving the rest of the rela-
tionships to emerge through probabilistically independent
expression. We tested 94 different model iterations, each
containing different combinations of coexpression rules to
determine which combinations of rules best replicated
overall observed coexpression (Fig. 5B). This allowed us
to identify predictive coexpression relationships in an un-
biased manner. As expected, the ability of the model to
replicate observed coexpression patterns improved as
more rules were added, as shown by weighted SDIs from
all model iterations (Fig. 5B–D).

However, some combinations of rules outperformed
others. We first constrained the total number of cells in the
model to the total number of GABAergic LNs (	170 cells
instead of 360 total LNs), as the presence of GABA is a
reliable predictor of peptide expression observed in this
study. This constraint outperformed the independent-
expression model, had a weighted SDI of 0.94, and ac-
curately replicated more coexpression patterns (Fig. 6A).
This suggests that much of the diversity of neuropeptide
coexpression can be constrained to the subpopulation of
GABAergic LNs in our study. All remaining model itera-
tions were constrained to the total number of GABAergic
LNs [Fig. 5B; filled-in symbols indicate models where total
number of LNs � 170 (with stdev) GABAergic neurons].
Unexpectedly, one particular model that contained only 1
coexpression rule outperformed most models that were
constrained by 2 and 3 rules (red square, Fig. 5B). When
the proportion of MIPergic LNs expressing Mas-AT is set
to its observed value (42%), the model replicated the
highest number of coexpression relationships of all mod-
els with 1 rule (Fig. 6B–D), yielded the lowest weighted
SDI (0.36), and outperformed the average of models with
1 rule (lower 95% CI of mean: 0.6551, upper 95% CI of
mean: 0.9862), 2 rules (lower 95% CI of mean: 0.5450,
upper 95% CI of mean: 0.7240), and even 3 rules (lower
95% CI of mean: 0.4736, upper 95% CI of mean: 0.5897).

This was surprising, because it suggested that replicating
observed coexpression patterns did not require all coex-
pression relationships to be fixed, revealing specific pro-
portional relationships that may be may be predictive of
overall observed coexpression patterns.

The only set of coexpression patterns that could not be
replicated reasonably well in the model that included the
GABA and the MIP/Mas-AT rules (as described above)
involves TK. The 12 TK LNs (Lizbinski et al., 2016) follow
a strict all-or-none neuropeptide coexpression pattern
(100% coexpression with MIP and 0% coexpression with
Mas-AT or FMRF). Consistent with our data, TK LNs in the
AL of the moth Heliothis virescens also do not coexpress
FMRF or Mas-AT (Berg et al., 2007). This coexpression
pattern cannot be replicated through independent ex-
pression models, even when several other rules are con-
sidered (Fig. 6E). These coexpression patterns are so
clear-cut that they set TK apart from other transmitters
observed in this study.

GABAB and neuropeptide receptors are expressed
across all principal neuron types of the AL

It may be unnecessary to tightly regulate coexpression
of neuropeptides in specific subpopulations of LNs simply
because specific classes of AL neurons express different
sets of neuropeptide receptors. Thus, the heterogeneous
transmitter profiles of individual LNs may not matter func-
tionally, because the impact of individual peptides within
a modulatory cocktail of many peptides may be segre-
gated due to neuron class-specific expression of each
receptor. For instance, if ORNs express the MIP receptor
and PNs express the Mas-AT receptor, the influence of
these two neuropeptides could differentially target input
and output of the network, rather target the same neuron,
resulting in different consequences on the network. How-
ever, this does not appear to be the case in this network,
as we did not find differential expression of the receptors
for the peptides examined in this study between ORNs,
LNs, and PNs. We first identified transcripts from the

