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A B S T R A C T

Our group recently employed genome-wide transcriptional profiling in tandem with machine-learning based
analysis to identify a ten-gene pattern of differential expression in peripheral blood which may have utility for
detection of stroke. The objective of this study was to assess the diagnostic capacity and temporal stability of this
stroke-associated transcriptional signature in an independent patient population. Publicly available whole blood
microarray data generated from 23 ischemic stroke patients at 3, 5, and 24 h post-symptom onset, as well from
23 cardiovascular disease controls, were obtained via the National Center for Biotechnology Information Gene
Expression Omnibus. Expression levels of the ten candidate genes (ANTXR2, STK3, PDK4, CD163, MAL, GRAP,
ID3, CTSZ, KIF1B, and PLXDC2) were extracted, compared between groups, and evaluated for their dis-
criminatory ability at each time point. We observed a largely identical pattern of differential expression between
stroke patients and controls across the ten candidate genes as reported in our prior work. Furthermore, the
coordinate expression levels of the ten candidate genes were able to discriminate between stroke patients and
controls with levels of sensitivity and specificity upwards of 90% across all three time points. These findings
confirm the diagnostic robustness of the previously identified pattern of differential expression in an in-
dependent patient population, and further suggest that it is temporally stable over the first 24 h of stroke pa-
thology.

1. Introduction

The ability of clinicians to confidently recognize stroke during
triage increases access to interventional treatments and affords patients
improved odds for favorable outcome [1,2]. However, the diagnostic
tools currently available to emergency medical technicians, para-
medics, and hospital staff for identification of stroke have significant
limitations [3,4]. Biomarker-based tests are clinically used to aid in the
diagnosis of acute cardiovascular conditions such as myocardial in-
farction [5], however no such assay currently exists for the detection of
stroke. This diagnostic limitation has resulted in a push for the identi-
fication of peripheral blood stroke biomarkers which could be rapidly
measured in either the field or emergency department to guide early
triage decisions [3,6].

Our group recently employed high-throughput transcriptomics in

combination with a machine learning technique known as genetic al-
gorithm/k-nearest neighbors (GA/kNN) to identify a panel of ten can-
didate genes whose peripheral blood expression levels were able to
differentiate between 78 ischemic stroke patients and 74 control sub-
jects with a high degree of accuracy [7]. These candidate genes include
seven whose expression levels were elevated in stroke patients relative
to controls (CD163, ANTXR2, PDK4, PLXDC2, STK3, ID3, CTSZ, KIF1B),
and three whose expression levels were down regulated (MAL, ID3,
GRAP); their coordinate pattern of differential expression was able to
discriminate between groups with levels of sensitivity and specificity
approaching 100%. While the levels of diagnostic performance ob-
served in this discovery investigation were unprecedented, limitations
in study design necessitate further evaluation of the candidate genes in
a validation analysis before definitive conclusions can be made re-
garding their true diagnostic efficacy.
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Stroke patients and control subjects in this discovery investigation
were not well matched in terms of cardiovascular disease (CVD) risk
factors, leaving open the possibility that the pattern of differential ex-
pression which we observed across the ten candidate genes was driven
by underlying CVD, and not by the acute event of stroke itself.
Furthermore, subjects in this discovery study were almost exclusively
Caucasian, and it is currently unknown whether ethnicity impacts the
diagnostic efficacy the candidate genes, a possibility which deserves
consideration due to the fact that there can be notable inter-ethnic
differences in the pathophysiology of cardiovascular conditions [8–11].
A further limitation in of this discovery study was the fact that blood
samples were only collected at a single time point, making the temporal
stability of candidate gene differential expression unclear with regards
to the progression of stroke pathology. While post hoc statistical ana-
lyses were used to address these potential confounds as best possible, it
would be reassuring to observe similar levels of diagnostic performance
across multiple time points in a more ethnically diverse subject pool
which is better matched in terms of CVD risk factors.

