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Permeability changes and effect of
chemotherapy in brain adjacent to tumor
in an experimental model of metastatic
brain tumor from breast cancer
Afroz S. Mohammad, Chris E. Adkins, Neal Shah, Rawaa Aljammal, Jessica I. G. Griffith, Rachel M. Tallman,
Katherine L. Jarrell and Paul R. Lockman*

Abstract

Background: Brain tumor vasculature can be significantly compromised and leakier than that of normal brain
blood vessels. Little is known if there are vascular permeability alterations in the brain adjacent to tumor (BAT).
Changes in BAT permeability may also lead to increased drug permeation in the BAT, which may exert toxicity on
cells of the central nervous system. Herein, we studied permeation changes in BAT using quantitative fluorescent
microscopy and autoradiography, while the effect of chemotherapy within the BAT region was determined by
staining for activated astrocytes.

Methods: Human metastatic breast cancer cells (MDA-MB-231Br) were injected into left ventricle of female NuNu
mice. Metastases were allowed to grow for 28 days, after which animals were injected fluorescent tracers Texas Red
(625 Da) or Texas Red dextran (3 kDa) or a chemotherapeutic agent 14C-paclitaxel. The accumulation of tracers and
14C-paclitaxel in BAT were determined by using quantitative fluorescent microscopy and autoradiography
respectively. The effect of chemotherapy in BAT was determined by staining for activated astrocytes.

Results: The mean permeability of texas Red (625 Da) within BAT region increased 1.0 to 2.5-fold when compared
to normal brain, whereas, Texas Red dextran (3 kDa) demonstrated mean permeability increase ranging from 1.0 to
1.8-fold compared to normal brain. The Kin values in the BAT for both Texas Red (625 Da) and Texas Red dextran (3
kDa) were found to be 4.32 ± 0.2 × 105 mL/s/g and 1.6 ± 1.4 × 105 mL/s/g respectively and found to be significantly
higher than the normal brain. We also found that there is significant increase in accumulation of 14C-Paclitaxel in
BAT compared to the normal brain. We also observed animals treated with chemotherapy (paclitaxel (10 mg/kg),
erubilin (1.5 mg/kg) and docetaxel (10 mg/kg)) showed activated astrocytes in BAT.

Conclusions: Our data showed increased permeation of fluorescent tracers and 14C-paclitaxel in the BAT. This
increased permeation lead to elevated levels of activated astrocytes in BAT region in the animals treated with
chemotherapy.
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Background
The incidence of metastatic brain tumors in United
States is approximately 170,000 patients annually [1].
The most common primary sites for brain metastases
are lung, breast, and skin, with more than 70% of the pa-
tients account for cancers from lung and breast [2]. The
incidence of breast cancer metastases to brain is increas-
ing, as there is a significant improvement in 5-year sur-
vival from primary breast cancer [3, 4]. Once diagnosed
with metastatic brain tumors from breast cancer, 4 out
of 5 patients will die within one year [5].
Conventional chemotherapy fails in metastatic brain

tumors due to the presence of blood-brain barrier
(BBB)/ blood-tumor barrier (BTB), which prevents a suf-
ficient concentration of chemotherapeutics from reach-
ing lesions [5]. However, we have previously found that
there is an increase in drug permeation in metastatic le-
sions when compared to the normal brain [6, 7]. Many
newer strategies to treat metastatic brain tumors include
methods to improve chemotherapeutic penetration by
overcoming the BBB/BTB, including nanoparticles, os-
motic BBB disruption, BBB disruption using ultrasound,
etc. [8–11]. All of these strategies have shown increased
penetration through BBB, but the effect of chemotherapy
on tumor-adjacent healthy tissue has not been thor-
oughly investigated.
In this study, we hypothesize that the area around

tumor is more accessible to drug penetration due to in-
creased vascular permeability and diffusion from the
tumor into normal brain tissues, which may result in
chemotherapy accumulation and effect in the brain adja-
cent to tumor (BAT). We tested the penetration of two
different fluorescent permeability markers, texas Red free
dye (Mol. Wt. 625 Da.) and texas Red dextran 3 kDa.
(Mol. wt. 3000Da.). We then determined the distribution
of 14C-paclitaxel in normal brain, tumors, and BAT re-
gions. Finally, we studied the effect of chemotherapy on
BAT by staining for a marker of neuro-inflammation.