Figure 4. Computational analysis of transmitter coexpression reveals that independent expression probability cannot explain
observed transmitter coexpression in LNs. A, Predicted coexpression percentages for every pairwise relationship from the indepen-
dent coexpression model (red) versus observed coexpression percentages (black). A model that assumes independent probability of
coexpression could not replicate observed coexpression percentages. B, Statistical comparison of the independent coexpression
model’s prediction versus observed coexpression reveals that independent probability of coexpression alone cannot replicate
observed LN coexpression patterns. Each colored rectangle represents an individual pairwise relationship (e.g., TK/Mas-AT). SDIs
were calculated for every pairwise relationship to determine how closely the model could replicate observed coexpression. An SDI
of 0 (blue) denotes no statistical difference between observed coexpression and predicted coexpression from the model, thus
representing coexpression relationships that the model was able to replicate very well. SDI values 
1 indicate a poor match between
the model and observed values.
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Manduca genome (Kanost et al., 2016) with high se-
quence identity to neuropeptide receptors identified from
reference genomes in closely related species (Table 2).
Then, using RT-qPCR, we determined the relative expres-
sion of five neuropeptide receptors (Mas-AT, MIP, AST-A,
FMRF, TK) and the GABAB receptor in mRNA from the
antennae (which house ORNs), the medial cell cluster
(which houses only PNs), the lateral cell cluster (which
houses LNs and PNs), and whole brains (as a positive
control). Although the receptors for Mas-AT, MIP, AST-A,
FMRF, and GABAB were detected in all four tissue types,
the TK receptor was not detected in the lateral cell cluster
(Fig. 7; for raw qPCR data, see Table 3). This suggests
that TKergic LNs differ from other LNs in both their coex-
pression patterns and their postsynaptic targets. Al-
though we could not assess receptor expression on a
neuron-by-neuron basis, our results suggest that a single
LN releasing neuropeptides from at least four individual

peptide families can have a powerful effect on the net-
work, potentially affecting all three major cell classes in
the AL.

Discussion
Broad neuronal classes are surprisingly heterogeneous

across many parameters, and subclasses often exhibit
partially overlapping traits including transmitter coexpres-
sion. Our goal was to determine organizing principles of
LN heterogeneity. Our results suggest that neuropeptide
coexpression in the AL is both heterogeneous and par-
tially overlapping across the entire population rather than
consistent within specific subpopulations of LNs (Fig. 8).
Thus, peptidergic modulation cannot be considered
within the context of single neuropeptides, as activation of
any given LN results in a dynamic cocktail of modulators
that have the potential to influence every level of olfactory
processing within the AL. Specifically, we find that trans-

Figure 5. A few specific coexpression constraints allow replication of overall coexpression patterns. A, Model constraints are applied
to explicitly set the probability of a coexpression relationship to its observed value. In this example, a constraint is set in which 100%
of TK LNs coexpress MIP, while leaving the remaining relationships to emerge through probabilistically independent expression. This
model is then compared to observed coexpression data. B, Specific rules outperform others at replicating observed coexpression
patterns. Open circle represents model run with total number of LNs set to 360. Closed symbols represent models runs with total
number of neurons set to the total number of GABAergic LNs (	170). Red denotes standout iterations of the model that best
replicated observed coexpression. The single rule that shifted the prediction closest to observed coexpression was when the
proportional relationship between MIP/Mas-AT was set as a static rule in the model (red square). The two rules that shifted the
prediction closest to observed coexpression were MIP/Mas-AT and TK/Mas-AT. The three rules that shifted the prediction closest to
observed coexpression were TK/Mas-AT � Mas-AT/MIP � FMRF/Mas-AT. C, Weighted SDI values for various model iterations. The
model improves as more rules are added. D, Percentage improvement of each model’s predictive power with respect to the
independent expression model. Both GABA constraint and MIP/Mas-AT rule drastically improved the model’s ability to replicate
coexpression patterns. Note that the MIP/Mas-AT rule model even outperformed the average prediction of all models containing three
rules.
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Figure 6. MIP/Mas-AT coexpression rule best biases the model to replicate observed coexpression patterns. A, Reducing the total
number of neurons in the model to the total number of GABAergic LNs (170) improves model performance. SDI � 0 (blue) denotes
no statistical difference between observed coexpression and predicted coexpression. SDI 
 1 indicates a poor match between the
model and observed values. B, Constraining the model based on MIP/Mas-AT coexpression causes the model to reliably replicate
many observed coexpression patterns. A model following this single rule outperformed the average of all models containing three set
coexpression rules. C, All predicted pairwise coexpression percentages from the model following the MIP/Mas-AT rule (blue) versus
observed coexpression percentages (black). D, Neither independent (red), nor ind_GABA (gray) models reliably replicated observed
coexpression patterns (Mas-AT/FMRF used as an example). However, the MIP/Mas-AT (blue) constraint best replicates observed
coexpression patterns (denoted by black arrow). E, Observed TK coexpression patterns (TK/Mas-AT used an example) were not
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mitter profile is heterogeneous across LNs, with individual
olfactory LNs capable of expressing the main inhibitory
transmitter GABA and peptides from at least four families,
and few instances in which transmitters are consistently
coexpressed. Observed coexpression patterns cannot be
explained by independent probabilities of expression of
each transmitter (Fig. 4). Our analyses point to three
organizing principles that, once taken into consideration,
allow replication of overall coexpression structure: (1)
peptidergic neurons are highly likely to coexpress GABA;
(2) the probability of expressing Mas-AT is dependent on
MIP expression; and (3) the all-or-none coexpression pat-
terns of TKergic neurons with several other neuropeptides
(MIP, FMRF, and Mas-AT). For other pairs, the presence
of one transmitter was not predictive of the presence of