Stamova et al. recently used microarray to examine gender differ-
ences in the response of the peripheral immune system to stroke [12].
This investigation produced a publicly available data set which includes
genome-wide whole blood expression data generated from 23 cardi-
oembolic ischemic stroke patients at three replicate time points post-
symptom onset (3, 5, and 24 h), as well as from 23 neurologically
asymptomatic control subjects; this patient population was ethnically
diverse and groups were well matched in terms of risk factors for CVD.
In the study reported here, we assessed the diagnostic robustness of the
ten previously identified candidate genes in the aforementioned pub-
licly available data set.

2. Methods

2.1. Data procurement

Raw whole blood microarray data (Affymetrix Human Genome
U133 Plus 2.0 Array) were downloaded as .CEL files from the National
Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) via accession number GSE58294 (Supplementary File 1). Patient
clinical and demographic characteristics were aggregated from the
gender-wise information reported by Stamova et al. [12].

2.2. Microarray analysis

Analysis of microarray data was performed using the ‘affy’ package
for R (R project for statistical computing) [13,14]. Raw perfect match
probe intensities were background corrected, quantile normalized
(Fig. 1), and summarized at the set level via robust multi-array aver-
aging using the rma() function [15]. Probe set level data associated
with the ten candidate genes were then extracted for differential ex-
pression analysis; in the case of candidate genes with more than one
associated probe set, data were further summarized at the gene level via
simple averaging. Gene level summarized expression levels were then
compared between stroke patients and controls across all three post-
onset time points.

2.3. Diagnostic evaluation

The diagnostic robustness of candidate gene expression levels was
tested in terms of their ability to discriminate between stroke patients
and controls using k-nearest neighbors (kNN) at each time point post-
symptom onset. Classification was performed using standardized ex-
pression values, five nearest neighbors, and majority rule via the knn.cv
() function of the ‘class’ package for R [16]. Same-set leave one out
cross-validation was performed, and the resultant prediction prob-
abilities were used to generate receiver operator characteristic (ROC)
curves using the roc() function of the ‘pROC’ package for R [17]. Areas

under curves were then compared between time points via the roc.test()
function according the non-parametric method described by DeLong
et al. [18].

2.4. Statistics

All statistics were performed using R 3.3. Fisher's exact test was
used for comparison of dichotomous variables. t-Test or one-way
ANOVA was used for comparisons of continuous variables where ap-
propriate. The null hypothesis was rejected when p < 0.05. In the case
of multiple comparisons, p-values were false discovery rate adjusted
using the Benjamini-Hochberg procedure [19].

3. Results

3.1. Clinical and demographic characteristics

Stroke patients were significantly older than control patients, but
well matched in terms of gender and ethnicity. In terms of cardiovas-
cular disease risk factors, groups were well matched with regards to
rates of hypertension and diabetes, however control subjects displayed
a significantly higher prevalence of dyslipidemia relative to stroke pa-
tients. All stroke patients received thrombolytic intervention via re-
combinant tissue plasminogen activator (rtPA) following 3 h blood
collection, but prior to 5 h blood collection (Table 1).

3.2. Microarray data processing

Distributions of perfect match probe intensities were visually similar
following normalization, providing indication that normalized expres-
sion data were suitable for inter-sample comparison (Fig. 1). Probe sets
extracted for differential expression analysis are listed in Table 2.

3.3. Candidate gene differential expression

Six of the seven candidate genes which we had previously reported
as being elevated in stroke in our prior investigation displayed similar
up-regulation in stroke patients relative to controls (Fig. 2A, B, D, E, F,
J), however one exhibited no significant differences in expression levels
at any time point post-symptom onset (Fig. 2H). In terms of the can-
didate genes which we had previously reported as being down regu-
lated in stroke, all three displayed significantly lower expression levels
in stroke patients relative to controls (Fig. 2C, G, I). Collectively, these
observations largely confirmed the pattern of candidate gene differ-
ential expression reported in our prior investigation.

