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REVIEW Open Access

Emerging insights of tumor heterogeneity
and drug resistance mechanisms in lung
cancer targeted therapy
Zuan-Fu Lim1,2,3 and Patrick C. Ma3*

Abstract

The biggest hurdle to targeted cancer therapy is the inevitable emergence of drug resistance. Tumor cells employ
different mechanisms to resist the targeting agent. Most commonly in EGFR-mutant non-small cell lung cancer,
secondary resistance mutations on the target kinase domain emerge to diminish the binding affinity of first- and
second-generation inhibitors. Other alternative resistance mechanisms include activating complementary bypass
pathways and phenotypic transformation. Sequential monotherapies promise to temporarily address the problem
of acquired drug resistance, but evidently are limited by the tumor cells’ ability to adapt and evolve new resistance
mechanisms to persist in the drug environment. Recent studies have nominated a model of drug resistance and
tumor progression under targeted therapy as a result of a small subpopulation of cells being able to endure the
drug (minimal residual disease cells) and eventually develop further mutations that allow them to regrow and
become the dominant population in the therapy-resistant tumor. This subpopulation of cells appears to have
developed through a subclonal event, resulting in driver mutations different from the driver mutation that is tumor-
initiating in the most common ancestor. As such, an understanding of intratumoral heterogeneity—the driving
force behind minimal residual disease—is vital for the identification of resistance drivers that results from branching
evolution. Currently available methods allow for a more comprehensive and holistic analysis of tumor heterogeneity
in that issues associated with spatial and temporal heterogeneity can now be properly addressed. This review
provides some background regarding intratumoral heterogeneity and how it leads to incomplete molecular
response to targeted therapies, and proposes the use of single-cell methods, sequential liquid biopsy, and
multiregion sequencing to discover the link between intratumoral heterogeneity and early adaptive drug resistance.
In summary, minimal residual disease as a result of intratumoral heterogeneity is the earliest form of acquired drug
resistance. Emerging technologies such as liquid biopsy and single-cell methods allow for studying targetable
drivers of minimal residual disease and contribute to preemptive combinatorial targeting of both drivers of the
tumor and its minimal residual disease cells.
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Introduction
New technologies and analyses in genomics have paved
the way for a paradigm shift in the diagnostics, classifica-
tion, and treatment of many cancer types [1–4] includ-
ing lung cancer [5, 6]. The identification of actionable
oncogenic mutations has greatly improved the treatment

of various human cancers, as evident by the develop-
ment and approved clinical use of many molecularly
targeted therapeutics that can specifically target and in-
hibit driver mutations. In non-small cell lung cancers
(NSCLCs), the discovery of activating mutations in the
epidermal growth factor receptor (EGFR) gene such as
the missense mutation L858R within exon 21 and short
in-frame deletions within exon 19 have ushered in a new
era of genomics-guided precision targeted therapy in
lung cancer. These EGFR-targeted tyrosine kinase inhib-
itors (TKIs) such as erlotinib, gefitinib, and afatinib have
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shown improved tumor response and progression-free
survival outcome in EGFR-mutated NSCLC compared
with cytotoxic chemotherapies [7–9]. Other prominent
examples of targeted therapies include kinase inhibitors
of oncogenic receptor tyrosine kinases (RTKs) such as
anaplastic lymphoma kinase (ALK), MET, ROS1, RET,
and tropomyosin receptor kinase (TRK) as well as down-
stream target kinases such as BRAF. This phenomenon
validated to a great extent the concept of “oncogene
addiction” [10], in which tumors have grown to be
dependent on the oncogenic activity of a single oncogene
product to transform, proliferate, invade, and metastasize
[11–14]. Even metastatic tumors that share similar charac-
teristics with the primary tumor can respond remarkably
to the same therapy [15, 16]. Harnessing the concept of
oncogene addiction, genomics-guided targeted therapy
has transformed the face of lung cancer treatment.
Despite great promises brought about by the new

paradigm of cancer targeted therapy, various new chal-
lenges have proven paramount as well. The invariable
emergence of acquired drug resistance not only limits
the duration of tumor response but also represents the
major obstacle for a more meaningful impact on long-
term survival in genotype-matched precision medicine
[17–19]. In both partial and complete responders, clinical
drug resistance develops later in the course of therapy des-
pite initial rapid and remarkable tumor regression [20],
leading to therapeutic failure and ultimate patient demise
[21–28]. Tumors can develop drug resistance during
either the early phase or the late phase of drug treatment.
Initial efforts in the studies of precision drug resistance
focused on the two categories of therapeutic resistance:
(1) intrinsic or primary resistance, and (2) acquired or sec-
ondary resistance. These are concepts that were essentially
born from the fundamentals of clinical tumor response
classification and assessment. Intrinsic drug resistance re-
lates to a lack of initial tumor shrinkage upon precision
therapy use. This phenomenon is thought to be mainly a
result of tumor heterogeneity either within the tumor or
among different tumor sites within a host. Concurrent
non-target genomic aberrations may exist within driver-
mutated or non-driver-mutated tumor cells that explain
the lack of tumor response under the precision therapy
targeting only one driver mutation. On the other hand, re-
search in understanding the acquired drug resistance have
largely focused on deciphering the molecular resistance
mechanism in tumor tissues that have emerged as clinic-
ally progressing measurable disease. Typically, these stud-
ies emphasize on interrogating acquired drug resistance
during the late phase of clinical treatment when the
tumors progress as new metastatic lesions or as prolifera-
tion of previously responsive preexisting tumor lesions,
and become clinically evident on imaging studies [29–32].
Through these studies, we have gained a wealth of

information on the diverse molecular resistance mech-
anisms that tumor cells can adapt against precision
targeted agents in cancer therapy. However, it is well-
recognized that even complete responders to initial
precision therapy with minimal to no detectable dis-
ease burden post-treatment ultimately will succumb to
drug-resistant progression. This observation strongly
argues for the presence of molecular minimal residual
disease (MRD) upon initial remarkable tumor re-
sponse. Hence, there is an unmet need to study drug
resistance emergence during the early response phase
of drug therapy within the spectrum of tumor evolu-
tion under therapeutic pressure. In this regard, the
molecular mechanisms of drug resistance emergence
and adaptive evolution of molecular MRD in responders
remain poorly understood and ought to be aggressively in-
vestigated. Ultimately, these new insights of drug resistance
and evolutionary changes during the course of therapy
would allow us to devise rational therapeutic strategies and
regimens to target the drug resistance driver events in the
minimal residual cells as well as throughout the drug re-
sistance evolution [33–35]. Due to the heterogeneous de-
velopment of the tumor, minimal residual tumor cells can
adopt a mutationally dependent or independent resistance
against the drug to which most of the tumor responds.
The goal of this review is to provide a critical appraisal of
our current knowledge on tumor heterogeneity and its role
underlying tumor incomplete response to precision ther-
apy, leading to the emergence of minimal residual cells and
early adaptive drug resistance. We attempt to summarize
the gap in knowledge in understanding acquired resistance
to early-phase lung cancer targeted therapy in partial and
complete responders, and propose newly available tech-
nologies and methods to uncover the link between intratu-
moral heterogeneity and early adaptive drug resistance.