Methods
Chemicals & reagents
The fluorescent tracers Texas Red (625 Da) and Texas
Red dextran (3 kDa) was purchased from Molecular
Probes-Life Technologies (Carlsbad, CA). Dulbecco’s
modified eagle medium (DMEM) and Fetal bovine
serum (FBS) were purchased from Gibco-Life Technolo-
gies (Carlsbad, CA). Cell culture flasks were purchased
from Falcon (Corning, NY). Radiolabeled (14C)-Pacli-
taxel (101 mCi/mmol) was purchased from Moravek,
Inc. (Brea, CA). Paclitaxel, docetaxel and eribulin was
purchased from Selleckchem Chemicals (Houston, TX).
Radiolabeled (14C)-Paclitaxel (101 mCi/mmol) was pur-
chased from Moravek, Inc. (Brea, CA). Cresyl violet
acetate (0.1%) and Cremophore EL was purchased from

Sigma-Aldrich (St. Louis, MO). Anti-GFAP antibody
(ab4674) was purchased from abcam (Cambridge, MA).
All other chemicals and reagents used were of analytical
grade and were used as supplied.

Cell culture
Human MDA-MB-231Br metastatic breast cancer cells
were kindly donated as a gift by Dr. Patricia S. Steeg
(Canter for Cancer Research, National Cancer Institute,
Bethesda, MD). Human MDA-MB-231Br metastatic
breast cancer cell line was created from the commer-
cially available MDA-MB-231 cell line by Dr. Patricia
Steeg’s lab by repeated cycles of intra-cardiac injection
and harvesting from brain metastases in mice [6, 7] .
The cells were cultured in DMEM supplemented with
10% FBS. MDA-MB-231Br cell lines were transfected to
stably express the enhanced green fluorescent protein
(eGFP). All cells used in experimental conditions came
from passages 1–10 and were maintained at 37 °C with
5% CO2. For all cell preparations for intracardiac injec-
tion, cells were harvested at 70% confluency.

Experimental brain metastases model
All animal handling and procedures were approved by
Institutional Animal Care and Use Committee protocol
(WVU #13–1207), and all work was conducted following
the 1996 NIH Guide for the Care and Use of Laboratory
Animals. Human ethics approval and informed consent
for this study are not applicable because no human sub-
jects were involved in this study. Female athymic nu/nu
mice (24–30 g) were purchased from Charles River La-
boratories (Wilmington, MA) and were used for the ex-
perimental metastases model in this study. Mice were 6
to 8 weeks of age at the initiation of the brain metastases
models and were housed in a barrier facility with chow
and water available ad libitum before and after inocula-
tion of tumor cells. For inoculation of MDA-MB-231BR
cells, mice were anesthetized under 2% isoflurane and
injected with 175,000 cells in the left cardiac ventricle
using a sterile 27-gauge tuberculin syringe with the aid
of a stereotaxic device (Stoelting, Wood Dale, IL) as pre-
viously reported by Adkins et al. [6]. Injection accuracy
was evaluated by a pulsatory flash of bright-red blood
into the syringe upon little retraction of the plunger
prior to injection. After intra-cardiac injection, mice
were placed in a warmed (37 °C) sterile cage and vitals
monitored until fully recovered. Metastases were allowed
to develop until neurologic symptoms like seizures, la-
bored breathing, hunched posture and anorexia ap-
peared (~ 28 days for MDA-MB-231Br), and animals
were then anesthetized with ketamine/xylazine (100mg/
kg and 8mg/kg respectively) prior to Texas Red 625 Da
(6 mg/kg in saline) and Texas Red dextran 3 kDa (6 mg/
kg in saline) and 14C-Paclitaxel (10 μCi/animal, 10 mg/kg
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in Taxol formulation, Moravek) injection via IV bolus
dose (femoral vein). The Texas Red 625 Da (n = 6) and
Texas Red dextran 3 kDa (n = 6) were allowed to circu-
late for 10 min prior to euthanasia by decapitation, and
14C-Paclitaxel (n = 10) was allowed to circulate for 8 h
before sacrifice by decapitation. The endpoints for texas
red and 14C-Paclitaxel circulation times were determined
by previous studies [7]. Brains were rapidly removed
(less than 60 s), flash-frozen in isopentane (− 65 °C), and
stored at negative 20 °C.