the other, and thus coexpression probability could be
replicated by independent probabilities. The stochastic
nature of these coexpression patterns argues against
clear-cut, exclusive definition of subpopulations based on
the presence of single neuropeptides. Furthermore, the
receptors for GABA and all neuropeptides in this study
were expressed within each population of principal neu-
ron type in the AL (Fig. 7), suggesting that peptides re-
leased from LNs potentially influence every level of
olfactory processing within the AL. Overall, we demon-
strate that peptide expression is partially overlapping
across LNs, and thus subpopulations of LNs cannot be
functionally defined based on the presence of single pep-
tides. Furthermore, the influence of peptides are not seg-
regated based on cell class-specific receptor expression.

continued
reliably replicated by any model iteration; independent expression model prediction (red), ind_GABA model (gray), and MIP/Mas-AT
model prediction (blue).

Figure 7. Neuropeptide and GABAB receptor expression across principal neuron types of the AL. Relative receptor expression for
Mas-ATr, MIPr, ASTr, FMRFr, GABABr are present in all tissue types and therefore expressed in ORNs, LNs, and PNs in varying
expression levels. Cartoons on the x-axis represent the tissue type (blue) used to extract mRNA from each population of principal
olfactory cell types. TK was not detectable (N.D.) in lateral cell cluster mRNA and therefore not detectable in LNs. RpS3 was used as
the reference gene. See Table 2 for primer sequences and Table 3 for raw Cq values for all receptors.
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Thus, co-release of peptides and GABA likely mediates a
complex mix modulation to control the dynamic range of
the AL, providing multiple mechanisms to alter olfactory
processing.

Heterogeneous transmitter coexpression is a common
theme within GABAergic LNs across vertebrates and in-
vertebrates alike (Homberg et al., 1990; Maccaferri and
Lacaille, 2003; Flames and Marín, 2005; Utz et al., 2008;
Carlsson et al., 2010; DeFelipe et al., 2013; Siju et al.,
2014; Binzer et al., 2014; Gabitto et al., 2016; Yavorska
and Wehr, 2016; Diesner et al., 2018a). MALDI-TOF spec-
trometry revealed that at least 12 known peptides are
expressed in developing Manduca ALs (Utz et al., 2007),
suggesting that coexpression patterns are likely even
more complex than detailed here. Furthermore, the anti-
bodies used in this study recognize multiple isoforms of
peptides within the same family (i.e., FMRF has multiple

isoforms), and thus there are almost certainly more orga-
nizational principals underlying heterogeneous peptide
expression than discussed here. Other insects including
mosquitos (Siju et al., 2014), other species of moths (Berg
et al., 2007; Diesner et al., 2018a), beetles (Binzer et al.,
2014), and fruit flies (Carlsson et al., 2010; Hussain et al.,
2016; Croset et al., 2018) express a large number of
peptides within their olfactory systems, suggesting that
peptides likely play an important yet functionally under-
explored role in shaping olfactory responses. One excep-
tion to the theme of heterogeneous coexpression was that
the TK neurons differed in their patterns of coexpression
from other peptidergic LNs. All TK LNs coexpressed MIP,
and none coexpressed FMRF or Mas-AT, suggesting that
TK LNs are primarily inhibitory, as TK and MIP receptors
are inhibitory in Drosophila (Yapici et al., 2008; Ignell et al.,
2009; Ko et al., 2015). Furthermore, TK receptor tran-

Figure 8. Heterogeneous transmitter coexpression in LNs blurs subdivisions. While LNs can be broadly subdivided based on small
transmitter [GABA versus non-GABAergic (glutamatergic?)], coexpression within the GABAergic class reveals that LNs subclasses
cannot be identified on individual transmitter expression alone. Neuropeptide coexpression in the AL is both heterogeneous and
partially overlapping across the entire population rather than consistent within specific subpopulations of LNs.
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scripts were not detected in lateral cell cluster mRNA and
thus not in LNs, although TK/MIPergic LNs could still
influence LNs via GABAB and MIP receptor. In Drosophila
melanogaster, TK mediates presynaptic gain control on
ORNs (Ignell et al., 2009), and TKr expression in Manduca
ORNs is consistent with this finding. This suggests that
TK LNs may play a role distinct from other LNs in olfactory
processing, which could include presynaptic gain control.

