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ABSTRACT

We present visible and near-IR spectra of the nucleus of comet 162P/Siding Spring (also known as 2004 TU12)
obtained in 2004 December, while it had no detectable coma. This is the third object observed to have intermittent
cometary activity even when relatively close to the Sun. The spectra show no strong features in this wavelength range.
This paucity of deep absorptions is common among low-albedo asteroids and the few comet nuclei observed in this
spectral region. Marginal spectral structure is observed in the visible spectrum, and beyond 2 �m the flux from the
nucleus is dominated by thermal emission. We compare the spectrum of 162P with published spectra of other comet
nuclei, primitive asteroids, and meteorites. Comet nuclei display a range of spectral shapes and slopes not unlike those
observed among outer main-belt asteroids but closest to Trojan asteroids. No suitable spectral matches to comet 162P
were found among primitive (chondritic) meteorites. We modeled our visible and near-IR spectra using the scattering
theory described by Shkuratov et al. (1999), and our approach is similar to that used by Emery and Brown for modeling
Trojan asteroids. Our best fits to the spectral shape and albedo include mixtures containing amorphous carbons,
organics, and silicates. The absence of strong spectral features prevents the identification of specific minerals, and the
resultingmodel compositions are not unique. The observations beyond 2�mare interpreted in a companion publication
by Fernández and coworkers.

Key words: comets: individual (162P) — infrared: solar system

Online material: color figure

1. INTRODUCTION

Comet-asteroid transition objects provide opportunities to study
physical and dynamical processes that are less evident or absent
in the more clear-cutmembers of either population. Until recently,
the two types of transitional objects were inactive or low-activity
comets or asteroids in comet-like orbits (e.g., Weissman et al.
2002). Comets with intermittent activity join the other two types
of transitional objects as important pieces of this puzzle. Comet
162P/Siding Spring, also known as 2004 TU12, is the third
inner solar system object observed to have intermittent cometary
activity even when relatively close to the Sun. The other two such
objects are comets 107P/WilsonHarrington and 133P/Elst-Pizarro,
also known as asteroids 4015 and 7968, respectively (Weissman
et al. 2002; Hsieh et al. 2004 and references therein). This object
was discovered onUT2004October 10 at Siding Spring, Australia,
by R. McNaught (MPEC 2004-T55). At that time, one month
before its perihelion, the appearance was asteroidal. It was first
recognized as a comet on 2004 November 12, when an eastward
tail was reported (Mallia et al. 2004); however, the nuclear im-
age appeared stellar. The length and brightness of the tail has

been variable, but the nucleus has remained stellar. The tail was
originally reported on November 12.0 and 12.8 to be about 20

and 40 long, respectively, and at a position angle of 70�. The tail
was observed to fade and detach from the nucleus over the fol-
lowing few days (Masi 2004). The tail reappears in images taken
by C. Hergenrother on UT 2004 December 9 and by J. Lacruz
on UT 2004 December 10 (C. Hergenrother 2005, private com-
munication). On November 12 and December 9 the heliocentric
(R) and geocentric (�) distances were R¼1:23 and 1.27 AU and
� ¼ 0:46 and 0.61 AU, respectively. The orbital elements of
162P make it a Jupiter-family comet with a Tisserand invariant
T ¼ 2:80. The Tisserand invariant is a constant of the motion in
the restricted three-body problem (with Jupiter). This parameter
is often used to differentiate dynamically between Jupiter-family
comets (2 < T < 3), most asteroids (T > 3), and Halley-type
comets (T < 2) (e.g., Carusi et al. 1987; Levison 1996).
In this work we present near-IR and visible spectroscopy of

comet 162P obtained in 2004December, approximately 2 months
after its discovery. We use these observations to characterize the
nuclear surface of this comet and to compare it with other simi-
larly observed comet nuclei, primitive asteroids, and meteorites.
Mid-IR (8Y25 �m) photometry is presented in Fernández et al.
(2006, hereafter Paper II) and used to estimate the size, albedo,
and other thermal properties of the nucleus of 162P.

2. OBSERVATIONS

We obtained near-IR (0.8Y2.4 �m) and visible spectra of 162P.
The observing geometry for these dates and the instruments used
are presented in Table 1.