Tissue processing and analysis
Brain slices (20 μm) were acquired with a cryotome
(Leica CM3050S; Leica Microsystems, Wetzlar,
Germany) and transferred to charged microscope slides.
Fluorescent images of brain slices were acquired using a
stereomicroscope (Olympus MVX10; Olympus, Center
Valley, PA) equipped with a 0.5 NA 2X objective and a
monochromatic cooled CCD scientific camera (Retiga
4000R, QIMaging, Surrey, BC, Canada). Texas Red
fluorescence was imaged using a DsRed sputter filter
(excitation/band λ 545/25 nm, emission/band λ 605/70

nm and dichromatic mirror at λ 565 nm) (Chroma Tech-
nologies, Bellows Falls, VT) and enhanced green fluores-
cent protein (expressed in MDA-MB-231Br) using an
ET-GFP sputter filter (excitation/band λ 470/40 nm,
emission/band λ 525/50 nm and dichromatic mirror at λ
495 nm) (Chroma Technologies, Bellows Falls, VT).
Fluorescent image capture and analysis software (Slide-
Book 5.0; Intelligent Imaging Innovations Inc., Denver,
CO) was used to capture and quantitate images. Binary
mask methodology was used to analyze brain slices based
upon the eGFP fluorescence from MDA-MB-231Br cells.
Binary mask methodology is simply voxel-defined regions
of interest where tumor was defined by the presence of
eGFP fluorescence from MDA-MB-231Br on a
voxel-by-voxel basis. By this methodology, the eGFP fluor-
escence roughly > 3-fold above background was consid-
ered a brain tumor. Once the images were acquired,
circumferential fluorescent analysis was performed using
software analysis (SlideBook 5.0; Intelligent Imaging Inno-
vations Inc., Denver, CO), where 8-μm thick region of
interest (ROI) were drawn 300 μm beyond and within the
tumor (Fig. 1a and b). Texas red permeability

Fig. 1 Circumferential Fluorescent Analysis by Quantitative Fluorescence Microscopy. Fluorescent image of eGFP transfected MDA-MB-231Br
metastasis in brain with circumferential 8 μm thick regions of interest (ROI) drawn to 300 μm beyond the metastasis margin (a and b). To
distinguish between BAT and tumor regions, the inner 300 μm from the metastasis margin were used to create 8 μm thick circumferential ROIs
(c and d)
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fold-changes were determined by Texas Red sum intensity
(SI) per unit area of metastases relative to that of contra-
lateral normal brain regions. The transfer coefficient (Kin)
of Texas Red tracers were determined in tumor, BAT and
normal brain by multiple uptake time approach after ana-
lyzing the blood and tumor concentrations of Texas Red
tracers as previously described by Mittapalli et al. [12].
The unidirectional blood to brain, blood to tumor and

blood to BAT transfer constant Kin was determined for
fluorescent tracers using single-time uptake approach
[13–15]. A single-time uptake method was used to calcu-
late Kin because of heterogeneity of the metastatic tumors.
Kin was calculated using the following equation [12, 15]

Kin ¼ Cbr Tð Þ
R t
0 Cbl Tð Þdt

Where, Cbr is the amount of compound in brain/meta-
static tumor/ BAT per unit mass of the tissue at time T
and Cbl is the blood concentration of the tracer.
For 14C-Paclitaxel permeation studies, 20 μm thick

brain slices were exposed for 20 days to phosphor
screens along with tissue-calibrated standards for quanti-
tative autoradiographic analysis. The phosphor screens
were developed using GE Typhoon FLA 7000 and im-
ages were processed using MCID software (Imaging Re-
search) and Adobe Photoshop to acquire color-coded
drug concentrations (ng/g or μg/g) in regions of interest.

Effect of drugs on BAT
Female athymic nu/nu mice were inoculated with human
MDA-MB-231-Br-Luc cells and allowed to develop me-
tastases. On day 21, the presence of metastases was con-
firmed using an IVIS bioluminescent imaging system and
animals are randomly divided into four treatment groups
(n = 10/group) and then treated with Vehicle (n = 10, sa-
line), Docetaxel (10mg/kg I.V, once a week, n = 10), Eribu-
lin (1.5mg/kg I.P, twice every week, n = 10) and Paclitaxel
(10 mg/kg I.V, once a week, n = 10). Docetaxel and Eribu-
lin was dissolved in a vehicle composed of 5% Tween 80
and 5% Ethanol in saline, whereas paclitaxel was dissolved
in a vehicle composed of 1:1 blend of Cremophor EL and
ethanol was then diluted (nine parts of saline to one part
of blend) with normal saline for administration. The treat-
ment regimen was continued until mice showed neuro-
logical symptoms, and the then mice were sacrificed and
the brains were harvested. The brains were sectioned and
stained for glial fibrillary acidic protein (GFAP) for the
presence of activated astrocytes in BAT region.