Very few non-GABAergic LNs coexpress the neuropep-
tides we examined here; however, they are still a sizeable
proportion of the total number of LNs and likely as heter-
ogeneous as GABAergic LNs. We did not definitively iden-
tify the transmitter released by these LNs; however, we
did detect the expression of vGlut mRNA within the lateral
cell cluster (Fig. 7), making glutamate a candidate trans-
mitter for the non-GABAergic LNs. Similar to GABAergic
LNs, glutamatergic LNs in Drosophila are particularly di-
verse in their morphology (Das et al., 2011) but appear to
differ from GABAergic LNs in their synaptic targets by
predominantly affecting PNs (Liu and Wilson, 2013), while
GABAergic LNs in Drosophila affect ORNs, LNs, and PNs
(Wilson and Laurent, 2005; Olsen and Wilson, 2008; Root
et al., 2008; Hong and Wilson, 2015). Future studies
should confirm whether the non-GABAergic population
observed here are truly glutamatergic.

The probability of expression of certain transmitters
appears to be dependent on one another. In particular, we
showed that the probability of expressing Mas-AT is de-
pendent on the expression of MIP (Fig. 6). While the goal
of our study is not to determine the developmental mecha-
nisms that underlie coexpression, it is important to note that
developmental mechanisms of peptidergic regulation most
certainly shape observed heterogeneous coexpression. For
instance, the molting hormone 20-hydroxyecdysone in-
duces Mas-AT expression in LNs and other neuropeptides
in the AL of Manduca (Utz and Schachtner, 2005; Utz et al.,
2007), implying that coexpression patterns may reflect ex-
trinsic developmental cues that guide the development of
specific peptide-expressing LNs. Furthermore, both Mas-
AT– and MIP-expressing LNs arise slightly before and during
the formation of glomeruli, suggesting that temporal expres-
sion patterns of these peptides may play a role in the devel-
opment of AL structure and function (Utz et al., 2007).
Interestingly, the model constraint best able to replicate
observed coexpression across all LNs in our study was the
proportional relationship between MIP/Mas-AT-expressing
neurons.

However, the developmental mechanisms that control
peptide expression in LNs of Manduca are unknown. In
Drosophila, the transcription factor DIMMED targets many
genes involved in peptide expression (Hewes et al., 2003,
2006; Gauthier and Hewes, 2006; Park et al., 2008b; Park
and Taghert, 2009; Hadzic et al., 2015) and dense core
vesicle production (Hamanaka et al., 2010; Park et al.,
2014). DIMMED likely acts in a combinatorial manner with
other cell-specific transcription factors to determine pep-
tide expression in individual neurons (Liu et al., 2016;
Stratmann and Thor, 2017). Although DIMMED does not
target any single neuropeptide gene (Hadzic et al., 2015),
other transcription factors do regulate subtype-specific

neuropeptide expression (Allan et al., 2003; Berndt et al.,
2015). While DIMMED-positive neurons coexpress multi-
ple peptides, not all peptidergic neurons express
DIMMED (Park et al., 2008a; Diesner et al., 2018b), and
the role of DIMMED in Manduca has not been established.
Regardless, a similar combinatorial transcriptional code
could underlie the heterogeneity of peptide expression
observed here. Furthermore, in cortex, LN subtypes arise
from unique progenitors (Anderson et al., 1997; Wichterle
et al., 2001; Nery et al., 2002; Kepecs and Fishell, 2014),
and their diversity is shaped by additional factors (Flames
and Marín, 2005) including neural activity (Patz et al.,
2004; De Marco García et al., 2011), transcription factor
expression (Mayer et al., 2018; Sweeney et al., 2018), and
growth factors (Huang et al., 1999). Similarly, GABAergic
and glutamatergic LNs in Drosophila arise from distinct
neuroblasts (Das et al., 2008, 2011), and glomerular in-
nervation patterns of LNs require ORN axons during
development (Chou et al., 2010), suggesting that hetero-
geneity of LNs may be due in part to distinct origins
and/or activity of other neurons in the network.