Mechanisms of acquired drug resistance to lung
cancer targeted therapy
Resistance to precision targeted therapy can be either
preexisting or adaptive, which manifests clinically as pri-
mary and acquired drug resistance respectively. To this
date, there are several well-accepted mechanisms of how
acquired drug-resistant clones can emerge after initial
treatment with precision targeted therapy (Fig. 1). We
attempt to review here using the EGFR-mutant NSCLC
targeted therapy as the key prototype model. First,
tumor cells can have preexisting genetic alterations that
confer drug resistance to the specific targeted inhibitor.
For instance, the gatekeeper mutation substituting threo-
nine for methionine at amino acid position 790 (T790M)
in exon 20 of EGFR confers resistance to first- and
second-generation EGFR-TKIs in 50–60% of EGFR-mu-
tant NSCLC under TKI treatment (Fig. 2) [23, 29, 36].
Such resistance mutations may be preexisting but may
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also be adaptively acquired by a small subpopulation of
cells during the course of tumor therapy and response.
Previous work from two different teams provided evi-
dence that the EGFR T790M mutation either enhances
the affinity of the mutant kinase for ATP [37] or confers
steric hindrance from the larger size of the methionine
residue [38], although it is possible for both effects to
occur in the same patient. Third-generation TKIs such
as osimertinib, rociletinib, and WZ4002 have shown effi-
cacy in counteracting the growth of EGFR T790M mu-
tant tumors. The AURA2 phase II clinical trial for
osimertinib demonstrated a 70% objective response rate
for EGFR T790M-positive tumors [39], suggesting that
we have a demonstrably effective method of controlling
resistance as they emerge. Osimertinib was first approved

by the U.S. Food and Drug Administration (FDA) as
standard therapy for the treatment of EGFR T790M
mutation-positive lung cancer [39–41]. Moreover, osimer-
tinib has recently been further approved as first-line ther-
apy for EGFR-mutant NSCLC expressing L858R or exon
19 deletion variant, based on the superior outcome when
compared with the first-generation EGFR-TKIs (gefitinib
or erlotinib) in the randomized phase III FLAURA study
[42]. Osimertinib is now recommended by the National
Cancer Center Networks (NCCN) as the preferred first-
line option for treatment of EGFR-mutant NSCLC.
Collectively, these preclinical and clinical research data
suggest that resistance-conferring genetic alterations and
their clinical emergence can be reasonably managed by
subsequent improvement of the current targeted

Fig. 1 Models of drug resistance mechanisms following cancer targeted therapy. The EGFR-mutant model of drug resistance in lung cancer is
shown here as an example. There are two recognized models of mechanisms of drug resistance known as preexisting mutations and adaptive
evolution. In the preexisting mutations model, certain tumor cells growing within the parental population already have a survival advantage due
to a preexisting mutation that can resist the targeting agent. Under continuous drug treatment, cells harboring the resistant mutation survive and
proliferate to become the dominant clone, resulting in clinical drug resistance and tumor progression. Drug withdrawal at this point does not
readily change the molecular makeup the cells. By contrast, in the adaptive evolution model, most tumor cells begin with a level playing field,
with the exception of a subpopulation that may have been primed to activate prosurvival signaling pathways by an unknown regulatory or
selective mechanism. While the majority of cells die under continuous drug treatment, a small subpopulation within the originally drug-sensitive
cells will escape their initial dependence on the driver mutation, despite ostensibly identical genotype/genomic milieu, by adaptively altering
either their transcriptome, signaling, or epigenome in a directed effort to survive against therapeutic pressure. This reprogramming process
engenders the drug-escaping cells to enter into proliferative and metabolic quiescence. These adaptively resistant cells eventually acquire and
accumulate mutations advantageous for further proliferative growth and the tumor progresses in fulminant resistance. In both aforementioned
cases, the residual disease cells grow into a completely different tumor than the original under therapeutic pressure. However, previous work
in vitro has demonstrated that early drug withdrawal can revert the adaptively resistant cells back to their parental, drug-sensitive state. This
observation highlights the need for studying early adaptive resistant tumor cell populations and the mechanisms governing their shift to
acquired resistance
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treatment to prevent or overcome drug resistance muta-
tion(s), fueling strategies involving sequential
monotherapies.
Nonetheless, the limitation of such an approach is ap-

parent in that it represents a reactive approach of man-
aging acquired clinical drug resistance. Drug resistance
mutations against third-generation EGFR inhibitors have
already been identified [43, 44], which often involves a
substitution of the cysteine residue at position 797 to
serine (C797S), thus blocking the covalent binding of
these compounds to the mutated RTK. Interestingly,
there is some heterogeneity in the mutation causing the
amino acid substitution evinced by the two distinct pos-
sible mutations within the codon for amino acid 797,
T→A and G→C, although the G→ C mutation is
more readily found in the plasma [43]. More intri-
guingly, recent studies have also shown that the allelic
context of the C797S mutation further contributes to
the heterogeneity in response to third-generation EGFR
inhibitors [45]. In instances where C797S occurs on a
different allele (in trans) than T790M, cells survive
under third-generation TKI treatment but are suscep-
tible to a combination of first- and third-generation
TKIs [45]. By contrast, when the C797S mutation occurs
on the same allele (in cis) as the T790M mutation, cells
would be resistant to all EGFR-TKIs [45]. True to the

concepts of sequential monotherapy, there are already
efforts underway to develop inhibitors that can over-
come the EGFR C797S mutant by targeting an allosteric
site in a non-ATP competitive manner [46, 47]. Despite
its reactive nature, applying sequential monotherapy
strategies in ALK-rearranged NSCLCs resensitized tu-
mors that were resistant to third-generation inhibitors,
to first-generation inhibitors [48]. Although ground-
breaking, it would be overly optimistic to label such
strategy as the panacea for the quest of cancer cure since
they fail to account for subsequent emergence of other
forms of resistance. Sequential monotherapy strategies
are limiting in that there is no foreseeable end to the re-
curring cycles of resistance emergence and development
of newer generation drugs. This reactive treatment strat-
egy remains limited in offering long-term survival im-
pact in patients with advanced disease. There is an
urgent need for a more proactive approach to identifying
early molecular drivers of resistance in founder tumor
cells in order to develop means to anticipate and combat
their emergence preemptively.
Second, the network of signaling pathways within the

tumor cell can be rather redundant with the inherent
ability to confer “bypasses” in oncogenic signaling,
resulting in incomplete suppression of the pathway tar-
geted. Using the EGFR lung cancer model as an

Fig. 2 Landscapes of known molecular mechanisms of acquired targeted drug resistance to first- and second-generation EGFR-TKIs in lung
cancer. The frequencies of each known mechanism are estimates acquired from studies based on tumor rebiopsies and repeat molecular tumor
genotyping/genomic profiling at the time of acquired drug-resistant progression. The discovery of various mechanisms of acquired drug
resistance further highlights the issues of tumor heterogeneity and adaptability of tumor cells to therapeutic pressure
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example, hyperactivation of the MET pathway either by
amplification [49] or by increased receptor protein ex-
pression and phosphorylation [50] accounts for 5–10%
of all patients resistant to EGFR-TKIs (Fig. 2) [29, 36]. It
has also been shown to be a predictor of poor response
to EGFR-TKIs regardless of the presence of sensitizing
mutations [50]. Tumors with low initial levels of MET
activation are predicted to show initial disease control
(partial response or stable disease). However, initial dis-
ease control is then followed by a relatively short
progression-free survival (PFS) because MET activation,
although not as the initial preferred dominant pathway
for cell proliferation and survival, can bypass the EGFR
pathway for downstream signaling [36]. The percentage
of cells containing MET pathway activation prior to
EGFR-TKI treatment may determine whether the tumor
cells present as intrinsic resistance or acquired resist-
ance. MET amplification and overexpression of its nat-
ural ligand hepatocyte growth factor (HGF) [51] restores
PI3K/AKT signaling, leading to resistance to EGFR-TKIs
and expansion of preexisting MET-amplified cells [52].
HGF overexpression has also been correlated with
T790M secondary mutation to confer resistance to irre-
versible EGFR-TKIs [53]. Because autocrine HGF-MET
signaling has been previously shown to play a critical
role in lung cancer progression [54] and co-
overexpression of HGF with MET is not uncommon
[55], it is attractive to propose targeting HGF-MET also
as a potential strategy to curb resistance to EGFR-TKIs.
It should be noted, nonetheless, that MET-dependent