2.1. Near-Infrared Spectra

We obtained three low-resolution near-IR spectra of 162P from
two telescopes. On UT 2004 December 3.25 and 10.25 we used
the NASA 3.0 m Infrared Telescope Facility (IRTF) with the
SpeX instrument. On UT 2004 December 11.88 we observed

A
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from the 3.56 m Telescopio Nazionale Galileo (TNG) with the
Near-InfraredCamera Spectrometer (NICS; see Baffa et al. 2001).
All three nights were photometric and had stable seeing con-
ditions. Among the observing modes offered by the NICS and
SpeX instruments are high-throughput, low-resolution spectro-
scopic modes with a prism disperser (Oliva 2000; Rayner et al.
2003). These modes yield a complete 0.8Y2.4 �m spectrum in a
single exposure. With NICS a 1B5 width slit was used, corre-
sponding to a spectral resolving powerR � 34, quasi-constant
along the spectrum. With SpeX a 0B8 width slit was used,
corresponding to a spectral resolving power R � 130.

The object was relatively bright (Vmag � 10) andwas identified
as a moving object at the predicted position and with the expected
motion. The guider images did not show any evidence of coma
activity at the time. Because of the limited time available for these
target-of-opportunity observations, we were unable to obtain im-
aging frames for quantitative limits on possible coma contribution
to the flux. The slit was oriented in the parallactic angle (the
position angle for which the slit is perpendicular to the horizon)
to avoid problems with differential atmospheric refraction, and
the tracking was at the comet’s motion. At the IRTF, the data ac-
quisition consisted of the following sequence: a 30 s exposure
time image was obtained in one position (position A) of the slit,
and then the telescope was offset by 1000 in the direction of the slit
(position B), where another 30 s exposure time image was ob-
tained. This process was repeated, and 12 ABBA cycles were
acquired. At the IRTF the total exposure time was 1440 s on
each of the two nights. At the TNG, the acquisition process was
the same, with three ABBA cycles of 60 s exposures in each
position for a total exposure time of 720 s.

The reduction and calibration of all the near-IR spectra was
done as described in Licandro et al. (2006). Flat-field images
and wavelength calibrations were obtained periodically through-
out the observations. To correct for telluric absorption and to

obtain the relative reflectance, the G stars Landolt SA 115-271,
Landolt SA 93-101, and Landolt SA 112-1333 (Landolt 1992),
which have colors very similar to that of the Sun, were observed
during the same nights and at a similar air mass as the comet.
These stars were observed in previous nights and compared
with the spectrum of the solar analog P330E (Colina & Bohlin
1997), also observed by us. The Landolt stars and the solar
analog showed similar spectra in the near-IR region; therefore,
we used the Landolt stars as local solar analogs. The flat-fielded
and wavelength-calibrated spectral frames were shifted to align
and stacked to provide combined frames fromwhich the spectra
were extracted using the procedure described by Cushing et al.
(2004). The near-IR spectra of the comet were divided by the
mean spectrum of the solar analog stars and normalized to unity
at 1.6 �m, thus obtaining the relative reflectances for all three
dates plotted in Figure 1. Because the object was bright and the
atmospheric conditions very good, the random errors for these
spectra are particularly low (about 1% for each point); the point-
to-point variability in each spectrum confirms this. For clarity,
we do not show the error bars in Figure 1; instead, we plot one
of our spectra (December 3) with the error bars for each point in
Figure 2. The observational uncertainties for the other two
nights are essentially identical; all three nights had equally good
weather and the procedure was the same. To illustrate the poten-
tial impact of telluric absorptions, we plot the flux distribution
(in counts vs. wavelength) for one of our standards in Figure 3.
In principle, telluric conditions can vary between the comet spec-
tra and the standard-star spectra, introducing false spectral fea-
tures, particularly in the two deepest bands near 1.35Y1.45 and
1.80Y2.0 �m. However, this was not the case in our spectra, and
false structure is no more than 2% above or below the contin-
uum. Beyond 2.0 �m, the shape of all three near-IR spectra is
dominated by the thermal contribution from the warm nucleus
(which is used in Paper II to estimate the albedo and beaming pa-
rameter of the nucleus).