Data analysis
The unidirectional blood-to-brain, blood-to-tumor and
blood-to-BAT transfer constant Kin differences were
compared by one-way ANOVA with multiple

comparisons (GraphPad® Prism 6.0, San Diego, CA) and
were considered statistically significant at p < 0.05.
MCID software (Imaging Research Inc., UK) was used to
quantify permeation of 14C-Paclitaxel in brain metasta-
ses, BAT and normal brain.

Results
BAT permeability
Regional barrier integrity was evaluated using permeabil-
ity tracers, Texas Red 625 Da and Texas Red dextran (3
kDa), which fall within the upper-limit molecular weight
of most conventional and non-biological chemothera-
peutic drugs. The margins of metastases were demar-
cated based on eGFP fluorescence around cancer cell
clusters that were confined within 100 μm of each other,
as previously described (8). Once the tumor margin was
defined for each metastasis, a series of consecutive cir-
cumferential masks (8 μm wide) extending 300 μm be-
yond the original metastasis margin were generated
automatically using custom written SlideBook 5.0 software
scripts (Fig. 1a and b). The additional 200 μm region was
drawn to also allow for analysis of brain distant to tumor.
Additional circumferential masks (8 μm wide) that extend
300 μm internally from the metastasis margin were cre-
ated using the software scripts (Fig. 1c and d).
Texas Red 625 Da and Texas Red Dextran 3 kDa per-

meation were plotted relative to the distance from the
tumor edge for different metastases exhibiting different
magnitudes of mean permeability increases (Fig. 2a).
Analysis of Texas Red 3 kDa permeation within the BAT
region 100 μm beyond the tumor edge for each metasta-
sis demonstrated mean permeability increase ranging
from 1.0 to 1.8-fold compared to normal brain (Fig. 2b).
The mean permeability of Texas Red 625 Da within BAT
region increased 1.0 to 2.5-fold when compared to nor-
mal brain.
We then calculated Kin for tumor, normal brain, and

BAT, and we found that there was a significant increase
in Kin in BAT for both Texas Red free dye and Texas
Red Dextran 3 kDa when compared with normal brain
(Fig. 3a and b). The Kin values for Texas Red 625 Da in
normal brain was found to be 1.2 ± 0.16 × 105 mL/s/g.
For tumor, it was 11.3 ± 1.9 × 105 mL/s/g, and for BAT
the Kin was 4.32 ± 0.2 × 105 mL/s/g. The Kin values for
Texas Red 3 kDa was found to be 0.4 ± 0.14 × 105 mL/s/
g, 2 ± 0.3 × 105 mL/s/g and 1.6 ± 1.4 × 105 mL/s/g for
normal brain, tumor and BAT respectively.

Distribution of paclitaxel in normal brain, BAT and tumor
After analyzing Texas Red tracer permeability and trans-
fer coefficients in the BAT, we determined the distribu-
tion of 14C-Paclitaxel using autoradiography. The tumor
was identified by cresyl violet stain (Fig. 4a) and the cor-
responding overlaid autoradiogram (Fig. 4b) was used to
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analyze the concentrations of paclitaxel in 100 × 100 μm
squares (50 × 50 μm squares in BAT) as shown in Fig. 4a
and b. We found that there is increase in the concentra-
tion of 14C-Paclitaxel in BAT regions and the increase in
concentration was heterogeneous as seen in the metasta-
ses. We found that the concentration of 14C-paclitaxel in
BAT (0–50 μm) to be 86.7 ± 31 ng/g and BAT (50–
100 μm) 35.4 ± 11 ng/g (Fig. 4c), whereas the concentra-
tions of 14C-Paclitaxel beyond 100 μm of tumor and nor-
mal brain was consistently found to be 1 ng/g. The
concertation of 14C-Paclitaxel in the tumor was 529 ±
223 ng/g consistent with our previous studies [7].

Chemotherapeutic drugs induce astrocyte activation in BAT
After studying the permeability of tracers and 14C-pacli-
taxel in BAT, we sought to study the effect of chemothera-
peutic drugs on BAT. For this study, we treated mice with
various chemotherapeutic drugs after the confirmation of
metastases as mentioned above. To visualize activated as-
trocytes, we stained for glial fibrillary acidic protein
(GFAP), which is over-expressed when astrocytes are acti-
vated [16]. We observed GFAP over-expression in BAT in
all the groups treated with chemotherapeutic drugs and
found that there is an increase in expression of GFAP in
BAT (Fig. 5b-d). However, GFAP expression in BAT in sa-
line treated group was not noticeable (Fig. 5a).