resistance to EGFR-targeted therapy typically occurs in
the late phase of adaptive drug resistance. MET-inde-
pendent alternative mitochondrial-priming driven pro-
survival signaling pathways bypassing targeted EGFR
inhibition has been demonstrated, especially in the set-
ting of adaptive drug-resistant escape during the early
phase of treatment within days of drug initiation [34].
We demonstrated both in vitro and in vivo that the early
drug-escaping persister cells had reactivated BCL-2/
BCL-xL mitochondrial prosurvival signals and are more
quiescence-like, displaying remarkably retarded cell pro-
liferation and cytoskeletal functions. Inhibition of the
mitochondrial BCL-2/BCL-xL prosurvival signaling in
early drug persister survivor cells using BCL-2 homology
domain 3 (BH3) mimetics such as ABT-737 or dual
knockdown of BCL-2/BCL-xL was efficacious in eradi-
cating these early adaptive drug persister cells. Interest-
ingly, targeting BCL-2 alone using either RNAi-mediated
knockdown [34] or the highly specific BCL-2 targeting
BH3 mimetic ABT-199 [33] was not sufficient in eradi-
cating the drug persister cells, supporting the notion of
the importance of BCL-xL as the key survival factor in
the drug persister cells. Studies also found adaptive re-
activation of signal transducer and activator of

transcription 3 (STAT3) within the minimal residual
surviving drug persister tumor cells, which was co-
activated with the SRC-YES-associated protein 1 (YAP1)
pathway in EGFR-mutant NSCLC [56]. Inhibition of
EGFR signaling simultaneous with paracrine or auto-
crine stimulation with TGFβ liberates cells from their
dependency on EGFR for STAT3 activation, opting to
activate the TGFβ-IL6-gp130-JAK2 axis instead. EGFR
inhibition also results in ubiquitination of TRAF2 and
subsequent nuclear translocation of NF-κB-RelA, which
induces IL-6-mediated activation of the homodimerized
nuclear STAT3. Co-targeting EGFR, STAT3, and SRC
was also demonstrated to be synergistic in vitro as well
as in vivo [56]. We propose to target the survival signal-
ing machinery as the secondary “Achilles’ heel” in the
early adaptive drug persister tumor cells in combination
with EGFR-TKIs to more effectively eradicate the min-
imal residual drug persister tumor cells. An understand-
ing of the crosstalk among different complementary
pathways and the ability to reliably predict the resistance
driver after inhibition of the primary resistance pathway
is essential to control the emergence of drug resistance
regardless whether it is at the early or late phase during
treatment.
Third, histologic or phenotypic transformation of the

lung adenocarcinoma subtype to small cell carcinoma
has been observed in 3–15% of patients with clinically
demonstrated acquired resistance to EGFR-TKIs (Fig. 2),
including third-generation TKIs [23, 29, 36, 57–59].
Prior work in EGFR gene sequencing from repeat biop-
sies revealed that the EGFR activating mutation from the
original adenocarcinoma remains in the SCLC cells that
emerged during resistance [59], suggesting that these tu-
mors have most likely undergone genuine phenotypic
transformation from NSCLC to SCLC as opposed to de-
veloping drug-resistant SCLC de novo. The molecular
mechanism of drug resistance via phenotypic transform-
ation remains to be elucidated. It has been found that
deletion of the retinoblastoma 1 gene (RB1) is common
in SCLC [60]. Niederst et al. reported that RB loss was
detected in 100% of the 10 SCLC-transformed EGFR
mutants late in tumor progression, which is associated
with increased neuroendocrine marker and decreased
EGFR expression when compared with resistant NSCLC
[59]. Interestingly, in line with our model of MET-inde-
pendent EGFR-TKI drug escape, the resistant SCLC-
transformed cancers demonstrated a similar increase in
sensitivity to BCL-2 family inhibition. This transition is
often accompanied clinically by a rapid acceleration in
the growth rate, initial responsiveness to chemotherapy
(especially SCLC regimen such as platinum-etoposide),
and subsequent rapid clinical deterioration [36]. How-
ever, loss of RB1 alone in vitro is insufficient to cause
resistance or induce neuroendocrine differentiation.
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Concurrent somatic mutations in TP53 and RB1 are a
classical characteristic of SCLCs and have been associ-
ated with primary resistance to EGFR-TKIs [61]. Consid-
ering the role of EGFR activity in promoting alveolar
differentiation [62], it is possible that the progenitor
pluripotent cells in vivo preferentially differentiate into
NSCLC cells when EGFR is active. Under EGFR-TKI
pressure, however, those same pluripotent cells may
have accumulated additional genetic alterations (such as
loss of RB1 and TP53) and maintained a different epi-
genetic state to differentiate into an EGFR-independent
lineage (such as SCLC). Hierarchical clustering analysis
of RNA expression data revealed that cell lines derived
from SCLC-transformed resistant biopsies are more
similar to classical SCLC cell lines than to cell lines de-
rived from resistant EGFR-mutant NSCLCs [59], suggest-
ing that significant epigenetic and transcriptional changes
have occurred during the transition. Moreover, drug sensi-
tivity, genetic, and histologic profiling of the SCLC-
transformed EGFR mutants further suggests that chronic
EGFR inhibition can lead to the development of cancers
that adopt a classical SCLC genotype and phenotype than
other TKI-resistant cell states [59]. The lack of sensitivity
to EGFR-TKIs could be explained by the low/absent
EGFR expression compared with pre-resistant controls, a
phenomenon that closely mimics SCLCs known to be able
to grow and survive independent of EGFR expression or
activation [63]. Together, research suggests that concur-
rent TP53 and RB1 loss can potentially transform lung
cancer cells away from their NSCLC (adenocarcinoma)
differentiation lineage roots and become more SCLC-like
in an effort to resist continuous targeted drug treatment.
Another phenotypic transformation that can contrib-

ute to TKI resistance is the epithelial-to-mesenchymal
transition (EMT) transdifferentiation program normally
employed during embryonic development for tissue
morphogenesis and development [64]. EMT was re-
ported to be associated clinically with approximately 5%
of EGFR-TKI acquired resistance cases (Fig. 2) [36], and
was also observed with in vitro models of ALK-TKI drug
resistance [65]. Induction of the EMT program is related
to the activation of the AXL-GAS6 pathway [32, 66], the
high co-expression of which has been shown to be an
independent prognostic biomarker for poor survival in
NSCLC patients with brain metastases [67]. AXL hyper-
activation and evidence for EMT were previously re-
ported in multiple in vitro and in vivo EGFR-mutant
lung cancer models with acquired resistance to erlotinib
independent of the EGFR T790M alteration and MET
activation [32]. Moreover, genetic or pharmacological in-
hibition of AXL was shown to have the potential of drug
resensitization to erlotinib in these tumor models. Indi-
viduals with EGFR-mutant lung cancers in acquired re-
sistance to TKIs demonstrated increased expression of