3.4. Temporal profile of candidate differential expression

Most candidate genes displayed some degree of differential ex-
pression by 3 h post-symptom onset, and the magnitude of the overall
response appeared to increase over time. Several candidate genes ap-
peared to achieve maximal differential expression at 5 h post-onset and
then plateau, while a few displayed steady increases in the degree of
differential expression through 24 h (Fig. 3), providing evidence that
the expression levels of the candidate genes are likely directly re-
sponsive to acute stroke pathology.

3.5. Candidate gene diagnostic performance

In terms of diagnostic ability, the coordinate expression levels of the
ten candidate genes were able to discriminate between stroke patients
and controls using kNN with levels of sensitivity and specificity up-
wards of 90% at all three time points post-symptom onset (Fig. 4A, B,
C). While the overall diagnostic capacity of the ten candidate genes
appeared slightly more robust at five and 24 h, no statistically sig-
nificant differences in area under ROC curve were observed between
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time points (Fig. 4D). Taken together, these observations supported the
high levels of diagnostic performance reported in our prior work, and
suggest that the diagnostic capacity of the ten candidate genes is tem-
porally stable over the first 24 h post-symptom onset.

4. Discussion

There has been a recent push for the identification of molecular
biomarkers which could be used to aid clinicians in the recognition of
stroke during patient triage. Our group recently employed high-
throughput transcriptomics in combination with a machine-learning
technique known at GA/kNN to identify a ten gene pattern of differ-
ential expression in peripheral blood which has potential utility for the
detection of stroke [7]. However, patients in this discovery investiga-
tion were almost exclusively Caucasian, groups were not well matched
in terms of CVD risk factors, and blood was only sampled at a single
time point post-symptom onset. In the study reported here, we lever-
aged a publicly available microarray dataset to evaluate the previously
identified candidate pattern of gene expression at multiple pathological
time points in a more ethnically diverse subject pool which was better
matched in terms of CVD risk factors.

The overall pattern of differential expression which we previously
reported between stroke patients and controls was largely confirmed in
the analysis described here, as nine of the ten candidate genes were

identically differentially regulated. Furthermore, the candidate genes
displayed similar levels of diagnostic robustness as described pre-
viously. This suggests that it is unlikely that our prior findings were
substantially driven by intergroup differences in CVD risk factors; this
notion is accentuated by the fact that the overall pattern of differential
expression across the ten candidate genes was temporally dynamic with
regards to time from symptom onset, providing evidence that the

Fig. 1. Normalization of microarray data.
Distributions of pre and post-normalization perfect match probe intensities. Boxplots indicate standard five number summary values.

Table 1
Clinical and demographic characteristics.

Cardiovascular
disease (n = 23)

Ischemic stroke
(n = 23)

p

aAge mean ± SD 57.9 ± 3.3 57.9 ± 7.9 < 0.001⁎
bFemale n(%) 11 (47.8) 11 (47.8) 1.000
bNon-caucasian n(%) 4 (17.4) 8 (34.8) 0.314
bDyslipidemia n(%) 16 (69.6) 6 (26.1) 0.007⁎
bHypertension n(%) 16 (69.6) 16 (69.6) 1.000
bDiabetes n(%) 5 (21.7) 4 (17.4) 1.000

aBaseline NIHSS
mean ± SD

0.0 ± 0.0 15.4 ± 7.4 < 0.001⁎

brtPA n(%) 0 (0.0) 23 (100.0) < 0.001⁎

a Compared via two sample two way t-test.
b Compared via Fisher's exact test.
⁎ Statistically significant.

Table 2
Probe sets extracted for differential expression analysis.