Discussion
Many studies have shown the permeability and effect of
chemotherapy in the brain metastases [7], but surpris-
ingly, there are not many studies investigating those

Fig. 2 Circumferential fluorescent analysis of Texas Red 625 Da and
Texas Red Dextran (3 kDa) in tumor and BAT regions in metastases
(a). Analysis TR permeation within 100 μm beyond the tumor edge.
Fold increase in TR 625da permeability: 1.8–3.8. Fold increase in TRD
3KD permeability: 1–2.5 (b)

Fig. 3 Blood-to- brain transfer coefficients (Kin) for Texas Red (625
Da) in normal brain (Control), BAT and Tumor regions (a). Blood-to-
brain transfer coefficients (Kin) for Texas Red Dextran (3 kDa) in
normal brain (Control), BAT and Tumor regions (b). The Kin was
determined by single-time uptake approach. **, P < 0.01; ***, P <
0.001, respectively. All the data represented here are mean ± SEM; n
= 6 for all data points
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same effects in BAT. With increase in strategies to over-
come BBB and BTB to treat metastases [1, 9, 10], it is
important to study the permeability in BAT and effect of
chemotherapy in metastatic tumors. In this study, we
found that the permeability of tracers and 14C-palcitaxel
increased in BAT when compared to normal brain re-
gions distant to the tumor. We also found that adminis-
tration of chemotherapeutic drugs induced activation of
astrocytes in these adjacent regions.
In this work, we studied permeability for two tracers,

Texas red 625 Da and Texas red dextran 3 kDa using
quantitative fluorescence microscopy. The methodology
was developed based on previous study by Mittapalli et
al., [12], where all fluorescent images were captured
using the same settings in the microscope to maintain

uniformity in fluorescence emission [17]. Permeation of
Texas red tracers in brain metastases were previously
characterized by Adkins et al. [18], and we found similar
fold-increase in tumor core. Unidirectional BBB/BTB
transfer constants Kin for both dyes were calculated
using an established multiple-time uptake approach [13].
The Kin values obtained in these studies for normal
brain and tumor were consistent with our previous pub-
lished data [12]. The increased Kin values in BAT when
compared to normal brain clearly suggest the permeabil-
ity in BAT region was increased.
Once we had confirmed the increase in permeability

of the tracers, we studied the distribution of a chemo-
therapeutic agent, 14C-paclitaxel in BAT. We used quan-
titative autoradiography (QAR) to determine the

Fig. 4 Representative image of 231Br brain metastases (a) and corresponding 14C-Paclitaxel accumulation (b) in metastases 8 h after intravenous
administration of radiolabeled paclitaxel. Paclitaxel concentrations from 100 μm squares as shown in image A and B were determined (1 = 1 ng/g,
2 = 1 ng/g, 3 = 10.5 ng/g, 4 = 293 ng/g, 5 = 261 ng/g). (c) Analysis of 14C-Paclitaxel concentration in tumor regions (− 300 μm to 0) and normal
brain regions (0 to 300 μm). Data are mean ± SEM; n = 15 for all data points
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distribution of 14C-paclitaxel in BAT, normal brain, and
within the tumor [19, 20]. We found that there is an in-
crease in accumulation of 14C-paclitaxel in the BAT re-
gion and this increase is heterogeneous similar to what
we have found in brain lesions previously [7]. The in-
crease in permeation of BTB can be accounted for
angiogenesis in the tumor [21–23] and the reasons for
this heterogeneous permeability within the lesion is due
to dynamics of angiogenic process as reported in the
previous studies [24]. Also, the vascular endothelial
growth factor (VEGF) secreted during tumor angio-
genesis disrupt the tight junctions of the BBB which
may lead to increased vascular permeability in the
BAT [25, 26].
The most common transport mechanism for drugs

across BBB is through passive diffusion [27]. For passive
diffusion of drugs across the BBB, the drugs which are
lipid soluble, low molecular weight (< 400 Da) and which
form ≤7 hydrogen bonds are better candidates [28]. Dif-
fusion through lipid membrane like BBB is dependent
on molecular volume of the solute, which in turn de-
pends on its molecular weight [29, 30]. BBB permeability
decreases 100 fold with the increase is solute’s molecular
weight from 300 Da to 450 Da [31]. In addition to solute
related limitations, the active efflux transporters like
p-glycoprotein (P-gp) and other members of ABC (ATP--
binding cassette) family of transporters present at the BBB
play a significant role in efflux of chemotherapeutic agents
from the brain to blood [32, 33]. However, in metastatic
lesions the BBB is disrupted (BTB) which results in an in-
crease in penetration of chemotherapeutic agents [34].