AXL and, in some cases, also of its ligand GAS6 [66].
Asiedu et al. demonstrated that pharmacological down-
regulation of AXL using MP470 (amuvatinib) has the
potential to reverse EMT, attenuate self-renewal, and re-
store chemosensitivity of breast cancer cells that previ-
ously underwent EMT [66]. Expression of AXL was also
correlated with expression of stem cell genes, regulation
of metastasis genes, increase in tumorigenicity, invasion,
and migration. Stable knockdown of AXL also led to
downregulation of the NF-κB pathway and reduced
tumor formation in vivo. Altogether, recent work has
highlighted the association between EMT and drug re-
sistance, and nominated AXL as an attractive targetable
regulator of EMT to combat resistance.
More recently, adding to the knowledge of the mecha-

nisms of acquired drug resistance, there is potentially a
fourth mechanism described as “metabolic reprogram-
ming” [33]. By analyzing the early adaptive drug-escaping
cells using integrated transcriptomic and metabolomics
profiling, it was discovered that cells in this state had in-
creased plasticity mediated centrally by autocrine TGFβ2,
similar to the pathway activating STAT3 as discussed earl-
ier. The data suggested that plasticity is maintained
through profound cellular adaptive “omics” reprogram-
ming, including downregulation of key glucose metabol-
ism regulatory Warburg genes (such as GPI, PGK1, and
ENO2) and upregulation of the mitochondrial prosurvival
marker BCL-2/BCL-xL. The early adaptive drug escape
correlated with the cells being in proliferative-metabolic
quiescence, susceptible to glutamine deprivation and
TGFβ2 inhibition, and has enhanced EMT-ness and stem
cell signaling. This study and others [68–70] further sup-
port a preemptive therapeutic co-targeting of bioenerget-
ics and mitochondrial priming to suppress early drug
escape emergence resulting from EGFR precision inhibi-
tor, with this study specifically combining glutamine
deprivation with broad BH3-mimetic to suppress early
drug-escape emergence.
Overall, the predominant mechanisms of acquired

drug resistance can be generally classified into the four
groups aforementioned (Fig. 1). In particular, much has
been uncovered in the domain of mutational and copy
number alteration-related resistance, including but be-
yond EGFR T790M, PIK3CA, HER2, and MET (Fig. 2).
Other remaining unknown mechanisms of acquired drug
resistance have yet to be elucidated. With the advent of
new genomics, transcriptomics, and proteomics technol-
ogy, we can profile the mutational, epigenetic, and
neoantigenic landscape of NSCLC in more details now
than was ever possible in the past. The more proactive
approach in achieving a deeper mechanistic understand-
ing and unearthing new mechanisms of acquired drug
resistance is to elucidate the emergence and evolution of
MRD cells resulting from incomplete molecular
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response to therapy, which can continue to adapt and
progress under ongoing therapeutic pressure and ultim-
ately contribute to clinical tumor resistant progression.

Understanding intratumoral heterogeneity in
tumor evolution: the driving force behind
minimal residual disease and drug tolerance-
resistance
The goal of understanding and developing strategies to
target minimal residual disease (MRD) is to potentially
eradicate disease persistence and progression. MRD cells
have been referred to as drug-tolerant “persister” cells
due to their ability to persist in the lethal drug environ-
ment, or the “early adaptive drug-resistant” cells [33, 34]
capable of escaping drug inhibition by activating prosur-
vival signaling pathways and adopting a reversible cell
state similar to quiescence in order to maintain viability
against drug adversities [71]. These “persister cells” or
“early adaptive resistant cells” are able to emerge de
novo even from single cell-derived, drug-sensitive popu-
lations [71], suggesting the early and dynamic nature of
such a mechanism of resistance. Although the exact trig-
ger for the conversion process from a drug-sensitive cell
to a therapy-resistant cell is not completely understood,
our studies and more recently by others suggest that the
rapid, dynamic, and reversible emergence of drug per-
sistence is an active form of early-phase “acquired” re-
sistance, involving activated mitochondrial-prosurvival
signaling activation, transcriptomic, and metabolomic
reprogramming [33, 34]. The nomenclature “minimal re-
sidual disease” cells would be preferable as it accurately
describes the nature and phenotype of these cells left be-
hind in the therapeutic “battlefield” in a complete (or
near-complete) responder, as “drug-escaping” or “drug-
resisting” survivor cells. Of note, these cells are not
merely passively tolerating the drug environment, but ra-
ther actively resisting or escaping the drug. Although
emerging studies have highlighted the targetable mo-
lecular characteristics and cellular reprogramming in-
volved in these drug-resistant survivor cells underlying
the MRD, much is still not known about the molecular
regulatory network that enables the emergence and evo-
lutionary progression of these adaptive drug-resistant
survivor cells.
The emergence of MRD can be attributed to branched

tumor evolution and development, resulting in a number
of subpopulations with different treatment response phe-
notypes than the original tumor-initiating cell. One way
of modeling tumor evolution is by tracing multiple sub-
populations of cells to their most recent common ances-
tor using a phylogenetic tree. The trunk of the tree
represents clonal driver events that occur early in tumor
development, whereas the branches represent subclonal
driver events that differ from one subpopulation from

another. It has been shown that a single ancestral clone
can give rise to multiple subclones with [72] or without
[73] treatment pressure throughout the course of tumor
evolution. The branching evolution of clones is inherent
with the phenomenon known as tumor heterogeneity.
Broadly, tumor heterogeneity can be divided into two
types: (1) intratumoral heterogeneity, which describes
the co-existence of multiple subclones with distinct mo-
lecular profiles within a single tumor [74], and (2) inter-
tumoral heterogeneity, which describes the molecular
differences between tumors either from different sites in
the same patient or from different patients entirely.
Intratumoral heterogeneity can be further subclassified
into spatial and temporal heterogeneity (Fig. 3). Due to
various selection pressures, different tumor regions can
have different drivers that appear to be clonal to the spe-
cific region [73, 75, 76]. As such, a single biopsy is only
a small and limited sampling of the entire tumor, poten-
tially leading to inappropriate generalization about the
molecular constitution and driver of the entire tumor
per se. Treatment with driver-specific targeted therapy
then leads to incomplete therapeutic response. In the
same way, a single snapshot of the molecular makeup of
a tumor at a specific evolutionary time-point cannot reli-
ably determine the full extent of tumor evolution and
intratumoral heterogeneity. An understanding of the
evolutionary history and future of tumors has the poten-
tial of revealing the most clinically significant subclones
and common rules governing tumor evolution within
and across cancer subtypes.
Intratumoral heterogeneity and tumor evolution are