Gene Affy probe set ID Target transcriptsa

CD163 203645_s_at NM_004244
215049_x_at NM_203416
216233_at XM_005253528

XM_005253529
XR_429039

ANTXR2 1555536_at NM_001145794
225524_at NM_001286780
228573_at NM_001286781
238050_at NM_058172

MAL 204777_s_at NM_002371
NM_022438
NM_022439
NM_022440

PDK4 205960_at NM_002612
PLXDC2 214807_at NM_001282736

226865_at NM_032812
227276_at
227995_at
236297_at
238455_at

STK3 204068_at NM_001256312
211078_s_at NM_001256313

NM_006281
XM_005251034

ID3 207826_s_at NM_002167
CTSZ 210042_s_at NM_001336

212562_s_at
GRAP 206620_at NM_006613

229726_at XM_005256425
XM_005256426

KIF1B 209234_at NM_015074
225878_at NM_183416
226968_at
228657_at

a NCBI RefSeq ID.
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candidate genes are directly responsive to stroke pathology. The fact
that our prior observations were largely recapitulated in the analysis
reported here also suggests that ethnicity likely has little influence on
the overall transcriptional response of the candidate genes to stroke.

One possible exception with this regard is CTSZ, which was the only
candidate gene which failed to exhibit a similar response to stroke as
previously reported. Thus, it is possible that the differential regulation
of CTSZ which we observed in our discovery investigation was indeed
driven primarily by underlying CVD, or that there are interethnic dif-
ferences in the responsiveness of CTSZ to stroke. However, to our
knowledge, there are no associations reported in the literature to sup-
port either conclusion, and is possible that the discrepancy in response
between investigations has other explanation. The samples analyzed in
this study were obtained exclusively from patients presenting with is-
chemic strokes of cardioembolic etiology, while the samples used in our
prior discovery study were obtained from patients presenting with is-
chemic strokes of multiple etiologies, including a large number which
were thrombotic in nature; thus it is possible that the disagreement in
findings is due to an etiology-specific response. The disagreement in
findings could also be driven by a technical confound, as the gene ex-
pression data used in this analysis were generated using a different gene
chip then that which was used in our discovery investigation, and the
chips do not have completely overlapping transcriptional coverage of
CTSZ.

In addition to providing a general validation of the overall pattern

Fig. 2. Candidate gene differential expression.
(A–J) Peripheral whole blood expression levels of candidate genes in stroke patients and controls at 3, 5, and 24 h post-symptom onset. Expression values represent gene-level sum-
marized Log2 perfect match probe intensities. Expression levels were statistically compared between stroke patients and controls across time points using one-way AVOVA; p-values were
false discovery rate adjusted via the Benjamini-Hochberg procedure to account for multiple comparisons. In the case of a significant test, post hoc comparisons were made via two-sample
two-tailed t-test.

Fig. 3. Temporal profile of candidate gene differential expression.
Magnitude of candidate gene differential expression between stroke patients and controls
at 3, 5, and 24 h post-symptom onset, indicated as fold difference relative to control.
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of candidate gene differential expression, this study also afforded us an
opportunity to evaluate its temporal stability with regards to stroke
pathophysiology. The overall pattern of differential expression was
modestly detectable at 3 h post-symptom onset and appeared to in-
crease in magnitude though 24 h. Despite the modest magnitude, the
levels of differential expression present at 3 h post-onset were still
adequate to differentiate between groups with similarly high levels of
diagnostic performance as those observed at the subsequent two time
points. Overall, our findings suggested that the diagnostic ability of the
candidate pattern of gene expression is relatively temporally stable over
the first 24 h of stroke pathophysiology, which is encouraging from a
translational standpoint in that the first clinical contact with stroke
patients tends to vary across a wide time range with regards to time
from onset, depending in the overtness of symptom presentation.