TABLE 1

Observing Dates and Orbital Geometry for 162P

UT Date 2004

R

(AU)

�

(AU)

Solar Phase Angle

(deg) Air Mass Instrument and Telescope

Dec 3.25..................... 1.26 0.57 49 1.05 SpeX IRTF

Dec 10.25................... 1.28 0.63 49 1.05 SpeX IRTF

Dec 11.88................... 1.28 0.64 48 1.10 NICS TNG

Dec 12.86................... 1.29 0.65 48 1.10 ALFOSC NOT

Fig. 1.—Near-IR reflectance spectra of comet 162P obtained on UT 2004
December 3.25 (circles), 10.25 (dashes), and 11.88 ( plus signs) normalized to
1.0 at 1.60 �m. The difference between these spectra, although small, appears to
be real and not due to systematic effects.

Fig. 2.—December 3.25 near-IR reflectance (from Fig. 1) with 1 � error bars
(0.5%).
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The three near-IR spectra in Figure 1 are very similar; however,
slight differences are apparent. The December 10 spectrum is
consistently higher than those of December 3 and 11 shortward
of 1.4 �m and consistently lower longward of 1.6 �m. Similarly,
the December 11 spectrum is consistently lower than those of
December 3 and 10, shortward of 1.5 �m. These differences do
not appear to be systematic artifacts. Although slight differ-
ences (�2%) in the slope can be attributed to systematic effects
resulting from the centering of the object on the slit and the see-
ing conditions (Cushing et al. 2004), such slope differenceswould
not mimic the observed differences. We consider these to be real
changes in the spectrum of the comet produced by rotational var-
iations of the surface composition and/or a variable coma con-
tribution; however, we do not have the means to evaluate either
of these possibilities. In any case, since the differences are rela-
tively minor, we averaged the three near-IR spectra to combine
them with the visible spectrum and for comparison with other
objects and models (x 3). The slope of the averaged IR spectrum
from 1 to 2 �m and normalized at 1.6 �m is S 0 ¼ 3:6% �
0:3% per 1000 8 (Table 2). Note that the continuum slope of a
spectrum can be parameterized using the normalized reflectivity
gradient, which is usually denotedwith S

0
[% (10008)�1] and de-

fined as S 0 ¼ dS/dk/S 00 (e.g., Jewitt 2002). Here S is the reflec-
tivity (object flux density divided by the flux density of the Sun
at the same wavelength) and S

0 0
is the mean value of the reflec-

tivity in the wavelength range over which dS/dk is computed.
The gradient S

0
is used to express the percentage change in the

strength of the continuum per 1000 8. The use of S
0
facilitates

comparisons with the spectral slopes of other objects at visible
and IR wavelengths; however, one must keep in mind that S

0

only conveys the average slope of a spectrum that is not a
straight line. Our estimates of the uncertainty in the value of S

0

include contributions from small variations in the slopes of our
standard stars. In Table 2 the value of S

0
for124P/Mrkos is from

Licandro et al. (2003). For comets 19P/Borrelly and C/2001
OG108, S

0
was estimated from plots in Soderblom et al. (2004)

and Abell et al. (2005) (OG108).

2.2. Visible Spectrum

A visible spectrum of our target was obtained on UT 2004
December 12.88 with the 2.5 m Nordic Optical Telescope (NOT)
on La Palma, Spain, using the Andalucia Faint Object Spectro-
graph and Camera (ALFOSC) instrument. We used a 1B3 slit
and grism disperser 4 with a wavelength range of 0.32Y0.91 �m
(kcent ¼ 0:58 �m and spectral resolving power R ¼ 710). Spec-
tra in two wavelength ranges were obtained and combined. A
540 s exposure spectrum without a filter was obtained covering
the 0.35Y0.65 �m region, and another spectrum with a second-
order blocking filter (cutoff wavelength at 0.47 �m) was ob-
tained covering the 0.5Y0.9 �m region with an exposure time of
670 s. The overlap region between the two spectra from 0.50 to
0.65 �m gave excellent agreement and was used to combine
them. As in the near-IR observations, the slit was oriented in the
parallactic angle and the tracking was at the object proper motion.
The spectral data reduction was done using the Image Reduction
and Analysis Facility (IRAF) package, following standard pro-
cedures.Wavelength calibration was performed using a helium-
neon lamp, and two solar analog stars (Landolt SA 98-978 and
SAO 93936, also known as Hyades 64) were observed to cor-
rect for telluric absorption and to obtain the reflectance spec-
trum of the comet, as it was done in the near-IR. The reduction
of this spectrum was done as described in de León et al. (2004).
The calibrated visible spectrum of the comet was divided by
each solar analog; both of these ratios were averaged for the
final result shown in Figure 4. At visible wavelengths it is cus-
tomary to normalize spectra at 0.55 �m. The slope of the visible
spectrum of comet 162P normalized at 0.55 �m is S 0 ¼ 9:2% �
1:0% per 1000 8 (Table 2). This value is roughly in the middle
of the range of those observed for comet nuclei (e.g., Campins &
Fernández 2002). The overlap between 0.8 and 0.9 �m for the vis-
ible and the near-IR spectra was used to combine these into the
same reflectance scale normalized at 1.60 �m, thus obtaining
the relative reflectance plotted in Figure 5.