fueled by multiple factors, including genome doubling,
mutational burden, and somatic copy number alterations.
Multiregion sequencing studies in Caucasian NSCLC pa-
tients indicated high smoking-associated mutational bur-
den for clonal mutations, resulting in low intratumoral
heterogeneity [73]. Diversification occurs later on during
tumor development and is primarily attributed to increased
APOBEC activity that can be therapeutically targeted.
Using similar methods, Nahar et al. found that intratu-
moral genomic heterogeneity in Asian lung adenocarcin-
oma patients, which are known to have low mutational
burden, is characterized by high proportion of late subclo-
nal mutations, early genome doubling events, and low copy
number gains and losses [77]. The authors also noted the
subclonal nature of high-amplitude copy number amplifi-
cations and deletions in their cohort. Additionally, tumors
in the non-smoker cohorts were found to have a trend of
acquiring less clonal co-driver mutations. Additional find-
ings also suggest that EGFR mutations per se tend to be
self-sufficient to initiate clonal expansion. As a result, lower
clonal mutational burden was observed and whole genome
duplication tends to occur earlier. Lower clonal driver mu-
tational burden also correlated with better overall survival
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in patients [77]. These studies highlight the importance of
elucidating the clinical trajectories undertaken by tumors
by identifying the major factors contributing to intratu-
moral heterogeneity, and consequently its role in eventual
emergence of MRD and ultimate treatment failure.
Intratumoral heterogeneity can present as genetic or

genomic [73, 78], epigenetic/epigenomic [79], neoanti-
genic/proteomic [80], metabolic/metabolomic [81], and
tumor-microenvironment (TME) [82, 83] heterogeneity.
Consequently, therapy-resistant residual disease cells may
emerge through (1) intrinsic resistance, (2) tumor cell
adaptive reprogramming, (3) tumor microenvironment
(TME) adaptation, and (4) pharmacokinetic therapy fail-
ure [35] (Fig. 4). The factors of inter- and intratumoral
heterogeneity affecting drug resistance are summarized in
Table 1.
Intrinsic resistance can arise as a result of heteroge-

neous stable genetic alterations either preexisting on the
target oncoprotein resulting in a drug-resistant mutant

form, or on a different signaling molecule activating a
complementary pathway to bypass signaling. Turke et al.
identified subpopulations of cells with MET amplifica-
tion within EGFR-mutant lung cancers prior to drug
treatment [52], which contributes to gefitinib resistance
when activated by HGF through a PI3K/AKT/GAB1 sig-
naling pathway. The authors demonstrated the ability to
select MET-amplified EGFR-mutant cells when the par-
ental cell population was briefly treated with HGF. Intri-
guingly, low level MET amplification was observed even
in populations derived from single cell clones from the
parental drug-naïve cell population, suggesting that
some tumors are predisposed to maintain heterogeneity
even in the absence of therapeutic pressure [52]. Add-
itionally, acquired resistance can develop through the tu-
mor’s heterogeneous response to therapy, with some
subpopulations adopting a quiescence-like cell state, alter-
ing their signaling, secretome, transcriptome, and metabo-
lome in the process [33, 71, 84–86]. In support of a

Fig. 3 Spatial and temporal heterogeneity in tumor evolution. A single tumor tissue biopsy is equivalent to taking a mere “snapshot” of the
molecular makeup of the tumor at a fixed time. The tumor’s evolutionary history and future as a result of progression and/or treatment would be
missing from this single snapshot. Instead, serial and longitudinal tissue biopsies that track and follow the tumor’s development under therapy
and during progression would empower more comprehensive and accurate representation of the tumor’s evolution, especially in exposing the
conditions surrounding the emergence of subclones (as indicated by the different colors). Identification of subclones with known drug-resistant
drivers can better inform the course of treatment most suitable for the tumor at its current state
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therapy-induced altered cell state described earlier involv-
ing transcriptome and metabolome changes [33], Obenauf
et al. demonstrated an altered and complex network of
secreted signals in BRAF, ALK, or EGFR TKI-treated
melanoma and lung adenocarcinoma cells [86]. The
therapy-induced secretome was shown transcriptomically
to consist of more than 5000 up- and downregulated se-
creted factors, significantly overlapping with the gene ex-
pression changes of their in vivo model, that are released

into the tumor microenvironment stimulating both tumor
cells and the surrounding stromal cells. Increased tumor
proliferation induced by the secretome was associated
most prominently with activation of the AKT pathway,
and dual inhibition of the RAF and the PI3K/AKT/mTOR
signaling pathways reduced the growth of drug-resistant
cells in a BRAF-mutant melanoma model [86]. Heterogen-
eity in the surrounding stroma that constitutes the TME
may also be substantial in influencing treatment response

Fig. 4 Conditions under which minimal residual tumor cells in molecular drug resistance can emerge. (1) Intrinsic resistance describes the cells’ inherent
ability to resist the drug during initial therapy with preexisting stable genetic/genomic drug-resistant alteration(s). Shown are pretreatment lung
adenocarcinoma cells harboring only the activating EGFR L858R mutation and cells that are double mutant for EGFR L858R and T790M. The T790M-
mutants can survive initial treatments with an EGFR inhibitor (EGFRi) erlotinib or gefitinib, leading to incomplete response and eventual therapy failure and
tumor progression stemmed from the expansion of the T790M clones. (2) Tumor cells adapt under therapeutic pressure to activate the early adaptive drug
resistance program, engaging a cellular omics reprogramming scheme such as shift or modulation of prosurvival signaling, EMT-ness, cancer stemness and
plasticity, glycolytic Warburg genes, among other undiscovered mechanisms. Drug-resistant molecular residual disease cells emerge as a result. As shown
here in illustration, the STAT3/BCL-2/BCL-xL mitochondrial prosurvival signaling concurrent with hyperactivation of the TGFβ signaling pathway promote a
drug-tolerant state that enables drug persistence during initial EGFR-TKI treatment. (3) The tumor microenvironment potentially contributes to the adaptive
evolution of the tumor cells, resulting in minimal residual disease. As illustrated, stromal cells surrounding lung adenocarcinoma cells that secrete high
levels of TGFβ have been known to stimulate the TGFβ axis in tumor cells via autocrine or paracrine signaling, granting them independence from EGFR
signaling. TGFβ signals through IL-6, gp130, and JAK2 to stimulate STAT3 homodimerization. (4) Pharmacologic limitations, dose-limiting toxicities, or tumor
intrinsic barriers can result in poor drug penetration into the tumor, resulting in pharmacokinetic therapy failure
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of tumors at different sites (i.e., primary tumor vs. meta-
static tumor). For instance, in melanoma patients, in-
creased secretion of HGF from surrounding stromal cells
increases MET pathway signaling in melanoma cells,
resulting in resilience against BRAF targeted inhibitors
[87, 88]. In addition, there can be disparate development
of physical and stromal barriers that restrict effective drug
delivery to cells as well as drug efflux pumps that vary in
concentration and activity across cells, resulting in inad-
equate delivery of drugs to have any meaningful impact
on the intended target [89, 90]. All the aforementioned
factors of heterogeneity enable drug escape and resistance
against precision therapy and survival during targeted in-
hibition. The nature, degree, and extent of upfront tumor
heterogeneity may determine if there will be measurable
residual disease after initial drug response in cases of more
substantial driver genomic heterogeneity in a patient.
Conceivably, in a highly oncogenic addicted tumor, the

emergence and establishment of non-measurable MRD
after initial remarkable treatment response should be ex-
pected. This is because at the time of maximal response,
intratumoral genomic heterogeneity among the residual
tumor cells should be understandably less pronounced,
consisting mainly of adaptive drug persister cells of similar
genotypes and highly conforming transcriptomes. In an in-
depth analysis of the transcriptional dynamics during
patient-derived primary oral squamous cell carcinomas
(OSCC) cell lines evolution, Sharma et al. set out to explore
if there is a difference in the set of mechanisms by which
tumors acquire resistance to cisplatin given that they are
phenotypically homogeneous or phenotypically heteroge-
neous pretreatment [91]. It was observed that both pheno-
typically homogeneous and heterogeneous tumors each go
through four distinct stages of evolution, diverging at the
second stage. For phenotypically heterogeneous tumors,
preexisting cells from the drug-naïve population (stage 1)