Our study reveals some expression codependencies,
but also highlights the apparent stochastic nature of other
coexpression patterns. There are several examples of
biological systems in which features such as gene expres-
sion in E. coli clones (Elowitz et al., 2002; Raj and van
Oudenaarden, 2008; Huh and Paulsson, 2011), behavior
(Honegger and de Bivort, 2018), or anatomic layout (Ca-
ron et al., 2013) appear to be randomly structured or
stochastic. For example, random combinations of AL PNs
from different glomeruli converge and synapse on individ-
ual mushroom body Kenyon cells in Drosophila regardless
of anatomy, developmental origin, or odor tuning, thus
abandoning the odor-topic organization of the AL (Caron
et al., 2013). Because of the stochastic heterogeneity of
some transmitter coexpression patterns, our results sug-
gest that the presence of single peptides should not be
used to functionally define classes of neurons. Addition-
ally, this stochasticity suggests that LNs may not func-
tionally require fixed complements of transmitters.

We found that a single neuropeptide has the potential
to simultaneously target every principal neuron type, as all
neuropeptide receptors were expressed by populations of
ORNs, LNs, and PNs. This network-wide convergence of
peptidergic modulation demonstrates that individual LNs
do not differentially target principal neuron type based on
differences in postsynaptic receptor expression. This fur-
ther supports the idea that LN activation may serve to
regulate multiple processing stages within the olfactory
network by simultaneously targeting AL input, output, and
local processing. However, individual neurons within each
principal AL neuron type may exhibit differential receptor
expression, as we were not able to assess receptor ex-
pression at the level of individual neurons. Future studies
should determine if neuropeptide receptor expression is
as heterogeneous as neuropeptide coexpression itself, as
there are likely subpopulations of neurons that exhibit
differential receptor expression. This may be further com-
plicated, as neuropeptide receptor expression can be
regulated by physiological state, as observed for the role
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of hunger (Ko et al., 2015; Min et al., 2016) or mating state
in Drosophila (Hussain et al., 2016). Peptide expression
itself may be similarly regulated, as observed in feeding
state of Aedes aegypti (Christ et al., 2017) or mating state
of Agrotis ipsilon moths (Diesner et al., 2018a). All moths
in our study were naïve and unmated; however, this does
not rule out the potential for physiologic state to affect
peptide expression in the AL.

Activation of even a single LN can mediate a complex
mix of inhibition and/or excitation that varies in time
course and strength due to the co-release of the small-
transmitter GABA and a heterogeneous mix of peptides.
LNs, apart from TK LNs, coexpressed multiple peptide
families and GABA that activate both inhibitory (TK, sNPF,
and sex-peptide/MIP; Yapici et al., 2008; Ignell et al.,
2009; Asahina et al., 2014; Ko et al., 2015) and excitatory
(Mas-AT and FMRF; Horodyski et al., 2011; Lenz et al.,
2015; Ormerod et al., 2015) receptors via a mix of iono-
tropic and metabotropic signaling. Furthermore, AL neu-
rons express both the GABAa and GABAB receptors, and
the effects of GABAB receptor activation are far shorter-
lasting relative to neuropeptide receptors (Salio et al.,
2006). Thus, small-transmitter and peptide coexpression
expands the temporal scale with which a single neuron
can alter network processing. However, it is unclear
whether LNs employ bulk and/or restricted synaptic re-
lease of peptides, making the spatial scale of their influ-
ence unknown. Finally, the network may need to be more
strongly activated (i.e., by higher concentrations of odors
or increased length of odor-stimuli) for LNs to release
neuropeptides owing to the different calcium binding af-
finities of distinct synaptotagmins associated with small
clear vesicles and dense-core vesicles (Saraswati et al.,
2007; Li et al., 2009). Thus, the consequences of LN
activation and peptidergic modulation may depend more
on the degree of network activity than the identity of any
singular LN that is activated. Overall, this heterogeneous
cocktail of peptides likely provides the AL with flexible
options to up- or down-regulate olfactory processing over
a variety of time frames and spatial scales within the
context of ongoing network activity.