3. ANALYSIS AND RESULTS

There are no strong spectral features in the wavelength range
covered. This paucity of deep absorption features is common

Fig. 3.—Flux (in counts) from one of the standards, Landolt SA 93-101, as a
function of wavelength, illustrating the behavior of the atmospheric extinction.

TABLE 2

Spectral Slopes for 162P and Other Comet Nuclei

Comet

Spectral Slope S
0

(% [1000 8]�1)

Normalization

(�m) Notes

162P (vis).................... 9.2 � 1.0 0.55

162P (IR) .................... 3.6 � 0.3 1.6

19P/Borrelly................ 7.7 � 0.8 1.6 a

124P/Mrkos ................ 3 � 1.0 1.6 b

C/2001 OG108 ............. 2.1 � 0.2 1.6 a

a Estimated from the plots in Soderblom et al. 2004 (19P/Borrelly) and Abell
et al. 2005 (C/2001 OG108).

b From Licandro et al. 2003.

Fig. 4.—Visible reflectance spectrum obtained on December 12.86 with 1 �
error bars plotted normalized to 1.0 at 0.55 �m. An absorption at 0.42 �m that is
0.02 �mwide (FWHM) is marginally detected. This feature could be produced by
hydrated silicates (x 3.1).
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among low-albedo asteroids and the few comet nuclei observed in
this spectral region (e.g., Abell et al. 2005; Campins et al. 2003;
Emery & Brown 2003; Licandro et al. 2002, 2003; Fernández
et al. 2004; Soderblom et al. 2004). However, the overall shape
of the spectrum can yield significant constraints on the surface
composition. In addition, there is a hint of spectral structure that
deserves some attention.

3.1. Spectral Shape

In the 0.3Y0.9 �m region the slope and shape of the spectrum
are within the range found for D-type asteroids (e.g., Jewitt 2002;
see also x 3.4). Closer scrutiny of the visible spectrum (Fig. 4)
shows hints of an absorption at 0.42 and 0.02 �mwide (FWHM).
This possible feature corresponds well with an absorption ob-
served in a number of low-albedo asteroids, more specifically
C-, P-, and G-type asteroids, and attributed to hydrated minerals
such as jarosite [KFe3(SO4)2(OH)6] (Vilas et al. 1993; Cochran
& Vilas 1997). Although tantalizing, the feature is marginally
detected, and it is difficult to come to any conclusion.

In the near-IR, we see no evidence for spectral structure greater
than 2% of the continuum value. Jarosite, the mineral considered
in the previous paragraph, has an absorption near 2.25 �m, which
is absent in our spectra (Fig. 1). However, asmentioned in x 2, that
portion of our spectra has a strong thermal emission contribution,
making the absence of the 2.25 �m less significant.