The higher tumor concentration of chemotherapeutic
agents in the tumor creates a concentration gradient with
the surrounding normal brain allowing the chemothera-
peutic agent to diffuse into normal brain [35]. Other stud-
ies observed increased blood flow in brain metastases and
when compared to normal brain. Regarding permeability,
the blood-to-tissue transfer constant (Ki) for 14C-α-ami-
noisobutyric acid (AIB) was increased in both tumor and
BAT when compared to normal brain, suggesting irregular
neovascularization with increased permeability in the
brain metastases [36–38].
Finally, once we confirmed the increased permeation

of tracers and increased distribution of 14C-paclitaxel in
BAT, we studied the effect of chemotherapy on BAT.
After treating with various chemotherapeutic agents, we
stained for GFAP to determine whether there was any
inflammatory effect of chemotherapeutic drugs in CNS.
GFAP is expressed in astrocytes in the brain [39], and
when there is injury, inflammation or neurodegeneration
in the central nervous system (CNS), the common reac-
tion of astrocytes is hypertrophy, referred to as reactive
astrocytosis or activated astrocytes [40–42]. This hyper-
trophy increases the expression of GFAP in astrocytes as
well as the binding affinity to GFAP antibody [43]. Ex-
pression of GFAP is altered by many factors like brain
injury and disease [16]. Many earlier studies reported
the increase in GFAP expression in various diseases such
as Alzheimer’s, Amyotrophic lateral sclerosis (ALS), Par-
kinson’s, Pick’s, Huntington’s and Autism [44–48]. In
Autism, increase in autoantibodies of GFAP has also
been found in plasma [49, 50]. In the case of acute CNS

Fig. 5 Fluorescent images representing presence of nuclei (DAPI) in blue and activated astrocytes (GFAP) in green after treating with a.Saline
(Vehicle), b. Eribulin (1.5 mg/kg I.P), c. Docetaxel: (10 mg/kg I.V), d. Paclitaxel: (10 mg/kg I.V). The GFAP expression in BAT regions in
chemotherapeutic treated group appears are higher than that of vehicle group. Scale bar = 50 μm
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injuries like brain infarction and traumatic brain injury,
there was increase in levels of GFAP in CSF [51, 52]. On
the other hand, decrease in GFAP expression was associ-
ated with depression and growth of gliomas [53, 54]. We
found that treating with chemotherapy, increased the ex-
pression of GFAP protein in BAT (Fig. 5), confirming
the presence of activated astrocytes after pharmaco-
logical chemotherapy regimens.
Recent studies indicate, chemotherapy may induce nu-

merous deleterious effects within CNS such as altered
cognitive function, memory and attention [55]. Fading of
cognitive function after chronic chemotherapy adminis-
tration in patients with cancer has been termed “che-
mo-fog” or “chemo-brain” [56]. With improvements in
survival for women with breast cancer over the past dec-
ade, there is also increased number of survivors express-
ing concerns with memory and concentration post
treatment [57–59]. Recent studies suggest that the
mechanism for chemo-fog is secondary to the toxic ef-
fects imposed by sub-lethal concentrations of chemo-
therapy on the normal cellular population of CNS [60].
Many studies suggests that chemotherapeutic agents not
only induce oxidative stress and apoptosis in CNS but
they also inhibit proliferation and differentiation of cel-
lular population of CNS leading to abnormal expression
of neurotrophic proteins in the brains [61–64].

Conclusions
In summary, we observed permeation of fluorescent
tracers were increased in the BAT compared to normal
brain, which was accompanied by increased distribution
of 14C-paclitaxel. This increase in permeation resulted in
increased uptake of chemotherapeutic agents and in-
creased the expression of GFAP in regions adjacent to
tumor, indicating reactive astrocytosis. As many new
clinical strategies to treat brain metastases tend to in-
crease drug permeation, it is also important to study po-
tential damage in normal brain.
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