completely overwhelm the culture by 6 weeks of cisplatin
treatment (stage 2), exhibiting the classic example of overt
intratumoral heterogeneity-mediated clonal selection that
favors selection of preexisting cancer stem-like cells; for
phenotypically homogenous tumors, de novo transdifferen-
tiation into a drug-resistant cell population (stage 2) is
achieved via epigenetic SOX9-associated mechanisms
under drug-selection. The now predominant cell type ex-
pands (stage 3) into the metastasis-prone, drug-resistant
population (stage 4). Altogether, preexisting ITH leads to
the selection of cancer stem-like cells under selection pres-
sure, whereas stress-induced transdifferentiation drives
homogenous cell populations to evolve adaptively to con-
vergent phenotypic states that are predetermined by a
poised bivalent epigenome.
It is difficult to ascertain whether MRD, as a result of

intratumoral heterogeneity within treated tumors, ex-
hibits intrinsic or acquired resistance as these resistance
terminologies themselves are closely associated with
clinical response (intrinsic resistance defines lack of re-
sponse to initial drug treatment, whereas acquired resist-
ance defines resistance resulting in disease progression
following initial response). It is also difficult to delineate
whether these heterogeneous genomic mutations con-
tributing to MRD are preexisting or adaptively evolved,
as MRD cells with adaptively evolved mutations must
have some preexisting features/characteristics that pre-
dispose them to embark on an evolutionary path into
specific drug-resistant mutations/alterations. However,
based on available data thus far, one may justifiably say
at this time that adaptive emergence of persister cells is
primarily non-genetic in nature at least at the outset.
For many years, clinical researchers in hematologic

malignancies have been measuring levels of MRD after
cancer therapy, as an indicator of treatment efficacy
[92–94]. This quantification of MRD is known as “depth

Table 1 Factors of inter-/intratumoral heterogeneity affecting drug resistance

Key biologic mechanisms Molecular-phenotypic link to resistance Drug resistance—intrinsic and acquired

Genetic Tumor mutational burden • Mutational heterogeneity and co-occurrence of
different driver mutations that confer intrinsic resistance

• Activation of bypass and redundant signaling pathway

Genomic/Epigenomic Tumor adaptive molecular
evolution/reprogramming

• Treatment-induced temporal and spatial driver
mutational/non-mutational evolution

• Acquired activation of bypass signaling pathways
• Adaptively altered transcriptome
• Therapy-induced secretome
• Adaptively altered metabolome
• Adaptive mitochondrial reprogramming

Proteomic/Neoantigenic

Metabolic/Metabolomic

Tumor microenvironment TME and host interactions • Increased availability of resistance-promoting ligand
whether intrinsic of the stromal cells or influenced by
tumor cell secretions

• Heterogeneous development of physical or stromal
barriers to drug penetrance

• Heterogeneous organ-specific stromal milieu providing
different drug-protective mechanisms to tumor cells

• Pharmacokinetic failure from differential exposure to therapy
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of response” (DepOR) and can be accurately measured
using sensitive methods such as flow cytometry and
next-generation sequencing. In solid tumors, DepOR is
defined as the maximum percentage of tumor shrinkage
from baseline observed in a patient. Due to traditional
clinical endpoints such as PFS and overall survival (OS)
having a longer time to maturity, surrogate endpoints
such as overall response rate (ORR) and duration of re-
sponse (DoR) are commonly used to determine treat-
ment efficacy early on during treatment. Nonetheless,
ORR may be limited in representing treatment efficacy
as it is a static measurement of the percentage of pa-
tients with reduction in tumor burden of a predefined
amount, and it dichotomizes patients into responders
and non-responders based on the Response Evaluation
Criteria In Solid Tumors (RECIST). This drawback of
ORR is most evident in the FLAURA trial, in which al-
though the ORR in patients with EGFR activating muta-
tions was highly comparable between the osimertinib
cohort and the standard-of-care first-generation EGFR-
TKI cohort (80% vs. 76%), the median PFS was signifi-
cantly longer with osimertinib than with first-generation
EGFR-TKIs (18.9 months vs. 10.2 months) [42]. On the
other hand, DepOR was a better predictor of this differ-
ence in PFS, since the authors noted that the median
best percentage change in target-lesion size (maximum
decrease from baseline, or minimum increase from baseline
in the absence of a decrease) was less in the osimertinib
group versus the standard EGFR-TKI group (− 54.7% vs. −
48.5%, P = 0.003). Compared to ORR, DepOR has a shorter
time to maturity, is a serial and continuous measure of re-
sponse, and maintains a more granular, patient-to-patient
view of magnitude of response (instead of grouping patients
into responder vs non-responder). Previous reports have
demonstrated that DepOR is significantly associated with
both PFS and OS in NSCLC [42, 95–97], metastatic colo-
rectal cancer [98–103], and gastric cancer [104].

Previous limitations and novel methods for
linking intratumoral heterogeneity and drug
resistance
Intratumoral heterogeneity not only enables the survival
of residual disease cells that eventually is the cause of a
more aggressive tumor relapse but also serves as the im-
petus of the failure of single agent targeted inhibitors to
induce long-lasting durable response and survival bene-
fits despite initial remarkable tumor response. Next-
generation targeting agents, while able to inhibit mutant
drug-resistant forms of the intended target, have also
been shown to elicit incomplete therapeutic response.
The most prominent example of the inadequacy of next-
generation targeted inhibitors in curbing eventual disease
progression is in the case of the third-generation EGFR in-
hibitor osimertinib in EGFR T790M mutated tumors [39].

As previously described, the T790M mutation in EGFR
renders cells resistant to first-generation inhibitors. While
response to osimertinib in genomics-matched patients is
often remarkable, acquired resistance develops even earlier
(overall median PFS = 8.2 months) [105] than in erlotinib-
treated tumors with EGFR activating mutations (overall
median PFS = 9.7 months) [106]. A similar decrease in the
time-to-progression is also observed for ALK-rearranged
NSCLC (crizotinib overall median PFS = 8.0–10.0 months
[107–109], ceritinib overall median PFS = 7.0 months
[110]). Nevertheless, these observations can be attributed
to the fact the patients in these studies were previously
treated with at least one line of therapy, and that the tumor
generally have been more heterogeneous at the time of
treatment to overcome acquired drug resistance already
established. First-line osimertinib treatment in advanced
NSCLC with mutant EGFR yielded an overall median PFS
of an impressive 19.3 months in the phase I study [40].
Most recently, similar observations were confirmed in the
phase III clinical trial, revealing that osimertinib first-line
treatment led to a similar response rate compared to the
first-generation EGFR-TKIs (80% vs. 76%), but resulted in
a significantly superior PFS (18.9 months vs. 10.2 months)
[42]. It is tempting to postulate that the preemptive use of
osimertinib as first-line TKI in EGFR-mutant NSCLC pa-
tients resulted in not only prevention of EGFR T790M mu-
tation emergence but also a “deeper molecular response”
in the oncogene-addicted tumor cells. These clinical evi-
dence arguably lends further support to the concept of a
“preemptive” targeted inhibition being more superior to a
“reactive” sequential targeted therapeutic approach. With
what is currently known regarding MRD, this remarkable
delay in drug resistance development could be further en-
hanced by targeting residual disease drivers simultaneously
in the form of rational polytargeting combinational
therapy.
Rational upfront polytargeting therapy has the potential