Within the AL, combined GABAergic and peptide re-
lease from LNs could potentially play a variety of func-
tional roles including autoinhibition, lateral excitation or
inhibition, disinhibition, and even odor-specific process-
ing. For example, lateral input from LNs scales with overall
network activity as a means to control the dynamic range
of the network and avoid response saturation of PNs
(Olsen and Wilson, 2008; Root et al., 2008). Additionally,
some glomeruli are more subject to inhibition than others
simply because of differences in glomerulus-specific,
non-uniform LN innervation (Wilson and Laurent, 2005;
Chou et al., 2010) and ORN GABAb receptor expression
(Root et al., 2008). As a result, the processing of specific
odors differs in the degree of insulation from ongoing
activity in the olfactory system, and specific glomeruli are
therefore more (or less) insulated from presynaptic gain
control mediated by both GABA (Root et al., 2008) and,
potentially, neuropeptides (Ignell et al., 2009; Ko et al.,
2015; Hussain et al., 2016). Spatial activation of Drosoph-

ila LNs is also odor-specific and heterogeneous, with LNs
responding to either single or multiple odors (Ng et al.,
2002). The nonuniform innervation and heterogeneous
odor-evoked responses of LNs suggests that the activa-
tion of LNs is a complex combinatorial process resulting
in glomerular-specific local processing. In Manduca, most
GABAergic LNs are wide-field and heavily ramify all glom-
eruli, suggesting that the consequences of GABAergic LN
activation cannot be fully segregated based on odor
identity. However, a small subset of GABAergic and non-
GABAergic LNs exhibit restricted glomerular arboriza-
tions, only innervating a small subsection of the AL
(Reisenman et al., 2011). Consequently, activation of mor-
phologically restricted LNs may disinhibit or inhibit other
LNs from neighboring glomeruli in an odor-specific man-
ner to increase or decrease odor salience by altering the
output of PNs (Hildebrand et al., 1992; Christensen et al.,
1993). While no correlations between morphology (wide-
field vs restricted), physiology, odor-response profile, and
transmitter content have been identified in Manduca LNs
(Reisenman et al., 2011), it could be that wide-field versus
restricted LNs exhibit distinct and predictable combina-
tions of peptides. These potential network consequences
are likely applicable across insect species, as LN hetero-
geneity is a recurring theme. Using physiology paired with
hierarchical clustering based on morphology, multiple
Drosophila LN subtypes exhibit broad correlations be-
tween morphology, physiology, and genetic classes
(Chou et al., 2010). However, LNs within the “patchy” cell
type exhibit highly variable innervation patterns, and con-
siderable diversity exists even within other LN subtypes
(Chou et al., 2010). Additionally, morphologically and
functionally distinct classes of LNs exist in honeybees
(Schäfer and Bicker, 1986; Flanagan and Mercer, 1989;
Fonta et al., 1993; Sun et al., 1993; Bornhauser and
Meyer, 1997; Seidel and Bicker, 1997; Galizia and Kim-
merle, 2004; Dacks et al., 2010) and cockroaches (Malun,
1991; Distler and Boeckh, 1997; Loesel and Homberg,
1999; Husch et al., 2009a, b; Fusca et al., 2013, 2015;
Neupert et al., 2018). Ultimately, determining the roles of
individual peptides will be challenging, as complex pat-
terns of coexpression must be integrated with knowledge
of functionally distinct subtypes of LNs.

Reconciling within-cell-type heterogeneity represents
an ongoing challenge. Similar to LNs across taxa and
brain region, Manduca LNs are highly heterogeneous
across many parameters. This heterogeneity provides
multiple coding strategies and mechanisms to neurons
within the same population, expanding the role single
neurons play in altering network function. The link be-
tween heterogeneous response properties and neural
coding has been studied in a wide range of systems
(Chelaru and Dragoi, 2008; Marsat and Maler, 2010;
Ogawa et al., 2011; Pitkow and Meister, 2012; Ahn et al.,
2014); however, the systematic analysis of heterogeneous
traits such as transmitter coexpression has not been as
extensively explored. Here, we show that traits such as
transmitter coexpression are partially overlapping across
the entire LN population. Ultimately, our results demon-
strate that peptidergic modulation cannot be considered
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within the context of single neuropeptides, as activation of
any given LN results in a dynamic cocktail of modulators
that have the potential to influence every level of olfactory
processing within the AL.
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