3.2. Comparison with Spectra of Other Comets

Our averaged near-IR spectrum of 162P is plotted from 1 to
2 �m in Figure 6, along with the near-IR spectra of comets 19P/
Borrelly, 124P/Mrkos, and LONEOS OG108 (Soderblom et al.
2004; Licandro et al. 2003; Abell et al. 2005). Each of these
comet spectra is featureless within the noise, and they have slopes
S 0 ¼ 7:7%; 3:0%; and 2:1% per 10008, respectively (Table 2).
The spectrum of 19P/Borrelly is very red, among the red-
dest observed in the solar system (the term ‘‘red’’ is commonly
used to refer to spectra with increasing reflectance as a function
of wavelength). We note that this spectrum was obtained by the
Deep Space 1mission, and its reduction and calibration presented
unique challenges (Soderblom et al. 2004). There is an additional
near-IR spectrum of a comet nucleus, that of 28P/Neujmin 1
(Licandro et al. 2001; Campins et al. 2001). The published near-
IR spectrum of 28P/Neujmin 1 also appears to be featureless
within the noise and has a nearly flat slope; however, it has been
reported that 28P displays significant changes in its spectral slope
(Campins et al. 2003). Therefore, a proper comparison with 28P

requires a better understanding of its variability. Asteroid 944
Hidalgo is in a cometary orbit and is considered among the most
likely asteroids to be of cometary origin. Asteroid 944 Hidalgo
also shows spectral variability in the near-IR, and a detailed
discussion of Hidalgo’s rotational variability is given in a sep-
arate paper (H. Campins et al. 2006, in preparation). Some of
the near-IR spectra of Hidalgo are essentially identical to that of
162P/Siding Spring (Campins et al. 2005; Abell et al. 2005).
From Figure 6 we conclude that comet nuclei show a range of
red slopes in this wavelength region analogous to the variations
observed at shorter wavelengths (Campins & Fernández 2002
and references therein).

3.3. Comparison with Spectra of Asteroids

Low-albedo ‘‘primitive’’ asteroids in the outer main belt, as
well as in the Trojan clouds, also have red spectra with little or no
structure. By primitive asteroids we mean C, P, and D types in the
Tholen classification scheme (Tholen & Barucci 1989); some of
these primitive asteroids may be related to comets. In Figure 7 we
compare our visible and near-IR spectra of comet 162P with the
average spectra of three representative main-belt P-type asteroids

Fig. 6.—Near-IR reflectance spectrum of comet 162P (squares) plottedwith the
spectra of comets 19P/Borrelly (diamonds), 124P/Mrkos (crosses), and C/2001
OG108 (triangles) (Soderblom et al. 2004; Licandro et al. 2003; Abell et al. 2005),
normalized to 1.0 at 1.60 �m. The spectrum of 124P was binned to a lower spectral
resolution for clarity. Also for clarity, the error bars are only plotted for 124P; the
point-to-point variations in the other spectra are more evident and are indicative of
the uncertainty. The spectral slopes for these objects are listed in Table 2.

Fig. 5.—Visible reflectance spectrum (from Fig. 4) plotted with the average of
all three near-IR reflectance spectra, normalized to 1.0 at 1.60 �m. The overlap
between 0.8 and 0.9�m in the visible and near-IR spectra was used to combine both
into the same reflectance scale. The reflectance beyond 2.0 �m is dominated by
thermal emission and not plotted here.

Fig. 7.—Visible and near-IR spectra of comet 162P plotted with the average
spectra of three representative P-type asteroids (horizontal bars) and three repre-
sentative D-type asteroids (triangles), normalized to 1.0 at 1.60 �m. In this case the
error bars show the range of the asteroid spectra that were used in this average. In
the visible region the slope of the comet and that of the D asteroids are the same, but
in the near-IR the comet’s slope is significantly steeper than that of the asteroids.
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(65 Cybele, 76 Freia, and 476 Hedwig) and three representative
main-belt D-type asteroids (336 Lacadiera, 368 Haidea, and 773
Irmintraud; Zellner et al. 1985; Bell et al. 1988). Shortward of
1.0 �m the spectrum of 162P is closer to that of D-type asteroids
(S 0 ¼ 9:1% � 1:1% per 10008; Fitzsimmons et al. 1994). In the
1Y2 �m region, 162P is significantly redder than the P andD types
plotted, which have S