to induce a more complete and durable tumor response
than monotherapy due to the ability of the former to ad-
dress not only the tumoral heterogeneity issues but also
the multifaceted nature of MRD. To overcome resistance
to genotype-matched targeted therapy, rational polytarget-
ing therapy to target the primary addictive oncoprotein
driver as well as signaling molecule(s) in the drug escape/
resistance-conferring pathway can be tested as first-line
treatment or sequentially to first-line treatment failure.
Understandably, in many cases, second-line polytargeting
therapy demonstrated low efficacy due to the prior estab-
lishment of drug resistance, which might already be hetero-
geneous in nature, post first-line therapy failure [111–114].
On the other hand, using rational polytargeting therapy as
a first-line therapeutic strategy prior to molecular drug
persistence/resistance emergence conceivably can serve as
an effective restraining barrier against drug resistance
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associated with targeted monotherapy. This is also exem-
plified in the case of combining BRAF inhibitors with
MEK1 inhibitors in overcoming bypass signaling of the
RAF-MEK-ERK signaling cascade in BRAF V600E mutant
melanoma [115, 116]. This strategy has now been further
adopted and approved for use in BRAF-mutant lung cancer
recently [117–119]. First-line BRAF-MEK inhibitor com-
bination therapy improved patient survival compared with
first-line BRAF inhibitor monotherapy, consistent with the
hypothesis that targeting residual tumor cells can prevent
eventual tumor progression [120–122]. These studies dem-
onstrate the importance of timing in the administration of
polytargeting therapy to effectively control residual disease
and drug resistance. Despite promising better responses,
rational polytargeting therapies could still be limited and
challenging due to increased risk of adverse events com-
pared with monotherapy [120–122]. Nonetheless, this
could be at least partly alleviated by optimized drug design
and development of drugs that have improved therapeutic
window with more potent and specific target efficacy and
less off-target adverse effects. A recent example of success-
ful combination therapy is seen in the IMpower 150 study,
in which atezolizumab, bevacizumab, carboplatin, and pac-
litaxel (ABCP) were administered in combination in
treatment-naïve patients with metastatic nonsquamous
NSCLC [123]. Both overall survival and progression-free
survival were significantly improved compared to standard-
of-care with similar safety risks. This study also proved ef-
fective as first-line therapy regardless of PD-L1 expression
and EGFR or ALK genetic alteration status. In particular, it
was found to be effective as a treatment strategy for the
targeted therapy resistant patients with EGFR mutation or
ALK-rearrangement. The chemo-immunotherapy com-
bined with antiangiogenesis therapy is thought to impact
the TME in enhancing the PD-L1 immunotherapy efficacy
as the underlying mechanism of action. Furthermore, it has
also been recently reported that the ABCP combination
therapy could induce a remarkable complete response even
after merely one cycle of treatment in heavily pretreated
EGFR-mutant lung adenocarcinoma that progressed
through erlotinib and osimertinib in targeted drug resist-
ance [124]. Efforts to combine agents that not only target
non-overlapping mechanisms of resistance but also elicit
fewer adverse events are warranted, and should be guided
by an understanding of the residual disease state in selec-
tion of agents and measurement of efficacy in polytargeting
therapies [125].
As illustrated earlier, the understanding of MRD is

inseparable from understanding intratumoral heterogen-
eity. Recently developed techniques allow for more in-
depth studies of spatial and temporal heterogeneity within
a single tumor. In addressing spatial heterogeneity, multire-
gion whole-genome and whole-exome sequencing methods
[73, 126] have been employed to overcome the issue of

limited sampling of a tumor in cancer genomics analysis.
The TRACERx study conducted whole-exome sequencing
of multiregional biopsies from a single tumor (at least
0.3 cm to 1.0 cm apart) in resected stage I to III NSCLC pa-
tients, and demonstrated the mutational and copy number
differences between regions of a single tumor [73]. It was
found that chromosomal instability contributed to the ac-
quisition of heterogeneous subclonal driver mutations and
copy number alterations later in tumor development.
Driver mutations in EGFR, MET, BRAF, and TP53 were
found almost always clonal in lung adenocarcinomas,
whereas alterations in PIK3CA, NF1, genes involved in
chromatin modification, and DNA damage response and
repair occurred later in tumor evolution. These studies sug-
gest that the detection of specific mutations in single biop-
sies may not reflect the profile of the tumor as a whole.
The study of tumor evolution throughout the course of
treatment using the methods described above has the po-
tential to elucidate biomarkers associated with treatment
response and acquired resistance.
One disadvantage of multiregion sequencing is the

need for multiple biopsy sampling, which is impractical
and undesirable in real-life patient care scenario particu-
larly in advanced stage diseases [127]. To this end, liquid
biopsies coupled with molecular profiling have gained
much momentum in recent years. Liquid biopsy can be
quite beneficial since it is less invasive compared with
traditional tissue biopsies and is able to provide a more
comprehensive tumor profile presumably with better
representation of tumor heterogeneity [128–130]. Gen-
erally, liquid biopsy involves isolating circulating tumor
cells (CTCs) or circulating tumor DNA (ctDNA) from
blood samples and subsequently conducting molecular,
genomic, and proteomic assays to obtain a holistic pro-
file of the tumor. Currently, clinically adapted liquid
biopsy typically involves plasma-based ctDNA assays
using next-generation sequencing in genomic mutation
or copy number determination. In 2016, the U.S. FDA
approved the Cobas EGFR Mutation v2 Test as an
in vitro companion diagnostic for the detection of exon
19 deletions, exon 21 L858R substitution mutations, and
T790M mutations from plasma samples [131, 132]. The
approval was based on the ENSURE study, a multicenter,
open-label, randomized phase III study to evaluate the
efficacy and safety of erlotinib versus gemcitabine plus
cisplatin as first-line treatment for stage IIIB/IV NSCLC
patients [133]. Plasma tested positive for EGFR muta-
tions in 76.7% of tissue-positive specimens, and tested
negative in 98.2% of tissue-negative specimens. The ap-
proval of the Cobas test prompted multiple investiga-
tions including those that studied plasma ctDNA for
early prediction of response to TKIs [134], for detection of
EGFR-T790M in previously EGFR-TKI-treated NSCLC
patients with disease progression [135], and for the
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development of AZD9291 (osimertinib) [105, 136]. One
study investigated the eligibility of previously treated NSCLC
patients for osimertinib by testing for the presence of the
T790M mutation in their plasma [135]. Although plasma
tests only moderately agree with tissue tests (61% positive,
79% negative), comparing plasma tests with next-generation
sequencing yielded positive and negative agreement rates of
90% or higher. In addition, tumor burden [137] and tumor
mutational load [138, 139] assays are being developed in this
arena as an indication of treatment response and as a poten-
tial predictive biomarker for immunotherapy, respectively.
As powerful as liquid biopsy promises to be, it is limited by
intertumoral heterogeneity. More specifically, the inability to
trace the source of the ctDNAs, resulting in the possibility
of confounding downstream analyses due to intertumoral
heterogeneity. Garcia-Saenz et al. found that although
plasma PIK3CA mutation levels correlated with treatment
response in most advanced breast cancer patients in their
cohort, the treatment response discordant rate was as high
as 25% (2/8 patients), with the discordance being attributed
to differential drug sensitivity within the metastatic tumor
[137]. As previously discussed, single time-point biopsy,
whether as tissue or plasma samples, provides limited infor-
mation about the tumor’s evolutionary history and future.
To overcome this issue, serial longitudinal biopsies can be
done to analyze changes in the tumor with or without thera-
peutic pressure. Due to the relative ease on patients, liquid
biopsy is gaining much momentum as a more preferable
method for longitudinal monitoring of tumor evolution.
Single-cell molecular analysis is becoming increasingly