It is relevant to note that the 5 and 24 h blood samples which we
analyzed in this study were collected from stroke patients following
thrombolytic intervention, leaving open the possibility that the differ-
ential expression which we observed across the candidate genes at these
time points was driven by the effect of rtPA, and not the ischemic event
itself. However, we find this unlikely, as the differential expression
pattern which we observed was highly similar to the one reported in
our previous discovery investigation in which all blood samples were
collected prior to the administration of thrombolytics. Furthermore, the
fact we have now observed a similar pattern of differential expression
both before and following thrombolytic intervention suggests that the
response of the candidate markers is not largely influenced by rtPA; this
property leaves open the possibility that the candidate markers could be
clinically useful not only for triage, but also for non-acute post-treat-
ment indications, such as to molecularly confirm pathology as means of
determining clinical trial eligibility.

A potential limitation with regards to this study lies in that the
stroke patients and controls associated with the samples used in this
analysis were not well matched in terms of age. Ideally, multiple re-
gression could be used to statistically control for such a potential con-
found, however non-aggregated demographic information was not
available for the dataset, making such an analysis impossible. However,
we explored the relationship between the expression levels of the ten
candidate genes and age as part of our previously reported discovery
investigation, and observed no significant associations. Thus, we feel
that it is unlikely that the results reported here are confounded by in-
tergroup age differences.

It is also important to note that a significant translational limitation
in our analysis lies in that we built and tested a de novo classification
model using only the candidate gene expression data contained in the
dataset generated by stamova et al. Ideally, the classification model we
generated in our previously-published discovery analysis could have
been tested in the Stamova et al. dataset, however this was infeasible
due to the fact that different microarray platforms were used between

the two investigations (Illumina versus Affymetrix) and accurate cross-
platform normalization is difficult. Nonetheless, this does not diminish
the fact that we observed a highly identical pattern of differential ex-
pression across the candidate markers as reported in our prior discovery
investigation, which provides compelling evidence that these makers
are reliably altered in stroke pathology and have true potential for
clinical biomarker use.

However, for such clinical use to be realized, there are several
further developmental hurdles which need to be overcome. Most no-
table from this regard is the development of an assay which could
measure these markers rapidly and accurately at the point of care with
minimal specimen processing, which would be essential for triage use in
the acute care setting. Unfortunately, a commercially available plat-
form capable of rapid nucleic acid quantification with high enough fi-
delity to detect relatively modest levels of differential expression, such
as those we have described across the candidate markers, does not
currently exist. However, research into rapid detection of nucleic acids
is ongoing, and promising new advances such as those regarding direct
RNA nanodetection and thermoneutral amplification suggest that sui-
table technologies will be available in the near future [20–22].

Collectively, the findings of this analysis confirm the diagnostic
robustness of the previously identified stroke-associated pattern of gene
expression, and further suggest that it is temporally stable over the first
24 h of stroke pathology. Due to fact that this transcriptional signature
has now demonstrated levels of diagnostic performance which well
exceed those of the triage tools currently available to clinicians for
identification of stroke in two independent investigations, we feel that
it has legitimate translational potential and a path towards clinical
implementation should be further explored.

Disclosures

GCO and TLB have a patent pending re: markers of stroke and stroke
severity. TLB serves as chief scientific officer for Valtari Bio
Incorporated. Work by GCO is part of a pending licensing agreement
with Valtari Bio Incorporated. The remaining authors report no po-
tential conflicts of interest.

Transparency document

The Transparency document associated with this article can be
found, in online version.

Acknowledgements

Work was funded via a Robert Wood Johnson Foundation nurse
faculty scholar award to TLB (70319) and a National Institutes of
Health CoBRE sub-award to TLB (P20 GM109098).

Fig. 4. Candidate gene diagnostic performance.
(A–C) Two-dimensional projections of the kNN feature spaces generated by the coordinate expression levels of the ten candidate genes at 3, 5, and 24 h post-symptom onset. Levels of
sensitivity and specificity are associated with class predications generated via five nearest neighbors using a probability cutoff of 0.50. (D) ROC curves associated with the prediction
probabilities generated in kNN. Shaded areas indicate 95% confidence intervals. Areas under curves were statistically compared between time points using the DeLong method.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2017.08.006.
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