0
values of 1.9% and 2:4% � 0:2% per

1000 8, respectively.
Recently, Morbidelli et al. (2005) provided dynamical argu-

ments indicating that Trojan asteroids may have formed in more
distant regions and were subsequently captured into co-orbital
motion with Jupiter. In addition, escaped Trojans are considered
one possible source of Jupiter-family comets (e.g., Marzari et al.
1997). Since it is well established that the visible spectra of
Trojans are similar to those of inactive comet nuclei (e.g., Jewitt
2002 and references therein), we concentrate on comparisons of
near-IR spectra. In Figures 8 and 9 we compare our near-IR
spectrumwith those of seven of the Trojan asteroids observed at
similar wavelengths by Emery&Brown (2003). Figure 8 shows
the range of spectra exhibited by the Trojan asteroids. In Fig-
ure 9 we present the near-IR spectra of two Trojan asteroids
(1143 Odysseus and 2797 Teucer), which although not identical
are closest to that of comet 162P. The V-band geometric albedos
( pv) for these two Trojans are 7.5% � 0.5% and 6.2% � 0.5%,

respectively, about twice the value for 162P ( pv ¼ 3:3% � 1:3%;
Paper II). The spectral similarity and comparable albedos may be
indicative of analogous compositions (see x 3.6). At the same
time, the spectral diversity among Trojan asteroids is also com-
parable with that seen among the few comet nuclei observed so
far in the near-IR (Fig. 6). In other words, among Trojan as-
teroids we find reasonable matches to individual comet spectra,
as well as to the spectral range observed so far among comet
nuclei. Such similarities suggest that the formation environments
of both populationsmay have indeed been analogous, as proposed
by Morbidelli et al. (2005).

3.4. Comparison with Centaurs and Trans-Neptunian Objects

Comets are believed to be dynamically related to Centaurs and
trans-Neptunian objects (TNOs), and near-IR spectra of these ob-
jects are increasingly available (see review by Barucci et al. 2005
and references therein). Some of these objects have featureless
spectra in the near-IR, but others do not. The presence of strong
absorption bands and the range of observed spectral character-
istics suggest that many of the Centaurs and TNOs have surface
compositions different from those found among comet nuclei
(e.g., Cruikshank et al. 1998; Jewitt 2002; Licandro et al. 2001,
2002; Barucci et al. 2005). Possible processes that would ex-
plain such compositional differences are discussed in the ref-
erences cited above. A detailed comparison of available near-IR
spectra of Centaurs, TNOs, and comet nuclei is beyond the scope
of this work.

3.5. Comparison with Meteorite Spectra

Comparison of the visible and near-IR spectra with meteoritic
samples can help constrain the composition of comets. As is the
case with comparisons between asteroids and meteorites, care
must be taken, since terrestrial weathering can contaminate the
meteoritic samples and space weathering can influence the spec-
tra of asteroids (e.g., Clark et al. 2002). We used the Relab data-
base (Pieters & Hiroi 2004) to search for appropriate fits to our
spectrum. The best fit to a primitive meteorite was obtained with
the Alais C i carbonaceous chondrite (Relab sample MR-MJG-
106) and is shown in Figure 10. This fit is not very good, with the
most significant shape discrepancies in the ultraviolet, visible, and
1.9 �m regions. Surprisingly, the best fit was to an iron meteorite,
as shown in Figure 11 (Relab sample SC-EAC-063).We consider
this fit a coincidence rather than indicative of a compositional
similarity for several reasons, including the fact that iron me-
teorites are the result of igneous processes incompatible with

Fig. 8.—Near-IR spectrum of comet 162P (squares) plotted with the spectra of
five Trojan asteroids from Emery & Brown (2003), normalized to 1.0 at 1.60 �m.
The spectrum of comet 162P is clearly within the range of spectral slopes of Trojan
asteroids. For clarity, in this and further figures the comet error bars are not plotted.

Fig. 9.—Near-IR spectrumof comet 162P (squares) plottedwith the two Trojan
asteroids from Emery & Brown (2003) with the most similar spectral shapes, 1143
Odysseus and 2797 Teucer. The spectra are normalized to 1.0 at 1.60 �m.

Fig. 10.—Visible and near-IR spectrum of comet 162P compared with that of a
C i carbonaceous chondrite meteorite.
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the high abundance of volatiles in comets. In addition, the geo-
metric albedo of this iron meteorite is pv ¼ 10:6%10 (Pieters &
Hiroi 2004), 3 times greater than that of this comet ( pv ¼ 3:3% �
1:3%; Paper II). This spectral match to an unlikely material un-
derscores the importance of using albedo in addition to spectra
when constraining the surface composition of these objects.
Campins & Swindle (1998) conclude that comets can yield mac-
roscopic meteorites, which have not either been found or rec-
ognized. As more comet and meteorite spectra become available,
they will likely play an important role in the identification of
cometary meteorites.