important in uncovering clonality and reconstructing the
evolutionary lineage of a tumor. Bulk analyses aggregate
results from multiple cells from a sample and run the
risk of missing vital information from rare cell subpopu-
lations [140]. Using single-cell techniques, Lawson et al.
demonstrated that the subpopulation of metastatic
breast cancer cells are unique in their increased expres-
sion of EMT, stem-like, prosurvival, and dormancy-
associated genes [141]. Much like cells with metastatic
potential, MRD cells are rare subpopulations within
drug-sensitive tumors that often drive disease progres-
sion. Rambow et al. demonstrated the feasibility of using
a combination of fluorescence-based and microfluidics-
based capture techniques to study and target the driver
of MRD in melanoma exposed to concurrent RAF/MEK
inhibition [142]. The authors identified a transcriptional
program associated with neural crest stem cells in the
minimal residual melanoma cells driven by the nuclear
receptor RXRG and showed that targeting RXR signaling
synergizes with targeted therapy to delay time to disease
progression. Recently developed single-cell proteomics
methods allow for multiplexed protein detection from
single cells and analyzing functional protein expression
simultaneously with gene expression [143, 144].

However, single-cell analyses lack in their ability to re-
capitulate the effects of cell-cell and cell-matrix interac-
tions, as the tumor has to be dissociated prior to
conducting these experiments. Nonetheless, the higher
resolution of single-cell methods and the ability for mul-
tiplexing promise early identification of resistance
drivers and aid in the development of rational polytar-
geting therapies that can preemptively prevent tumor
progression driven by residual disease cells.

Molecular profiling for tumor-agnostic, driver-
specific targeted therapy
Following the advent and clinical adoption of EGFR-
targeted therapy in EGFR-mutant NSCLC, a growing list
of additional genomically matched targeted therapies con-
tinue to emerge in the treatment of various solid cancers
including lung cancer. These include therapeutics that tar-
get specifically addictive oncogenic alterations as in ALK-
translocations [145–148], ROS1-translocations [148–150],
RET-translocations [151–153], BRAF mutation [154–156],
MET amplification and MET exon 14 skipping mutations
[157–160], and most recently NTRK-translocations [161].
Emerging data suggest that the precise molecular mecha-
nisms of drug resistance, and the spectrum of such mech-
anisms could be different among different molecular
targets and their underlying targeted therapeutics. As pre-
viously described, the dominant resistance mechanism for
EGFR-driven first- and second-generation TKI-treated
NSCLCs is acquisition of the T790M mutation (Fig. 2).
On the other hand, ALK-driven TKI-treated NSCLCs have
a different pattern of drug resistance mechanisms, with all
mutations in the ALK gene accounting for approximately
28% [162], and no dominant gatekeeper mutation is as fre-
quently seen as in EGFR T790M. Other ALK-TKI resist-
ance mechanisms can be further classified based on
whether or not the tumor is still dependent on ALK sig-
naling (ALK+/ALK−). These ALK+ and ALK− resistance
mechanisms are approximately equally prevalent [162].
Most interestingly, recent studies uncovered a new para-
digm of various oncogenic fusions such as CCDC6-RET as
part of the genomic landscape of osimertinib acquired re-
sistance mechanisms [163]. Other osimertinib resistance
genomic alterations recently reported include EML4-ALK,
MET amplification, KRAS mutations, BRAF mutations
and PIK3CA mutations, and PTEN deficiency [164].
Most recently, Drilon et al. reported on an integrative

analysis of three phase 1–2 studies evaluating the effi-
cacy of larotrectinib (also known as LOXO-101)—a
highly selective small-molecule pan-TRK inhibitor—in
17 unique NTRK fusion-positive cancers in 55 adult and
pediatric patients [161]. Overall response rate was re-
ported to be between 75 and 80%, with 71% responses
ongoing and 55% patients remaining progression-free
after 1 year. Despite the durable responses, it is
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reasonable to expect the ultimate emergence of acquired
resistance to TRK-targeting agents as has been previ-
ously reported separately in two patients treated with
the multikinase inhibitor entrectinib, which has activities
against NTRK, ROS1, and ALK [165, 166]. These tumors
acquired resistance mutations affecting the kinase solv-
ent front and xDFG motif, which interferes with laro-
trectinib and entrectinib binding directly. Further
functional studies have confirmed that these mutations
confer resistance to all TKIs with activity against TRK
[167, 168]. With this knowledge, a second-generation
TRK-TKI, LOXO-195, has been newly designed to over-
come acquired resistance mediated by recurrent kinase
domain (solvent front and xDFG motif) mutations [169].
LOXO-195 was shown to possess potent and selective
activity against all three TRK kinases, their fusions, and
acquired resistance mutations identified both in preclin-
ical models and in patients. The development of LOXO-
195 introduces the exciting potential of further strategies to
prevent or overcome acquired resistance to first-generation
TRK-TKIs, extending the duration of response and long-
term survival in a tumor- and age-agnostic fashion. As
such, the recent tumor-agnostic FDA approval of larotrecti-
nib in NTRK fusion-positive diverse solid tumors regardless
of tumor type origin unveils a new era and novel paradigm
of molecular-genomics precision medicine. Furthermore,
the emergence of larotrectinib in NTRK fusion-positive
tumors including lung cancer now strongly validates the
crucial importance of upfront unbiased broad and compre-
hensive tumor molecular-genomic profiling in order to
optimize therapeutics decisions for lung cancer patients.
While there may still be some room for debate as to what
constitutes the best platforms for tumor molecular profil-
ing, it is now widely accepted that next-generation sequen-
cing based profiling platform would be regarded as ideal to
enable tissue- and time- as well as possibly cost-efficiency
in such an essential endeavor for modern personalized can-
cer medicine.

Conclusion
In summary, acquired drug resistance to targeted ther-
apy begins with the emergence of drug-tolerant MRD
cells. Clonal studies of tumor evolution have proven to
yield novel and important information regarding appar-
ently similar tumors classified based on driver mutations
alone. This is true because factors contributing to intra-
tumoral heterogeneity such as mutational burden, genome
doubling, and copy number alterations can determine the
evolutionary path of the tumor, and consequently, the
mechanism of drug tolerance and early drug resistance.
Such studies have been made possible due to the recent
availability of multiregion exome sequencing, among other
advances in genomics techniques and NGS platforms,
which takes into account the presence of different

subclones in a tumor that are largely driven by the same
driver mutation. Further research is needed to be con-
ducted in more advanced stage cancers. In this regard,
emerging advance liquid biopsies technologies, especially
when performed in serial longitudinal setting during treat-
ment, can be considerably attractive due to its non-invasive
nature and the ability to overcome at least partially the con-
founding challenges of tumor heterogeneity in a patient. Li-
quid biopsies could potentially discern and detect subclonal
cell populations within a tumor with reasonable sensitivity
and specificity. Moreover, recently developed single-cell
harvesting and genomics-bioinformatics analyses methods
of cells undergoing targeted drug treatment allow for study-
ing targetable drivers of MRD. Future evolutions of preci-
sion medicine could involve preemptive combinatorial
targeting of MRD drivers as well as tumor drivers.
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