3.6. Models

Modeling of the surface spectra of atmosphereless solar system
objects to infer their composition can be a powerful analytical tool
and has been discussed in a number of publications (e.g., Hapke
1981; Shkuratov et al. 1999; Cruikshank et al. 1998; Emery &
Brown 2004; Clark et al. 2004).Wemodeled our visible and near-
IR spectra using the scattering theory described by Shkuratov et al.
(1999) for areal mixtures. Our approach is very similar to that
used for modeling Trojan asteroids (Emery & Brown 2004) and
Centaurs (e.g., Cruikshank et al. 1998; Poulet et al. 2002). The
main constraints are the albedo ( pv ¼ 3:3% � 1:3%; Paper II)
and the overall shape of the spectrum. The absence of strong

spectral features prevents the identification of specific minerals,
and the resulting model compositions are not unique. Further-
more, to include a mineral or molecule in our model it is nec-
essary to have its optical constants, which are available for a
limited set of likely components. If taken literally, our models
would suggest that the surface of this comet could be up to 95%
carbon (Table 3). This is unlikely, since carbon-rich meteorites
(with albedos as low as that of this comet) have at most 3.2% by
weight of carbon (Hutchison 2004, p. 29). Therefore, these mod-
els are not meant to strictly define the surface composition but
rather to be indicative of likely components and to allow com-
parisons with related objects that have been modeled in similar
ways.

The components we included are cosmochemically likely
materials used to fit spectra of Trojan asteroids. Since the spectrum
of 162P is similar to that of several Trojan asteroids (Figs. 8 and
9), we did not have to explore the whole parameter space and
concentrated on mixtures that yielded good approximations to the
spectra of these asteroids (Emery & Brown 2004 and references
therein). We have achieved reasonable fits to our spectra of 162P
using mixtures that include the following components: (1) Two
types of amorphous carbon. Amorphous carbons can exhibit
extreme variations in their optical constants; we chose two spe-
cific types because of their complementary spectral character-
istics (Figs. 12a and 12b). The optical constants and production
conditions for these two amorphous carbons are described in
Rouleau & Martin (1991) and Preibisch et al. (1993), respec-
tively. (2) Silicates, more specifically pyroxene [(Fe,Mg) SiO3],
as described in Dorschner et al. (1995). (3) Organics, mainly
Triton tholins. Tholins are the refractory residue resulting from
plasma discharges in simple molecular mixtures. Triton tholin
is the result of such a discharge in a gaseous mixture (99.9%N2,
0.1% CH4) approximating the atmosphere of Triton (McDonald
et al. 1994).

In Figure 12 we present six models with the compositions and
particle sizes given in Table 3. In order to illustrate the approach
that yielded the best fits (which we optimized visually), we first
plot the individual spectra of each of the two amorphous carbon
components in Figures 12a and 12b. As observed in Figure 12c,
these two components already give a reasonably good fit, with the
main departures occurring at the shorter wavelengths. The fit by
the carbon mix is independent of particle size (in the 10Y500 �m
range). The addition of either organics (Triton tholin) or silicates
(pyroxene with equal abundance of Fe and Mg, labeled as P7 in
Emery & Brown 2004) to the carbon mix produces improved fits,
as seen in Figures 12d and 12e. The final fit in Figure 12f includes
all four components: two carbons, Triton tholin, and pyroxene.
The grain size assumed was 10 �m for both carbons, and grain
size only became an important factor when considering the

10 The uncertainty in the albedo of the meteorite is negligible because it is
calibrated in the laboratory with respect to a registered standard.

Fig. 11.—Visible and near-IR spectrum of comet 162P compared with an iron
meteorite. This spectral fit is not indicative of compositional similarities (x 3.5).

TABLE 3

Model Surface Compositions

Triton Tholin Pyroxene

Model

Albedo pv
(%)

Amorphous Carbon 1

(%)

Amorphous Carbon 2

(%) Percentage

Size

(�m) Percentage

Size

(�m)

A........................... 4.0 100 . . . . . . . . . . . . . . .
B........................... 4.4 . . . 100 . . . . . . . . . . . .

C........................... 4.3 62 38 . . . . . . . . . . . .

D........................... 3.9 45 40 . . . . . . 15 40

E ........................... 4.1 30 65 5 15 . . . . . .
F ........................... 3.9 44 38 3 50 15 200
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organics and silicates. All the models yield a geometric albedo
within the uncertainties of that measured for the nucleus of this
comet (Table 3). As seen in Figure 12, the amorphous carbons
contribute to the overall shape and help lower the albedo. The
pyroxene helped achieve the red slope at the longest wavelengths
but is consistently too high from 0.7 to 1.0 �m. The Triton tholin
(McDonald et al. 1994) fits well at most wavelengths except the
shortest.

As mentioned, these initial models have significant limitations.
The use of carbons with albedo close to that of our object required
most of the surface to be carbon. More rigorous modeling should
include carbon species with lower albedo and other components

such as the hydrated silicate jarosite mentioned above (for which
we did not have optical constants). Rotationally resolved visible
and near-IR spectra would also be important to establish whether
there are variations in surface composition as we found in 944
Hidalgo (H. Campins et al. 2006, in preparation).
It is important to point out that organics, including the Triton

tholin used in our model, have strong absorptions in the 3Y4 �m
region due to O�H, N�H, and C�H bonds (e.g., McDonald
et al. 1994). These absorptions are not present in the spectra of
the Trojan asteroids observed so far (e.g., Emery & Brown 2003,
2004), suggesting that organics may not be primarily responsi-
ble for the red slope in the spectra of Trojan asteroids. However,

fig.

12afig. 12bfig. 12cfig. 12dfig. 12efig. 12f

Fig. 12.—Models from Table 3, along with our spectrum of comet 162P, normalized to 1.0 at 1.60 �m. [See the electronic edition of the Journal for a color version of this
figure.]

fig. 12afig. 12bfig. 12cfig. 12dfig. 12efig. 12f
Fig. 12a

fig. 12afig. 12bfig. 12cfig. 12dfig. 12efig. 12f
Fig. 12b

fig. 12afig. 12bfig. 12cfig. 12dfig. 12efig. 12f
Fig. 12c

fig. 12afig. 12bfig. 12cfig. 12dfig. 12efig. 12f
Fig. 12d

fig. 12afig. 12bfig. 12cfig. 12dfig. 12efig. 12fFig. 12e
fig. 12afig. 12bfig. 12cfig. 12dfig. 12efig. 12f
Fig. 12f
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organic solids have indeed been detected in the comae of several
comets, includingmost recently in comet P/Tempel 1, particularly
after the encounter and impact with the Deep Impact spacecraft
(A’Hearn et al. 2005). Observations of comet 162P in the 3Y4 �m
region during this apparitionmight not have been diagnostic of the
presence of organics. As mentioned in x 2.1, beyond 2 �m the
shape of the spectrum of 162P is dominated by a strong thermal
emission component. In future apparitions of comet 162P (orbital
period = 5.3 yr) it would be useful to attempt observations in the
3Y4 �m region when it is sufficiently far from the Sun for that
spectral range not to be dominated by thermal emission. Such ob-
servations would be more diagnostic not only of organic compo-
nents but also of hydrated silicates.

4. CONCLUSION

Our observations of the nucleus of comet 162P provide addi-
tional evidence that bare comet nuclei have spectra with muted
or absent structure and low albedos. So far, the nuclei of comets
appear spectrally similar to primitive asteroids, primarily D-type
asteroids. The few comet nuclei observed spectroscopically in
the near-IR exhibit considerable diversity, similar to that found
among near-IR spectra of Trojan asteroids by Emery & Brown
(2003). We found reasonably good matches among Trojan as-
teroids to the spectral shape of comet 162P. Such similarities are

consistent with an analogous formation environment for Trojan
asteroids and Jupiter-family comets, as proposed by Morbidelli
et al. (2005). No suitable spectral matches to our target were
found among chondritic meteorites. We modeled the surface
composition of our target using the spectral shape and albedo as
constraints. Although the lack of sharp spectral structure makes
the identification of specific surface components difficult, our
models suggest amorphous carbon, pyroxenes, and/or organic
compounds as likely components of the surface of comet 162P.
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